刘秀梅1, 2,
张志浩1, 2,
孟诗原1, 2,
王倩1, 2,
韦业1, 2,
王华田1, 2,,,
陈淑英3,
丛桂芝3,
唐金3,
秦德明3
1.山东农业大学林学院 泰安 271018
2.黄河下游森林培育国家林业局重点实验室 泰安 271018
3.伊犁州林业科学研究院 伊宁 835000
基金项目: 山东省农业重大应用技术创新项目Financial and Agriculture Indicator (2016) No.36
详细信息
作者简介:张瑛, 主要研究方向为森林培育。E-mail:cherrycedar@163.com
通讯作者:王华田, 主要研究方向为森林培育和森林生理生态。E-mail:wanght@sdau.edu.cn
中图分类号:X53;S792.11计量
文章访问数:931
HTML全文浏览量:10
PDF下载量:515
被引次数:0
出版历程
收稿日期:2018-06-28
录用日期:2018-09-17
刊出日期:2019-02-01
Effect of magnetized water treatment on photosynthetic and growth characteristics of Populusxeuramericanna 'Neva' seedlings under exogenous cadmium stress
ZHANG Ying1, 2,,LIU Xiumei1, 2,
ZHANG Zhihao1, 2,
MENG Shiyuan1, 2,
WANG Qian1, 2,
WEI Ye1, 2,
WANG Huatian1, 2,,,
CHEN Shuying3,
CONG Guizhi3,
TANG Jin3,
QIN Deming3
1. College of Forestry, Shandong Agricultural University, Tai'an 271018, China
2. Key Laboratory of State Forestry Administration for Silviculture in Lower Yellow River, Tai'an 271018, China
3. Yili Academy of Forestry, Yining 835000, China
Funds: This work was supported by the Agriculture Major Application Technology Innovation Program of Shandong ProvinceFinancial and Agriculture Indicator (2016) No.36
More Information
Corresponding author:WANG Huatian, E-mail:wanght@sdau.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:为探讨磁化水灌溉处理在促进植物生长、提高植株重金属耐受性方面的作用机制,本研究采用随机区组试验设计,研究了镉胁迫(0 μmol·L-1、50 μmol·L-1、100 μmol·L-1)下磁化水灌溉处理对1 a生欧美杨'I-107'光合特性、叶绿素荧光动力学参数及生长特性的影响。结果表明:1)镉胁迫会显著降低植株高生长和根茎叶干物质量;低浓度(50 μmol·L-1)镉处理促进根系直径及体积增大(P < 0.05),高浓度(100 μmol·L-1)则会抑制根系各形态参数;镉胁迫下欧美杨叶绿素b和类胡萝卜素含量分别降低12.50%、43.24%和19.27%、46.37%(P < 0.05),净光合速率(Pn)、蒸腾速率(Tr)、胞间二氧化碳(Ci)分别降低13.68%和33.68%、8.07%和27.81%、5.00%和14.99%(P < 0.05),同时,PSⅡ潜在活性(Fv/Fm)、最大光化学速率(Fv/Fo)、光合性能指数(PIabs)和量子产额(ΦEo)均有不同程度降低。2)磁化水灌溉提高镉胁迫植株高生长及根茎叶干物质量,增加植株根系长度及表面积;同时,叶绿素a、叶绿素b和类胡萝卜素含量在0 μmol·L-1和100 μmol·L-1镉胁迫下分别提高16.99%、40.20%,8.67%、39.10%和17.32%、50.52%(P < 0.05);Gs、Ci及WUE显著升高,Tr则降低24.20%、23.33%、12.06%(P < 0.05);另外,Fv/Fm、Fv/Fo、PIabs显著升高(P < 0.05)。综上所述,磁化水灌溉处理有助于提高镉胁迫下欧美杨幼苗光合色素含量,维持光合机构功能,增强光合碳同化速率,减轻镉胁迫对植株生长发育的抑制。
关键词:镉胁迫/
磁化水灌溉/
欧美杨I-107/
光合/
生长
Abstract:In order to investigate the effect of magnetized water irrigation on plant growth and tolerance to heavy metals, a randomized block experiment was designed to explore the photosynthetic characteristics, chlorophyll fluorescence kinetic parameters and growth characteristics of 1-year-old Populus×euramericanna 'Neva' under three cadmium concentrations (0 μmol·L-1, 50 μmol·L-1, 100 μmol·L-1) of magnetized water solution. The results showed that:1) plant height, stem growth and dry matter weights of roots, leaves and stems significantly dropped under cadmium stress. While root diameter and volume were enhanced under low cadmium concentration (50 μmol·L-1, P < 0.05), root morphology parameters were inhibited under high concentration (100 μmol·L-1). Compared with 0 μmol·L-1 cadmium treatment, chlorophyll b and carotenoid contents decreased respectively by 12.50% and 19.27% under 