删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

大兴安岭泥炭地植物叶片碳氮磷含量及其化学计量学特征

本站小编 Free考研考试/2022-01-01

李瑞,1, 胡朝臣1, 许士麒1, 吴迪1, 董玉平1, 孙新超1, 毛瑢2,3, 王宪伟,2,*, 刘学炎,,1,*1 天津大学表层地球系统科学研究院, 天津 300072
2 中国科学院东北地理与农业生态研究所, 长春 130102
3 江西农业大学林学院, 南昌 330045

Leaf C, N, and P concentrations and their stoichiometry in peatland plants of Da Hinggan Ling, China

LI Rui,1, HU Chao-Chen1, XU Shi-Qi1, WU Di1, DONG Yu-Ping1, SUN Xin-Chao1, MAO Rong2,3, WANG Xian-Wei,2,*, LIU Xue-Yan,,1,* 1 Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
2 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
3 College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China

通讯作者: E-mail: Wang XW: wangxianwei@iga.ac.cn; Liu XY: liuxueyan@tju.edu.cn

编委: 程晓莉
责任编辑: 李敏
收稿日期:2018-08-27修回日期:2018-12-3网络出版日期:2018-12-20
基金资助:国家自然科学基金.41471056
国家自然科学基金.41522301
国家自然科学基金.41730855
国家重点研发计划.2016YFA0600802


Received:2018-08-27Revised:2018-12-3Online:2018-12-20
Fund supported: Supported by the National Natural Science Foundation of China.41471056
Supported by the National Natural Science Foundation of China.41522301
Supported by the National Natural Science Foundation of China.41730855
the National Key R & D Program of China.2016YFA0600802


摘要
叶片碳(C)、氮(N)、磷(P)含量及其化学计量特征为植物养分状况和元素限制性提供依据。为了解不同生活型植物叶片C、N、P化学计量特征的变化,该研究测定、分析了大兴安岭地区18个泥炭地常见的3种草本植物——白毛羊胡子草(Eriophorum vaginatum)、玉簪薹草(Carex globularis)、小叶章(Deyeuxia angustifolia), 5种落叶灌木——柴桦(Betula fruticosa)、越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea)和3种常绿灌木——杜香(Ledum palustre)、地桂(Chamaedaphne calyculata)、头花杜鹃(Rhododendron capitatum)的叶片C、N、P含量。结果表明: (1)落叶和常绿灌木叶片C、N、P含量总体高于草本植物而C:N、C:P、N:P低于草本植物, 说明不同生活型植物具有不同的养分利用策略,灌木叶片C、N、P储存高于草本植物而N、P利用效率低于草本植物; (2)小叶章和头花杜鹃叶片N:P小于10, 同时其N含量小于全球植物叶片平均N含量, 相比其他植物来说更易受N限制; (3)采样地点解释了叶片C、N、P指标变异的12.8%-40.8%, 植物种类对叶片C、N、P指标变异的解释量占9.3%-25.5%; (4)草本植物C、N、P指标的地点间变异系数高于落叶和常绿灌木, 草本植物C、N、P指标对地点因素变化的响应较灌木敏感; (5)草本植物N含量种间变异系数高于落叶和常绿灌木, 落叶灌木P含量种间变异系数高于草本植物和常绿灌木, 草本植物和落叶灌木N、P吸收的种间生理分化较常绿灌木高。
关键词: 大兴安岭;北方泥炭地;植物营养;化学计量学

Abstract
Aims Leaf carbon (C), nitrogen (N), and phosphorus (P) concentrations and their stoichiometry can provide a basis for plant nutrient status and element limitation. Our objective was to explore variations of leaf C:N:P stoichiometry in plants of different growth forms.Methods We analyzed leaf C, N, and P concentrations in three graminoids (Eriophorum vaginatum, Carex globularis, Deyeuxia angustifolia), five deciduous shrubs (Betula fruticosa, Salix myrtilloides, Salix rosmarinifolia, Vaccinium vitis-idaea, Vaccinium uliginosum), and three evergreen shrubs (Ledum palustre, Chamaedaphne calyculata, Rhododendron capitatum) across 18 peatland sites in the Da Hinggan Ling, northeastern China.Important findings (1) Leaf C, N, and P concentrations were higher, and the leaf C:N, C:P, and N:P values were lower, in deciduous and evergreen shrubs than in graminoids, indicating that plants of different growth forms had different nutrient utilization strategies. Shrubs had higher C, N and P storage and lower N and P use efficiency than graminoids. (2) Leaf N:P values in Deyeuxia angustifolia and R. capitatum were less than 10, and their leaf N concentrations were lower than the global mean leaf N concentration, indicating that those species were limited by N more than other plants. (3) The sampling sites explained 12.8%-40.8% of the variations in leaf C, N, and P stoichiometry, and plant species explained 9.3%-25.5%. (4) Graminoids had greater inter-site coefficient of variance (CV) values in leaf C, N, and P variables than deciduous and evergreen shrubs, indicating greater sensitive to site factors. (4) The inter-species CV values in leaf N were greater in graminoids than in deciduous and evergreen shrubs, and the inter-species CV values in leaf P were greater in deciduous shrubs than in graminoids and evergreen shrubs, indicating greater physiological differentiation in N and P use strategies in graminoids and deciduous shrubs than in evergreen shrubs.
Keywords:Da Hinggan Ling;northern peatland;plant nutrition;stoichiometry


PDF (2533KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
李瑞, 胡朝臣, 许士麒, 吴迪, 董玉平, 孙新超, 毛瑢, 王宪伟, 刘学炎. 大兴安岭泥炭地植物叶片碳氮磷含量及其化学计量学特征. 植物生态学报[J], 2018, 42(12): 1154-1167 doi:10.17521/cjpe.2018.0214
LI Rui. Leaf C, N, and P concentrations and their stoichiometry in peatland plants of Da Hinggan Ling, China. Chinese Journal of Plant Ecology[J], 2018, 42(12): 1154-1167 doi:10.17521/cjpe.2018.0214


氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982)。植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018)。研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016)。

环境气候条件影响土壤N、P有效性, 属于影响植物N、P含量的重要外因(Chapin III et al., 1986; Kerkhoff & Enquist, 2006)。Reich和Oleksyn (2004)通过叶片N、P含量和N:P证据揭示了植物N、P吸收和有效性随纬度升高和年平均气温降低而显著降低。Fisher等(2013)发现叶片N:P随海拔升高而降低, 认为高海拔地区植物生长受到N限制。此外, N沉降增加在一定程度上缓减植物N限制, 引起在P相对缺乏的生态系统中植物受P限制或N、P共同限制(Aerts et al., 1992)。在相同的土壤N、P状态下, 降水量较高则可能增加土壤有效态N、P淋溶丢失, 使植物N、P含量随降水量增加而降低(Reich & Oleksyn, 2004)。植物N、P指标随地点要素和环境因子的变化会因为空间尺度大小、生态系统类型和物种等不同而不同(Norby et al., 2010; ?gren et al., 2012; Tian et al., 2017)。在区域尺度内特定生态系统类型植物的N、P含量水平和变异机制及其对地点环境的适应性值得进一步探讨。

生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010)。研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002)。常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000)。同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008)。总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018)。目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018)。泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013)。但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015)。

本研究对中国东北大兴安岭18个泥炭地的3种草本、5种落叶灌木、3种常绿灌木植物叶片进行采集, 通过分析叶片C、N、P含量及其计量值, 明确该地区泥炭地植物: (1)叶片C、N、P指标的生活型之间和生活型内部的差异; (2)叶片C、N、P指标受采样地点和植物种的影响; (3)叶片C、N、P指标的地点间、种间(相同生活型内)变异大小。本研究旨在丰富植物叶片C、N、P含量和化学计量学在我国北方泥炭生态系统植物C、N、P状态和限制性评价中的应用, 为理解泥炭地种群结构和植被保护提供基础数据。

1 材料和方法

1.1 研究区概况

研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃。同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997)。由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同。草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis)。灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014)。这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1大兴安岭泥炭地研究点地理位置示意图。

Fig. 1Locations of the peatlands investigated in the Da Hinggan Ling.



1.2 采样与分析

2014年7-8月, 对研究区18个泥炭地研究点(图1; 表1)的3种草本、5种落叶灌木、3种常绿灌木植物(表1)叶片进行采集。研究点均较偏远, 无人为直接干扰。每个研究点设置3个10 m × 10 m样方, 对每个样方若干株同种植物成熟、向阳、无病虫害的叶片进行采集并混合为一个样品, 不同物种的重复数详见表1。叶片样品装纸质信封运回实验室, 先后用去离子水和超纯水冲洗若干次, 然后在75 ℃烘干至恒质量。烘干的植物样品用球磨仪(MM200, Retsch, Haan, Germany)磨细并过100目筛, 放干燥皿保存。叶片C、N含量用元素分析仪(Flash EA 1112, Thermo Scientific, West Palm Beach, USA)燃烧法测定, 分析误差为±0.1%。叶片P含量采用钼锑抗比色法(GB7888-87)测定, 叶片C、N、P含量以干物质质量单位计(%, 干质量), C:N、C:P、N:P为质量比。

Table 1
表1
表1大兴安岭地区泥炭地研究点的气候和采集植物种信息
Table 1Information on climate and plant species studied in the peatland sites in the Da Hinggan Ling
地点 Site年平均气温MAT (℃)年降水量 MAP (mm)海拔 Elevation (m)调查植物种(重复数) Plant species studied (replicates)
阿里河 Alihe-5.57481490A(2), C(3), D(3), E(3)
阿木尔 Amuer-4.48459533A(3), C(2), D(3), E(2), G(3), H(1), I(3)
大林河 Dalinhe-4.20443466A(3), D(3), E(3), G(3), I(3), J(3)
富克山 Fukeshan-4.21444468A(3), D(3), E(2), G(1), H(1), I(3), K(1)
根河 Genhe-5.22464839A(3), C(3), D(3), E(4), I(2), K(3)
呼源 Huyuan-4.48501665A(3), B(1), D(3), E(1), G(2), I(3), K(2)
呼中 Huzhong-4.06479534A(3), D(3), G(3), I(3), J(1)
金河 Jinhe-5.41477862A(3), C(2), D(3), G(1)
林海 Linhai-5.51520571A(3), C(3), D(3), F(2), G(3), I(1), K(3)
满归 Mangui-4.78464620A(3), D(3), E(2), G(3), J(3), K(3)
南瓮河 Nanwenghe-2.71498485A(3), B(3), C(3), D(3), E(3), F(3), G(3)
盘古 Pangu-3.62477406A(3), D(3), E(3), G(1), H(2), I(3), J(3)
十二站 Shi’erzhan-2.40495394A(3), C(2), D(3), E(3), G(2), J(1)
塔河 Tahe-3.56487440A(3), C(2), D(3), E(3), F(1)
图强 Tuqiang-4.29452477A(3), D(3), E(1), F(2), G(1), I(3), J(2), K(2)
新林 Xinlin-3.63498526A(3), D(3), E(3), G(3), I(3), J(3), K(2)
伊图里河 Ih Tol Gol-5.13475822A(3), C(2), D(3), G(2)
壮林 Zhuanglin-4.48459528A(3), D(3), G(3), I(3), J(2), K(1)
MAT, mean annual temperature; MAP, mean annual precipitation. A, Eriophorum vaginatum; B, Carex globularis; C, Deyeuxia angustifolia; D, Betula fruticosa; E, Salix myrtilloides; F, Salix rosmarinifolia; G, Vaccinium uliginosum; H, Vaccinium vitis-idaea; I, Ledum palustre; J, Chamaedaphne calyculata; K, Rhododendron capitatum.
A, 白毛羊胡子草; B, 玉簪薹草; C, 小叶章; D, 柴桦; E, 越桔柳; F, 细叶沼柳; G, 笃斯越桔; H, 越桔; I, 杜香; J, 地桂; K, 头花杜鹃。

新窗口打开|下载CSV

1.3 数据分析

用SPSS 18.0对数据进行统计分析, 用Origin 8.0作图。先对植物叶片的C、N、P指标的正态分布进行Kolmogorov-Smirnov检验, 再进行方差齐次性检验, 若方差为齐性, 则在方差分析中使用最小显著性差数(LSD)法进行多重比较; 若方差为非齐性, 则使用Tamhane’s Ta法进行多重比较。

生活型之间和生活型内部植物叶片C、N、P指标差异采用单因素方差分析。叶片C、N、P含量, C:N、C:P、N:P之间的相关关系采用Pearson相关性分析。采样地点和植物种类对叶片C、N、P指标的综合影响采用一般线性模型(GLM)评价。相关性和差异性的显著水平(p值)设为0.05。

为了分析相同生活型和同种植物的叶片C、N、P指标的地点间变异, 以及相同生活型内不同植物种叶片C、N、P指标的种间变异, 我们计算了对应的数据变异系数(CV, 以%比表示), 计算方法为: 标准偏差除以算术平均值乘以100%。按照反映离散程度的大小可以将CV进行粗略分级: CV < 10%为弱变异性; 10% ≤ CV ≤ 100%为中等变异性; CV > 100%为强变异性(赵秀芳等, 2010)。对仅有一个样品重复的数据, 没有计算其地点变异和种间变异。

2 结果和分析

2.1 叶片C、N、P指标的统计特征

大兴安岭泥炭地植物叶片C、N、P含量的变化范围和算数平均值为32.7%-50.5% (42.2% ± 2.9%)、0.7%-2.8% (1.9% ± 0.4%)、0.05%-0.41% (0.18% ± 0.07%), C:N、C:P、N:P分别为15.1-61.5 (23.6 ± 6.2)、97.6-805.7 (268.5 ± 109.9)、2.7-28.4 (11.6 ± 4.6)。相关性分析表明, 叶片C、N含量, N、P含量之间呈正相关关系(p < 0.01), N含量与C:P、P含量与C:N之间呈负相关关系(p < 0.01, 表2)。

Table 2
表2
表2大兴安岭泥炭地植物叶片C、N、P指标之间的相关性
Table 2The correlations among leaf C, N, and P variables in peatland plants of Da Hinggan Ling
C (%)N (%)P (%)C:NC:P
C (%)1
N (%)0.294**1
P (%)0.0690.287**1
C:N-0.002-0.886**-0.258**1
C:P0.005-0.292**-0.854**0.318**1
N:P-0.0070.238**-0.750**-0.242**0.812**
The positive and negative values of Pearson correlation coefficients indicate positive and negative correlations, respectively. **, p < 0.01.
Pearson相关系数正、负值分别表示正、负相关。**, p < 0.01。

新窗口打开|下载CSV

在生活型之间比较, 草本植物叶片C、N、P含量总体低于落叶灌木和常绿灌木, C含量高低顺序为: 常绿灌木(45.1% ± 2.5%)>落叶灌木(41.6% ± 2.3%) ≈草本(41.0% ± 2.7%)(图2A); N含量高低顺序为: 落叶灌木 (2.0% ± 0.3%) =常绿灌木(2.0% ± 0.3%) >草本(1.6% ± 0.4%)(图2B); P含量高低顺序为: 落叶灌木(0.21% ± 0.08%) >常绿灌木(0.18% ± 0.05%) >草本(0.15% ± 0.05%) (图2C)。草本植物叶片C:N、C:P、N:P总体高于灌木。C:N大小顺序为: 草本(27.8 ± 8.3) >常绿灌木(23.5 ± 3.2) >落叶灌木(21.3 ± 4.3)(图2D); C:P顺序为: 草本(318.9 ± 123.7) >常绿灌木(271.0 ± 80.3) ≈落叶灌木(238.8 ± 103.5) (图2E); N:P顺序为: 草本(12.0 ± 5.0) ≈常绿灌木(11.8 ± 3.7) ≈落叶灌木(11.4 ± 4.7)(图2F)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2大兴安岭泥炭地植物叶片C、N、P含量(A、B、C)及其计量值(D、E、F)。黑色的短横线分别为每个植物种C、N、P指标的平均值。深灰、灰色和浅灰的箱子分别为草本、落叶灌木和常绿灌木植物, 箱子高度为25%-75%数值分布, 箱子中的横线为平均值, 箱须为标准偏差, 箱须上方不同的大写字母和下方不同的小写字母分别表示生活型之间和生活型内部物种之间的差异显著(p < 0.05)。Bf, 柴桦; Cc, 地桂; Cg, 玉簪薹草; Da, 小叶章; Ev, 白毛羊胡子草; Lp, 杜香; Rc, 头花杜鹃; Sm, 越桔柳; Sr, 细叶沼柳; Vu, 笃斯越桔; Vv, 越桔。

Fig. 2Leaf C, N, and P concentrations (A, B, C) and their stoichiometric ratios (D, E, F) in peatland plants of the Da Hinggan Ling. The black and short horizontal lines are the average values for leaf C, N, and P variables for each species. Boxes in dark grey, grey, and light grey mark graminoids, deciduous shrub, and evergreen shrub plants, respectively. The box encompasses the 25th to 75th percentiles; lines in boxes mark the mean values, and whiskers are the standard deviation value. Different capital letters above boxes and lowercase letters below boxes mark significant differences among growth forms and species (p < 0.05). Bf, Betula fruticosa; Cc, Chamaedaphne calyculata; Cg, Carex globularis; Da, Deyeuxia angustifolia; Ev, Eriophorum vaginatum; Lp, Ledum palustre; Rc, Rhododendron capitatum; Sm, Salix myrtilloides; Sr, Salix rosmarinifolia; Vu, Vaccinium uliginosum; Vv, Vaccinium vitis-idaea.



在生活型内部比较, 叶片C含量在草本植物之间无显著差异, 落叶灌木中柴桦、细叶沼柳高于越桔柳、笃斯越桔, 常绿灌木中杜香高于地桂和头花杜鹃(图2A); 叶片N含量在草本植物中白毛羊胡子草高于玉簪薹草、小叶章, 落叶灌木中柴桦、越桔柳、细叶沼柳高于笃斯越桔、越桔, 常绿灌木中杜香高于地桂、头花杜鹃(图2B); 叶片P含量在草本植物中白毛羊胡子草、小叶章高于玉簪薹草, 落叶灌木中柴桦、越桔柳、细叶沼柳高于笃斯越桔、越桔。常绿灌木中头花杜鹃高于地桂(图2C)。叶片C:N在草本植物中玉簪薹草和小叶章高于白毛羊胡子草; 落叶灌木中笃斯越桔和越桔高于柴桦; 常绿灌木中地桂和头花杜鹃高于杜香(图2D); 叶片C:P在草本植物中玉簪薹草高于白毛羊胡子草和小叶章; 落叶灌木中笃斯越桔和越桔高于柴桦、越桔柳以及细叶沼柳; 常绿灌木中杜香和地桂高于头花杜鹃(图2E); 叶片N:P在草本植物小叶章、落叶灌木越桔柳、细叶沼柳、常绿灌木头花杜鹃中分别为9.2、9.6、10.0、9.1, 草本植物白毛羊胡子草、落叶灌木柴桦、越桔、常绿灌木杜香、地桂分别为12.9、10.7、10.3、13.0、12.2, 而草本植物玉簪薹草和落叶灌木笃斯越桔分别为15.5和14.2 (图2F)。

2.2 叶片C、N、P指标的变异

GLM分析结果表明, 采样地点和植物种以及两者的交互作用对叶片C、N、P指标的影响程度各不相同(表3)。采样地点对叶片C、N、P指标的解释量占12.8%-40.8%, 植物种的解释量占9.3%-25.5%, 交互作用影响占20.6%-27.5%。除叶片N:P外, 其他指标的变异来源均表现为采样地点影响最大, 采样地点和植物种的交互作用影响次之, 植物种的影响最小。N:P的变异主要来源于植物种, 其次为采样地点, 交互作用对N:P的影响最小。除交互作用对叶片C:P的影响外, 变异来源对各指标的影响均达到显著水平(表3)。

Table 3
表3
表3采样地点(D)和植物种类(S)对大兴安岭泥炭地植物叶片C、N、P含量和计量值影响的一般线性模型(GLM)结果
Table 3Summary of General Linear Model (GLM) statistics, showing the effects of sampling site (D) and plant species (S) on leaf C, N, and P concentrations and stoichiometry in peatland plants of Da Hinggan Ling
变异
来源 Source
CNPC:NC:PN:P
MSSS (%)FMSSS (%)FMSSS (%)FMSSS (%)FMSSS (%)FMSSS (%)F
D84.338.724.016*1.740.829.415*0.0425.813.031*378.238.323.732*74 004.023.99.548*67.212.85.883*
S17.914.05.094*0.29.74.131*0.0116.95.022*53.49.33.353*29 120.816.03.757*78.525.56.872*
D × S5.520.61.580*0.126.42.349*0.0126.21.699*31.325.71.967*8 315.621.01.07318.427.51.614*
MS, mean squares; SS, proportion of variance explained by the variable. *, p < 0.05.
MS, 均方; SS, 变异来源对指标的解释量。*, p < 0.05。

新窗口打开|下载CSV

植物生活型之间C、N、P指标的地点间变异系数(KCV)分析表明, C、P含量地点间KCV顺序为: 草本>落叶灌木>常绿灌木(图3A、3C); N含量的顺序为: 草本>常绿灌木>落叶灌木(图3B); C:N的顺序为: 草本>常绿灌木>落叶灌木(图3D); C:P和N:P的顺序为: 草本>落叶灌木>常绿灌木(图3E、3F)。在生活型内部, C含量地点间KCV总体小于10% (图3A), 呈现弱变异性。对于N含量, 草本植物玉簪薹草、白毛羊胡子草、小叶章KCV分别为9.2%、18.1%、29.4%, 落叶灌木中柴桦、越桔柳、细叶沼柳小于10%, 笃斯越桔、越桔为16.6%, 13.4%, 常绿灌木中杜香、地桂、头花杜鹃分别为9.1%、12.2%、14.5% (图3B), 呈弱、中等变异性。对于P含量, 草本植物中小叶章、落叶灌木中柴桦、越桔柳、常绿灌木中头花杜鹃的KCV超过30%, 其他植物在10%-30% (图3C), 呈中等变异性。对于C:N, 草本植物中玉簪薹草、落叶灌木中柴桦、越桔柳、细叶沼柳、常绿灌木中杜香、地桂地点间KCV小于10%, 其余植物在11.8%- 23.8% (图3D), 对于C:P, 落叶灌木越桔地点间KCV小于10%, 其余植物在15.1%-37.4% (图3E), 呈弱、中等变异性。N:P的地点间KCV均大于10%, 白毛羊胡子草最高达43.4% (图3F), 呈现中等变异性。

图3

新窗口打开|下载原图ZIP|生成PPT
图3大兴安岭泥炭地植物叶片C、N、P含量(A、B、C)及其计量值(D、E、F)的地点间变异系数(KCV)。黑、灰、浅灰色直线分别为草本、落叶灌木和常绿灌木植物KCV的平均值, 植物名称缩写下面的数字为出现的地点数。Bf, 柴桦; Cc, 地桂; Cg, 玉簪薹草; Da, 小叶章; Ev, 白毛羊胡子草; Lp, 杜香; Rc, 头花杜鹃; Sm, 越桔柳; Sr, 细叶沼柳; Vu, 笃斯越桔; Vv, 越桔。

Fig. 3Inter-site coefficient of variation (KCV) in leaf C, N, and P concentrations (A, B, C) and their stoichiometric ratios (D, E, F) in peatland plants of Da Hinggan Ling. Lines in black, grey, and light grey mark the mean KCV values of graminoids, deciduous shrubs and evergreen shrubs, respectively. The number below each species indicates the number of occurring locations. Bf, Betula fruticosa; Cc, Chamaedaphne calyculata; Cg, Carex globularis; Da, Deyeuxia angustifolia; Ev, Eriophorum vaginatum; Lp, Ledum palustre; Rc, Rhododendron capitatum; Sm, Salix myrtilloides; Sr, Salix rosmarinifolia; Vu, Vaccinium uliginosum; Vv, Vaccinium vitis-idaea.



