Effects of nitrogen and phosphorus additions on nitrous oxide emissions from alpine grassland in the northern slope of Kunlun Mountains, China
Deng-Chao CAO1,2,3,4, Xiao-Peng GAO,1,2,3,*, Lei LI1,2,3, Dong-Wei GUI1,2,3, Fan-Jiang ZENG1,2,3, Wen-Nong KUANG1,2,3,4, Ming-Yuan YIN1,2,3,4, Yan-Yan LI1,2,3,4, PULATI Aili51 Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, ürümqi 830011, China 2 Cele National Station of Observation and Research for Desert-Grassland Ecosystems in Xinjiang, Cele, Xinjiang 848300, China 3 Key Laboratory of Biogeography and Bio-resource in Arid Zone, Chinese Academy of Sciences, ürümqi 830011, China 4 University of Chinese Academy of Sciences, Beijing 100049, China 5 Cele Grassland Management Station in Xinjiang, Cele, Xinjiang 848300, China
Abstract Aims Nutrient additions such as nitrogen and phosphorus are important strategies to improve the productivity of the grassland ecosystem. However, their effect on soil nitrous oxide (N2O) emissions remains unclear. Methods A field study was conducted in an alpine grassland located in the north slope of Kunlun Mountains in Southern Xinjiang. Four treatments included nitrogen addition alone (N), phosphorus addition alone (P), mixture of nitrogen and phosphorus additions (N + P) and an unfertilized control (CK). Gas samples were collected and analyzed using the static chamber chromatography methodology during the 2017 growing season. Treatment effects on the characteristics of N2O emissions from grassland soil were thoroughly investigated. Pearson correlation analysis was used to identify and quantify the influence of environmental variables on soil N2O emissions. Important findings The results showed that N and (N + P) treatments induced N2O flux peaks after three weeks of fertilizer addition, with the maximum daily N2O flux rates of 42.3 and 15.4 g N·hm -2·d -1, respectively. The N treatment significantly increased growing season cumulative N2O emissions by 1.8 to 3.2 times compared to P treatment, (N + P) treatment and CK, and there were no significant differences between the three treatments. Pearson correlation analysis showed that daily N2O flux rate was correlated negatively with soil microbial biomass carbon, and positively with soil pH and dissolved organic carbon. There was no significant correlation between daily N2O flux rate and other environmental variables. These results suggest that simultaneous addition of nitrogen and phosphorus nutrients can significantly reduce soil N2O emission compared to N treatment for the alpine grassland in this region. Keywords:alpine grassland;nitrogen and phosphorus addition;N2O;Kunlun Mountains;flux characteristic
PDF (1181KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 引用本文 曹登超, 高霄鹏, 李磊, 桂东伟, 曾凡江, 匡文浓, 尹明远, 李言言, 艾力?甫拉提. 氮磷添加对昆仑山北坡高山草地N2O排放的影响. 植物生态学报, 2019, 43(2): 165-173. DOI: 10.17521/cjpe.2018.0267 CAO Deng-Chao, GAO Xiao-Peng, LI Lei, GUI Dong-Wei, ZENG Fan-Jiang, KUANG Wen-Nong, YIN Ming-Yuan, LI Yan-Yan, Aili PULATI. Effects of nitrogen and phosphorus additions on nitrous oxide emissions from alpine grassland in the northern slope of Kunlun Mountains, China. Chinese Journal of Plant Ecology, 2019, 43(2): 165-173. DOI: 10.17521/cjpe.2018.0267