50 μmol·L-1 cadmium treatment, and 43.24% and 46.37% under 100 μmol·L-1 cadmium treatment (P < 0.05). Net photosynthetic rate (Pn), transpiration rate (Tr) and intercellular carbon dioxide concentration (Ci) respectively decreased by 13.68%, 8.07% and 5.00% under 50 μmol·L-1 cadmium treatment, and by 33.68%, 27.81% and 14.99% (P < 0.05) under 100 μmol·L-1 cadmium treatment. PSⅡ potential activity (Fv/Fm), maximum photo-chemical rate (Fv/Fo), photosynthetic performance index (PIabs) and quantum yield (ΦEo) also dropped to varying degrees. 2) Compared with non-magnetic water treatment, magnetic water treatment enhanced the growth of plants under cadmium stress in terms of height and stem, increased dry weight of roots and leaves and also root length and surface area of the plant. The contents of chlorophyll a increased by 16.99%, 6.55% and 4.02%, and carotenoid content increased by 17.32%, 19.38% and 50.52% (P < 0.05), respectively, under 0, 50 and 100 μmol·L-1 cadmium treatments. While Pn, Gs, Ci and WUE increased, the differences were not significant. However, Tr reduced respectively by 24.20%, 23.33% and 12.06% (P < 0.05). In addition, Fv/Fm, Fv/Fo and ΦEo remained stable whereas PIabs increased respectively by 8.01%, 20.63% and 31.09% (P < 0.05). In summary, magnetic treatment of water increased the contents of photosynthetic pigments, maintained the function of photosynthetic apparatus, heightened the rate of photosynthetic carbon assimilation and subsequently relieved the inhibition of plant growth by cadmium stress.
Key words:Cadmium stress/
Magnetic treatment of water/
Populus×euramericanna 'Neva'/
Photosynthesis/
Plant growth
HTML全文
表1磁化水处理对镉胁迫下欧美杨光合色素含量的影响
Table1.Effect of magnetized water irrigation on photosynthetic pigments contents of Populus×euramericanna'Neva' under different exogenous cadmium stresses
mg·g-1 | ||||
处理 Treatment | 叶绿素 a Cholorophyll a | 叶绿素 b Cholorophyll b | 类胡萝卜素 Carotenoid | 色素含量 Pigment content |
NM0 | 1.907±0.033Ab | 0.784±0.016Ab | 0.358±0.005Ab | 3.049±0.052Ab |
NM50 | 1.724±0.089Aa | 0.686±0.029Ba | 0.289±0.027Ba | 2.699±0.139Ba |
NM100 | 1.127±0.052Bb | 0.445±0.020Cb | 0.192±0.008Cb | 1.763±0.080Cb |
M0 | 2.231±0.024Aa | 0.852±0.012Aa | 0.420±0.007Aa | 3.503±0.039Aa |
M50 | 1.837±0.035Ba | 0.732±0.013Ba | 0.345±0.009Ba | 2.950±0.056Ba |
M100 | 1.580±0.033Ca | 0.619±0.009Ca | 0.289±0.006Ca | 2.488±0.048Ca |
??NM:非磁化水处理; M:磁化水处理; 0、50、100分别表示镉浓度为0 μmol·L-1、50 μmol·L-1、100 μmol·L-1。表中数据为3次测定的平均值±标准误, 不同大写字母表示同一磁化水处理不同镉浓度间差异显著(P < 0.05), 不同小写字母表示相同镉浓度不同磁化水处理间差异显著(P < 0.05)。NM: non-magnetic treatment of water; M: magnetic treatment of water. 0, 50 and 100 represent 0 μmol·L-1, 50 μmol·L-1 and 100 μmol·L-1 cadmium concentrations, respectively. Data in the table are the means ± SE of three replicates. Different capital letters indicate significant differences among cadmium concentrations for the same magnetic treatment of water at 0.05 level. Different lowercase letters indicate significant differences between magnetic treatments of water for the same cadmium concentration at 0.05 level. |