同一生活型不同种植物的C、N、P指标的种间变异系数(ZCV)分析表明, C含量种间ZCV总体较小(平均4.7% ± 0.7%)(图4A); N含量的顺序为草本(22.1%) >常绿灌木(13.6%) >落叶灌木(9.8%)(图4B); P含量的顺序为落叶灌木(22.6%) >常绿灌木(10.9%) >草本(10.8%)(图4C)。C:N种间ZCV顺序为草本(22.3%) >落叶灌木(9.7%) >常绿灌木(8.7%)(图4D); C:P的顺序为落叶灌木(20.3%) >常绿灌木(13.6%) >草本(9.5%)(图4E); N:P的顺序为草本(20.8%) >常绿灌木(19.5%) >落叶灌木(17.5%)(图4F)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4大兴安岭泥炭地植物叶片C、N、P含量(A、B、C)及其计量值(D、E、F)的种间变异系数(ZCV)。黑、灰、浅灰色直线分别为草本、落叶灌木和常绿灌木植物ZCV的平均值, 地点名称后的数字分别为该地点草本、落叶灌木和常绿灌木植物种数。

Fig. 4Inter-species coefficient of variation (ZCV) in leaf C, N, and P concentrations (A, B, C) and their stoichiometric ratios (D, E, F) in peatland plants of Da Hinggan Ling. Lines in black, grey, and light grey mark mean ZCV values for graminoids, decidous shrubs and evergreen shrubs, respectively. The numbers after site names indicate the number of species for graminoids, decidous and evergreen shrubs, respectively.



3 讨论

3.1 叶片C、N、P含量的生活型之间和生活型内部的差异

叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004)。植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002)。与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱。叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大。叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因。与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4)。叶片N含量比荒漠植物高, 比草原植物低。叶片P含量只高于荒漠植物(表4)。这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制。

Table 4
表4
表4大兴安岭泥炭地植物叶片C、N、P含量及其计量值与其他研究结果的比较
Table 4Comparisons of leaf C, N, and P concentrations and their stoichiometry between plants of the Da Hinggan Ling peatlands and those in other studies
研究区域
Study region
C (%)N (%)P (%)C:NC:PN:P数据来源
MeanSDnMeanSDnMeanSDnMeanSDnMeanSDnMeanSDnData source
泥炭地 Peatlands42.22.92751.90.42760.180.0726323.66.227526911026211.64.6263本研究 This Study
森林 Forests48.05.31021.80.51020.200.1210229.19.510231415210211.55.0102Ren et al., 2012
荒漠 Deserts1.10.82760.100.0827611.55.1276Zhang et al., 2014
草原 Grasslands43.83.02132.80.92130.190.8452517.95.721315.35.2525He et al., 2006, 2008
中国 China2.00.85540.150.1074516.39.3547Han et al., 2005
全球 Globe46.27.2762.00.91 2510.180.1192323.817.3623012374313.89.5894Elser et al., 2000a; Reich & Oleksyn, 2004

新窗口打开|下载CSV

在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b)。具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004)。本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本。有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006)。因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同。此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力。常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972)。这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异。

Table 5
表5
表5大兴安岭泥炭地植物菌根类型、叶形和植物高度概况
Table 5Plant mycorrhizal types, leaf shapes and plant height in the Da Hinggan Ling peatlands
生活型
Growth form
植物种
Species
菌根类型
Mycorrhizal type
植株高度
Plant height (cm)
叶形
Leaf shape
参考文献
Reference
草本植物 Graminoids白毛羊胡子草
Eriophorum vaginatum
无菌根 Non-mycorrhizae40-80线形 Linear leafHobbie & Hobbie, 2006; Wu & Hong, 2010
玉簪薹草 Carex globularis无菌根 Non-mycorrhizae30-60线形 Linear leaf
小叶章 Deyeuxia angustifolia丛枝菌根 Arbuscular mycorrhizae30-100线形 Linear leaf
落叶灌木 Deciduous shrubs柴桦 Betula fruticosa外生菌根 Ecto-mycorrhizae50-150卵形 Ovate leaf
越桔柳 Salix myrtilloides外生菌根 Ecto-mycorrhizae30-80椭圆形 Oblong leaf
细叶沼柳 Salix rosmarinifolia外生菌根 Ecto-mycorrhizae50-100披针形 Lanceolate leaf
笃斯越桔 Vaccinium uliginosum杜鹃花科菌根 Ericoid mycorrhizae50-80倒卵形 Obovate leaf
越桔 Vaccinium vitis-idaea杜鹃花科菌根 Ericoid mycorrhizae10-30倒卵形 Obovate leaf
常绿灌木 Evergreen shrubs杜香 Ledum palustre杜鹃花科菌根 Ericoid mycorrhizae40-50线形 Linear leaf
地桂 Chamaedaphne calyculata杜鹃花科菌根 Ericoid mycorrhizae30-150椭圆形 Oblong leaf
头花杜鹃 Rhododendron capitatum杜鹃花科菌根 Ericoid mycorrhizae40-100椭圆形 Oblong leaf

新窗口打开|下载CSV

在生活型内部, 草本植物白毛羊胡子草、落叶灌木柴桦、常绿灌木杜香的叶片C、N、P含量显著高于相同生活型的其他物种(图2A-2C), 反映了这几种植物在其功能群中具有较高的N、P竞争和利用。在俄罗斯北部季克西和中部雅库茨克, Kudo (1995)发现苔原杜香叶片N含量分别为(1.8 ± 0.2)% 和(1.6 ± 0.2)%。在阿拉斯加南部的泥炭地, 桦木(Betula glandulosa)叶片N、P含量分别为(1.5 ± 0.3)%和(0.18 ± 0.04)%, 白毛羊胡子草叶片N、P含量分别为(1.0 ± 0.1)%和(0.11 ± 0.04)% (Finger et al., 2016)。和这些较高纬度地区泥炭地的同类或同种植物比较, 大兴安岭泥炭地植物总体上具有较高的N、P含量, 反映了在相对低纬度较高气温和人为N沉降下, 泥炭地N、P可利用性增加。

3.2 叶片C:N、C:P、N:P的生活型之间和生活型内部的差异

叶片C:N、C:P越高反映植物N、P利用效率越高(黄建军和王希华, 2003; ?gren, 2004)。大兴安岭泥炭地植物叶片的C:N, C:P平均值小于全球水平(表4), 说明其N、P利用效率较全球植物低。本研究虽然草本N、P含量比灌木低, 但其C:N、C:P高于灌木, 此外, 常绿灌木C:N高于落叶灌木(图2D), 表明草本植物的N、P利用效率比灌木高, 常绿灌木N利用效率高于落叶灌木。这些结果揭示了研究区泥炭地不同生活型植物在维持固C功能方面存在N、P利用效率的差异或生存策略(Hessen et al., 2004)。大兴安岭多年生草本植物具有更高的根系比例, 其地下组织可以作为N、P贮存库来支持叶片的生长(Poorter et al., 2011), 对N、P的利用效率高。常绿灌木生长过程中的N成本较低且N再吸收较高, 其合成结构性物质(如纤维素等)所用的N较少, N利用效率较高(白坤栋等, 2013)。常绿灌木通过提高N、P利用效率, 增加C固定以维持其功能性状(Jonasson, 1989), 也常成为贫营养生态系统的优势植物(Aerts, 1995)。草本植物中玉簪薹草和小叶章、落叶灌木中笃斯越桔和越桔、常绿灌木中地桂和头花杜鹃叶片C:N较高(图2D), 其N利用效率较高。草本植物中玉簪薹草、落叶灌木中笃斯越桔和越桔、常绿灌木中杜香和地桂叶片C:P较高(图2E), 其P利用效率较高。这些结果反映了相同生活型的不同植物也具有明显的N、P利用效率差异或利用方式的分化。

叶片N:P是评价植物N、P限制特征的信息(Elser et al., 1996)。在瑞典沼泽地, Aerts等(1992)提出受N限制的植物叶片N:P均低于10, 受P限制的植物叶片N:P均高于14。在欧洲湿地系统, Koerselman和Meuleman (1996)通过施肥实验发现N:P < 14时为N限制, N:P > 16时为P限制。短期施肥实验表明, 湿地植物N:P < 10或N:P > 20分别对应N限制或P限制

(Güsewell, 2004)。由此可见, 叶片N:P评估植物N、P限制类型存在不确定性。使用N:P阈值为14和16 (或10和20)来评估N和P限制时可能产生32.5% (或16.2%)的误差。与此同时, 叶片N、P含量越高, 误差风险越低, 10和20的阈值比14和16的误差风险低(Yan et al., 2017)。本研究中, 泥炭地植物叶片N:P小于10同时其N含量低于全球植物叶片N含量平均值(1.9%)的植物占28.5%, 以小叶章和头花杜鹃为主(图5)。叶片N:P大于20同时其P含量低于全球植物叶片P含量平均值(0.12%)的植物占9% (图5)。这些结果说明大兴安岭泥炭地小叶章和头花杜鹃相比多数其他植物来说更易受N限制, 而多数其他植物可能更易受N、P共同限制, 这也与较高纬度地区多数泥炭地植物受N限制不同。对于相对较低纬度的北方泥炭地, 人为因素进行的大气N沉降输入可能一定程度已经减缓了植物受N的限制(曾竞等, 2013), 使大兴安岭地区泥炭地植物更多出现N、P共同限制的状态。

图5

新窗口打开|下载原图ZIP|生成PPT
图5大兴安岭泥炭地植物叶片N、P含量与N:P阈值。虚线分别表示N:P阈值为10, 14, 16和20。星星表示全球植物叶片N含量平均值(1.9%)和P含量平均值(0.12%)(Yan et al., 2017)。

Fig. 5Leaf N and P concentrations and N:P threshold in peatland plants of Da Hinggan Ling. Dash lines represent the N:P ratios of 10, 14, 16 and 20, respectively. Star-shaped symbol represents the global mean leaf N concentration (1.9%) and P concentration (0.12%) (Yan et al., 2017). Bf, Betula fruticosa; Cc, Chamaedaphne calyculata; Cg, Carex globularis; Da, Deyeuxia angustifolia; Ev, Eriophorum vaginatum; Lp, Ledum palustre; Rc, Rhododendron capitatum; Sm, Salix myrtilloides; Sr, Salix rosmarinifolia; Vu, Vaccinium uliginosum; Vv, Vaccinium vitis-idaea.



3.3 叶片C、N、P指标的地点间和种间变异

叶片C、N、P、C:N以及C:P的变异来源均表现为采样地点影响最大, 采样地点和植物种类交互作用次之, 植物种类最小(表3)。研究表明, 环境和物种分类对中国陆生植物叶片N的解释量分别为41.7%和4.9%, 对叶片P的解释量分别为33.3%和5.8% (Zhang et al., 2011)。大兴安岭区域尺度泥炭地11种植物水平上, 地点对叶片C、N、P指标的影响大于物种, 与上述研究结果一致。采样地点对叶片C、N、P指标的影响可能来自于土壤的空间异质性和环境因子的变化(Reich & Oleksyn, 2004)。植物种类对叶片C、N、P指标的影响主要来源于不同种植物自身的生物学特征和功能性状的差别(He et al., 2008)。地点和环境因子在解释叶片C、N、P指标变异方面比植物种类更重要, 或许能更强烈地影响叶片C、N、P含量的空间格局。

叶片C、N、P含量的地点间、种间CV分析能够进一步探讨植物C、N、P利用异质性的环境敏感性和生物学机制(任书杰等, 2012)。研究区叶片P含量地点间变异最大(>10%), 叶片N含量次之, 叶片C含量的地点间变异最小(<10%)。说明叶片C含量稳定性最高, 主要原因是C在植物生物质合成中主要起骨架作用, 是结构性物质的主要构建元素, 受外部环境条件变化影响较小(Bradshaw et al., 2012)。叶片N含量出现中等地点间变异(图3B), 反映其受土壤N可利用性影响较大(Sterner & Elser, 2002)。叶片P含量的地点间变异大于叶片N含量, 符合限制性元素稳定性假说(Han et al., 2011), 该假说指出植物P含量比植物N含量更容易被环境变化所改变, 反映了植物对不同元素稳态控制的程度。草本植物叶片C、N、P含量的地点间CV高于灌木(图3A-3C), 说明草本植物N、P吸收对环境变化较敏感, 生活型是影响植物N、P吸收环境响应和敏感性的一个因素(Güsewell, 2004)。对物种来说, 白毛羊胡子草、小叶章、笃斯越桔、越桔、地桂、头花杜鹃叶片N含量, 以及所有物种叶片P含量的地点变异呈中等变异性(图3C), 只有少数物种N含量地点变异弱(图3B), 表明该地区泥炭地多数植物种N、P吸收和固持存在环境异质性。因为叶片C含量变异较小而P含量变异较大(图3A、3C), 叶片C:N地点变异也较小而C:P和N:P变异较大(图3D-3F)。草本植物N、P利用效率的地点变异高于灌木, 多数物种N、P利用效率的地点变异呈中等变异性, 少数呈弱变异性(图3D、3E), 这些结果说明大兴安岭泥炭地多数植物种N、P利用效率具有较高的空间异质性, 这些不同种、不同程度N、P吸收和利用效率的地点变异性差异体现了植物N、P利用对环境N、P变异的响应能力和生物适应性(Yang et al., 2015)。

相同生活型不同植物C、N、P指标种间变异能够反映植物种系分化过程中元素吸收、同化的特异性(张文彦等, 2010)。总体上, 叶片C含量的种间变异较小(平均为4.7%; 图4A), N、P含量及C:N、C:P、N:P种间变异较大, 常绿灌木叶片N、P含量和C:N、C:P的种间变异小于草本和落叶灌木(图4B-4F)。这些结果说明在相同的环境条件下, 草本和落叶灌木N、P吸收和同化的种间变异性较高, 常绿灌木种间产生较相似的叶片N、P吸收策略。生活型内部遗传多样性高、叶性状和根系特征的差异是决定植物N、P吸收和利用效率种间变异的重要因素(Zhang et al., 2013)。本研究中草本和落叶灌木植物种间分化差异大, 其中草本植物中白毛羊胡子草和玉簪薹草为无菌根植物, 小叶章为丛枝菌根植物; 落叶灌木中柴桦、越桔柳、细叶沼柳为外生菌根植物, 其叶片分别为卵形、椭圆形和披针形, 笃斯越桔和越桔为杜鹃花科菌根植物, 越桔地上部分植株高约20 cm, 远低于其他落叶灌木; 常绿灌木均是杜鹃花科植物, 其植物高度、叶片大小等形态特征更相似(吴征镒和洪德元, 2010, 表5)。这些形态特征、生理性状以及生态位的种间特异性均会对植物光合固C和N、P吸收能力、利用效率产生影响。大兴安岭常绿灌木的N、P储存能力低, 利用效率高, 地点间、种间变异性较小, 或许成为泥炭地群落面对环境变化较为稳定的种群, 能够为评价或预测该地区泥炭地植被物种组成的改变提供有效信息。

4 结论

本研究探讨了大兴安岭泥炭地不同生活型之间和生活型内部植物的N、P吸收和利用差异及其地点间和物种间变异特征和可能的机制。总体上, 草本植物C、N、P含量低于落叶灌木和常绿灌木, C:N、C:P高于灌木, 草本植物叶片C、N、P储存含量较低,N、P利用效率较高。小叶章和头花杜鹃相比其他植物来说表现为易受N限制。采样地点对叶片C、N、P指标的影响高于植物种。草本植物叶片C、N、P的吸收同化对地点变化的响应较为敏感, 落叶灌木和常绿灌木也存在明显的N、P利用功能特征差异。

致谢 感谢天津大学宋韦、陈崇娟、中科院地理科学与资源研究所徐兴良、沈阳应用生态研究所方运霆以及Keisuke Koba, Yakov Kuzyakov, James Elser等老师在数据解释和撰文过程中给予的指导和 建议。



参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Aerts R ( 1995). The advantages of being evergreen
Trends in Ecology & Evolution, 10, 402-407.

DOI:10.1016/S0169-5347(00)89156-9URLPMID:21237084 [本文引用: 2]
Recent research shows that the dominance of evergreen species in nutrient-poor environments can be explained by their low nutrient loss rates. From this work It appears that the plant traits that are associated with low nutrient loss rates lead to low maximum-dry-matter production and to low rates of litter decomposition. This suggests a positive feedback between the evergreen habit and low nutrient availability. The growth characteristics of evergreens lead to a low responsiveness to environmental changes. As a result, global warming may lead to changes in the distribution of evergreens.

Aerts R, Chapin III FS ( 2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns
Advances in Ecological Research, 30, 1-67.

DOI:10.1016/S0065-2504(08)60016-1URL [本文引用: 2]
In this chapter, the advances that have been made in understanding the ecology of the mineral nutrition of wild plants from terrestrial ecosystems have been reviewed. This chapter is organized along three lines. First, the issues of nutrient-limited plant growth and nutrient uptake, with special emphasis on the importance of the uptake of nutrients in organic form—both by mycorrhizal and by non-mycorrhizal plants—and the importance of symbiotic nitrogen fixation is treated. In addition, the influence of allocation patterns on mineral nutrient uptake is described. Next, a few of the nutritional aspects of leaf functioning and how nutrients are used for biomass production by the plant are explored. That is done by studying the nutrient use efficiency (NUE) of plants and the various components of NUE. Finally, the feedback of plant species to soil nutrient availability by reviewing patterns in litter decomposition and nutrient mineralization is investigated. The chapter concludes with a synthesis of the various aspects of the mineral nutrition of wild plants. The chapter ends with a conceptual description of plant strategies with respect to mineral nutrition.

Aerts R, Wallen B, Malmer N ( 1992). Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply.
Journal of Ecology, 80, 131-140.

[本文引用: 2]

?gren GI ( 2004). The C:N:P stoichiometry of autotrophs—?Theory and observations
Ecology Letters, 7, 185-191.

DOI:10.1111/ele.2004.7.issue-3URL [本文引用: 3]

?gren GI, Wetterstedt J?M, Billberger MFK ( 2012). Nutrient limitation on terrestrial plant growth—Modeling the interaction between nitrogen and phosphorus
New Phytologist, 194, 953-960.

DOI:10.1111/j.1469-8137.2012.04116.xURLPMID:22458659 [本文引用: 1]
090004Growth of plants in terrestrial ecosystems is often limited by the availability of nitrogen (N) or phosphorous (P) Liebig090005s law of the minimum states that the nutrient in least supply relative to the plant090005s requirement will limit the plant090005s growth. An alternative to the law of the minimum is the multiple limitation hypothesis (MLH) which states that plants adjust their growth patterns such that they are limited by several resources simultaneously.090004We use a simple model of plant growth and nutrient uptake to explore the consequences for the plant090005s relative growth rate of letting plants invest differentially in N and P uptake.090004We find a smooth transition between limiting elements, in contrast to the strict transition in Liebig090005s law of the minimum. At N : P supply ratios where the two elements simultaneously limit growth, an increase in either of the nutrients will increase the growth rate because more resources can be allocated towards the limiting element, as suggested by the multiple limitation hypothesis. However, the further the supply ratio deviates from these supply rates, the more the plants will follow the law of the minimum.090004Liebig090005s law of the minimum will in many cases be a useful first-order approximation.