试验采用随机区组设计, 设4个施肥处理, 包括: 不施肥对照(CK)、单施氮肥(16 g N·m-2)(N)、单施磷肥(3 g P·m-2)(P)、氮磷肥混施(16 g N·m-2 + 3 g P·m-2)(N + P)。其中氮肥为常规尿素, 磷肥为磷酸二氢钾(KH2OP4)。N、P添加的形态及施肥量设定主要是基于当地牧民的草地管理措施。每个处理重复4次, 共计16个小区, 每小区面积为2 m × 3 m, 小区间设置1 m保护行。施肥时间为2017年4月22号, 将肥料与少量过筛(2 mm)土壤充分混合后均匀撒施至各小区。
1.3 气体、土壤、生物量及环境因子的测定
1.3.1 气体样品
N2O气体利用静态暗箱法采集, 采样箱由箱体和箱盖两部分组成, 箱体为不透明的中空PVC圆柱管, 内径为18 cm, 高12 cm。箱盖上分别开有小孔连接气压缓冲管与三通阀, 以维持气压平衡和气体采集。箱盖周边与箱体连接部位利用硅胶垫保证箱体密封性。于2017年4月末将采样箱布置于每个小区中央位置, 每个小区布置一个采样箱。在生长季后期, 采样箱内部分植株高度会超过采样箱高度, 采样时将高于采样箱的植株轻压至采样箱内再用箱盖密封进行气体采集。采样前先检查采样箱底部的密闭性并将采样所需的采样袋置于采样箱旁边, 并清理硅胶垫上的灰尘。采样时将箱盖扣在箱体上, 并用皮筋加固以隔绝箱内外气体交换。类似采样箱设计及采样方法经常应用于草地生态系统温室气体的相关研究中(Tenuta et al., 2010)。
Fig. 1Daily precipitation, soil water-filled pore space (WFPS) at 20 cm depth, daily air temperature (Ta) and soil temperature (Ts) at 20 cm depth during the experimental period.
2.2 不同处理下草地土壤N2O排放速率和累计排放量
如图2所示, 在氮、磷添加处理后的3周内, N和(N + P)处理的N2O排放均表现明显的排放峰, 峰值分别为42.4和15.4 g N·hm-2·d-1, 而P处理与CK均未产生明显的排放峰。在全部16次取样中的4次(分别为5月7日、5月14日、6月24日和11月28日), 不同处理间存在显著差异, 一般表现为N处理高于其他处理。自6月24日之后, 各处理下的N2O排放均低于10 g N·hm-2·d-1, 且不同处理间基本没有显著差异。观测期间N、P、(N + P)和CK处理的日平均排放速率分别为7.2、0.9、4.2和2.9 g N·hm-2。
图2
新窗口打开|下载原图ZIP|生成PPT 图2不同氮磷添加处理下草地土壤N2O排放速率的动态变化(平均值±标准误差)。箭头表示氮磷添加日期。*表示处理间存在显著差异(p < 0.05)。CK, 对照; N, 氮添加; N + P, 氮磷混施; P, 磷添加。
Fig. 2Dynamic variation of daily N2O flux rate from grassland soil under different nitrogen and phosphorus addition treatments (mean ± SE). Arrow indicates date of nitrogen and phosphorus addition treatments. * indicates significant differences between treatments (p < 0.05). CK, control; N, nitrogen addition; N + P, nitrogen and phosphorus addition; P, phosphorus addition.
Table 1 表1 表1不同氮磷添加处理下昆仑山北坡高山草地土壤N2O累积排放量(平均值±标准误差) Table 1Cumulative N2O emissions of grassland soil under different nitrogen and phosphorus addition treatments in alpine grassland in the northern slope of Kunlun Mountains, China (mean ± SE)
处理 Treatment
N2O排放通量 N2O emission (kg N·hm-2)
p
对照 CK
0.50 ± 0.05B
氮添加 nitrogen addition
1.45 ± 0.06A
0.002
磷添加 phosphorus addition
0.35 ± 0.02B
0.025
氮磷混施 nitrogen + phosphorus addition
0.52 ± 0.05B
0.226
Different uppercase letters indicate significant difference between treatments (p < 0.001). 不同大写字母表示处理间差异极显著(p < 0.001)。
新窗口打开|下载原图ZIP|生成PPT 图3不同氮磷添加处理下昆仑山北坡高山草地土壤溶解性有机碳含量和pH的动态变化(平均值±标准误差)。*表示处理间存在显著差异(p < 0.05)。CK, 对照; N, 氮添加; N + P, 氮磷混施; P, 磷添加。
Fig. 3Dynamic variation of soil dissolved organic carbon (DOC) content and pH under different nitrogen and phosphorus addition treatments in alpine grassland in the northern slope of Kunlun Mountains (mean ± SE). * indicates significant difference between treatments (p < 0.05). CK, control; N, nitrogen addition; N + P, nitrogen and phosphorus addition; P, phosphorus addition.