表2磁化水处理对镉胁迫下欧美杨叶片气体交换参数的影响
Table2.Effect of magnetized water irrigation on leaf gas exchange parameters of Populus×euramericanna 'Neva' under different exogenous cadmium stresses
处理 Treatment | 净光合速率 Net photosynthetic rate (Pn) (mmol·m-2·s-1) | 蒸腾速率 Transpiration rate (Tr) (mmol·m-2·s-1) | 气孔导度 Stomatal conductance (Gs) (mmol·m-2·s-1) | 胞间CO2浓度 Intercellular CO2 concentration (Ci) (mmol·mol-1) | 水分利用效率 Water use efficiency (WUE) (μmol·mol-1) |
NM0 | 9.50±0.15Aa | 4.71±0.17Aa | 329.67±14.84Ab | 331.22±2.79Ab | 2.02±0.11Ab |
NM50 | 8.20±0.23Bb | 4.33±0.04Ba | 298.89±3.90Ab | 314.67±1.39Bb | 1.89±0.05Ab |
NM100 | 6.30±0.17Ca | 3.40±0.07Ca | 213.33±5.72Bb | 281.56±5.31Cb | 1.85±0.03Ab |
M0 | 12.17±0.92Aa | 3.57±0.33Ab | 459.55±9.65Aa | 350.44±2.25Aa | 3.41±0.25Aa |
M50 | 10.57±0.09Aa | 3.32±0.29Bb | 333.89±2.63Ba | 328.89±2.99Ba | 3.23±0.24Aa |
M100 | 6.93±0.51Ba | 2.99±0.04Cb | 276.22±22.37Ba | 298.78±2.48Ca | 2.32±0.01Ba |
??NM:非磁化水处理; M:磁化水处理; 0、50、100分别表示镉浓度为0 μmol·L-1、50 μmol·L-1、100 μmol·L-1。表中数据为3次测定的平均值±标准误, 不同大写字母表示同一磁化水处理不同镉浓度间差异显著(P < 0.05), 不同小写字母表示相同镉浓度不同磁化水处理间差异显著(P < 0.05)。NM: non-magnetic treatment of water; M: magnetic treatment of water. 0, 50 and 100 represent 0 μmol·L-1, 50 μmol·L-1 and 100 μmol·L-1 cadmium concentrations, respectively. Data in the table are the means ± SE of three replicates. Different capital letters indicate significant differences among cadmium concentrations for the same magnetic treatment of water at 0.05 level. Different lowercase letters indicate significant differences between magnetic treatments of water for the same cadmium concentration at 0.05 level. |

表3磁化水处理对镉胁迫下欧美杨叶绿素荧光参数的影响
Table3.Effect of magnetized water irrigation on chlorophyll fluorescence parameters of Populus×euramericanna 'Neva' under different exogenous cadmium stresses
处理 Treatment | PSⅡ最大光化学速率 Maximal efficiency of PSⅡ(Fv/Fm) | PSⅡ潜在活性 Potential activity of PSⅡ(Fv/Fo) | 光合性能指数 Photosynthetic performance index (PIabs) | 量子产额 Photosynthetic performance index (ΦEo) |
NM0 | 0.832±0.001Ab | 4.931±0.038Ab | 7.803±0.038Ab | 0.527±0.009Aa |
NM50 | 0.828±0.002Ab | 4.814±0.056Ab | 6.702±0.056Bb | 0.521±0.004Aa |
NM100 | 0.818±0.001Bb | 4.485±0.045Bb | 5.680±0.045Cb | 0.496±0.004Bb |
M0 | 0.839±0.001Aa | 5.213±0.032Aa | 9.208±0.032Aa | 0.544±0.002Aa |
M50 | 0.833±0.001Ba | 5.001±0.052Ba | 8.085±0.052Ba | 0.539±0.008Aa |
M100 | 0.831±0.001Ba | 4.905±0.042Ba | 7.446±0.042Ba | 0.536±0.002Aa |
??NM:非磁化水处理; M:磁化水处理; 0、50、100分别表示镉浓度为0 μmol·L-1、50 μmol·L-1、100 μmol·L-1。表中数据为3次测定的平均值±标准误, 不同大写字母表示同一磁化水处理不同镉浓度间差异显著(P < 0.05), 不同小写字母表示相同镉浓度不同磁化水处理间差异显著(P < 0.05)。NM: non-magnetic treatment of water; M: magnetic treatment of water. 0, 50 and 100 represent 0 μmol·L-1, 50 μmol·L-1 and 100 μmol·L-1 cadmium concentrations, respectively. Data in the table are the means ± SE of three replicates. Different capital letters indicate significant differences among cadmium concentrations for the same magnetic treatment of water at 0.05 level. Different lowercase letters indicate significant differences between magnetic treatments of water for the same cadmium concentration at 0.05 level. |