Bai KD, Jiang DB, Wan XC ( 2013). Photosynthesis-nitrogen relationship in evergreen and deciduous tree species at different altitudes on Mao’er Mountain, Guangxi
Acta Ecologica Sinica, 33, 4930-4938.

DOI:10.5846/stxb201205200750URL [本文引用: 1]
分析广西猫儿山不同海拔常绿和 落叶树种的光合作用-氮关系,探讨光合氮利用效率(PNUE)是否受到叶片习性和海拔的影响。落叶树种的PNUE都显著高于常绿树种,这与前者有较低的比 叶重(LMA)和较高的单位叶重光合速率(Amass)、氮含量和气孔导度(gs)有密切关系。高海拔树种的PNUE显著低于中低海拔树种的PNUE,这 与前者较高的LMA和较低的Amass和gs相关。PNUE和相关的叶片特征的主成分分析表明常绿-落叶树种和低海拔-中海拔-高海拔树种的分布是一个自 然过渡的过程。此外,PNUE与土壤碳:氮比没有显著相关性,但与年均温正相关,这表明温度气候是调节PNUE沿海拔变化的主要环境因素。因此,这种叶片 习性和温度气候调节的PNUE变化可能是调节猫儿山常绿树种沿海拔形成双峰分布的一种机制。
[ 白坤栋, 蒋得斌, 万贤崇 ( 2013). 广西猫儿山不同海拔常绿树种和落叶树种光合速率与氮的关系
生态学报, 33, 4930-4938.]

DOI:10.5846/stxb201205200750URL [本文引用: 1]
分析广西猫儿山不同海拔常绿和 落叶树种的光合作用-氮关系,探讨光合氮利用效率(PNUE)是否受到叶片习性和海拔的影响。落叶树种的PNUE都显著高于常绿树种,这与前者有较低的比 叶重(LMA)和较高的单位叶重光合速率(Amass)、氮含量和气孔导度(gs)有密切关系。高海拔树种的PNUE显著低于中低海拔树种的PNUE,这 与前者较高的LMA和较低的Amass和gs相关。PNUE和相关的叶片特征的主成分分析表明常绿-落叶树种和低海拔-中海拔-高海拔树种的分布是一个自 然过渡的过程。此外,PNUE与土壤碳:氮比没有显著相关性,但与年均温正相关,这表明温度气候是调节PNUE沿海拔变化的主要环境因素。因此,这种叶片 习性和温度气候调节的PNUE变化可能是调节猫儿山常绿树种沿海拔形成双峰分布的一种机制。

Bradshaw C, Kautsky U, Kumblad L ( 2012). Ecological stoichiometry and multi-element transfer in a coastal ecosystem
Ecosystems, 15, 591-603.

DOI:10.1007/s10021-012-9531-5URL [本文引用: 1]
AbstractEnergy (carbon) flows and element cycling are fundamental, interlinked principles explaining ecosystem processes. The element balance in components, interactions and processes in ecosystems (ecological stoichiometry; ES) has been used to study trophic dynamics and element cycling. This study extends ES beyond its usual limits of C, N, and P and examines the distribution and transfer of 48 elements in 16 components of a coastal ecosystem, using empirical and modeling approaches. Major differences in elemental composition were demonstrated between abiotic and biotic compartments and trophic levels due to differences in taxonomy and ecological function. Mass balance modeling for each element, based on carbon fluxes and element:C ratios, was satisfactory for 92.5% of all element ompartment combinations despite the complexity of the ecosystem model. Model imbalances could mostly be explained by ecological processes, such as increased element uptake during the spring algal bloom. Energy flows in ecosystems can thus realistically estimate element transfer in the environment, as modeled uptake is constrained by metabolic rates and elements available. The dataset also allowed us to examine one of the key concepts of ES, homeostasis, for more elements than is normally possible. The relative concentrations of elements in organisms compared to their resources did not provide support for the theory that autotrophs show weak homeostasis and showed that the strength of homeostasis by consumers depends on the type of element (for example, macroelement, trace element). Large-scale, multi-element ecosystem studies are essential to evaluate and advance the framework of ES and the importance of ecological processes.

Bragazza L, Parisod J, Buttler A, Bardgett RD ( 2013). Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands
Nature Climate Change, 3, 273-277.

DOI:10.1038/NCLIMATE1781URL [本文引用: 1]
Peatlands act as global sinks of atmospheric carbon (C) through the accumulation of organic matter(1), primarily made up of decay-resistant litter of peat mosses(2). However, climate warming has been shown to promote vascular plant growth in peatlands, especially ericaceous shrubs(3). A change in vegetation cover is in turn expected to modify above-ground/below-ground interactions(4), but the biogeochemical mechanisms involved remain unknown. Here, by selecting peatlands at different altitudes to simulate a natural gradient of soil temperature, we show that the expansion of ericaceous shrubs with warming is associated with an increase of polyphenol content in both plant litter and pore water. In turn, this retards the release of nitrogen (N) from decomposing litter, increases the amount of dissolved organic N and reduces N immobilization by soil microbes. A decrease of soil water content with increasing temperature promotes the growth of fungi, which feeds back positively on ericaceous shrubs by facilitating the symbiotic acquisition of dissolved organic N. We also observed a higher release of labile C from vascular plant roots at higher soil temperatures, which promotes the microbial investment in C-degrading enzymes. Our data suggest that climate-induced changes in plant cover can reduce the productivity of peat mosses and potentially prime the decomposition of organic matter by affecting the stoichiometry of soil enzymatic activity.

Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hájek M, Grosvernier P, Hájek T, Hajkova P, Hansen I, Iacumin P, Gerdol R ( 2004). Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe
New Phytologist, 163, 609-616.

DOI:10.2307/1514462URL [本文引用: 1]
http://www.jstor.org/stable/1514462

Chapin III FS, Shaver GR, Kedrowski RA ( 1986). Environmental controls over carbon, nitrogen and phosphorus fractions in Eriophorum vaginatum in Alaskan tussock tundra.
Journal of Ecology, 74, 167-195.

DOI:10.2307/2260357URL [本文引用: 1]
Growth rate of E. vaginatum in Alaskan tundra is probably controlled mainly by the availability of internal nutrient reserves rather than by any effect of temperature upon synthesis or transport of organic-carbon compounds required for growth. In spring, internal nutrient reserves from stems support a near-maximal growth rate. In late summer, growth slows because nutrient accumulation in stems takes precedence over its incorporation on growth. If nutrient availability increases in late summer, continued growth is possible, because the nutrient demands of both storage and growth can be met.-from Authors

Chen HM, Song CC, Shi FX, Zhang XH, Mao R ( 2017). Effects of alder expansion on plant community composition and biomass in the peatland in the Da’xingan Mountain
Chinese Journal of Applied & Environmental Biology, 23, 778-784.

URL [本文引用: 1]
近几十年来随着气候变暖及其引起的土壤干化,北方泥炭地生态系统中固氮树种桤木(Alnus spp.)的数量越来越多,已呈现出大规模的扩张趋势. 为揭示其对植物群落组成和生物量的影响,在大兴安岭北部选取典型泥炭地,以辽东桤木(A. sibirica)树岛作为研究对象,以毗邻的开阔泥炭地作为对照,比较物种多样性和地上部分生物量的差异. 结果显示:辽东桤木树岛中植物群落总的地上部分生物量高于开阔泥炭地,但物种丰富度、Simpson优势度指数、Shannon-Wiener多样性指数和Pielou均匀度指数均低于开阔泥炭地;在物种水平上,辽东桤木树岛中柴桦(Betula fruticosa)的地上部分生物量高于开阔泥炭地,但白毛羊胡子草(Eriophorum vaginatum)、三叶鹿药(Smilacina trifolia)、大泥炭藓(Sphagnum palustre)、沼泽皱朔藓(Aulacomnium palustre)、金发藓(Polytrichum commune)和石蕊(Cladonia rangiferina)的地上部分生物量则低于开阔泥炭地;在植物功能群水平上,辽东桤木树岛与开阔泥炭地之间常绿灌木地上部分生物量没有显著差异,但辽东桤木树岛落叶灌木地上部分生物量高于开阔泥炭地,而草本植物、苔藓植物和地衣的地上部分生物量低于开阔泥炭地. 而且,由于辽东桤木较大的生物量,树岛中落叶灌木、常绿灌木、草本植物、苔藓植物和地衣的优势度均显著低于开阔泥炭地. 本研究表明北方泥炭地固氮物种扩张尽管能增加植物生物量,但导致苔藓植物和地衣消失,显著降低生物多样性,这将对生态系统结构和功能产生深远的影响. (图3 表2 参38)
[ 陈慧敏, 宋长春, 石福习, 张新厚, 毛瑢 ( 2017). 辽东桤木扩张对大兴安岭泥炭地植物群落组成和生物量的影响
应用与环境生物学报, 23, 778-784.]

URL [本文引用: 1]
近几十年来随着气候变暖及其引起的土壤干化,北方泥炭地生态系统中固氮树种桤木(Alnus spp.)的数量越来越多,已呈现出大规模的扩张趋势. 为揭示其对植物群落组成和生物量的影响,在大兴安岭北部选取典型泥炭地,以辽东桤木(A. sibirica)树岛作为研究对象,以毗邻的开阔泥炭地作为对照,比较物种多样性和地上部分生物量的差异. 结果显示:辽东桤木树岛中植物群落总的地上部分生物量高于开阔泥炭地,但物种丰富度、Simpson优势度指数、Shannon-Wiener多样性指数和Pielou均匀度指数均低于开阔泥炭地;在物种水平上,辽东桤木树岛中柴桦(Betula fruticosa)的地上部分生物量高于开阔泥炭地,但白毛羊胡子草(Eriophorum vaginatum)、三叶鹿药(Smilacina trifolia)、大泥炭藓(Sphagnum palustre)、沼泽皱朔藓(Aulacomnium palustre)、金发藓(Polytrichum commune)和石蕊(Cladonia rangiferina)的地上部分生物量则低于开阔泥炭地;在植物功能群水平上,辽东桤木树岛与开阔泥炭地之间常绿灌木地上部分生物量没有显著差异,但辽东桤木树岛落叶灌木地上部分生物量高于开阔泥炭地,而草本植物、苔藓植物和地衣的地上部分生物量低于开阔泥炭地. 而且,由于辽东桤木较大的生物量,树岛中落叶灌木、常绿灌木、草本植物、苔藓植物和地衣的优势度均显著低于开阔泥炭地. 本研究表明北方泥炭地固氮物种扩张尽管能增加植物生物量,但导致苔藓植物和地衣消失,显著降低生物多样性,这将对生态系统结构和功能产生深远的影响. (图3 表2 参38)

Du XM, Zhou ZQ, Zhang Y, Zhou L ( 2002). Discussion about rules of vegetation’s succession in north of Great Xingan mountains
Territory & Natural Resources Study, ( 2), 67-68.

DOI:10.3969/j.issn.1003-7853.2002.02.033URL [本文引用: 1]
大兴安岭伊勒呼里山以北为我国唯一的寒温带明亮针叶林区,有森林、草甸、沼泽化草甸、沼泽、泡沼等多种自然景观,生物多样性较复杂,植被动态变化可分为森林植被演替和湿地植被演替.探讨这些规律有重要的理论和实践意义.
[ 杜晓明, 周志强, 张悦, 周琳 ( 2002). 大兴安岭北部植被演替规律探讨
国土与自然资源研究, ( 2), 67-68.]

DOI:10.3969/j.issn.1003-7853.2002.02.033URL [本文引用: 1]
大兴安岭伊勒呼里山以北为我国唯一的寒温带明亮针叶林区,有森林、草甸、沼泽化草甸、沼泽、泡沼等多种自然景观,生物多样性较复杂,植被动态变化可分为森林植被演替和湿地植被演替.探讨这些规律有重要的理论和实践意义.

Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH ( 1996). Organism size, life history, and N:P stoichiometry
BioScience, 46, 674-684.

DOI:10.2307/1312897URL [本文引用: 1]
Toward a unified view of cellular and ecosystem processes. Ecosystefn science and evoi utionary biology have long been infrequent and uncomfortabie. bedfellows (Hagen 1992, Holt 1955, Mclntosh 1985) However, the convergence of a global decline in biodiversicy and global alterations in biogeochernical cycles provides motivation to overcome past inhibitions. Currently, attempts are being made (Jones and Lawton 1995) to understand relationships between the foci of evolutionary biology the individual SBits species population) and ecosystem science (energy and rnaterial flow and storage). Analysis of relationships between species and ecosystems requ'iies a framework appropriate for moving between levels in an imperfect hierarchy of biotic and abiotic components (O'Neill et al. 1986). Although various frameworks are possible, the history of ecology since Lin.deman's 1942 paper on the trophic dynamic concept makes it clear that energy has been the currency of choice for ecologists (Hagen 1992).

Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW ( 2000a ). Nutritional constraints in terrestrial and freshwater food webs
Nature, 408, 578-580.

DOI:10.1038/35046058 [本文引用: 2]

Elser JJ, Stemer RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ ( 2000b ). Biological stoichiometry from genes to ecosystems
Ecology Letters, 3, 540-550.

DOI:10.1111/j.1461-0248.2000.00185.xURL [本文引用: 2]
Ecological stoichiometry is the study of the balance of multiple chemical elements in ecological interactions. This paper reviews recent findings in this area and seeks to broaden the stoichiometric concept for use in evolutionary studies, in integrating ecological dynamics with cellular and genetic mechanisms, and in developing a unified means for studying diverse organisms in diverse habitats. This broader approach would then be considered “biological stoichiometry”. Evidence supporting a hypothesised connection between the C:N:P stoichiometry of an organism and its growth rate (the “growth rate hypothesis”) is reviewed. Various data indicate that rapidly growing organisms commonly have low biomass C:P and N:P ratios. Evidence is then discussed suggesting that low C:P and N:P ratios in rapidly growing organisms reflect increased allocation to P-rich ribosomal RNA (rRNA), as rapid protein synthesis by ribosomes is required to support fast growth. Indeed, diverse organisms (bacteria, copepods, fishes, others) exhibit increased RNA levels when growing actively. This implies that evolutionary processes that generate, directly or indirectly, variation in a major life history trait (specific growth rate) have consequences for ecological dynamics due to their effects on organismal elemental composition. Genetic mechanisms by which organisms generate high RNA, high growth rate phenotypes are discussed next, focusing on the structure and organisation of the ribosomal RNA genes (the “rDNA”). In particular, published studies of a variety of taxa suggest an association between growth rate and variation in the length and content of the intergenic spacer (IGS) region of the rDNA tandem repeat unit. In particular, under conditions favouring increased growth or yield, the number of repeat units (“enhancers”) increases (and the IGS increases in length), and transcription rates of rRNA increase. In addition, there is evidence in the literature that increased numbers of copies of rDNA genes are associated with increased growth and production. Thus, a combination of genetic mechanisms may be responsible for establishing the growth potential, and thus the RNA allocation and C:N:P composition, of an organism. Furthermore, various processes, during both sexual and asexual reproduction, can generate variation in the rDNA to provide the raw material for selection and to generate ecologically significant variation in C:N:P stoichiometry. This leads us to hypothesize that the continuous generation of such variation may also play a role in how species interactions develop in ecosystems under different conditions of energy input and nutrient supply.

Finger RA, Turetsky MR, Kielland K, Ruess RW, Mack MC, Euskirchen ES ( 2016). Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland
Journal of Ecology, 104, 1542-1554.

DOI:10.1111/1365-2745.12639URL [本文引用: 1]
Summary Increasing rates of permafrost thaw in boreal peatlands are converting conifer forests to waterlogged open wetlands. Permafrost thaw increases soil nitrogen (N) availability, but it is unclear whether such changes are due solely to changes in surface soil N mineralization or N mobilization from thawing permafrost soils at depth. We examined plant species composition and N availability along triplicate permafrost thaw gradients in Alaskan peatlands. Each gradient comprised four community types including: (i) a permafrost peatland with intact permafrost, (ii) a drunken forest experiencing active thaw, (iii) a moat representing initial complete thaw and (iv) a collapse scar bog representing several decades of post-thaw succession. Concentrations of dissolved organic (DON) and inorganic N (DIN) in the upper 60 cm of soil increased along the permafrost thaw gradients. The drunken forest had the greatest mean concentrations of total dissolved N relative to the other community types, primarily due to greater concentrations of large molecular DON. The moat and collapse bog had significantly greater inorganic N concentrations than the permafrost or drunken forest, suggesting that changes in N availability are not a short-term effect, but can be sustained for decades or centuries. Across all plant community types, DIN and DON concentrations increased with soil depth during maximum seasonal ice thaw (September), suggesting that deeper soil horizons are important reservoirs of N post-thaw. Vegetation responses to permafrost thaw included changes in plant community composition shifting from upland forest species to hydrophilic vegetation with deeper rooting profiles in the collapse scar bogs and changes in foliar N and 未15N values. N concentrations in plant foliage and litterfall increased with concentrations of DIN during collapse bog succession, suggesting that plants are utilizing additional mineralized N. Synthesis . Our results suggest that the conversion of forest to wetlands associated with permafrost thaw in boreal lowlands increases N availability, at least in part by increasing turnover of deep soil organic matter. Plants appear to utilize these additional deeper N sources over timescales of years to centuries following permafrost thaw.

Fisher JB, Malhi Y, Torres IC, Metcalfe DB, van de Weg MJ, Meir P, Silva-Espejo JE, Huasco WH ( 2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes
Oecologia, 172, 889-902.

DOI:10.1007/s00442-012-2522-6URL

Guo DX, Wang SL, Lu GW, Dai JB, Li EY ( 1981). Division of permafrost regions in Daxiao Hinggan Ling northeast China
Journal of Glaciology & Geocryology, 3(3), 1-9.

URLMagsci [本文引用: 1]
我们于1973—1975年编制了1/200万我国东北大小兴安岭多年冻土分区图,目的是揭露和反映多年冻土形成、分布及发育的地带性和区域性规律,及其与自然因素的关系,同时为该区生产建设及远景规划合理布局提供依据。此文是该图的文字说明和补充,在本文中该图已缩成1/600万,图中界线作了修改(图1)。
[ 郭东信, 王绍令, 鲁国威, 戴竞波, 李恩英 ( 1981). 东北大小兴安岭多年冻土分区
冰川冻土, 3(3), 1-9.]

URLMagsci [本文引用: 1]
我们于1973—1975年编制了1/200万我国东北大小兴安岭多年冻土分区图,目的是揭露和反映多年冻土形成、分布及发育的地带性和区域性规律,及其与自然因素的关系,同时为该区生产建设及远景规划合理布局提供依据。此文是该图的文字说明和补充,在本文中该图已缩成1/600万,图中界线作了修改(图1)。

Güsewell S ( 2004). N:P ratios in terrestrial plants: Variation and functional significance
New Phytologist, 164, 243-266.

DOI:10.1111/j.1469-8137.2004.01192.xURL [本文引用: 2]

Güsewell S, Koerselman W ( 2002). Variation in nitrogen and phosphorus concentrations of wetland plants
Perspective in Ecology, Evolution & Systematics, 5, 37-61.

DOI:10.1078/1433-8319-0000022URL [本文引用: 1]
The use of nutrient concentrations in plant biomass as easily measured indicators of nutrient availability and limitation has been the subject of a controversial debate. In particular, it has been questioned whether nutrient concentrations are mainly species' traits or mainly determined by nutrient availability, and whether plant species have similar or different relative nutrient requirements. This review examines how nitrogen and phosphorus concentration and the N:P ratio in wetland plants vary among species and sites, and how they are related to nutrient availability and limitation. We analyse data from field studies in European non-forested wetlands, from fertilisation experiments in these communities and from growth experiments with wetland plants. Overall, the P concentration was more variable than the N concentration, while variation in N:P ratios was intermediate. Field data showed that the N concentration varies more among species than among sites, whereas the N:P ratio varies more among sites than among species, and the P concentration varies similarly among both. Similar patterns of variation were found in fertilisation experiments and in growth experiments under controlled nutrient supply. Nutrient concentrations and N:P ratios in the vegetation were poorly correlated with various measures of nutrient availability in soil, but they clearly responded to fertilisation in the field and to nutrient supply in growth experiments. In these experiments, biomass N:P ratios ranged from 3 to 40 and primarily reflected the relative availabilities of N and P, although N:P ratios of plants grown at the same nutrient supply could vary three-fold among species. The effects of fertilisation with N or P on the biomass production of wetland vegetation were well related to the N:P ratios of the vegetation in unfertilised plots, but not to N or P concentrations, which supports the idea that N:P ratios, rather than N or P concentrations, indicate the type of nutrient limitation. However, other limiting or stressing factors may influence N:P ratios, and the responses of individual plant species to fertilisation cannot be predicted from their N:P ratios. Therefore, N:P ratios should only be used to assess which nutrient limits the biomass production at the vegetation level and only when factors other than N or P are unlikely to be limiting.

Hall EK, Maixner F, Franklin O, Daims H, Richter A, Battin T ( 2010). Linking microbial and ecosystem ecology using ecological stoichiometry: A synthesis of conceptual and empirical approaches
Ecosystems, 14, 261-273.

[本文引用: 1]

Han WX, Fang JY, Guo DL, Zhang Y ( 2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China
New Phytologist, 168, 377-385.