新窗口打开|下载原图ZIP|生成PPT 图4不同氮磷添加处理下昆仑山北坡高山草地土壤NH4+-N、NO3--N和速效P含量的动态变化(平均值±标准误差)。 *表示处理间存在显著差异(p < 0.05)。CK, 对照; N, 氮添加; N + P, 氮磷混施; P, 磷添加。
Fig. 4Dynamic variation of soil NH4+-N, NO3--N and available P content under different nitrogen and phosphorus addition treatments in alpine grassland in the northern slope of Kunlun Mountains (mean ± SE). * indicates significant difference between treatments (p < 0.05). CK, control; N, nitrogen addition; N + P, nitrogen and phosphorus addition; P, phosphorus addition.
新窗口打开|下载原图ZIP|生成PPT 图5不同氮磷添加处理下昆仑山北坡高山草地土壤微生物生物量氮(MBN)和微生物生物量碳(MBC)含量的动态变化(平均值±标准误差)。CK, 对照; N, 氮添加; N+P, 氮磷混施; P, 磷添加。
Fig. 5Dynamic variation of soil microbial biomass nitrogen (MBN) and carbon (MBC) content under different nitrogen and phosphorus addition treatments in alpine grassland in the northern slope of Kunlun Mountains, China(mean ± SE). CK, control; N, nitrogen addition; N + P, nitrogen and phosphorus addition; P, phosphorus addition.
Table 2 表2 表2不同氮磷添加处理下昆仑山北坡高山草地的植物地上部生物量(平均值±标准误差) Table 2Plant above-ground biomass under different nitrogen and phosphorus addition treatments in alpine grassland in the northern slope of Kunlun Mountains (mean ± SE)
处理 Treatment
地上部生物量 Above-ground biomass (g·m-2)
p
对照 CK
192.78 ± 27.03A
氮添加 nitrogen addition
192.13 ± 34.07A
0.96
磷添加 phosphorus addition
176.02 ± 30.45A
0.62
氮磷交互 nitrogen + phosphorus addition
178.57 ± 28.38A
0.96
The same uppercase letters indicated no significant difference among treatment (p > 0.05). 相同大写字母表示处理间不存在显著差异(p > 0.05)。
Table 3 表3 表3昆仑山北坡高山草地N2O排放与环境变量的相关性和决定系数 Table 3Correlation coefficients of daily N2O flux rate with environmental variables in alpine grassland in the northern slope of Kunlun Mountains
硝态氮 NO3--N
铵态氮 NH4+-N
速效磷 AP
pH
可溶性有机碳 DOC
微生物生物量碳 MBC
微生物生 物量氮 MBN
土壤孔隙含水率 WFPS
气温 Air temperature
土壤温度 Soil temperature
-0.17
-0.08
-0.11
0.53**
0.67**
-0.30*
-0.17
-0.16
-0.19
0.05
*, p < 0.05; **, p < 0.001. AP, available phosphorus; DOC, dissolved organic carbon; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; WFPS, water-filled pore space.
BaralBR, KuyperTW, van GroenigenJW ( 2013). Liebig’s law of the minimum applied to a greenhouse gas: Alleviation of P-limitation reduces soil N2O emission , 374, 539-548.