表4磁化水处理对镉胁迫下欧美杨生长及生物量的影响
Table4.Effect of magnetized water irrigation on growth and biomass of Populus×euramericanna 'Neva' under different exogenous cadmium stresses
处理 Treatment | 树高 Height (cm) | 基茎 Base diameter (mm) | 生物量Biomass (g) | ||
根Root | 茎Stem | 叶Leaf | |||
NM0 | 189.3±0.67Ab | 11.75±0.13Ab | 7.32±0.06Ab | 40.25±0.52Aa | 20.62±0.26Ab |
NM50 | 178.3±6.06Bb | 11.57±0.40Aa | 6.40±0.13Bb | 36.99±0.10Ba | 17.78±0.45Ab |
NM100 | 176.7±8.09Ba | 11.48±0.06Aa | 6.17±0.02Ba | 32.31±0.43Ba | 15.86±0.87Bb |
M0 | 191.7±7.31Aa | 12.48±0.15Aa | 8.35±0.03Aa | 41.97±1.06Aa | 25.11±0.33Aa |
M50 | 183.0±11.73Ba | 11.76±0.26Aa | 7.47±0.09Ba | 37.29±0.41Ba | 22.90±0.83Ba |
M100 | 179.3±5.81Ca | 11.69±0.25Aa | 6.62±0.10Ca | 36.40±0.64Ba | 21.33±0.37Ba |
??NM:非磁化水处理; M:磁化水处理; 0、50、100分别表示镉浓度为0 μmol·L-1、50 μmol·L-1、100 μmol·L-1。表中数据为3次测定的平均值±标准误, 不同大写字母表示同一磁化水处理不同镉浓度间差异显著(P < 0.05), 不同小写字母表示相同镉浓度不同磁化水处理间差异显著(P < 0.05)。NM: non-magnetic treatment of water; M: magnetic treatment of water. 0, 50 and 100 represent 0 μmol·L-1, 50 μmol·L-1 and 100 μmol·L-1 cadmium concentrations, respectively. Data in the table are the means ± SE of three replicates. Different capital letters indicate significant differences among cadmium concentrations for the same magnetic treatment of water at 0.05 level. Different lowercase letters indicate significant differences between magnetic treatments of water for the same cadmium concentration at 0.05 level. |

表5磁化水处理对镉胁迫下欧美杨根系参数的影响
Table5.Effect of magnetized water irrigation on root parameters of Populus×euramericanna 'Neva' under different exogenous cadmium stresses
处理 Treatment | 长度 Length (cm) | 平均直径 Average diameter (mm) | 表面积 Surface area (cm2) | 根体积 Root volume (cm3) |
NM0 | 460.12±7.43Ab | 0.44±0.01Bb | 64.85±1.10ABb | 0.69±0.05Bb |
NM50 | 436.48±10.42Ab | 0.53±0.01Aa | 72.85±5.49Aa | 1.15±0.15Aa |
NM100 | 383.15±7.01Ba | 0.43±0.01Ba | 57.93±2.71Ba | 0.64±0.04Ba |
M0 | 503.39±3.58Aa | 0.56±0.02Ba | 99.95±4.24Ba | 1.03±0.10ABa |
M50 | 472.93±4.85Aa | 0.52±0.01Aa | 73.13±0.49Aa | 1.31±0.24Aa |
M100 | 422.73±25.59Ba | 0.44±0.02Ba | 62.89±2.51Ba | 0.73±0.03Ba |
??NM:非磁化水处理; M:磁化水处理; 0、50、100分别表示镉浓度为0 μmol·L-1、50 μmol·L-1、100 μmol·L-1。表中数据为3次测定的平均值±标准误, 不同大写字母表示同一磁化水处理不同镉浓度间差异显著(P < 0.05), 不同小写字母表示相同镉浓度不同磁化水处理间差异显著(P < 0.05)。NM: non-magnetic treatment of water; M: magnetic treatment of water. 0, 50 and 100 represent 0 μmol·L-1, 50 μmol·L-1 and 100 μmol·L-1 cadmium concentrations, respectively. Data in the table are the means ± SE of three replicates. Different capital letters indicate significant differences among cadmium concentrations for the same magnetic treatment of water at 0.05 level. Different lowercase letters indicate significant differences between magnetic treatments of water for the same cadmium concentration at 0.05 level. |