DOI:10.1111/j.1469-8137.2005.01530.xURLPMID:16219077 [本文引用: 3]
$\bullet$ Leaf nitrogen and phosphorus stoichiometry of Chinese terrestrial plants was studied based on a national data set including 753 species across the country. $\bullet$ Geometric means were calculated for functional groups based on life form, phylogeny and photosynthetic pathway, as well as for all 753 species. The relationships between leaf N and P stoichiometric traits and latitude (and temperature) were analysed. $\bullet$ The geometric means of leaf N, P, and N : P ratio for the 753 species were 18.6 and $1.21 mg g^{-1}$ and 14.4, respectively. With increasing latitude (decreasing mean annual temperature, MAT), leaf N and P increased, but the N : P ratio did not show significant changes. $\bullet$ Although patterns of leaf N, P and N : P ratios across the functional groups were generally consistent with those reported previously, the overall N : P ratio of China's flora was considerably higher than the global averages, probably caused by a greater shortage of soil P in China than elsewhere. The relationships between leaf N, P and N : P ratio and latitude (and MAT) also suggested the existence of broad biogeographical patterns of these leaf traits in Chinese flora.

Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH ( 2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China
Ecology Letters, 14, 788-796.

DOI:10.1111/j.1461-0248.2011.01641.xURLPMID:21692962 [本文引用: 2]
Abstract Ecology Letters (2011) 14 : 788鈥796 Abstract Understanding variation of plant nutrients is largely limited to nitrogen and to a lesser extent phosphorus. Here we analyse patterns of variation in 11 elements (nitrogen/phosphorus/potassium/calcium/magnesium/sulphur/silicon/iron/sodium/manganese/aluminium) in leaves of 1900 plant species across China. The concentrations of these elements show significant latitudinal and longitudinal trends, driven by significant influences of climate, soil and plant functional type. Precipitation explains more variation than temperature for all elements except phosphorus and aluminium, and the 11 elements differentiate in relation to climate, soil and functional type. Variability (assessed as the coefficient of variation) and environmental sensitivity (slope of responses to environmental gradients) are lowest for elements that are required in the highest concentrations, most abundant and most often limiting in nature (the Stability of Limiting Elements Hypothesis). Our findings can help initiate a more holistic approach to ecological plant nutrition and lay the groundwork for the eventual development of multiple element biogeochemical models.

Han WX, Wu Y, Tang LY, Chen YH, Li LP, He JS, Fang JY ( 2009). Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery
Acta Scientiarum Naturalium Universitatis Pekinensis (Natural Science Edition), 45, 855-860.

URL [本文引用: 1]
Based on a systematic field sampling and lab measurements of 358 native species, the regional stoichiometric patterns of leaf C, N and Pin Beijing and its periphery were investigated. The geometric means of leaf C, N and P are 45.1% ,2.61% and 0.20 % (dry weight), respectively. The content ratios of lamina C, N and Pto their petiole counterparts are 1.1, 2.4 and 1.8 for C, Nand P, respectively, as reflectsthe stoichiometric relationship between lamina and petiole. Herbs have higher leaf Nand P and lower Cthan woody plants; conifers are significantly lower in leaf N( or higher in leaf C) , compared with broadleaves, but there is no significant difference in leaf P between the two growth-forms. Leaf C, N and P are correlated significantly between each other across all species or within growth-forms, with positive relationship between N and P, and negative between C and N ( P). The geometric mean mass ratios of leaf C∶N, C∶P and N∶P are 17.3, 242 and 13.9, respectively.
[ 韩文轩, 吴漪, 汤璐瑛, 陈雅涵, 李利平, 贺金生, 方精云 ( 2009). 北京及周边地区植物叶的碳氮磷元素计量特征
北京大学学报(自然科学版), 45, 855-860.]

URL [本文引用: 1]
Based on a systematic field sampling and lab measurements of 358 native species, the regional stoichiometric patterns of leaf C, N and Pin Beijing and its periphery were investigated. The geometric means of leaf C, N and P are 45.1% ,2.61% and 0.20 % (dry weight), respectively. The content ratios of lamina C, N and Pto their petiole counterparts are 1.1, 2.4 and 1.8 for C, Nand P, respectively, as reflectsthe stoichiometric relationship between lamina and petiole. Herbs have higher leaf Nand P and lower Cthan woody plants; conifers are significantly lower in leaf N( or higher in leaf C) , compared with broadleaves, but there is no significant difference in leaf P between the two growth-forms. Leaf C, N and P are correlated significantly between each other across all species or within growth-forms, with positive relationship between N and P, and negative between C and N ( P). The geometric mean mass ratios of leaf C∶N, C∶P and N∶P are 17.3, 242 and 13.9, respectively.

He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z ( 2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China
Oecologia, 149, 115-122.

DOI:10.1007/s00442-006-0425-0URLPMID:16639565 [本文引用: 2]
Nitrogen (N) and carbon-nitrogen (C:N) ratio are key foliar traits with great ecological importance, but their patterns across biomes have only recently been explored. We conducted a systematic census of foliar C, N and C:N ratio for 213 species, from 41 families over 199 research sites across the grassland biomes of China following the same protocol, to explore how different environmental conditions and species composition affect leaf N and C:N stoichiometry. Leaf C:N stoichiometry is stable in three distinct climatic regions in Inner Mongolia, the Tibetan Plateau, and Xinjiang Autonomous Region, despite considerable variations among co-existing species and among different vegetation types. Our results also show that life form and genus identity explain more than 70% of total variations of foliar N and C:N ratio, while mean growing season temperature and growing season precipitation explained only less than 3%. This suggests that, at the biome scale, temperature affects leaf N mainly through a change in plant species composition rather than via temperature itself. When our data were pooled with a global dataset, the previously observed positive correlation between leaf N and mean annual temperature (MAT) at very low MATs, disappeared. Thus, our data do not support the previously proposed biogeochemical hypothesis that low temperature limitations on mineralization of organic matter and N availability in soils lead to low leaf N in cold environments.

He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY ( 2008). Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland Biomes
Oecologia, 155, 301-310.

DOI:10.1007/s00442-007-0912-yURL [本文引用: 4]

Hessen DO, ?gren GI, Anderson TR, Elser JJ, de Ruiter PC ( 2004). Carbon sequestration in ecosystems: The role of stoichiometry
Ecology, 85, 1179-1192.

DOI:10.1890/02-0251URL [本文引用: 1]

Hobbie JE, Hobbie EA ( 2006). δ 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra
Ecology, 87, 816-822.

DOI:10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2URLPMID:16676524 [本文引用: 2]
When soil nitrogen is in short supply, most terrestrial plants form symbioses with fungi (mycorrhizae): hyphae take up soil nitrogen, transport it into plant roots, and receive plant sugars in return. In ecosystems, the transfers within the pathway fractionate nitrogen isotopes so that the natural abundance of ${}^{15}\text{N}$ in fungi differs from that in their host plants by as much as 12鈥. Here we present a new method to quantify carbon and nitrogen fluxes in the symbiosis based on the fractionation against ${}^{15}\text{N}$ during transfer of nitrogen from fungi to plant roots. We tested this method, which is based on the mass balance of ${}^{15}\text{N}$, with data from arctic Alaska where the nitrogen cycle is well studied. Mycorrhizal fungi provided 61-86% of the nitrogen in plants; plants provided 8-17% of their photosynthetic carbon to the fungi for growth and respiration. This method of analysis avoids the disturbance of the soil-microbe-root relationship caused by collecting samples, mixing the soil, or changing substrate concentrations. This analytical technique also can be applied to other nitrogen-limited ecosystems, such as many temperate and boreal forests, to quantify the importance for terrestrial carbon and nitrogen cycling of nutrient transfers mediated by mycorrhizae at the plant-soil interface.

Hu CC, Liu XY, Lei YB, Tan YH, Zhang P, Dong YP, Liu CQ ( 2016). Foliar nitrogen and phosphorus stoichiometry of alien invasive plants and co-occurring natives in Xishuangbanna
Chinese Journal of Plant Ecology, 40, 1145-1153.

DOI:10.17521/cjpe.2016.0052URL [本文引用: 1]
诊断外来植物和本地种的资源利用方式是入侵生态学研究的热点问题。叶片氮(N)、磷(P)含量和化学计量特征可以反映受侵地区植物的N、P吸收能力和限制状况,为把握外来植物的入侵能力、为本地植物共存或消失的机制提供基础科学依据。该研究以我国西南地区典型外来入侵植物(飞机草(Chromolaena odorata)、紫茎泽兰(又叫破坏草, Ageratina adenophora))及其共存的本地植物为对象,探讨不同入侵条件下入侵种及其共存的本地植物的N、P利用策略。在云南西双版纳孔明山研究区,调查了无入侵条件下和飞机草与紫茎泽兰的不同入侵程度(按入侵种生物量比例划分)下的物种数量和生物量,分析了主要植物的叶片N、P含量和N:P值。结果显示:尽管群落地上生物量随飞机草和紫茎泽兰入侵程度增加而增加,但本地植物种数随飞机草和紫茎泽兰入侵程度增加而显著减少。飞机草与紫茎泽兰的叶片N、P平均含量无显著差异,但均显著高于无入侵条件下的本地植物以及与其共存的本地植物。两种入侵植物的N、P含量均随它们所占样方总生物量的比例增大而升高,本地植物N含量也有相似的变化趋势。当对比入侵和无入侵两类样方的同种植物N、P和N:P变化时发现多数本地种叶片P含量呈降低趋势,N含量和N:P呈升高趋势。根据叶片N、P绝对含量和N:P值及其随入侵的变化规律,推测入侵可能提高了植物的N可利用性,但本地植物仍然受N限制;入侵植物N:P值总体小于10与其具有相对于N吸收的较高的P吸收能力有关。该研究揭示了西南典型外来入侵植物具有较强的N、P吸收富集能力。
[ 胡朝臣, 刘学炎, 类延宝, 谭运洪, 张鹏, 董玉平, 刘丛强 ( 2016). 西双版纳外来入侵植物及其共存种叶片氮、磷化学计量特征
植物生态学报, 40, 1145-1153.]

DOI:10.17521/cjpe.2016.0052URL [本文引用: 1]
诊断外来植物和本地种的资源利用方式是入侵生态学研究的热点问题。叶片氮(N)、磷(P)含量和化学计量特征可以反映受侵地区植物的N、P吸收能力和限制状况,为把握外来植物的入侵能力、为本地植物共存或消失的机制提供基础科学依据。该研究以我国西南地区典型外来入侵植物(飞机草(Chromolaena odorata)、紫茎泽兰(又叫破坏草, Ageratina adenophora))及其共存的本地植物为对象,探讨不同入侵条件下入侵种及其共存的本地植物的N、P利用策略。在云南西双版纳孔明山研究区,调查了无入侵条件下和飞机草与紫茎泽兰的不同入侵程度(按入侵种生物量比例划分)下的物种数量和生物量,分析了主要植物的叶片N、P含量和N:P值。结果显示:尽管群落地上生物量随飞机草和紫茎泽兰入侵程度增加而增加,但本地植物种数随飞机草和紫茎泽兰入侵程度增加而显著减少。飞机草与紫茎泽兰的叶片N、P平均含量无显著差异,但均显著高于无入侵条件下的本地植物以及与其共存的本地植物。两种入侵植物的N、P含量均随它们所占样方总生物量的比例增大而升高,本地植物N含量也有相似的变化趋势。当对比入侵和无入侵两类样方的同种植物N、P和N:P变化时发现多数本地种叶片P含量呈降低趋势,N含量和N:P呈升高趋势。根据叶片N、P绝对含量和N:P值及其随入侵的变化规律,推测入侵可能提高了植物的N可利用性,但本地植物仍然受N限制;入侵植物N:P值总体小于10与其具有相对于N吸收的较高的P吸收能力有关。该研究揭示了西南典型外来入侵植物具有较强的N、P吸收富集能力。

Hu CC, Lei YB, Tan YH, Sun XC, Xu H, Liu CQ, Liu XY ( 2018). Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China
Journal of Ecology , 107. DOI: 10.1111/1365-2745. 13008.

[本文引用: 1]

Huang JJ, Wang XH ( 2003). Leaf nutrient and structural characteristics of 32 evergreen broad-leaved species
Journal of East China Normal University (Natural Science Edition), ( 1), 92-97.

DOI:10.3969/j.issn.1000-5641.2003.01.016URL [本文引用: 1]
研究了天童地区32种常绿阔叶树叶片的营养、结构特征,结果表明该地区常绿阔叶植物叶中N含量的变化幅度为1.022%~2.744%,平均值是1.606%;P含量的变化幅度为0.032%~0.227%,平均值是0.086%,且N、P含量成显著相关;C含量变化幅度为36.49%~53.85%,平均值为45.00%;SLA变化幅度为72.64~197.78,平均值为119.29;叶片的营养含量与C含量、SLA无关,而C含量与SLA成负相关;灌木的营养含量要低于乔木树种,灌木和中乔木的C含量要高于小乔木,但不同生活型植物SLA无明显差异。
[ 黄建军, 王希华 ( 2003). 浙江天童32种常绿阔叶树叶片的营养及结构特征
华东师范大学学报(自然科学版), ( 1), 92-97.]

DOI:10.3969/j.issn.1000-5641.2003.01.016URL [本文引用: 1]
研究了天童地区32种常绿阔叶树叶片的营养、结构特征,结果表明该地区常绿阔叶植物叶中N含量的变化幅度为1.022%~2.744%,平均值是1.606%;P含量的变化幅度为0.032%~0.227%,平均值是0.086%,且N、P含量成显著相关;C含量变化幅度为36.49%~53.85%,平均值为45.00%;SLA变化幅度为72.64~197.78,平均值为119.29;叶片的营养含量与C含量、SLA无关,而C含量与SLA成负相关;灌木的营养含量要低于乔木树种,灌木和中乔木的C含量要高于小乔木,但不同生活型植物SLA无明显差异。

Jonasson S ( 1989). Implications of leaf longevity, leaf nutrient re-absorption and translocation for the resource economy of five evergreen plant species
Oikos, 56, 121-131.

DOI:10.2307/3566095URL [本文引用: 1]
The distribution of evergreen plants in seasonal environments coincides with low soil nutrient availability. Evergreenness has, therefore, often been considered as an adaptation to nutrient deficiency through several proposed mechanisms, among them: 1) Long internal retention time of nutrients accomplished by extended leaf longevity, combined with large fractional re-absorption of leaf nutrients from senescing leaves, leading to high assimilation of carbon per unit invested nutrient. 2) Transport of nutrients from stores in old leaves as they senesce to young leaves expanding at the same time, reducing the need for new nutrient uptake, and for construction of internal stores elsewhere. This study showed that neither of the proposed mechanisms was likely to explain the evergreenness of five species (Dryas octopetala, Rhododendron lapponicum, Empetrum hermaphroditum, Ledum palustre, and Cistus monspeliensis) of contrasting distribution (Arctic to Mediterranean) and leaf habit (synchronous and sequential leaf development). Nutrient re-absorption, except in R. lapponicum and L. palustre, was in the lower part of the range reported previously for deciduous and evergreen species. Since most species also had short mean leaf longevity (about 1.5 yr) and slow development of the new leaves during the first year, it follows that the residence time of nutrients was generally low. It is unlikely therefore that the evergreen species gained more carbon per unit nutrients than many deciduous species. Nutrients were not translocated from old to new leaves as these developed, with one possible exception (L. palustre). Removal of old leaves (i.e., leaf nutrient stores) in spring before the break of the new leaf bud led in general to slower growth but unchanged transport of nutrients to the new leaves. Thus their growth was limited by carbon rather than by nutrient shortage. High internal efficiency of nutrient use was therefore rejected as a proximate cause for the adaptation of evergreens to nutrient deficient habitats. The adaptation of at least evergreens with relatively short leaf longevity to nutrient deficiency may instead be more related to a slow pace of nutrient uptake balanced with a slow release rate of nutrients from nutrient deficient soils.

Kerkhoff AJ, Enquist BJ ( 2006). Ecosystem allometry: The scaling of nutrient stocks and primary productivity across plant communities
Ecology Letters, 9, 419-427.

DOI:10.1111/j.1461-0248.2006.00888.xURLPMID:16623727 [本文引用: 1]
A principal challenge in ecology is to integrate physiological function (e.g. photosynthesis) across a collection of individuals (e.g. plants of different species) to understand the functioning of the entire ensemble (e.g. primary productivity). The control that organism size exerts over physiological and ecological function suggests that allometry could be a powerful tool for scaling ecological processes across levels of organization. Here we use individual plant allometries to predict how nutrient content and productivity scale with total plant biomass (phytomass) in whole plant communities. As predicted by our model, net primary productivity as well as whole community nitrogen and phosphorus content all scale allometrically with phytomass across diverse plant communities, from tropical forest to arctic tundra. Importantly, productivity data deviate quantitatively from the theoretically derived prediction, and nutrient productivity (production per unit nutrient) of terrestrial plant communities decreases systematically with increasing total phytomass. These results are consistent with the existence of pronounced competitive size hierarchies. The previously undocumented generality of these 鈥榚cosystem allometries鈥 and their basis in the structure and function of individual plants will likely provide a useful quantitative framework for research linking plant traits to ecosystem processes.

Kudo G ( 1995). Leaf traits and shoot performance of an evergreen shrub,Ledum palustre spp. decumbens, in accordance with latitudinal change.
Canadian Journal of Botany, 73, 1451-1456.

DOI:10.1139/b95-157URL [本文引用: 1]
ABSTRACT Individual leaf traits, leaf age structure, and leaf dry mass of Ledum palustre ssp. decumbens were compared at three sites along a latitudinal gradient: temperate mountain (43°30′N), taiga (62°10′N), and arctic tundra (71°25′N). At the arctic site, L. palustre produced leaves having longer life-span, higher nitrogen concentration, and smaller size and specific leaf area (SLA) in comparison with that at the temperate mountain site. Although current leaf number and annual shoot growth were smaller, leaf dry mass per stem was larger at the arctic site than at the temperate mountain site. At the taiga site, those traits were within the range of the other two sites, with the exception of leaf size and total leaf number per stem, which were largest at the taiga site. Leaf life-span was negatively correlated to SLA and annual leaf number per stem and positively correlated to leaf nitrogen concentration. Thus, with increasing latitude, L. palustre produced fewer but more costly leaves and retained them for longer. Old leaves might have a resource storage function supporting new leaf production. Key words: latitude, leaf life-span, Ledum palustre, nitrogen, specific leaf area.

Koerselman W, Meuleman AF ( 1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation
Journal of Applied Ecology, 33, 1441-1450.

DOI:10.2307/2404783URL [本文引用: 2]

Liu XY, Koba K, Koyama LA, Hobbie SE, Weiss MS, Inagaki Y, Shaver GR, Giblin AE, Hobara S, Nadelhoffer KJ, Sommerkorn M, Rastetter EB, Kling GW, Laundre JA, Yano Y, Makabe A, Yano M, Liu CQ ( 2018). Nitrate is an important nitrogen source for arctic tundra plants
Proceedings of the National Academy of Sciences of the United States of America, 115, 3398-3403.

DOI:10.1073/pnas.1715382115URL [本文引用: 2]
How terrestrial plants use N and respond to soil N loading is central to evaluating and predicting changing ecosystem structure and function with climate warming and N pollution. Here, evidence from NO361in plant tissues has uncovered the uptake and assimilation of soil NO361by Arctic tundra plants, which has long been assumed negligible. Soil NO361contributed about one-third of the bulk N used by tundra plants of northern Alaska. Accordingly, the importance of soil NO361for tundra plants should be considered in future studies on N and C cycling in Arctic ecosystems where C sequestration is strongly determined by N availability. Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO361) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO361concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO361that is typically below detection limits. Here we reexamine NO361use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO361. Soil-derived NO361was detected in tundra plant tissues, and tundra plants took up soil NO361at comparable rates to plants from relatively NO361-rich ecosystems in other biomes. Nitrate assimilation determined by15N enrichments of leaf NO361relative to soil NO361accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO361availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO361availability in tundra soils is crucial for predicting C storage in tundra.

Mao R, Zhang XH, Song CC, Wang XW, Finnegan PM ( 2018). Plant functional group controls litter decomposition rate and its temperature sensitivity: An incubation experiment on litters from a boreal peatland in northeast China
Science of the Total Environment, 626, 678-683.

DOI:10.1016/j.scitotenv.2018.01.162URL [本文引用: 2]
In peatlands the reduced decomposition rate of plant litter is the fundamental mechanism making these peat-accumulating ecosystems effective carbon sinks. A better knowledge of litter decomposition and nutrient cycling is thus crucial to improve our predictions of the effects of anthropogenic perturbation on the capacity of peatlands to continue to behave as carbon sinks. We investigated... [Show full abstract]

Michelsen A, Quarmby C, Sleep D, Jonasson S ( 1998). Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots
Oecologia, 115, 406-418.

DOI:10.1007/s004420050535URL [本文引用: 1]

Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE ( 2010). CO2 enhancement of forest productivity constrained by limited nitrogen availability
Proceedings of the National Academy of Sciences of the United States of America, 107, 19368-19373.

DOI:10.1073/pnas.1006463107URL [本文引用: 1]

Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L ( 2011). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control
New Phytologist, 193, 30-50.

[本文引用: 1]

Ren SJ, Yu GR, Jiang CM, Fang HJ, Sun XM ( 2012). Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the north-south transect of east China
Chinese Journal of Applied Ecology, 23, 581-586.