BouwmanAF, BoumansLJM, BatjesNH ( 2002). Modeling global annual N2O and NO emissions from fertilized fields , 16, 1080. DOI: 10.1029/2001GB001812. [本文引用: 1]
DuR, ZhouYG, WangGC, LüDR, WanXW ( 2003). The effect of soil water on grassland N2O releasing process in typical temperate zones Nature Science Advance , 13, 939-945.
IPCC (Intergovernmental Panel on Climate Change) ( 2007). . Cambridge University Press, New York, USA. [本文引用: 3]
KuangWN, GaoXP, GuiDW, TenutaM, FlatenDN, YinMY, ZengFJ ( 2018). Effects of fertilizer and irrigation management on nitrous oxide emission from cotton fields in an extremely arid region of northwestern China , 229, 17-26. DOI:10.1016/j.fcr.2018.09.010URL [本文引用: 1]
LiC, FrolkingS, FrolkingTA ( 1992). A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity , 97, 9759-9776. DOI:10.1029/92JD00509URL [本文引用: 1]
LinnDM, DoranJW ( 1984). Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils , 48, 1267-1272. DOI:10.2136/sssaj1984.03615995004800060013xURL
LiuYT, LiYE, WanYF, GaoQZ, QinXB, ChenDL ( 2011). Nitrous Oxide emissions from spring-maize field under the application of different nitrogen and phosphorus fertilizers Journal of Agro-Environment Science , 30, 1468-1475. [本文引用: 2]
MehnazKR, DijkstraFA ( 2016). Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil , 284, 34-41. DOI:10.1016/j.geoderma.2016.08.011URL [本文引用: 1]
MoriT, OhtaS, IshizukaS, KondaR, WicaksonoA, HeriyantoJ ( 2014). Phosphorus application reduces N2O emissions from tropical leguminous plantation soil when phosphorus uptake is occurring , 50, 45-51. DOI:10.1007/s00374-013-0824-4URL [本文引用: 1]
MoriT, OhtaS, IshizukaS, KondaR, WicaksonoA, HeriyantoJ, HardjonoA ( 2010). Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. , 56, 782-788. [本文引用: 1]
MoriT, OhtaS, IshizukaS, KondaR, WicaksonoA, HeriyantoJ, HardjonoA ( 2013). Effects of phosphorus addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil sampled under Acacia mangium plantation and incubated at 100% of the water-filled pore space. , 49, 13-21.
MoriT, WachrinratC, StapornD, MeunpongP, SuebsaiW, MatsubaraK, BoonsriK, LumbanW, KuawongM, PhukdeeT, SrifaiJ, BoonmanK ( 2017). Effects of phosphorus addition on nitrogen cycle and fluxes of N2O and CH4 in tropical tree plantation soils in Thailand , 51, 91-95. DOI:10.1016/j.anres.2016.03.002URL [本文引用: 1]
PedersenAR ( 2011). HMR: Flux Estimation with Static Chamber Data . Cited: 2012-04-10. URL [本文引用: 2]
RavishankaraAR, PortmannRW ( 2009). Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st Century , 326, 123-125. DOI:10.1126/science.1176985URL [本文引用: 1]
TenutaM, MkhabelaM, TremorinD, CoppiL, PhippsG, FlatenD, OminskiK ( 2010). Nitrous oxide and methane emission from a coarse-texture grassland soil receiving hog slurry , 138, 35-43. DOI:10.1016/j.agee.2010.03.014URL [本文引用: 1]
UssiriD, LalR ( 2013). Soil Emission of Nitrous Oxide and Its Mitigation. 63-97.
VanceED, BrookesPC, JenkinsonDS ( 1987). An extraction method for measuring soil microbial biomass C , 19, 703-707.