参考文献
[1] | 周建军, 周桔, 冯仁国.我国土壤重金属污染现状及治理战略[J].中国科学院院刊, 2014, 29(3):315-320 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49580007 ZHOU J J, ZHOU J, FENG R G. Status of China's heavy metal contamination in soil and its remediation strategy[J]. Bulletin of Chinese Academy of Sciences, 2014, 29(3):315-320 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49580007 |
[2] | 周垂帆, 李莹, 殷丹阳, 等.林地重金属污染来源解析[J].世界林业研究, 2015, 28(5):15-21 http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201505003 ZHOU C F, LI Y, YIN D Y, et al. A review on heavy metal contamination on forest land[J]. World Forestry Research, 2015, 28(5):15-21 http://d.old.wanfangdata.com.cn/Periodical/sjlyyj201505003 |
[3] | 李玉浸.集约化农业的环境问题与对策[M].北京:中国农业科技出版社, 2001:57-82 LI Y J. Environmental Issues and Countermeasures for Intensive Agriculture[M]. Beijing:China Agricultural Science and Technology Press, 2001:57-82 |
[4] | 时萌, 王芙蓉, 王棚涛.植物响应重金属镉胁迫的耐性机理研究进展[J].生命科学, 2016, 28(4):504-512 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016070100053812 SHI M, WANG F R, WANG P T. Research advances in the tolerance mechanism of plant response to heavy metal cadmium stress[J]. Chinese Bulletin of Life Sciences, 2016, 28(4):504-512 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016070100053812 |
[5] | LIU Z L, CHEN W, HE X Y. Influence of Cd2+ on growth and chlorophyll fluorescence in a hyperaccumulator:Lonicera japonica Thunb[J]. Journal of Plant Growth Regulation, 2015, 34(3):672-676 doi: 10.1007/s00344-015-9483-z |
[6] | FILEK M, GZYL-MALCHER B, ZEMBALA M, et al. Effect of selenium on characteristics of rape chloroplasts modified by cadmium[J]. Journal of Plant Physiology, 2010, 167(1):28-33 doi: 10.1016/j.jplph.2009.07.003 |
[7] | DALCORSO G. Heavy metal toxicity in plants[M]//FURINI A. Plants and Heavy Metals. Dordrecht: Springer, 2012: 1-25 |
[8] | 邓培雁, 刘威, 韩博平.宝山堇菜(Viola baoshanensis)镉胁迫下的光合作用[J].生态学报, 2007, 27(5):1858-1862 doi: 10.3321/j.issn:1000-0933.2007.05.023 DENG P Y, LIU W, HAN B P. Photosynthesis of Viola baoshanensis under Cd stress[J]. Acta Ecologica Sinica, 2007, 27(5):1858-1862 doi: 10.3321/j.issn:1000-0933.2007.05.023 |
[9] | 张然然, 张鹏, 都韶婷.镉毒害下植物氧化胁迫发生及其信号调控机制的研究进展[J].应用生态学报, 2016, 27(3):981-992 http://d.old.wanfangdata.com.cn/Periodical/yystxb201603038 ZHANG R R, ZHANG P, DU S T. Oxidative stress-related signals and their regulation under Cd stress:A review[J]. Chinese Journal of Applied Ecology, 2016, 27(3):981-992 http://d.old.wanfangdata.com.cn/Periodical/yystxb201603038 |
[10] | 高宇, 程潜, 张梦君, 等.镉污染土壤修复技术研究[J].生物技术通报, 2017, 33(10):103-110 http://d.old.wanfangdata.com.cn/Periodical/ahnxtb201706055 GAO Y, CHENG Q, ZHANG M J, et al. Research advance on remediation technology of cadmium contaminated soil[J]. Biotechnology Bulletin, 2017, 33(10):103-110 http://d.old.wanfangdata.com.cn/Periodical/ahnxtb201706055 |