DOI:10.3724/SP.J.1258.2011.00119URL [本文引用: 4]
One hundred and twelve sampling sites in the forest ecosystems along the North-South Transect of Eastern China (NSTEC) were selected to study the stoichiometric characteristics and variability of leaf carbon (C), nitrogen (N), and phosphorous (P) of 102 dominant species. The contents of leaf C (Cmass), leaf N (Nmass), and leaf P (Pmass) ranged in 374.1-646.5 mg·g-1, 8.4-30.5 mg·g-1, and 0.6-6.2 mg·g-1, with the arithmetic mean (AM) being 480.1, 183 and 2.0 mg·g-1, and the variation coefficient (CV) being 11.1%, 27.5%, and 56.4%, respectively. The leaf C/N, C/P and N/P ranged from 14.1 to 64.1, from 70.9 to 838.6, and from 1.5 to 21.2, with the AM being 29.1, 313.9 and 11.5, and the CV being 32.8%, 48.3% and 44.1%, respectively. The mass ratio of C:N:P was 313.9:11.5:1, and the atom ratio was 8109:254:1. As compared with those at global scale, the tree leaf Cmass and C/N in the study area were significantly higher, Nmass and N/P were significantly lower, while Pmass and C/P had less differences.
[ 任书杰, 于贵瑞, 姜春明, 方华军, 孙晓敏 ( 2012). 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征
应用生态学报, 23, 581-586.]

DOI:10.3724/SP.J.1258.2011.00119URL [本文引用: 4]
One hundred and twelve sampling sites in the forest ecosystems along the North-South Transect of Eastern China (NSTEC) were selected to study the stoichiometric characteristics and variability of leaf carbon (C), nitrogen (N), and phosphorous (P) of 102 dominant species. The contents of leaf C (Cmass), leaf N (Nmass), and leaf P (Pmass) ranged in 374.1-646.5 mg·g-1, 8.4-30.5 mg·g-1, and 0.6-6.2 mg·g-1, with the arithmetic mean (AM) being 480.1, 183 and 2.0 mg·g-1, and the variation coefficient (CV) being 11.1%, 27.5%, and 56.4%, respectively. The leaf C/N, C/P and N/P ranged from 14.1 to 64.1, from 70.9 to 838.6, and from 1.5 to 21.2, with the AM being 29.1, 313.9 and 11.5, and the CV being 32.8%, 48.3% and 44.1%, respectively. The mass ratio of C:N:P was 313.9:11.5:1, and the atom ratio was 8109:254:1. As compared with those at global scale, the tree leaf Cmass and C/N in the study area were significantly higher, Nmass and N/P were significantly lower, while Pmass and C/P had less differences.

Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD ( 1999). Generality of leaf trait relationships: A test across six biomes
Ecology, 80, 1955-1969.

DOI:10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2URL [本文引用: 1]

Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude
Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.

DOI:10.1073/pnas.0403588101URLPMID:15213326 [本文引用: 6]
A global data set including 5,087 observations of leaf nitrogen (N) and phosphorus (P) for 1,280 plant species at 452 sites and of associated mean climate indices demonstrates broad biogeographic patterns. In general, leaf N and P decline and the N/P ratio increases toward the equator as average temperature and growing season length increase. These patterns are similar for five dominant plant groups, coniferous trees and four angiosperm groups (grasses, herbs, shrubs, and trees). These results support the hypotheses that (i) leaf N and P increase from the tropics to the cooler and drier midlatitudes because of temperature-related plant physiological stoichiometry and biogeographical gradients in soil substrate age and then plateau or decrease at high latitudes because of cold temperature effects on biogeochemistry and (ii) the N/P ratio increases with mean temperature and toward the equator, because P is a major limiting nutrient in older tropical soils and N is the major limiting nutrient in younger temperate and high-latitude soils.

Shaver GR, Bret-Harte MS, Jones MH, Johnstone J, Gough L, Laundre J, Chapin III FS ( 2001). Species composition interacts with fertilizer to control longterm change in tundra productivity
Ecology, 82, 3163-3181.

DOI:10.2307/2679842URL [本文引用: 1]
Fifteen years of N and P fertilizer addition to an Alaskan moist tundra increased aboveground biomass and primary production by 2.5 times. Species composition of the fertilized vegetation also changed dramatically, from a mix of graminoid, evergreen, deciduous, and moss species to strong dominance by a single, deciduous shrub species, Betula nana. Analysis of these simultaneous changes allows insights into the interactions between changes in resource availability and changes in species composition in regulating vegetation biomass, production, and element use. By the 15th year (1995), both new leaf production and total leaf mass were lower in fertilized than in control plots, although leaf area in fertilized plots was twice that of controls. This occurred because Betula produced thinner leaves than other species, with a high specific leaf area (SLA, leaf area per unit leaf mass). Woody stem mass also increased dramatically in fertilized plots, with secondary growth accounting for over half of aboveground net primary production, NPP. The large increase in wood production was made possible, in part, by the low cost of production of Betula's thin leaves, allowing greater allocation to secondary growth. Wood also had lower N concentrations than leaves, allowing large accumulations of wood at low N cost. Overall, aboveground N concentration in Betula did not change in fertilized relative to control plots, because its low-N wood mass increased more than its high-N leaf mass (with high SLA). Because Betula was so strongly dominant on the fertilized plots and was better able to dilute its greater N supply with new growth, community production and biomass in fertilized plots were higher, and N concentration was lower, than would have been the case if species composition had not changed. Aboveground biomass and leaf area of individual species and functional types were predicted accurately by regression against the number of hits per point-frame pin across the full range of data, including both treatments. Changes in overall canopy structure and leaf display due to fertilization were thus due mainly to changes in species composition, with no detectable effect of treatment on size/structure relationships within species or functional types.

Small E ( 1972). Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants
Canadian Journal of Botany, 50, 2227-2233.

DOI:10.1139/b72-289URL [本文引用: 1]

Song CC, Wang XW, Miao YP, Wang JY, Mao R, Song YY ( 2014). Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing’an Mountains, China
Science of the Total Environment, 487, 604-610.

DOI:10.1016/j.scitotenv.2013.09.083URLPMID:24135025 [本文引用: 1]
61Stored CH4 would influence the estimation of CH4 emissions.61Permafrost soils have higher potential decomposability under aerobic environment.61Calculated Q10 values under anaerobic condition would be more reasonable.

Sterner RW, Elser JJ ( 2002).Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere
Princeton University Press, Princeton.

[本文引用: 2]

Tang ZY, Xu WT, Zhou GY, Bai YF, Li JX, Tang XL, Chen DM, Liu Q, Ma WH, Xiong GM, He HL, He NP, Guo YP, Guo Q, Zhu JL, Han WX, Hu HF, Fang JY, Xie ZQ ( 2018). Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems
Proceedings of the National Academy of Sciences of the United States of America, 115, 4033-4038.

DOI:10.1073/pnas.1700295114URLPMID:29666316 [本文引用: 1]
Abstract Plant nitrogen (N) and phosphorus (P) content regulate productivity and carbon (C) sequestration in terrestrial ecosystems. Estimates of the allocation of N and P content in plant tissues and the relationship between nutrient content and photosynthetic capacity are critical to predicting future ecosystem C sequestration under global change. In this study, by investigating the nutrient concentrations of plant leaves, stems, and roots across China's terrestrial biomes, we document large-scale patterns of community-level concentrations of C, N, and P. We also examine the possible correlation between nutrient content and plant production as indicated by vegetation gross primary productivity (GPP). The nationally averaged community concentrations of C, N, and P were 436.8, 14.14, and 1.11 mg00·g -1 for leaves; 448.3, 3.04 and 0.31 mg00·g -1 for stems; and 418.2, 4.85, and 0.47 mg00·g -1 for roots, respectively. The nationally averaged leaf N and P productivity was 249.5 g C GPP00·g -1 N00·y -1 and 3,157.9 g C GPP00·g -1 P00·y -1 , respectively. The N and P concentrations in stems and roots were generally more sensitive to the abiotic environment than those in leaves. There were strong power-law relationships between N (or P) content in different tissues for all biomes, which were closely coupled with vegetation GPP. These findings not only provide key parameters to develop empirical models to scale the responses of plants to global change from a single tissue to the whole community but also offer large-scale evidence of biome-dependent regulation of C sequestration by nutrients.

Thompson K, Parkinson JA, Band SR, Spencer RE ( 1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora
New Phytologist, 136, 679-689.

DOI:10.1046/j.1469-8137.1997.00787.xURL [本文引用: 1]
Mineral nutrient concentrations were determined in leaves of 83 mostly herbaceous species collected from central England. Most samples were analysed for N, P, K, Ca, Mg, Na, Fe, Al, Mn, Cu and Zn. Concentrations of K, N and P showed similar levels of interspecific variability, with the highest concentrations being 6 9 times the lowest. Mg and (especially) Ca were much more variable, with the highest concentrations being 24 and 49 times the lowest respectively. Only in the case of P concentration was the majority of the variance in the data found at or below the species level. Most of the variance in Ca and Mg concentrations was between monocots and dicots. Concentrations of N and P were strongly positively correlated with each other. Only Ca and Mn were consistently associated with soil pH, positively and negatively respectively. Dicots tended to accumulate more Ca and Mn from high soil concentrations than did monocots. Concentration of P was significantly positively correlated with maximum potential relative growth rate. Plants of woodland and arable habitats contained high concentrations of P, and those of pasture and skeletal habitats contained low concentrations of P. The P: N ratio was higher in plants of arable habitats. Species with P-rich leaves tended to be currently increasing in abundance. The results suggest that plants with nutrient-rich foliage grow quickly, dominate nutrient-rich ecosystems and are generally increasing as a result of the eutrophication and disturbance arising from human exploitation.

Tian D, Yan ZB, Niklas KJ, Han WX, Kattge J, Reich PB, Luo YK, Chen YH, Tang ZY, Hu HF, Wright IJ, Schmid B, Fang JY ( 2017). Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent
National Science Review, 5, 728-739.

[本文引用: 1]

Vitousek P ( 1982). Nutrient cycling and nutrient use efficiency
The American Naturalist, 119, 553-572.

DOI:10.1086/283931URL [本文引用: 1]
Forest ecosystems systematically produce more litterfall dry mass per unit of nitrogen in sites with less aboveground nitrogen circulation. This pattern is observed both within and among tropical, temperate deciduous, coniferous, Mediterranean, and fertilized ecosystems. The differences among sites are probably related to differences in soil nitrogen availability. Patterns of nitrogen use for root and wood production probably reinforce the litterfall results. An examination of phosphorus and calcium use efficiency for litterfall production yields more ambiguous results. The pattern for nitrogen circulation and nitrogen use efficiency in forests has important implications for ecosystem-level properties, including the development of low nitrogen availability in soil.

Wang M, Moore TR, Talbot J, Riley JL ( 2015). The stoichiometry of carbon and nutrients in peat formation
Global Biogeochemical Cycles, 29, 113-121.

DOI:10.1002/2014GB005000URL [本文引用: 1]
Abstract Northern peatlands have stored large amounts (~50065Pg) of carbon (C) since the last glaciation. Combined with peat C are nutrients such as nitrogen (N), phosphorus (P), calcium (Ca), magnesium (Mg), and potassium (K), each of which plays an important role in plant production, litter decomposition, and the biogeochemical functioning of peatlands. Yet little attention has been given to the amounts of these nutrients stored in northern peatlands and their stoichiometry with C. Here we use data on nutrient concentrations in over 400 peat profiles in Ontario, Canada, representing bogs, fens, and swamps and their vegetation. We show that the C:N ratio is high (>40:1) in vegetation and litter but declines through the peat profiles to reach ratios between 22:1 and 29:1 in peat below 5065cm. In contrast, the C:P ratio rises from vegetation and litter (500:1 to 1300:1) to 1500:1 to 2000:1 in the lower part of the peat profile. Ratios of C to Ca, Mg, and K vary with peatland type. Most of these stoichiometric changes occur in the early stages of organic matter decomposition, where the litter structure remains intact. We estimate that ~1865Pg of N has been stored in northern peatlands since deglaciation, reflecting high N accumulation rates (~0.865g65m61265yr611), whereas P accumulation is small (~0.365Pg, ~0.01665g65m61265yr611), indicating that P is quickly recycled in the surface layers.

Wieder WR, Cleveland CC, Smith WK, Todd-Brown K ( 2015). Future productivity and carbon storage limited by terrestrial nutrient availability
Nature Geoscience, 8, 441-447.

DOI:10.1038/NGEO2413URL [本文引用: 1]
The size of the terrestrial sink remains uncertain. This uncertainty presents a challenge for projecting future climate-carbon cycle feedbacks. Terrestrial carbon storage is dependent on the availability of nitrogen for plant growth, and nitrogen limitation is increasingly included in global models. Widespread phosphorus limitation in terrestrial ecosystems may also strongly regulate the global carbon cycle, but explicit considerations of phosphorus limitation in global models are uncommon. Here we use global state-of-the-art coupled carbon-climate model projections of terrestrial net primary productivity and carbon storage from 1860-2100 estimates of annual new nutrient inputs from deposition, nitrogen fixation, and weathering; and estimates of carbon allocation and stoichiometry to evaluate how simulated COfertilization effects could be constrained by nutrient availability. We find that the nutrients required for the projected increases in net primary productivity greatly exceed estimated nutrient supply rates, suggesting that projected productivity increases may be unrealistically high. Accounting for nitrogen and nitrogen-phosphorus limitation lowers projected end-of-century estimates of net primary productivity by 19% and 25%, respectively, and turns the land surface into a net source of COby 2100. We conclude that potential effects of nutrient limitation must be considered in estimates of the terrestrial carbon sink strength through the twenty-first century.

Wu ZY, Hong DY ( 2010). Flora of China. Science Press, Beijing.
[本文引用: 2]

[ 吴征镒, 洪德元 ( 2010). 中国植物志. 科学出版社, 北京.]
[本文引用: 2]

Xu WD ( 1986). The relation between the zonal distribution of types vegetation and the climate in northeast China
Acta Phytoecologica et Geobotanica Sinica, 10, 254-263.

URL [本文引用: 1]
本文根据吉良的热量指标和作者提出的湿度指数,研究了我国东北主要植被类型的分布与气候之间的关系:1.确定了东北地区10个水平地带性植被类型的热量分布范围和水热指标的平均值。2.研究了东北山地垂直地带性植被类型的水热指标分布特点,并用定量指标讨了东北东部山地岳桦林带的分布、大兴安岭存在山地冻原和东北植被区域的分界线问题。
[ 徐文铎 ( 1986). 中国东北主要植被类型的分布与气候的关系
植物生态学与地植物学学报, 10, 254-263.]

URL [本文引用: 1]
本文根据吉良的热量指标和作者提出的湿度指数,研究了我国东北主要植被类型的分布与气候之间的关系:1.确定了东北地区10个水平地带性植被类型的热量分布范围和水热指标的平均值。2.研究了东北山地垂直地带性植被类型的水热指标分布特点,并用定量指标讨了东北东部山地岳桦林带的分布、大兴安岭存在山地冻原和东北植被区域的分界线问题。

Xu XL, Wanek W, Zhou CP, Richter A, Song MH, Cao GM, Ouyang H, Kuzyakov Y ( 2014). Nutrient limitation of alpine plants: Implications from leaf N:P stoichiometry and leaf δ 15N.
Journal of Plant Nutrition and Soil Science, 177, 378-387.

DOI:10.1002/jpln.201200061URL [本文引用: 1]
Nitrogen (N) deposition can affect grassland ecosystems by altering biomass production, plant species composition and abundance. Therefore, a better understanding of the response of dominant plant species to N input is a prerequisite for accurate prediction of future changes and interactions within plant communities. We evaluated the response of seven dominant plant species on the Tibetan Plateau to N input at two levels: individual species and plant functional group. This was achieved by assessing leaf N : P stoichiometry, leaf 020715N and biomass production for the plant functional groups. Seven dominant plant species090000three legumes, two forbs, one grass, one sedge090000were analyzed for N, P, and 020715N 2 years after fertilization with one of the three N forms: NO, NH, or NH4NO3 at four application rates (0, 7.5, 30, and 150090009kg N ha0900091 y0900091). On the basis of biomass production and leaf N : P ratios, we concluded that grasses were limited by available N or co-limited by available P. Unlike for grasses, leaf N : P and biomass production were not suitable indicators of N limitation for legumes and forbs in alpine meadows. The poor performance of legumes under high N fertilization was mainly due to strong competition with grasses. The total above-ground biomass was not increased by N fertilization. However, species composition shifted to more productive grasses. A significant negative correlation between leaf N : P and leaf 020715N indicated that the two forbs Gentiana straminea and Saussurea superba switched from N deficiency to P limitation (e.g., N excess) due to N fertilization. These findings imply that alpine meadows will be more dominated by grasses under increased atmospheric N deposition.

Yan ZB, Tian D, Han WX, Tang ZY, Fang JY ( 2017). An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants
Annals of Botany, 120, 1-6.

DOI:10.1093/aob/mcx055URLPMID:28873948 [本文引用: 3]
Background and Aims Among the various floral traits involved in pollinator attraction and potentially under selection mediated by pollinators, floral scent/fragrance has been less investigated than other components of floral phenotype. Whether or not pollinator-mediated selection impacts floral scents depends on the heritability of scent/ fragrance and the occurrence of some variation within species. Although most studies have investigated how scent varies among species, growing amounts of data are available on variation at the intraspecific level. Methods The results of 81 studies investigating intraspecific variation of floral scents in 132 taxa were reviewed. For each study, whether variation was found in either identity, proportion or absolute quantities of volatile organic compounds (VOCs) was recorded, as well as information with the potential to explain variation, such as methodology , plant origin or pollination biology. Key Results Variation was found for almost all investigated species, both among individuals (among and sometimes within populations) and within individuals across different temporal scales. Cases in which such variation is a possible result of pollinator-mediated selection were analysed, by discussing separately selection related to variation in pollinator identity/behaviour among populations or across time, deceit pollination and sex-specific selection. Not surprisingly, in many cases, pollinator-mediated selection alone does not explain the observed variation in floral scent. This led us to review current knowledge on less investigated factors, such as selection mediated by natural enemies , genetic drift and gene flow, environmental constraints, phylogenetic inertia, or biochemical constraints that could be invoked to explain scent variation. Conclusions This review highlights the great potential of analysing floral scent variation and including it in integrated studies of floral phenotypes. We also have identified the current gaps in our understanding of this complex signal and we propose several methodological and conceptual future directions in this research area.

Yang X, Chi XL, Ji CJ, Liu HY, Ma WH, Mohhammat A, Shi ZY, Wang XP, Yu SL, Yue M, Tang ZY ( 2015). Variations of leaf N, P concentrations in shrubland biomes across northern China: Phylogeny, climate and soil
Biogeosciences, 12, 18973-18998.

DOI:10.5194/bg-13-4429-2016URL [本文引用: 1]
Concentrations of leaf nitrogen (N) and phosphorus (P) are two key traits of plants for ecosystem functioning and dynamics. Foliar stoichiometry varies remarkably among life forms. However, previous studies have focused on the stoichiometric patterns of trees and grasses, leaving a significant knowledge gap for shrubs. In this study, we explored the intraspecific and interspecific variations of leaf N and P concentrations in response to the changes in climate, soil property, and evolutionary history. We analysed 1486 samples composed of 163 shrub species from 361 shrubland sites in northern China encompassing 46.1?? (86.7???132.8?????E) in longitude and 19.8?? (32.6???52.4?????N) in latitude. Leaf N concentrations decreased with precipitation, while leaf P concentrations decreased with temperature and increased with precipitation and soil total P concentrations. Both leaf N and P concentrations were phylogenetically conserved, but leaf P concentrations were less conserved than leaf N concentrations. At the community level, climate explained more interspecific variation of leaf nutrient concentrations, while soil nutrients explained most of the intraspecific variation. These results suggested that leaf N and P concentrations responded to climate, soil, and phylogeny in different ways. Climate influenced the community chemical traits through the shift in species composition, whereas soil directly influenced the community chemical traits. New patterns were discovered using our observations on specific regions and vegetation types, which improved our knowledge of broad biogeographic patterns of leaf chemical traits.

Yu LM, Wang CK, Wang XC ( 2011). Allocation of nonstructural carbohydrates for three temperate tree species in northeast China
Chinese Journal of Plant Ecology, 35, 1245-1255.

DOI:10.3724/SP.J.1258.2011.01245 [本文引用: 1]
树体中的非结构性碳水化合物(NSC)浓度、含量及其分配反映了树木整体的碳供应状况,是决定树木生长和存活的关键因子,也是构建树木碳平衡模型的关键参数。温带树种的NSC尚缺乏系统研究。该文测定了特性各异的3种温带树种在生长盛期的NSC及其组分的浓度和含量以及分配格局的种间种内变异。结果表明,NSC及其组分的浓度在树种和组织之间差异显著,可溶性糖、淀粉和总NSC浓度分别在0.65–8.45、1.96–5.95和3.00–13.90 g.100 g–1DM之间波动。NSC及其组分含量的大小依次为:兴安落叶松(Larix gmelinii)蒙古栎(Quercus mongolica)红松(Pinus koraiensis),其中叶和根中的浓度较高。树干中的NSC及其组分浓度的纵向变化不显著,但其心材与边材之间的浓度差异却随树种和NSC组分而异,表现为心边材的可溶性糖浓度差异不显著,但其淀粉和总NSC浓度差异显著。不同直径根系的NSC及其组分浓度在2种针叶树种中差异不显著,但在蒙古栎中差异显著。蒙古栎将可溶性糖主要投资到地上生长,而2种针叶树将更多的可溶性糖投资到根系生长。淀粉的主要储存库为树干,其在树体内的分布格局与可溶性糖正相反,因而使总NSC在树根和树枝中的分配趋于较平衡状态。在树干中,除了2种针叶树的可溶性糖库以边材为主外,心材是淀粉和总NSC的主要储存库。在树根中,粗根是NSC及其组分的优势储存库。该研究中3种温带树种的NSC及其组分的浓度和含量的种间和种内变化,反映了这些树种的生长对策和体内碳源汇强度的差异。
[ 于丽敏, 王传宽, 王兴昌 ( 2011). 三种温带树种非结构性碳水化合物的分配
植物生态学报, 35, 1245-1255.]