WangC, ZhuF, ZhaoX, DongK ( 2014 a). The effects of N and P additions on microbial N transformations and biomass on saline-alkaline grassland of Loess Plateau of Northern China , 213, 419-425. DOI:10.1016/j.geoderma.2013.08.003URL [本文引用: 2]
WangDX, GaoYH, WangP, ZengXY ( 2016). Responses of CO2 and N2O emissions to carbon and phosphorus additions in two contrasting alpine meadow soils on the Qinghai-Tibetan Plateau , 25, 4401-4408. [本文引用: 1]
WangF, ShiG, NicholasO, YaoB, JiM, WangW, MaZ, ZhouH, ZhaoX ( 2018). Ecosystem nitrogen retention is regulated by plant community trait interactions with nutrient status in an alpine meadow , 106, 1570-1581. DOI:10.1111/jec.2018.106.issue-4URL
WangFM, LiJ, WangXL, ZhangW, ZouB, NeherDA, LiZ ( 2014 b). Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China , 4, 5615. DOI: 10.1038/srep05615. [本文引用: 1]
WangGQ, LIF, PengYF, ChenYL, HanTF, YangGB, LiuL, ZhouGY, YangYH ( 2018). Responses of soil N2O emissions to experimental warming regulated by soil moisture in an alpine steppe Chinese Journal of Plant Ecology , 42, 105-115.
WangGS ( 2013). Effect of Nutrition Addition, Altered Precipitation and Temperature Regimes on Greenhouse Gas Emissions in an Alpine Grassland on the Tibetan Plateau Master degree dissertation, Northwest Plateau Institute of biology, Chinese Academy of Sciences, Xining. 20-21. URL [本文引用: 3]
WeiD, XuR, WangYH, YaoTD ( 2011). CH4 , N2O and CO2 fluxes and correlation with environmental factors of alpine steppe grassland in Nam Co region of Tibetan Plateau Acta Agrestia Sinica , 19, 412-419. [本文引用: 2]
YanYL, GanjurjavH, HuGZ, LiangY, LiY, HeSC, DanjiuLB, YangJ, GaoQZ ( 2018). Nitrogen deposition induced significant increase of N2O emissions in an dry alpine meadow on the central Qinghai-Tibetan Plateau , 265, 45-53. DOI:10.1016/j.agee.2018.05.031URL
YangHY, ZhangT, HuangY, DuanL ( 2016). Effect of stimulated N deposition on N2O emission from a Stipa krylovii steppe in Inner Mongolia, China. Environmental Science, 37, 1900-1907. [本文引用: 1]
ZhangLH, HuoYW, GuoDF, WangQB, BaoY, LiLH ( 2014). Effects of multi-nutrient additions on GHG fluxes in a temperate grassland of Northern China , 17, 657-672. DOI:10.1007/s10021-014-9750-zURL [本文引用: 1]
ZhaoY, YangB, LiM, XiaoR, RaoK, WangJ, ZhangT, GuoJ ( 2019). Community composition, structure and productivity in response to nitrogen and phosphorus additions in a temperate meadow , 654, 863-871. DOI:10.1016/j.scitotenv.2018.11.155URL
Liebig’s law of the minimum applied to a greenhouse gas: Alleviation of P-limitation reduces soil N2O emission 2013
Modeling global annual N2O and NO emissions from fertilized fields 1 2002
Denitrification and associated N2O emissions are limited by phosphorus availability in a grassland soil 1 2016
... 不同草地生态系统调控N2O产生和排放的因子各异.Yan等(2018)分析表明在青藏高寒草原中, N2O排放与气温、土壤温度、含水量、总氮含量、有机碳以及铵态氮含量显著相关.而魏达等(2011)在青藏高原研究得出, 在季节尺度上, N2O排放与土壤温度没有线性关系, 而随土壤含水量增加呈线性增加.王冠钦等(2018)在青藏高原通过增温实验发现N2O排放与增温引起的土壤水分含量变化正相关.Zhang等(2014)在内蒙古温带草原的研究发现, N2O排放与土壤温度、有机碳含量、总氮含量以及年净初级生产力之间呈显著的正相关关系.一般来讲, 铵态氮和硝态氮是产生N2O的硝化和反硝化过程的底物, 通常与N2O排放具有良好的相关关系(Kuang et al., 2018).土壤温湿度也是影响土壤N2O排放的比较重要的因子, 因为它们对土壤微生物的活性起着重要的调控作用(Li et al., 1992).本研究中N2O排放速率与MBC呈负相关关系, 与以往研究中微生物固氮能力增加会降低N2O排放的观点一致(Mori et al., 2014).不同处理间MBC含量没有显著差异, 但MBC含量和N2O排放速率均存在显著的季节变化, 这表明不同时期微生物量的差异可能在N2O排放的季节性规律中发挥着重要作用.这些研究结果表明关于养分添加对草地土壤的N2O排放的相关研究需要考虑不同季节气象和土壤因子的动态变化, 以后需要开展连续多年、多点的试验研究. ...