[11] | 王洪波, 王成福, 吴旭, 等.磁化水滴灌对土壤盐分及玉米产量品质的影响[J].土壤, 2018, 50(4):762-768 http://d.old.wanfangdata.com.cn/Periodical/tr201804016 WANG H B, WANG F C, WU X, et al. Effects of drip irrigation with different magnetic water on soil salinity, maize yield and quality[J]. Soils, 2018, 50(4):762-768 http://d.old.wanfangdata.com.cn/Periodical/tr201804016 |
[12] | GREWAL H S, MAHESHWARI B L. Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings[J]. Bioelectromagnetics, 2011, 32(1):58-65 doi: 10.1002/bem.20615 |
[13] | HOZAYN M, QADOS A M S A. Magnetic water application for improving wheat (Triticum aestivum L.) crop production[J]. Agriculture and Biology Journal North America, 2010, 1(4):677-682 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001436432 |
[14] | 刘秀梅, 郭建曜, 朱红, 等.磁化微咸水灌溉对欧美杨I-107离子稳态的影响[J].应用生态学报, 2016, 27(8):2438-2444 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016091800140649 LIU X M, GUO J Y, ZHU H, et al. Ionic homeostasis of Populus × euramericanna 'Neva' influenced by irrigation with magnetized brackish water[J]. Chinese Journal of Applied Ecology, 2016, 27(8):2438-2444 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016091800140649 |
[15] | 李金花, 何燕, 段建平, 等. 107杨对土壤重金属的吸收和富集[J].林业科学研究, 2012, 25(1):65-70 doi: 10.3969/j.issn.1001-1498.2012.01.012 LI J H, HE Y, DUAN J P, et al. Absorption and accumulation of heavy metal from soil by leaves of Populus × euramericana cv. 'Neva' plantation[J]. Forest Research, 2012, 25(1):65-70 doi: 10.3969/j.issn.1001-1498.2012.01.012 |
[16] | 万雪琴, 张帆, 夏新莉, 等.镉处理对杨树光合作用及叶绿素荧光参数的影响[J].林业科学, 2008, 44(6):73-78 doi: 10.3321/j.issn:1001-7488.2008.06.013 WAN X Q, ZHANG F, XIA X L, et al. Effects of cadmium on photosynthesis and chlorophyll fluorescence parameters of solution-cultured poplar plants[J]. Scientia Silvae Sinicae, 2008, 44(6):73-78 doi: 10.3321/j.issn:1001-7488.2008.06.013 |
[17] | ABDEL-LATIF A. Cadmium induced changes in pigment content, ion uptake, proline content and phosphoenolpyruvate carboxylase activity in Triticum aestivum seedlings[J]. Australian Journal of Basic and Applied Sciences, 2008, 2(1):57-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000418854 |
[18] | 孔祥生, 易现峰.植物生理学实验技术[M].北京:中国农业出版社, 2008:77-79 KONG X S, YI X F. Experimental Technique of Plant Physiology[M]. Beijing:China Agriculture Press, 2008:77-79 |
[19] | SAIRAM R K, SRIVASTAVA G C. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress[J]. Plant Science, 2002, 162(6):897-904 doi: 10.1016/S0168-9452(02)00037-7 |
[20] | 薛永, 王苑螈, 姚泉洪, 等.植物对土壤重金属镉抗性的研究进展[J].生态环境学报, 2014, 23(3):528-534 doi: 10.3969/j.issn.1674-5906.2014.03.024 XUE Y, WANG Y Y, YAO Q H, et al. Research progress of plants resistance to heavy metal Cd in soil[J]. Ecology and Environmental Sciences, 2014, 23(3):528-534 doi: 10.3969/j.issn.1674-5906.2014.03.024 |