DOI:10.3724/SP.J.1258.2011.01245 [本文引用: 1]
树体中的非结构性碳水化合物(NSC)浓度、含量及其分配反映了树木整体的碳供应状况,是决定树木生长和存活的关键因子,也是构建树木碳平衡模型的关键参数。温带树种的NSC尚缺乏系统研究。该文测定了特性各异的3种温带树种在生长盛期的NSC及其组分的浓度和含量以及分配格局的种间种内变异。结果表明,NSC及其组分的浓度在树种和组织之间差异显著,可溶性糖、淀粉和总NSC浓度分别在0.65–8.45、1.96–5.95和3.00–13.90 g.100 g–1DM之间波动。NSC及其组分含量的大小依次为:兴安落叶松(Larix gmelinii)蒙古栎(Quercus mongolica)红松(Pinus koraiensis),其中叶和根中的浓度较高。树干中的NSC及其组分浓度的纵向变化不显著,但其心材与边材之间的浓度差异却随树种和NSC组分而异,表现为心边材的可溶性糖浓度差异不显著,但其淀粉和总NSC浓度差异显著。不同直径根系的NSC及其组分浓度在2种针叶树种中差异不显著,但在蒙古栎中差异显著。蒙古栎将可溶性糖主要投资到地上生长,而2种针叶树将更多的可溶性糖投资到根系生长。淀粉的主要储存库为树干,其在树体内的分布格局与可溶性糖正相反,因而使总NSC在树根和树枝中的分配趋于较平衡状态。在树干中,除了2种针叶树的可溶性糖库以边材为主外,心材是淀粉和总NSC的主要储存库。在树根中,粗根是NSC及其组分的优势储存库。该研究中3种温带树种的NSC及其组分的浓度和含量的种间和种内变化,反映了这些树种的生长对策和体内碳源汇强度的差异。

Zeng J, Bu ZJ, Wang M, Ma JZ, Zhao HY, Li HK, Wang SZ ( 2013). Effects of nitrogen deposition on peatland: A review
Chinese Journal of Ecology, 32, 473-481.

DOI:10.3969/j.issn.1674-7844.2012.02.020URL [本文引用: 1]
泥炭地是全球碳循环中的重要碳 库,其养分贫乏的环境特征、生态过程和生态功能正受到氮沉降的影响。本文从6个方面就氮沉降对泥炭地生态系统的影响予以综述:(1)泥炭地多受氮限制,氮 沉降增加土壤氮含量,改变微生物群落组成,促进细菌数量的增加,提高微生物酶活性,改变泥炭地的土壤环境;(2)在高氮沉降的泥炭地中,泥炭藓对氮的持留 能力、传输能力和耐受能力均降低,造成致毒效应,并最终被喜氮的维管植物代替;(3)氮沉降改变了泥炭地氮贫乏的状况,对植被生产力的影响主要以促进为 主;(4)氮沉降增加维管植物氮的供应,促进其生长,而使泥炭藓处于光竞争的劣势地位,改变泥炭藓及其与维管植物的种间关系;(5)氮沉降改变植物体内氮 磷比,影响苔藓植物的繁殖与更新,导致泥炭地植被物种组成的变化,甚至引发植被演替;(6)氮沉降通过与泥炭地地上和地下生物组分相互作用,促进泥炭地分 解,严重威胁着泥炭地的碳库功能。最后,文章指出了目前泥炭地氮沉降研究中存在的一些问题,为泥炭地氮沉降进一步的研究提供参考。
[ 曾竞, 卜兆君, 王猛, 马进泽, 赵红艳, 李鸿凯, 王升忠 ( 2013). 氮沉降对泥炭地影响的研究进展
生态学杂志, 32, 473-481.]

DOI:10.3969/j.issn.1674-7844.2012.02.020URL [本文引用: 1]
泥炭地是全球碳循环中的重要碳 库,其养分贫乏的环境特征、生态过程和生态功能正受到氮沉降的影响。本文从6个方面就氮沉降对泥炭地生态系统的影响予以综述:(1)泥炭地多受氮限制,氮 沉降增加土壤氮含量,改变微生物群落组成,促进细菌数量的增加,提高微生物酶活性,改变泥炭地的土壤环境;(2)在高氮沉降的泥炭地中,泥炭藓对氮的持留 能力、传输能力和耐受能力均降低,造成致毒效应,并最终被喜氮的维管植物代替;(3)氮沉降改变了泥炭地氮贫乏的状况,对植被生产力的影响主要以促进为 主;(4)氮沉降增加维管植物氮的供应,促进其生长,而使泥炭藓处于光竞争的劣势地位,改变泥炭藓及其与维管植物的种间关系;(5)氮沉降改变植物体内氮 磷比,影响苔藓植物的繁殖与更新,导致泥炭地植被物种组成的变化,甚至引发植被演替;(6)氮沉降通过与泥炭地地上和地下生物组分相互作用,促进泥炭地分 解,严重威胁着泥炭地的碳库功能。最后,文章指出了目前泥炭地氮沉降研究中存在的一些问题,为泥炭地氮沉降进一步的研究提供参考。

Zhang HY, Wu HG, Yu Q, Wang ZW, Wei CZ, Long M, Kattge J, Smith M, Han XG ( 2013). Sampling date, leaf age and root size: Implications for the study of plant C:N:P stoichiometry
PLOS ONE, 8, e60360. DOI: 10.1371/ journal.pone.0060360?.

DOI:10.1371/journal.pone.0060360URLPMID:3614965 [本文引用: 1]
Plant carbon : nitrogen : phosphorus (C:N:P) ratios are powerful indicators of diverse ecological processes. During plant development and growth, plant C:N:P stoichiometry responds to environmental conditions and physiological constraints. However, variations caused by effects of sampling (i.e. sampling date, leaf age and root size) often have been neglected in previous studies. We investigated the relative contributions of sampling date, leaf age, root size and species identity to stoichiometric flexibility in a field mesocosm study and a natural grassland in Inner Mongolia. We found that sampling date, leaf age, root size and species identity all significantly affected C:N:P stoichiometry both in the pot study as well as in the field. Overall, C:N and C:P ratios increased significantly over time and with increasing leaf age and root size, while the dynamics of N:P ratios depended on species identity. Our results suggest that attempts to synthesize C:N:P stoichiometry data across studies that span regional to global scales and include many species need to better account for temporal variation.

Zhang LX, Bai YF, Han XG ( 2004). Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol
Acta Botanica Sinica, 46, 259-270.

[本文引用: 1]

Zhang JH, Zhao N, Liu CC, Yang H, Li ML, Yu GR, Wilcox K, Yu Q, He NP ( 2018). C:N:P stoichiometry in China’s forests: From organs to ecosystems
Functional Ecology, 32, 50-60.

DOI:10.1111/1365-2435.12979URL [本文引用: 1]
react-text: 525 Soil microorganisms play an important role in regulating nutrient cycling in terrestrial ecosystems. Most of the studies conducted thus far have been confined to a single forest biome or have focused on one or two controlling factors, and few have dealt with the integrated effects of climate, vegetation, and soil substrate availability on soil microbial communities and functions among... /react-text react-text: 526 /react-text [Show full abstract]

Zhang K, Chen YL, Gao YH, Hui R, He MZ ( 2014). Stoichiometry characteristics of leaf nitrogen and phosphorus of different plant functional groups in Alashan desert region
Journal of Desert Research, 34, 1261-1267.

DOI:10.7522/j.issn.1000-694X.2013.00431URL [本文引用: 3]
Nitrogen and phosphorus are crucial limiting factors of nutrient elements in desert ecosystem, which play vital roles in maintaining the rational composition of plant functional groups and driving the nutrient cycling of the desert ecosystem. By sampling the dominant plant leaves among the 52 sample sites that be set along the precipitation and temperature gradients from the eastern to western in Alashan desert, ecological stoichiometric characteristics of nitrogen and phosphorus among different plant functional groups were analyzed and the restrictive effects of N and P on the desert plants were tested and discussed. The results showed that (1) Leaf N and P concentrations were (10.65 7.91) mg gand (1.04 0.81) mg g, respectively, while N:P was (11.53 5.06). Leaf nitrogen has significantly positive correlation with N and N:P ratio and leaf P has significantly negative correlation with N:P ratio. By comparison and analysis, desert plants were co-limited by N and P, and were more limited by N. (2) Generally, from the comparison of plant life types, leaf N and P content in herbaceous plants were higher than those in shrubs and N:P in shrubs was greater than in herbs. From the analysis of photosynthetic pathway, C plants had higher average N concentration than C plants, while C plants had higher average P concentration than C plants. From the type of phylogenetic, leaf N content was lower in monocotyledons than in dicotyledons while P content was higher in monocotyledons than in dicotyledons.
[ 张珂, 陈永乐, 高艳红, 回嵘, 何明珠 ( 2014). 阿拉善荒漠典型植物功能群氮、磷化学计量特征
中国沙漠, 34, 1261-1267.]

DOI:10.7522/j.issn.1000-694X.2013.00431URL [本文引用: 3]
Nitrogen and phosphorus are crucial limiting factors of nutrient elements in desert ecosystem, which play vital roles in maintaining the rational composition of plant functional groups and driving the nutrient cycling of the desert ecosystem. By sampling the dominant plant leaves among the 52 sample sites that be set along the precipitation and temperature gradients from the eastern to western in Alashan desert, ecological stoichiometric characteristics of nitrogen and phosphorus among different plant functional groups were analyzed and the restrictive effects of N and P on the desert plants were tested and discussed. The results showed that (1) Leaf N and P concentrations were (10.65 7.91) mg gand (1.04 0.81) mg g, respectively, while N:P was (11.53 5.06). Leaf nitrogen has significantly positive correlation with N and N:P ratio and leaf P has significantly negative correlation with N:P ratio. By comparison and analysis, desert plants were co-limited by N and P, and were more limited by N. (2) Generally, from the comparison of plant life types, leaf N and P content in herbaceous plants were higher than those in shrubs and N:P in shrubs was greater than in herbs. From the analysis of photosynthetic pathway, C plants had higher average N concentration than C plants, while C plants had higher average P concentration than C plants. From the type of phylogenetic, leaf N content was lower in monocotyledons than in dicotyledons while P content was higher in monocotyledons than in dicotyledons.

Zhang SB, Zhang JK, Slik JWF, Gao KF ( 2011). Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment
Global Ecology & Biogeography, 21, 809-818.

DOI:10.1111/j.1466-8238.2011.00729.xURL [本文引用: 1]
Aim The productivity, functioning and biogeochemical cycles of terrestrial ecosystems are strongly affected by leaf element concentrations. Understanding the biological and ecological factors affecting leaf element concentrations is therefore important for modelling the productivity and nutrient fluxes of ecosystems and their responses to global change. The present study aimed to determine how leaf element concentrations are linked to taxonomy and the environment.Location China.Methods The concentrations of 10 leaf elements of 702 terrestrial plant species from different biomes were extracted from publications. The links between environmental variables, taxonomy and leaf elements were analyzed using phylogenetically comparative methods and partial Mantel tests.Results Taxonomy had stronger effects on leaf S and SiO2 than latitude, explaining 40.2 43.9% of total variation, whereas latitude had stronger effects on leaf N, P, K, Fe, Al, Mn, Na and Ca concentrations, explaining 19.5 52.1% of total variation. Leaf N, S, Al, Fe and Na concentrations were correlated with mean annual precipitation (MAP), while leaf N, P and Fe concentrations were correlated with mean annual temperature (MAT). Latitude, MAP and MAT were significantly correlated with the first axis of a principal components analysis (PCA). This first axis was associated with leaf elements involved in protein synthesis and photosynthesis. The other PCA axes, which were not correlated with MAT, latitude and MAP, were associated with leaf elements responsible for cell structure and enzymes.Main conclusions Leaf element concentrations of terrestrial plants in China were correlated with climate, latitude and taxonomy. With the exception of S and SiO2, the environmental factors were more important in explaining leaf element variation than taxonomy. Therefore, changes in temperature and precipitation will directly affect the spatial patterns of leaf elements and thus the associated nutrient fluxes and ecosystem functioning.

Zhang WY, Fan JW, Zhong HP, Hu ZM, Song LL, Wang N ( 2010). The nitrogen: phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China
Acta Agrestia Sinica, 18, 503-509.

DOI:10.11733/j.issn.1007-0435.2010.04.005URL [本文引用: 2]
氮(N)和磷(P)影响陆地生态系统的植物生长、发育和系统的结构和功能等,而植物氮磷(NP)生态化学计量特征为研究植物的养分利用状况提供了重要的手段,不同功能群植物叶片N、P元素的系统研究将为草地生态系统植被的限制元素及其对环境的适应策略提供参考依据。因此,以涵盖中国北方温带草原区和青藏高原区主要草地类型的草地样带为平台,通过系统采集该样带上132个采样点的33个主要优势植物叶片,分析了中国典型草地植物叶片N和P的生态化学计量学特征。结果表明:样带上主要物种的N含量、P含量、N/P的均值分别为18.18±6.16 mg.g-1、1.25±0.64 mg.g-1和16.75±6.67。其中,N和P存在显著的正相关关系(P0.05);C3植物和C4植物的N、P含量无明显差异;双子叶植物、非禾本科植物、豆科植物、中生型植物的N、P含量分别高于相应的单子叶植物、禾本科植物、非豆科植物、旱生型植物;C3植物、双子叶植物、禾本科植物、豆科植物、旱生植物的N/P分别高于相应的C4植物、单子叶植物、非禾本科植物、非豆科植物、中生植物。总之,高寒草地植物的N、P含量高于温性草地植物,但其N/P却低于温性草地。
[ 张文彦, 樊江文, 钟华平, 胡中民, 宋璐璐, 王宁 ( 2010). 中国典型草原优势植物功能群氮磷化学计量学特征研究
草业学报, 18, 503-509.]

DOI:10.11733/j.issn.1007-0435.2010.04.005URL [本文引用: 2]
氮(N)和磷(P)影响陆地生态系统的植物生长、发育和系统的结构和功能等,而植物氮磷(NP)生态化学计量特征为研究植物的养分利用状况提供了重要的手段,不同功能群植物叶片N、P元素的系统研究将为草地生态系统植被的限制元素及其对环境的适应策略提供参考依据。因此,以涵盖中国北方温带草原区和青藏高原区主要草地类型的草地样带为平台,通过系统采集该样带上132个采样点的33个主要优势植物叶片,分析了中国典型草地植物叶片N和P的生态化学计量学特征。结果表明:样带上主要物种的N含量、P含量、N/P的均值分别为18.18±6.16 mg.g-1、1.25±0.64 mg.g-1和16.75±6.67。其中,N和P存在显著的正相关关系(P0.05);C3植物和C4植物的N、P含量无明显差异;双子叶植物、非禾本科植物、豆科植物、中生型植物的N、P含量分别高于相应的单子叶植物、禾本科植物、非豆科植物、旱生型植物;C3植物、双子叶植物、禾本科植物、豆科植物、旱生植物的N/P分别高于相应的C4植物、单子叶植物、非禾本科植物、非豆科植物、中生植物。总之,高寒草地植物的N、P含量高于温性草地植物,但其N/P却低于温性草地。

Zhao, XF, Yang JS, Yao RJ ( 2010). Characteristics of soil salinization in mudflat of north Jiangsu province based on canonical correspondence analysis
Acta Pedologica Sinica, 47, 422-428.

DOI:10.11766/trxb200812250306URL [本文引用: 1]
运用常规统计学和典范对应分析方法,对苏北滩涂土壤全盐量(TS)、盐分离子组成、碱化度(ESP)、pH的空间分布特征进行了分析。结果表明,该区土壤为轻度至中度盐化,不同层次土壤中,Na 与Cl-、K 与Mg2 始终保持较好的关联性。TS的空间分布,在0~120 cm全剖面上主要受控于Cl-、SO42-、Na 因子,分层与全剖面的情况有所不同,但Na 均为主要因子之一;ESP在全剖面上主要受CO32- 和HCO3- 因子制约,其中在0~10 cm和20~40 cm土层主要受CO32-因子制约,10~20 cm土层内主要受HCO3-因子制约,40~100 cm土层则主要受Na 因子制约;pH受盐分离子的影响较小,在全剖面上分布较为均匀。
[ 赵秀芳, 杨劲松, 姚荣江 ( 2010). 基于典范对应分析的苏北滩涂土壤春季盐渍化特征研究
土壤学报, 47, 422-428.]

DOI:10.11766/trxb200812250306URL [本文引用: 1]
运用常规统计学和典范对应分析方法,对苏北滩涂土壤全盐量(TS)、盐分离子组成、碱化度(ESP)、pH的空间分布特征进行了分析。结果表明,该区土壤为轻度至中度盐化,不同层次土壤中,Na 与Cl-、K 与Mg2 始终保持较好的关联性。TS的空间分布,在0~120 cm全剖面上主要受控于Cl-、SO42-、Na 因子,分层与全剖面的情况有所不同,但Na 均为主要因子之一;ESP在全剖面上主要受CO32- 和HCO3- 因子制约,其中在0~10 cm和20~40 cm土层主要受CO32-因子制约,10~20 cm土层内主要受HCO3-因子制约,40~100 cm土层则主要受Na 因子制约;pH受盐分离子的影响较小,在全剖面上分布较为均匀。

Zhou YL ( 1997). Vegetation Geography of Northeastern China. Science Press, Beijing.
[本文引用: 1]

[ 周以良 ( 1997). 中国东北植被地理. 科学出版社, 北京.]
[本文引用: 1]

The advantages of being evergreen
2
1995

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

... 叶片C:N、C:P越高反映植物N、P利用效率越高(黄建军和王希华, 2003; ?gren, 2004).大兴安岭泥炭地植物叶片的C:N, C:P平均值小于全球水平(表4), 说明其N、P利用效率较全球植物低.本研究虽然草本N、P含量比灌木低, 但其C:N、C:P高于灌木, 此外, 常绿灌木C:N高于落叶灌木(图2D), 表明草本植物的N、P利用效率比灌木高, 常绿灌木N利用效率高于落叶灌木.这些结果揭示了研究区泥炭地不同生活型植物在维持固C功能方面存在N、P利用效率的差异或生存策略(Hessen et al., 2004).大兴安岭多年生草本植物具有更高的根系比例, 其地下组织可以作为N、P贮存库来支持叶片的生长(Poorter et al., 2011), 对N、P的利用效率高.常绿灌木生长过程中的N成本较低且N再吸收较高, 其合成结构性物质(如纤维素等)所用的N较少, N利用效率较高(白坤栋等, 2013).常绿灌木通过提高N、P利用效率, 增加C固定以维持其功能性状(Jonasson, 1989), 也常成为贫营养生态系统的优势植物(Aerts, 1995).草本植物中玉簪薹草和小叶章、落叶灌木中笃斯越桔和越桔、常绿灌木中地桂和头花杜鹃叶片C:N较高(图2D), 其N利用效率较高.草本植物中玉簪薹草、落叶灌木中笃斯越桔和越桔、常绿灌木中杜香和地桂叶片C:P较高(图2E), 其P利用效率较高.这些结果反映了相同生活型的不同植物也具有明显的N、P利用效率差异或利用方式的分化. ...

The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns
2
2000

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

... 叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004).植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002).与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱.叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大.叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因.与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4).叶片N含量比荒漠植物高, 比草原植物低.叶片P含量只高于荒漠植物(表4).这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制. ...

Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply.
2
1992

... 环境气候条件影响土壤N、P有效性, 属于影响植物N、P含量的重要外因(Chapin III et al., 1986; Kerkhoff & Enquist, 2006).Reich和Oleksyn (2004)通过叶片N、P含量和N:P证据揭示了植物N、P吸收和有效性随纬度升高和年平均气温降低而显著降低.Fisher等(2013)发现叶片N:P随海拔升高而降低, 认为高海拔地区植物生长受到N限制.此外, N沉降增加在一定程度上缓减植物N限制, 引起在P相对缺乏的生态系统中植物受P限制或N、P共同限制(Aerts et al., 1992).在相同的土壤N、P状态下, 降水量较高则可能增加土壤有效态N、P淋溶丢失, 使植物N、P含量随降水量增加而降低(Reich & Oleksyn, 2004).植物N、P指标随地点要素和环境因子的变化会因为空间尺度大小、生态系统类型和物种等不同而不同(Norby et al., 2010; ?gren et al., 2012; Tian et al., 2017).在区域尺度内特定生态系统类型植物的N、P含量水平和变异机制及其对地点环境的适应性值得进一步探讨. ...

... 叶片N:P是评价植物N、P限制特征的信息(Elser et al., 1996).在瑞典沼泽地, Aerts等(1992)提出受N限制的植物叶片N:P均低于10, 受P限制的植物叶片N:P均高于14.在欧洲湿地系统, Koerselman和Meuleman (1996)通过施肥实验发现N:P < 14时为N限制, N:P > 16时为P限制.短期施肥实验表明, 湿地植物N:P < 10或N:P > 20分别对应N限制或P限制 ...

The C:N:P stoichiometry of autotrophs—?Theory and observations
3
2004

... 氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982).植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018).研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016). ...

... 叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004).植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002).与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱.叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大.叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因.与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4).叶片N含量比荒漠植物高, 比草原植物低.叶片P含量只高于荒漠植物(表4).这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制. ...