Phosphorus application reduces N2O emissions from tropical leguminous plantation soil when phosphorus uptake is occurring 1 2014
... 与其他处理相比, 单施氮肥显著增加了昆仑山北坡高山草地土壤N2O排放通量, 这与以往研究结果类似(杨涵越等, 2016; Yan et al., 2018) , 主要是因为氮肥添加增加了硝化和反硝化过程所需的底物进而增加了N2O产生.这一推论可以从N处理下土壤NH4+-N和NO3--N含量在整个生长季均高于CK得到印证.而(N + P)与P处理下草地生长季N2O排放通量低于N处理, 而与CK没有显著差异, 表明与单施氮肥相比, 磷肥的添加可以显著降低N2O排放.以往一些研究中发现磷添加增加了N2O排放, 认为这主要是因为其一方面促进土壤氮的矿化, 增加了土壤硝化和反硝化作用底物; 另一方面磷添加提高了包括硝化和反硝化细菌等土壤微生物的活性, 促进了硝化和反硝化作用(Mori et al., 2010, 2013, 2017).与此相反, 本研究中磷添加并未增加N2O排放, 一方面是因为土壤的无机氮(NH4+和NO3-)含量较低, 限制了硝化和反硝化过程的底物; 另一方面可能是因为试验草场的土壤本底磷含量较低, 速效磷含量仅为2.7 mg·kg-1, 磷肥的添加可能会促进植物对土壤氮的吸收, 从而减少了N2O排放.Wang等(2018)在青藏高原高山草甸的研究发现, 磷添加可以显著增加群落尺度上的植物叶片和根系氮浓度.生物量是构成生态系统生产力的重要组分, 通常可以作为衡量生产力的间接指标(Goulden et al., 2011), 以往研究报道磷添加增加了群落地上生物量(Wang et al., 2014a, 2018)或者对群落地上净初级生产力没有显著影响(Zhao et al., 2019).本研究中2016年相同试验处理下, 群落地上生物量数据显示不同处理间地上生物量没有显著差异, 可能是由于施肥时间为4月中旬, 而该地区2016年4月和5月的降水分别为13.2和20.6 mm, 因此未能体现出施肥对地上生物量的影响.2017年降水较2016年充沛, 生长季末期P处理下土壤速效磷含量显著高于其他3个处理, 而(N + P)与N处理与CK没有显著差异; 且N处理下的土壤NO3--N含量显著高于(N + P)处理, 表明(N + P)处理很可能同时促进了植物对氮和磷的吸收.Mori等(2014)在热带种植园的研究中发现施磷显著降低了土壤N2O排放, 认为土壤磷限制和施磷后植物生长对氮的吸收是磷添加降低N2O排放的重要原因, 而本研究中由于未测定植物N浓度并不能对这一假设进行验证.Baral等(2013)认为添加磷肥会增加土壤中微生物氮的固定, 减少无机氮底物, 从而减少N2O的排放.但本研究对微生物生物量碳氮分析的结果表明, 各时期不同处理间微生物生物量碳、氮含量没有显著差异, 氮磷添加并没有显著提高土壤微生物的活动, 表明氮磷添加引起的微生物活性改变可能不是导致不同处理间排放差异的主要原因.总而言之, 本研究中磷添加处理下土壤N2O排放的限制作用是否通过施磷后植物生产力或氮吸收的改变仍需要进一步的研究. ...
Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. 1 2010
... 与其他处理相比, 单施氮肥显著增加了昆仑山北坡高山草地土壤N2O排放通量, 这与以往研究结果类似(杨涵越等, 2016; Yan et al., 2018) , 主要是因为氮肥添加增加了硝化和反硝化过程所需的底物进而增加了N2O产生.这一推论可以从N处理下土壤NH4+-N和NO3--N含量在整个生长季均高于CK得到印证.而(N + P)与P处理下草地生长季N2O排放通量低于N处理, 而与CK没有显著差异, 表明与单施氮肥相比, 磷肥的添加可以显著降低N2O排放.以往一些研究中发现磷添加增加了N2O排放, 认为这主要是因为其一方面促进土壤氮的矿化, 增加了土壤硝化和反硝化作用底物; 另一方面磷添加提高了包括硝化和反硝化细菌等土壤微生物的活性, 促进了硝化和反硝化作用(Mori et al., 2010, 2013, 2017).与此相反, 本研究中磷添加并未增加N2O排放, 一方面是因为土壤的无机氮(NH4+和NO3-)含量较低, 限制了硝化和反硝化过程的底物; 另一方面可能是因为试验草场的土壤本底磷含量较低, 速效磷含量仅为2.7 mg·kg-1, 磷肥的添加可能会促进植物对土壤氮的吸收, 从而减少了N2O排放.Wang等(2018)在青藏高原高山草甸的研究发现, 磷添加可以显著增加群落尺度上的植物叶片和根系氮浓度.生物量是构成生态系统生产力的重要组分, 通常可以作为衡量生产力的间接指标(Goulden et al., 2011), 以往研究报道磷添加增加了群落地上生物量(Wang et al., 2014a, 2018)或者对群落地上净初级生产力没有显著影响(Zhao et al., 2019).本研究中2016年相同试验处理下, 群落地上生物量数据显示不同处理间地上生物量没有显著差异, 可能是由于施肥时间为4月中旬, 而该地区2016年4月和5月的降水分别为13.2和20.6 mm, 因此未能体现出施肥对地上生物量的影响.2017年降水较2016年充沛, 生长季末期P处理下土壤速效磷含量显著高于其他3个处理, 而(N + P)与N处理与CK没有显著差异; 且N处理下的土壤NO3--N含量显著高于(N + P)处理, 表明(N + P)处理很可能同时促进了植物对氮和磷的吸收.Mori等(2014)在热带种植园的研究中发现施磷显著降低了土壤N2O排放, 认为土壤磷限制和施磷后植物生长对氮的吸收是磷添加降低N2O排放的重要原因, 而本研究中由于未测定植物N浓度并不能对这一假设进行验证.Baral等(2013)认为添加磷肥会增加土壤中微生物氮的固定, 减少无机氮底物, 从而减少N2O的排放.但本研究对微生物生物量碳氮分析的结果表明, 各时期不同处理间微生物生物量碳、氮含量没有显著差异, 氮磷添加并没有显著提高土壤微生物的活动, 表明氮磷添加引起的微生物活性改变可能不是导致不同处理间排放差异的主要原因.总而言之, 本研究中磷添加处理下土壤N2O排放的限制作用是否通过施磷后植物生产力或氮吸收的改变仍需要进一步的研究. ...
Effects of phosphorus addition with and without ammonium, nitrate, or glucose on N2O and NO emissions from soil sampled under Acacia mangium plantation and incubated at 100% of the water-filled pore space. 2013
Effects of phosphorus addition on nitrogen cycle and fluxes of N2O and CH4 in tropical tree plantation soils in Thailand 1 2017