[21] | 张帆, 万雪琴, 王长亮, 等.镉胁迫下增施氮对杨树生长和光合特性的影响[J].四川农业大学学报, 2011, 29(3):317-321 doi: 10.3969/j.issn.1000-2650.2011.03.005 ZHANG F, WAN X Q, WANG C L, et al. Effects of nitrogen supplement on photosynthetic characteristic and growth rate of poplar plants under cadmium stress[J]. Journal of Sichuan Agricultural University, 2011, 29(3):317-321 doi: 10.3969/j.issn.1000-2650.2011.03.005 |
[22] | 何士敏, 李盛贤, 王鑫.磁化水对甜菜种子萌发期和幼苗期体内几种酶活性的影响[J].中国甜菜糖业, 2000, (2):5-7 doi: 10.3969/j.issn.1002-0551.2000.02.002 HE S M, LI S X, WANG X. The affection of magnetic water to beet seeds enzymatic activities in germination and seedling stage[J]. China Beet & Sugar, 2000, (2):5-7 doi: 10.3969/j.issn.1002-0551.2000.02.002 |
[23] | SAKAKI T, KONDO N, SUGAHARA K. Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation:Role of active oxygens[J]. Physiologia Plantarum, 1983, 59(1):28-34 doi: 10.1111/ppl.1983.59.issue-1 |
[24] | 段晨雪, 张宝玉, 伍松翠, 等.重金属镉对斜生栅藻光合作用的影响[J].海洋与湖沼, 2015, 46(2):351-356 http://d.old.wanfangdata.com.cn/Periodical/hyyhz201502016 DUAN C X, ZHANG B Y, WU S C, et al. Effect of cadmium on photosynthesis of Scenedesmus obliquus[J]. Oceanologia et Limnologia Sinica, 2015, 46(2):351-356 http://d.old.wanfangdata.com.cn/Periodical/hyyhz201502016 |
[25] | 戴前莉, 李金花, 胡建军, 等.增施铁对镉胁迫下柳树生长及光合生理性能的改善[J].南京林业大学学报:自然科学版, 2017, 41(2):63-72 http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201702010 DAI Q L, LI J H, HU J J, et al. Improvement on growth and photosynthetic physiological performance of three willow clones or cultivar under Cd treatments and supplying Fe[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2017, 41(2):63-72 http://d.old.wanfangdata.com.cn/Periodical/njlydxxb201702010 |
[26] | 贾中民, 冯汉茹, 魏虹.镉对枫杨幼苗生长和光合特性的影响[J].西南大学学报:自然科学版, 2014, 36(8):27-35 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=SciencePaper201408110000005633 JIA Z M, FENG H R, WEI H. Effects of cadmium on the growth and photosynthetic characteristics of Pterocarya stenoptera seedlings[J]. Journal of Southwest University:Natural Science Edition, 2014, 36(8):27-35 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=SciencePaper201408110000005633 |
[27] | MOBIN M, KHAN N A. Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress[J]. Journal of Plant Physiology, 2007, 164(5):601-610 doi: 10.1016/j.jplph.2006.03.003 |
[28] | VECCHIA F D, LA ROCCA N, MORO I, et al. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium[J]. Plant Science, 2005, 168(2):329-338 doi: 10.1016/j.plantsci.2004.07.025 |
[29] | 王文明, 姜益娟, 郑德明, 等.磁化水滴灌对枣树光合作用与蒸腾作用的影响[J].新疆农业科学, 2010, 47(12):2421-2425 http://d.old.wanfangdata.com.cn/Periodical/xjnykx201012017 WANG W M, JIANG Y J, ZHENG D M, et al. Influence of magnetization water irrigation on photosynthesis and transpiration of jujube tree[J]. Xinjiang Agricultural Sciences, 2010, 47(12):2421-2425 http://d.old.wanfangdata.com.cn/Periodical/xjnykx201012017 |
[30] | 万晓, 刘秀梅, 王华田, 等.高矿化度灌溉水磁化处理对绒毛白蜡生理特性及生长的影响[J].林业科学, 2016, 52(2):120-126 http://d.old.wanfangdata.com.cn/Periodical/lykx201602015 WAN X, LIU X P, WANG H T, et al. Effect of magnetic treatment of salty irrigation water on physiological and growth characteristics of potted Fraxinus velutina seedlings[J]. Scientia Silvae Sinicae, 2016, 52(2):120-126 http://d.old.wanfangdata.com.cn/Periodical/lykx201602015 |