... 叶片C:N、C:P越高反映植物N、P利用效率越高(黄建军和王希华, 2003; ?gren, 2004).大兴安岭泥炭地植物叶片的C:N, C:P平均值小于全球水平(表4), 说明其N、P利用效率较全球植物低.本研究虽然草本N、P含量比灌木低, 但其C:N、C:P高于灌木, 此外, 常绿灌木C:N高于落叶灌木(图2D), 表明草本植物的N、P利用效率比灌木高, 常绿灌木N利用效率高于落叶灌木.这些结果揭示了研究区泥炭地不同生活型植物在维持固C功能方面存在N、P利用效率的差异或生存策略(Hessen et al., 2004).大兴安岭多年生草本植物具有更高的根系比例, 其地下组织可以作为N、P贮存库来支持叶片的生长(Poorter et al., 2011), 对N、P的利用效率高.常绿灌木生长过程中的N成本较低且N再吸收较高, 其合成结构性物质(如纤维素等)所用的N较少, N利用效率较高(白坤栋等, 2013).常绿灌木通过提高N、P利用效率, 增加C固定以维持其功能性状(Jonasson, 1989), 也常成为贫营养生态系统的优势植物(Aerts, 1995).草本植物中玉簪薹草和小叶章、落叶灌木中笃斯越桔和越桔、常绿灌木中地桂和头花杜鹃叶片C:N较高(图2D), 其N利用效率较高.草本植物中玉簪薹草、落叶灌木中笃斯越桔和越桔、常绿灌木中杜香和地桂叶片C:P较高(图2E), 其P利用效率较高.这些结果反映了相同生活型的不同植物也具有明显的N、P利用效率差异或利用方式的分化. ...

Nutrient limitation on terrestrial plant growth—Modeling the interaction between nitrogen and phosphorus
1
2012

... 环境气候条件影响土壤N、P有效性, 属于影响植物N、P含量的重要外因(Chapin III et al., 1986; Kerkhoff & Enquist, 2006).Reich和Oleksyn (2004)通过叶片N、P含量和N:P证据揭示了植物N、P吸收和有效性随纬度升高和年平均气温降低而显著降低.Fisher等(2013)发现叶片N:P随海拔升高而降低, 认为高海拔地区植物生长受到N限制.此外, N沉降增加在一定程度上缓减植物N限制, 引起在P相对缺乏的生态系统中植物受P限制或N、P共同限制(Aerts et al., 1992).在相同的土壤N、P状态下, 降水量较高则可能增加土壤有效态N、P淋溶丢失, 使植物N、P含量随降水量增加而降低(Reich & Oleksyn, 2004).植物N、P指标随地点要素和环境因子的变化会因为空间尺度大小、生态系统类型和物种等不同而不同(Norby et al., 2010; ?gren et al., 2012; Tian et al., 2017).在区域尺度内特定生态系统类型植物的N、P含量水平和变异机制及其对地点环境的适应性值得进一步探讨. ...

广西猫儿山不同海拔常绿树种和落叶树种光合速率与氮的关系
1
2013

... 叶片C:N、C:P越高反映植物N、P利用效率越高(黄建军和王希华, 2003; ?gren, 2004).大兴安岭泥炭地植物叶片的C:N, C:P平均值小于全球水平(表4), 说明其N、P利用效率较全球植物低.本研究虽然草本N、P含量比灌木低, 但其C:N、C:P高于灌木, 此外, 常绿灌木C:N高于落叶灌木(图2D), 表明草本植物的N、P利用效率比灌木高, 常绿灌木N利用效率高于落叶灌木.这些结果揭示了研究区泥炭地不同生活型植物在维持固C功能方面存在N、P利用效率的差异或生存策略(Hessen et al., 2004).大兴安岭多年生草本植物具有更高的根系比例, 其地下组织可以作为N、P贮存库来支持叶片的生长(Poorter et al., 2011), 对N、P的利用效率高.常绿灌木生长过程中的N成本较低且N再吸收较高, 其合成结构性物质(如纤维素等)所用的N较少, N利用效率较高(白坤栋等, 2013).常绿灌木通过提高N、P利用效率, 增加C固定以维持其功能性状(Jonasson, 1989), 也常成为贫营养生态系统的优势植物(Aerts, 1995).草本植物中玉簪薹草和小叶章、落叶灌木中笃斯越桔和越桔、常绿灌木中地桂和头花杜鹃叶片C:N较高(图2D), 其N利用效率较高.草本植物中玉簪薹草、落叶灌木中笃斯越桔和越桔、常绿灌木中杜香和地桂叶片C:P较高(图2E), 其P利用效率较高.这些结果反映了相同生活型的不同植物也具有明显的N、P利用效率差异或利用方式的分化. ...

广西猫儿山不同海拔常绿树种和落叶树种光合速率与氮的关系
1
2013

... 叶片C:N、C:P越高反映植物N、P利用效率越高(黄建军和王希华, 2003; ?gren, 2004).大兴安岭泥炭地植物叶片的C:N, C:P平均值小于全球水平(表4), 说明其N、P利用效率较全球植物低.本研究虽然草本N、P含量比灌木低, 但其C:N、C:P高于灌木, 此外, 常绿灌木C:N高于落叶灌木(图2D), 表明草本植物的N、P利用效率比灌木高, 常绿灌木N利用效率高于落叶灌木.这些结果揭示了研究区泥炭地不同生活型植物在维持固C功能方面存在N、P利用效率的差异或生存策略(Hessen et al., 2004).大兴安岭多年生草本植物具有更高的根系比例, 其地下组织可以作为N、P贮存库来支持叶片的生长(Poorter et al., 2011), 对N、P的利用效率高.常绿灌木生长过程中的N成本较低且N再吸收较高, 其合成结构性物质(如纤维素等)所用的N较少, N利用效率较高(白坤栋等, 2013).常绿灌木通过提高N、P利用效率, 增加C固定以维持其功能性状(Jonasson, 1989), 也常成为贫营养生态系统的优势植物(Aerts, 1995).草本植物中玉簪薹草和小叶章、落叶灌木中笃斯越桔和越桔、常绿灌木中地桂和头花杜鹃叶片C:N较高(图2D), 其N利用效率较高.草本植物中玉簪薹草、落叶灌木中笃斯越桔和越桔、常绿灌木中杜香和地桂叶片C:P较高(图2E), 其P利用效率较高.这些结果反映了相同生活型的不同植物也具有明显的N、P利用效率差异或利用方式的分化. ...

Ecological stoichiometry and multi-element transfer in a coastal ecosystem
1
2012

... 叶片C、N、P含量的地点间、种间CV分析能够进一步探讨植物C、N、P利用异质性的环境敏感性和生物学机制(任书杰等, 2012).研究区叶片P含量地点间变异最大(>10%), 叶片N含量次之, 叶片C含量的地点间变异最小(<10%).说明叶片C含量稳定性最高, 主要原因是C在植物生物质合成中主要起骨架作用, 是结构性物质的主要构建元素, 受外部环境条件变化影响较小(Bradshaw et al., 2012).叶片N含量出现中等地点间变异(图3B), 反映其受土壤N可利用性影响较大(Sterner & Elser, 2002).叶片P含量的地点间变异大于叶片N含量, 符合限制性元素稳定性假说(Han et al., 2011), 该假说指出植物P含量比植物N含量更容易被环境变化所改变, 反映了植物对不同元素稳态控制的程度.草本植物叶片C、N、P含量的地点间CV高于灌木(图3A-3C), 说明草本植物N、P吸收对环境变化较敏感, 生活型是影响植物N、P吸收环境响应和敏感性的一个因素(Güsewell, 2004).对物种来说, 白毛羊胡子草、小叶章、笃斯越桔、越桔、地桂、头花杜鹃叶片N含量, 以及所有物种叶片P含量的地点变异呈中等变异性(图3C), 只有少数物种N含量地点变异弱(图3B), 表明该地区泥炭地多数植物种N、P吸收和固持存在环境异质性.因为叶片C含量变异较小而P含量变异较大(图3A、3C), 叶片C:N地点变异也较小而C:P和N:P变异较大(图3D-3F).草本植物N、P利用效率的地点变异高于灌木, 多数物种N、P利用效率的地点变异呈中等变异性, 少数呈弱变异性(图3D、3E), 这些结果说明大兴安岭泥炭地多数植物种N、P利用效率具有较高的空间异质性, 这些不同种、不同程度N、P吸收和利用效率的地点变异性差异体现了植物N、P利用对环境N、P变异的响应能力和生物适应性(Yang et al., 2015). ...

Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands
1
2013

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe
1
2004

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

Environmental controls over carbon, nitrogen and phosphorus fractions in Eriophorum vaginatum in Alaskan tussock tundra.
1
1986

... 环境气候条件影响土壤N、P有效性, 属于影响植物N、P含量的重要外因(Chapin III et al., 1986; Kerkhoff & Enquist, 2006).Reich和Oleksyn (2004)通过叶片N、P含量和N:P证据揭示了植物N、P吸收和有效性随纬度升高和年平均气温降低而显著降低.Fisher等(2013)发现叶片N:P随海拔升高而降低, 认为高海拔地区植物生长受到N限制.此外, N沉降增加在一定程度上缓减植物N限制, 引起在P相对缺乏的生态系统中植物受P限制或N、P共同限制(Aerts et al., 1992).在相同的土壤N、P状态下, 降水量较高则可能增加土壤有效态N、P淋溶丢失, 使植物N、P含量随降水量增加而降低(Reich & Oleksyn, 2004).植物N、P指标随地点要素和环境因子的变化会因为空间尺度大小、生态系统类型和物种等不同而不同(Norby et al., 2010; ?gren et al., 2012; Tian et al., 2017).在区域尺度内特定生态系统类型植物的N、P含量水平和变异机制及其对地点环境的适应性值得进一步探讨. ...

辽东桤木扩张对大兴安岭泥炭地植物群落组成和生物量的影响
1
2017

... 研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃.同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997).由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同.草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis).灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014).这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017). ...

辽东桤木扩张对大兴安岭泥炭地植物群落组成和生物量的影响
1
2017

... 研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃.同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997).由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同.草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis).灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014).这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017). ...

大兴安岭北部植被演替规律探讨
1
2002

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

大兴安岭北部植被演替规律探讨
1
2002

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

Organism size, life history, and N:P stoichiometry
1
1996

... 叶片N:P是评价植物N、P限制特征的信息(Elser et al., 1996).在瑞典沼泽地, Aerts等(1992)提出受N限制的植物叶片N:P均低于10, 受P限制的植物叶片N:P均高于14.在欧洲湿地系统, Koerselman和Meuleman (1996)通过施肥实验发现N:P < 14时为N限制, N:P > 16时为P限制.短期施肥实验表明, 湿地植物N:P < 10或N:P > 20分别对应N限制或P限制 ...

Nutritional constraints in terrestrial and freshwater food webs
2
2000a

... 叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004).植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002).与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱.叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大.叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因.与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4).叶片N含量比荒漠植物高, 比草原植物低.叶片P含量只高于荒漠植物(表4).这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制. ...

... Comparisons of leaf C, N, and P concentrations and their stoichiometry between plants of the Da Hinggan Ling peatlands and those in other studies
Table 4
研究区域
Study region
C (%) N (%) P (%) C:N C:P N:P 数据来源
Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Data source
泥炭地 Peatlands 42.2 2.9 275 1.9 0.4 276 0.18 0.07 263 23.6 6.2 275 269 110 262 11.6 4.6 263 本研究 This Study
森林 Forests 48.0 5.3 102 1.8 0.5 102 0.20 0.12 102 29.1 9.5 102 314 152 102 11.5 5.0 102 Ren et al., 2012
荒漠 Deserts 1.1 0.8 276 0.10 0.08 276 11.5 5.1 276 Zhang et al., 2014
草原 Grasslands 43.8 3.0 213 2.8 0.9 213 0.19 0.84 525 17.9 5.7 213 15.3 5.2 525 He et al., 2006, 2008
中国 China 2.0 0.8 554 0.15 0.10 745 16.3 9.3 547 Han et al., 2005
全球 Globe 46.2 7.2 76 2.0 0.9 1 251 0.18 0.11 923 23.8 17.3 62 301 237 43 13.8 9.5 894 Elser et al., 2000a; Reich & Oleksyn, 2004
在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

Biological stoichiometry from genes to ecosystems
2
2000b

... 氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982).植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018).研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016). ...

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland
1
2016

... 在生活型内部, 草本植物白毛羊胡子草、落叶灌木柴桦、常绿灌木杜香的叶片C、N、P含量显著高于相同生活型的其他物种(图2A-2C), 反映了这几种植物在其功能群中具有较高的N、P竞争和利用.在俄罗斯北部季克西和中部雅库茨克, Kudo (1995)发现苔原杜香叶片N含量分别为(1.8 ± 0.2)% 和(1.6 ± 0.2)%.在阿拉斯加南部的泥炭地, 桦木(Betula glandulosa)叶片N、P含量分别为(1.5 ± 0.3)%和(0.18 ± 0.04)%, 白毛羊胡子草叶片N、P含量分别为(1.0 ± 0.1)%和(0.11 ± 0.04)% (Finger et al., 2016).和这些较高纬度地区泥炭地的同类或同种植物比较, 大兴安岭泥炭地植物总体上具有较高的N、P含量, 反映了在相对低纬度较高气温和人为N沉降下, 泥炭地N、P可利用性增加. ...

Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes
2013

东北大小兴安岭多年冻土分区
1
1981

... 研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃.同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997).由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同.草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis).灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014).这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017). ...

东北大小兴安岭多年冻土分区
1
1981

... 研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃.同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997).由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同.草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis).灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014).这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017). ...

N:P ratios in terrestrial plants: Variation and functional significance
2
2004

... (Güsewell, 2004).由此可见, 叶片N:P评估植物N、P限制类型存在不确定性.使用N:P阈值为14和16 (或10和20)来评估N和P限制时可能产生32.5% (或16.2%)的误差.与此同时, 叶片N、P含量越高, 误差风险越低, 10和20的阈值比14和16的误差风险低(Yan et al., 2017).本研究中, 泥炭地植物叶片N:P小于10同时其N含量低于全球植物叶片N含量平均值(1.9%)的植物占28.5%, 以小叶章和头花杜鹃为主(图5).叶片N:P大于20同时其P含量低于全球植物叶片P含量平均值(0.12%)的植物占9% (图5).这些结果说明大兴安岭泥炭地小叶章和头花杜鹃相比多数其他植物来说更易受N限制, 而多数其他植物可能更易受N、P共同限制, 这也与较高纬度地区多数泥炭地植物受N限制不同.对于相对较低纬度的北方泥炭地, 人为因素进行的大气N沉降输入可能一定程度已经减缓了植物受N的限制(曾竞等, 2013), 使大兴安岭地区泥炭地植物更多出现N、P共同限制的状态. ...

... 叶片C、N、P含量的地点间、种间CV分析能够进一步探讨植物C、N、P利用异质性的环境敏感性和生物学机制(任书杰等, 2012).研究区叶片P含量地点间变异最大(>10%), 叶片N含量次之, 叶片C含量的地点间变异最小(<10%).说明叶片C含量稳定性最高, 主要原因是C在植物生物质合成中主要起骨架作用, 是结构性物质的主要构建元素, 受外部环境条件变化影响较小(Bradshaw et al., 2012).叶片N含量出现中等地点间变异(图3B), 反映其受土壤N可利用性影响较大(Sterner & Elser, 2002).叶片P含量的地点间变异大于叶片N含量, 符合限制性元素稳定性假说(Han et al., 2011), 该假说指出植物P含量比植物N含量更容易被环境变化所改变, 反映了植物对不同元素稳态控制的程度.草本植物叶片C、N、P含量的地点间CV高于灌木(图3A-3C), 说明草本植物N、P吸收对环境变化较敏感, 生活型是影响植物N、P吸收环境响应和敏感性的一个因素(Güsewell, 2004).对物种来说, 白毛羊胡子草、小叶章、笃斯越桔、越桔、地桂、头花杜鹃叶片N含量, 以及所有物种叶片P含量的地点变异呈中等变异性(图3C), 只有少数物种N含量地点变异弱(图3B), 表明该地区泥炭地多数植物种N、P吸收和固持存在环境异质性.因为叶片C含量变异较小而P含量变异较大(图3A、3C), 叶片C:N地点变异也较小而C:P和N:P变异较大(图3D-3F).草本植物N、P利用效率的地点变异高于灌木, 多数物种N、P利用效率的地点变异呈中等变异性, 少数呈弱变异性(图3D、3E), 这些结果说明大兴安岭泥炭地多数植物种N、P利用效率具有较高的空间异质性, 这些不同种、不同程度N、P吸收和利用效率的地点变异性差异体现了植物N、P利用对环境N、P变异的响应能力和生物适应性(Yang et al., 2015). ...

Variation in nitrogen and phosphorus concentrations of wetland plants
1
2002

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

Linking microbial and ecosystem ecology using ecological stoichiometry: A synthesis of conceptual and empirical approaches
1
2010

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China
3
2005

... 氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982).植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018).研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016). ...

... 叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004).植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002).与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱.叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大.叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因.与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4).叶片N含量比荒漠植物高, 比草原植物低.叶片P含量只高于荒漠植物(表4).这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制. ...

... Comparisons of leaf C, N, and P concentrations and their stoichiometry between plants of the Da Hinggan Ling peatlands and those in other studies
Table 4
研究区域
Study region
C (%) N (%) P (%) C:N C:P N:P 数据来源
Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Data source
泥炭地 Peatlands 42.2 2.9 275 1.9 0.4 276 0.18 0.07 263 23.6 6.2 275 269 110 262 11.6 4.6 263 本研究 This Study
森林 Forests 48.0 5.3 102 1.8 0.5 102 0.20 0.12 102 29.1 9.5 102 314 152 102 11.5 5.0 102 Ren et al., 2012
荒漠 Deserts 1.1 0.8 276 0.10 0.08 276 11.5 5.1 276 Zhang et al., 2014
草原 Grasslands 43.8 3.0 213 2.8 0.9 213 0.19 0.84 525 17.9 5.7 213 15.3 5.2 525 He et al., 2006, 2008
中国 China 2.0 0.8 554 0.15 0.10 745 16.3 9.3 547 Han et al., 2005
全球 Globe 46.2 7.2 76 2.0 0.9 1 251 0.18 0.11 923 23.8 17.3 62 301 237 43 13.8 9.5 894 Elser et al., 2000a; Reich & Oleksyn, 2004
在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China
2
2011

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

... 叶片C、N、P含量的地点间、种间CV分析能够进一步探讨植物C、N、P利用异质性的环境敏感性和生物学机制(任书杰等, 2012).研究区叶片P含量地点间变异最大(>10%), 叶片N含量次之, 叶片C含量的地点间变异最小(<10%).说明叶片C含量稳定性最高, 主要原因是C在植物生物质合成中主要起骨架作用, 是结构性物质的主要构建元素, 受外部环境条件变化影响较小(Bradshaw et al., 2012).叶片N含量出现中等地点间变异(图3B), 反映其受土壤N可利用性影响较大(Sterner & Elser, 2002).叶片P含量的地点间变异大于叶片N含量, 符合限制性元素稳定性假说(Han et al., 2011), 该假说指出植物P含量比植物N含量更容易被环境变化所改变, 反映了植物对不同元素稳态控制的程度.草本植物叶片C、N、P含量的地点间CV高于灌木(图3A-3C), 说明草本植物N、P吸收对环境变化较敏感, 生活型是影响植物N、P吸收环境响应和敏感性的一个因素(Güsewell, 2004).对物种来说, 白毛羊胡子草、小叶章、笃斯越桔、越桔、地桂、头花杜鹃叶片N含量, 以及所有物种叶片P含量的地点变异呈中等变异性(图3C), 只有少数物种N含量地点变异弱(图3B), 表明该地区泥炭地多数植物种N、P吸收和固持存在环境异质性.因为叶片C含量变异较小而P含量变异较大(图3A、3C), 叶片C:N地点变异也较小而C:P和N:P变异较大(图3D-3F).草本植物N、P利用效率的地点变异高于灌木, 多数物种N、P利用效率的地点变异呈中等变异性, 少数呈弱变异性(图3D、3E), 这些结果说明大兴安岭泥炭地多数植物种N、P利用效率具有较高的空间异质性, 这些不同种、不同程度N、P吸收和利用效率的地点变异性差异体现了植物N、P利用对环境N、P变异的响应能力和生物适应性(Yang et al., 2015). ...

北京及周边地区植物叶的碳氮磷元素计量特征
1
2009

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

北京及周边地区植物叶的碳氮磷元素计量特征
1
2009

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China
2
2006

... 叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004).植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002).与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱.叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大.叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因.与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4).叶片N含量比荒漠植物高, 比草原植物低.叶片P含量只高于荒漠植物(表4).这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制. ...

... Comparisons of leaf C, N, and P concentrations and their stoichiometry between plants of the Da Hinggan Ling peatlands and those in other studies
Table 4
研究区域
Study region
C (%) N (%) P (%) C:N C:P N:P 数据来源
Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Data source
泥炭地 Peatlands 42.2 2.9 275 1.9 0.4 276 0.18 0.07 263 23.6 6.2 275 269 110 262 11.6 4.6 263 本研究 This Study
森林 Forests 48.0 5.3 102 1.8 0.5 102 0.20 0.12 102 29.1 9.5 102 314 152 102 11.5 5.0 102 Ren et al., 2012
荒漠 Deserts 1.1 0.8 276 0.10 0.08 276 11.5 5.1 276 Zhang et al., 2014
草原 Grasslands 43.8 3.0 213 2.8 0.9 213 0.19 0.84 525 17.9 5.7 213 15.3 5.2 525 He et al., 2006, 2008
中国 China 2.0 0.8 554 0.15 0.10 745 16.3 9.3 547 Han et al., 2005
全球 Globe 46.2 7.2 76 2.0 0.9 1 251 0.18 0.11 923 23.8 17.3 62 301 237 43 13.8 9.5 894 Elser et al., 2000a; Reich & Oleksyn, 2004
在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland Biomes
4
2008

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

... 叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004).植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002).与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱.叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大.叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因.与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4).叶片N含量比荒漠植物高, 比草原植物低.叶片P含量只高于荒漠植物(表4).这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制. ...