[31] | APPENROTH K J, ST?CKEL J, SRIVASTAVA A, et al. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements[J]. Environmental Pollution, 2001, 115(1):49-64 doi: 10.1016/S0269-7491(01)00091-4 |
[32] | 李鹏民, 高辉远, STRASSER R J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报, 2005, 31(6):559-566 http://d.old.wanfangdata.com.cn/Periodical/zwslxb200506001 LI P M, GAO H Y, STRASSER R J. Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study[J]. Journal of Plant Physiology and Molecular Biology, 2005, 31(6):559-566 http://d.old.wanfangdata.com.cn/Periodical/zwslxb200506001 |
[33] | 贾中民, 王力, 魏虹, 等.垂柳和旱柳对镉的积累及生长光合响应比较分析[J].林业科学, 2013, 49(11):51-59 http://d.old.wanfangdata.com.cn/Periodical/lykx201311007 JIA Z M, WANG L, WEI H, et al. Comparative analysis of Salix babylonica and Salix matsudana for their cadmium accumulation, growth and photosynthesis in response to cadmium contamination[J]. Scientia Silvae Sinicae, 2013, 49(11):51-59 http://d.old.wanfangdata.com.cn/Periodical/lykx201311007 |
[34] | 刘璇, 张婷婷, 黄馨瑶, 等.磁化水对玉米耐受重金属镉的影响[J].厦门大学学报:自然科学版, 2008, 47(S2):278-281 http://d.old.wanfangdata.com.cn/Periodical/xmdxxb2008z2064 LIU X, ZHANG T T, HUANG X Y, et al. Magnetic water improve the tolerance of corn to Cd ion[J]. Journal of Xiamen University:Natural Science, 2008, 47(S2):278-281 http://d.old.wanfangdata.com.cn/Periodical/xmdxxb2008z2064 |
[35] | 刘秀梅, 毕思圣, 张新宇, 等.磁化微咸水灌溉对欧美杨I-107微量元素和碳氮磷养分特征的影响[J].生态学报, 2017, 37(20):6691-6699 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017112200149180 LIU X M, BI S S, ZHANG X Y, et al. Effects of magnetized brackish water on the absorption and distribution of microelements, carbon, nitrogen and phosphorus in Populus × euramericana 'Neva'[J]. Acta Ecologica Sinica, 2017, 37(20):6691-6699 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017112200149180 |
[36] | LING T, JUN R, FANGKE Y. Effect of cadmium supply levels to cadmium accumulation by Salix[J]. International Journal of Environmental Science & Technology, 2011, 8(3):493-500 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000001173387 |
[37] | 张佳, 李海平, 李灵芝, 等.磁化水灌溉对番茄生长及生理特性的影响[J].农业工程, 2018, 8(1):108-112 doi: 10.3969/j.issn.2095-1795.2018.01.038 ZHANG J, LI H P, LI L Z, et al. Effects of magnetized water irrigation on growth and physiological characteristics of tomato[J]. Agricultural Engineering, 2018, 8(1):108-112 doi: 10.3969/j.issn.2095-1795.2018.01.038 |
[38] | 张新宇, 董玉峰, 刘佩迎, 等.磁化处理对绒毛白蜡嫩枝扦插生根的影响[J].浙江农林学学报, 2017, 34(5):949-954 http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201705024 ZHANG X Y, DONG Y F, LIU P Y, et al. Magnetic treatment on rootings of semi lignified twigs of Fraxinus velutina[J]. Journal of Zhejiang A & F University, 2017, 34(5):949-954 http://d.old.wanfangdata.com.cn/Periodical/zjlxyxb201705024 |