... Comparisons of leaf C, N, and P concentrations and their stoichiometry between plants of the Da Hinggan Ling peatlands and those in other studies
Table 4
研究区域
Study region
C (%) N (%) P (%) C:N C:P N:P 数据来源
Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Data source
泥炭地 Peatlands 42.2 2.9 275 1.9 0.4 276 0.18 0.07 263 23.6 6.2 275 269 110 262 11.6 4.6 263 本研究 This Study
森林 Forests 48.0 5.3 102 1.8 0.5 102 0.20 0.12 102 29.1 9.5 102 314 152 102 11.5 5.0 102 Ren et al., 2012
荒漠 Deserts 1.1 0.8 276 0.10 0.08 276 11.5 5.1 276 Zhang et al., 2014
草原 Grasslands 43.8 3.0 213 2.8 0.9 213 0.19 0.84 525 17.9 5.7 213 15.3 5.2 525 He et al., 2006, 2008
中国 China 2.0 0.8 554 0.15 0.10 745 16.3 9.3 547 Han et al., 2005
全球 Globe 46.2 7.2 76 2.0 0.9 1 251 0.18 0.11 923 23.8 17.3 62 301 237 43 13.8 9.5 894 Elser et al., 2000a; Reich & Oleksyn, 2004
在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

... 叶片C、N、P、C:N以及C:P的变异来源均表现为采样地点影响最大, 采样地点和植物种类交互作用次之, 植物种类最小(表3).研究表明, 环境和物种分类对中国陆生植物叶片N的解释量分别为41.7%和4.9%, 对叶片P的解释量分别为33.3%和5.8% (Zhang et al., 2011).大兴安岭区域尺度泥炭地11种植物水平上, 地点对叶片C、N、P指标的影响大于物种, 与上述研究结果一致.采样地点对叶片C、N、P指标的影响可能来自于土壤的空间异质性和环境因子的变化(Reich & Oleksyn, 2004).植物种类对叶片C、N、P指标的影响主要来源于不同种植物自身的生物学特征和功能性状的差别(He et al., 2008).地点和环境因子在解释叶片C、N、P指标变异方面比植物种类更重要, 或许能更强烈地影响叶片C、N、P含量的空间格局. ...

Carbon sequestration in ecosystems: The role of stoichiometry
1
2004

... 叶片C:N、C:P越高反映植物N、P利用效率越高(黄建军和王希华, 2003; ?gren, 2004).大兴安岭泥炭地植物叶片的C:N, C:P平均值小于全球水平(表4), 说明其N、P利用效率较全球植物低.本研究虽然草本N、P含量比灌木低, 但其C:N、C:P高于灌木, 此外, 常绿灌木C:N高于落叶灌木(图2D), 表明草本植物的N、P利用效率比灌木高, 常绿灌木N利用效率高于落叶灌木.这些结果揭示了研究区泥炭地不同生活型植物在维持固C功能方面存在N、P利用效率的差异或生存策略(Hessen et al., 2004).大兴安岭多年生草本植物具有更高的根系比例, 其地下组织可以作为N、P贮存库来支持叶片的生长(Poorter et al., 2011), 对N、P的利用效率高.常绿灌木生长过程中的N成本较低且N再吸收较高, 其合成结构性物质(如纤维素等)所用的N较少, N利用效率较高(白坤栋等, 2013).常绿灌木通过提高N、P利用效率, 增加C固定以维持其功能性状(Jonasson, 1989), 也常成为贫营养生态系统的优势植物(Aerts, 1995).草本植物中玉簪薹草和小叶章、落叶灌木中笃斯越桔和越桔、常绿灌木中地桂和头花杜鹃叶片C:N较高(图2D), 其N利用效率较高.草本植物中玉簪薹草、落叶灌木中笃斯越桔和越桔、常绿灌木中杜香和地桂叶片C:P较高(图2E), 其P利用效率较高.这些结果反映了相同生活型的不同植物也具有明显的N、P利用效率差异或利用方式的分化. ...

δ 15N in symbiotic fungi and plants estimates nitrogen and carbon flux rates in arctic tundra
2
2006

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

... Plant mycorrhizal types, leaf shapes and plant height in the Da Hinggan Ling peatlands
Table 5
生活型
Growth form
植物种
Species
菌根类型
Mycorrhizal type
植株高度
Plant height (cm)
叶形
Leaf shape
参考文献
Reference
草本植物 Graminoids 白毛羊胡子草
Eriophorum vaginatum
无菌根 Non-mycorrhizae 40-80 线形 Linear leaf Hobbie & Hobbie, 2006; Wu & Hong, 2010
玉簪薹草 Carex globularis 无菌根 Non-mycorrhizae 30-60 线形 Linear leaf
小叶章 Deyeuxia angustifolia 丛枝菌根 Arbuscular mycorrhizae 30-100 线形 Linear leaf
落叶灌木 Deciduous shrubs 柴桦 Betula fruticosa 外生菌根 Ecto-mycorrhizae 50-150 卵形 Ovate leaf
越桔柳 Salix myrtilloides 外生菌根 Ecto-mycorrhizae 30-80 椭圆形 Oblong leaf
细叶沼柳 Salix rosmarinifolia 外生菌根 Ecto-mycorrhizae 50-100 披针形 Lanceolate leaf
笃斯越桔 Vaccinium uliginosum 杜鹃花科菌根 Ericoid mycorrhizae 50-80 倒卵形 Obovate leaf
越桔 Vaccinium vitis-idaea 杜鹃花科菌根 Ericoid mycorrhizae 10-30 倒卵形 Obovate leaf
常绿灌木 Evergreen shrubs 杜香 Ledum palustre 杜鹃花科菌根 Ericoid mycorrhizae 40-50 线形 Linear leaf
地桂 Chamaedaphne calyculata 杜鹃花科菌根 Ericoid mycorrhizae 30-150 椭圆形 Oblong leaf
头花杜鹃 Rhododendron capitatum 杜鹃花科菌根 Ericoid mycorrhizae 40-100 椭圆形 Oblong leaf
在生活型内部, 草本植物白毛羊胡子草、落叶灌木柴桦、常绿灌木杜香的叶片C、N、P含量显著高于相同生活型的其他物种(图2A-2C), 反映了这几种植物在其功能群中具有较高的N、P竞争和利用.在俄罗斯北部季克西和中部雅库茨克, Kudo (1995)发现苔原杜香叶片N含量分别为(1.8 ± 0.2)% 和(1.6 ± 0.2)%.在阿拉斯加南部的泥炭地, 桦木(Betula glandulosa)叶片N、P含量分别为(1.5 ± 0.3)%和(0.18 ± 0.04)%, 白毛羊胡子草叶片N、P含量分别为(1.0 ± 0.1)%和(0.11 ± 0.04)% (Finger et al., 2016).和这些较高纬度地区泥炭地的同类或同种植物比较, 大兴安岭泥炭地植物总体上具有较高的N、P含量, 反映了在相对低纬度较高气温和人为N沉降下, 泥炭地N、P可利用性增加. ...

西双版纳外来入侵植物及其共存种叶片氮、磷化学计量特征
1
2016

... 氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982).植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018).研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016). ...

西双版纳外来入侵植物及其共存种叶片氮、磷化学计量特征
1
2016

... 氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982).植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018).研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016). ...

Plant nitrogen and phosphorus utilization under invasive pressure in a montane ecosystem of tropical China
1
2018

... 氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982).植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018).研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016). ...

浙江天童32种常绿阔叶树叶片的营养及结构特征
1
2003

... 叶片C:N、C:P越高反映植物N、P利用效率越高(黄建军和王希华, 2003; ?gren, 2004).大兴安岭泥炭地植物叶片的C:N, C:P平均值小于全球水平(表4), 说明其N、P利用效率较全球植物低.本研究虽然草本N、P含量比灌木低, 但其C:N、C:P高于灌木, 此外, 常绿灌木C:N高于落叶灌木(图2D), 表明草本植物的N、P利用效率比灌木高, 常绿灌木N利用效率高于落叶灌木.这些结果揭示了研究区泥炭地不同生活型植物在维持固C功能方面存在N、P利用效率的差异或生存策略(Hessen et al., 2004).大兴安岭多年生草本植物具有更高的根系比例, 其地下组织可以作为N、P贮存库来支持叶片的生长(Poorter et al., 2011), 对N、P的利用效率高.常绿灌木生长过程中的N成本较低且N再吸收较高, 其合成结构性物质(如纤维素等)所用的N较少, N利用效率较高(白坤栋等, 2013).常绿灌木通过提高N、P利用效率, 增加C固定以维持其功能性状(Jonasson, 1989), 也常成为贫营养生态系统的优势植物(Aerts, 1995).草本植物中玉簪薹草和小叶章、落叶灌木中笃斯越桔和越桔、常绿灌木中地桂和头花杜鹃叶片C:N较高(图2D), 其N利用效率较高.草本植物中玉簪薹草、落叶灌木中笃斯越桔和越桔、常绿灌木中杜香和地桂叶片C:P较高(图2E), 其P利用效率较高.这些结果反映了相同生活型的不同植物也具有明显的N、P利用效率差异或利用方式的分化. ...

浙江天童32种常绿阔叶树叶片的营养及结构特征
1
2003

... 叶片C:N、C:P越高反映植物N、P利用效率越高(黄建军和王希华, 2003; ?gren, 2004).大兴安岭泥炭地植物叶片的C:N, C:P平均值小于全球水平(表4), 说明其N、P利用效率较全球植物低.本研究虽然草本N、P含量比灌木低, 但其C:N、C:P高于灌木, 此外, 常绿灌木C:N高于落叶灌木(图2D), 表明草本植物的N、P利用效率比灌木高, 常绿灌木N利用效率高于落叶灌木.这些结果揭示了研究区泥炭地不同生活型植物在维持固C功能方面存在N、P利用效率的差异或生存策略(Hessen et al., 2004).大兴安岭多年生草本植物具有更高的根系比例, 其地下组织可以作为N、P贮存库来支持叶片的生长(Poorter et al., 2011), 对N、P的利用效率高.常绿灌木生长过程中的N成本较低且N再吸收较高, 其合成结构性物质(如纤维素等)所用的N较少, N利用效率较高(白坤栋等, 2013).常绿灌木通过提高N、P利用效率, 增加C固定以维持其功能性状(Jonasson, 1989), 也常成为贫营养生态系统的优势植物(Aerts, 1995).草本植物中玉簪薹草和小叶章、落叶灌木中笃斯越桔和越桔、常绿灌木中地桂和头花杜鹃叶片C:N较高(图2D), 其N利用效率较高.草本植物中玉簪薹草、落叶灌木中笃斯越桔和越桔、常绿灌木中杜香和地桂叶片C:P较高(图2E), 其P利用效率较高.这些结果反映了相同生活型的不同植物也具有明显的N、P利用效率差异或利用方式的分化. ...

Implications of leaf longevity, leaf nutrient re-absorption and translocation for the resource economy of five evergreen plant species
1
1989

... 叶片C:N、C:P越高反映植物N、P利用效率越高(黄建军和王希华, 2003; ?gren, 2004).大兴安岭泥炭地植物叶片的C:N, C:P平均值小于全球水平(表4), 说明其N、P利用效率较全球植物低.本研究虽然草本N、P含量比灌木低, 但其C:N、C:P高于灌木, 此外, 常绿灌木C:N高于落叶灌木(图2D), 表明草本植物的N、P利用效率比灌木高, 常绿灌木N利用效率高于落叶灌木.这些结果揭示了研究区泥炭地不同生活型植物在维持固C功能方面存在N、P利用效率的差异或生存策略(Hessen et al., 2004).大兴安岭多年生草本植物具有更高的根系比例, 其地下组织可以作为N、P贮存库来支持叶片的生长(Poorter et al., 2011), 对N、P的利用效率高.常绿灌木生长过程中的N成本较低且N再吸收较高, 其合成结构性物质(如纤维素等)所用的N较少, N利用效率较高(白坤栋等, 2013).常绿灌木通过提高N、P利用效率, 增加C固定以维持其功能性状(Jonasson, 1989), 也常成为贫营养生态系统的优势植物(Aerts, 1995).草本植物中玉簪薹草和小叶章、落叶灌木中笃斯越桔和越桔、常绿灌木中地桂和头花杜鹃叶片C:N较高(图2D), 其N利用效率较高.草本植物中玉簪薹草、落叶灌木中笃斯越桔和越桔、常绿灌木中杜香和地桂叶片C:P较高(图2E), 其P利用效率较高.这些结果反映了相同生活型的不同植物也具有明显的N、P利用效率差异或利用方式的分化. ...

Ecosystem allometry: The scaling of nutrient stocks and primary productivity across plant communities
1
2006

... 环境气候条件影响土壤N、P有效性, 属于影响植物N、P含量的重要外因(Chapin III et al., 1986; Kerkhoff & Enquist, 2006).Reich和Oleksyn (2004)通过叶片N、P含量和N:P证据揭示了植物N、P吸收和有效性随纬度升高和年平均气温降低而显著降低.Fisher等(2013)发现叶片N:P随海拔升高而降低, 认为高海拔地区植物生长受到N限制.此外, N沉降增加在一定程度上缓减植物N限制, 引起在P相对缺乏的生态系统中植物受P限制或N、P共同限制(Aerts et al., 1992).在相同的土壤N、P状态下, 降水量较高则可能增加土壤有效态N、P淋溶丢失, 使植物N、P含量随降水量增加而降低(Reich & Oleksyn, 2004).植物N、P指标随地点要素和环境因子的变化会因为空间尺度大小、生态系统类型和物种等不同而不同(Norby et al., 2010; ?gren et al., 2012; Tian et al., 2017).在区域尺度内特定生态系统类型植物的N、P含量水平和变异机制及其对地点环境的适应性值得进一步探讨. ...

Leaf traits and shoot performance of an evergreen shrub,Ledum palustre spp. decumbens, in accordance with latitudinal change.
1
1995

... 在生活型内部, 草本植物白毛羊胡子草、落叶灌木柴桦、常绿灌木杜香的叶片C、N、P含量显著高于相同生活型的其他物种(图2A-2C), 反映了这几种植物在其功能群中具有较高的N、P竞争和利用.在俄罗斯北部季克西和中部雅库茨克, Kudo (1995)发现苔原杜香叶片N含量分别为(1.8 ± 0.2)% 和(1.6 ± 0.2)%.在阿拉斯加南部的泥炭地, 桦木(Betula glandulosa)叶片N、P含量分别为(1.5 ± 0.3)%和(0.18 ± 0.04)%, 白毛羊胡子草叶片N、P含量分别为(1.0 ± 0.1)%和(0.11 ± 0.04)% (Finger et al., 2016).和这些较高纬度地区泥炭地的同类或同种植物比较, 大兴安岭泥炭地植物总体上具有较高的N、P含量, 反映了在相对低纬度较高气温和人为N沉降下, 泥炭地N、P可利用性增加. ...

The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation
2
1996

... 氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982).植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018).研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016). ...

... 叶片N:P是评价植物N、P限制特征的信息(Elser et al., 1996).在瑞典沼泽地, Aerts等(1992)提出受N限制的植物叶片N:P均低于10, 受P限制的植物叶片N:P均高于14.在欧洲湿地系统, Koerselman和Meuleman (1996)通过施肥实验发现N:P < 14时为N限制, N:P > 16时为P限制.短期施肥实验表明, 湿地植物N:P < 10或N:P > 20分别对应N限制或P限制 ...

Nitrate is an important nitrogen source for arctic tundra plants
2
2018

... 氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982).植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018).研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016). ...

... 研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃.同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997).由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同.草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis).灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014).这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017). ...

Plant functional group controls litter decomposition rate and its temperature sensitivity: An incubation experiment on litters from a boreal peatland in northeast China
2
2018

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

... 研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃.同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997).由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同.草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis).灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014).这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017). ...

Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots
1
1998

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

CO2 enhancement of forest productivity constrained by limited nitrogen availability
1
2010

... 环境气候条件影响土壤N、P有效性, 属于影响植物N、P含量的重要外因(Chapin III et al., 1986; Kerkhoff & Enquist, 2006).Reich和Oleksyn (2004)通过叶片N、P含量和N:P证据揭示了植物N、P吸收和有效性随纬度升高和年平均气温降低而显著降低.Fisher等(2013)发现叶片N:P随海拔升高而降低, 认为高海拔地区植物生长受到N限制.此外, N沉降增加在一定程度上缓减植物N限制, 引起在P相对缺乏的生态系统中植物受P限制或N、P共同限制(Aerts et al., 1992).在相同的土壤N、P状态下, 降水量较高则可能增加土壤有效态N、P淋溶丢失, 使植物N、P含量随降水量增加而降低(Reich & Oleksyn, 2004).植物N、P指标随地点要素和环境因子的变化会因为空间尺度大小、生态系统类型和物种等不同而不同(Norby et al., 2010; ?gren et al., 2012; Tian et al., 2017).在区域尺度内特定生态系统类型植物的N、P含量水平和变异机制及其对地点环境的适应性值得进一步探讨. ...

Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control
1
2011

... 叶片C:N、C:P越高反映植物N、P利用效率越高(黄建军和王希华, 2003; ?gren, 2004).大兴安岭泥炭地植物叶片的C:N, C:P平均值小于全球水平(表4), 说明其N、P利用效率较全球植物低.本研究虽然草本N、P含量比灌木低, 但其C:N、C:P高于灌木, 此外, 常绿灌木C:N高于落叶灌木(图2D), 表明草本植物的N、P利用效率比灌木高, 常绿灌木N利用效率高于落叶灌木.这些结果揭示了研究区泥炭地不同生活型植物在维持固C功能方面存在N、P利用效率的差异或生存策略(Hessen et al., 2004).大兴安岭多年生草本植物具有更高的根系比例, 其地下组织可以作为N、P贮存库来支持叶片的生长(Poorter et al., 2011), 对N、P的利用效率高.常绿灌木生长过程中的N成本较低且N再吸收较高, 其合成结构性物质(如纤维素等)所用的N较少, N利用效率较高(白坤栋等, 2013).常绿灌木通过提高N、P利用效率, 增加C固定以维持其功能性状(Jonasson, 1989), 也常成为贫营养生态系统的优势植物(Aerts, 1995).草本植物中玉簪薹草和小叶章、落叶灌木中笃斯越桔和越桔、常绿灌木中地桂和头花杜鹃叶片C:N较高(图2D), 其N利用效率较高.草本植物中玉簪薹草、落叶灌木中笃斯越桔和越桔、常绿灌木中杜香和地桂叶片C:P较高(图2E), 其P利用效率较高.这些结果反映了相同生活型的不同植物也具有明显的N、P利用效率差异或利用方式的分化. ...

中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征
4
2012

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

... 叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004).植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002).与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱.叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大.叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因.与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4).叶片N含量比荒漠植物高, 比草原植物低.叶片P含量只高于荒漠植物(表4).这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制. ...

... Comparisons of leaf C, N, and P concentrations and their stoichiometry between plants of the Da Hinggan Ling peatlands and those in other studies
Table 4
研究区域
Study region
C (%) N (%) P (%) C:N C:P N:P 数据来源
Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Data source
泥炭地 Peatlands 42.2 2.9 275 1.9 0.4 276 0.18 0.07 263 23.6 6.2 275 269 110 262 11.6 4.6 263 本研究 This Study
森林 Forests 48.0 5.3 102 1.8 0.5 102 0.20 0.12 102 29.1 9.5 102 314 152 102 11.5 5.0 102 Ren et al., 2012
荒漠 Deserts 1.1 0.8 276 0.10 0.08 276 11.5 5.1 276 Zhang et al., 2014
草原 Grasslands 43.8 3.0 213 2.8 0.9 213 0.19 0.84 525 17.9 5.7 213 15.3 5.2 525 He et al., 2006, 2008
中国 China 2.0 0.8 554 0.15 0.10 745 16.3 9.3 547 Han et al., 2005
全球 Globe 46.2 7.2 76 2.0 0.9 1 251 0.18 0.11 923 23.8 17.3 62 301 237 43 13.8 9.5 894 Elser et al., 2000a; Reich & Oleksyn, 2004
在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

... 叶片C、N、P含量的地点间、种间CV分析能够进一步探讨植物C、N、P利用异质性的环境敏感性和生物学机制(任书杰等, 2012).研究区叶片P含量地点间变异最大(>10%), 叶片N含量次之, 叶片C含量的地点间变异最小(<10%).说明叶片C含量稳定性最高, 主要原因是C在植物生物质合成中主要起骨架作用, 是结构性物质的主要构建元素, 受外部环境条件变化影响较小(Bradshaw et al., 2012).叶片N含量出现中等地点间变异(图3B), 反映其受土壤N可利用性影响较大(Sterner & Elser, 2002).叶片P含量的地点间变异大于叶片N含量, 符合限制性元素稳定性假说(Han et al., 2011), 该假说指出植物P含量比植物N含量更容易被环境变化所改变, 反映了植物对不同元素稳态控制的程度.草本植物叶片C、N、P含量的地点间CV高于灌木(图3A-3C), 说明草本植物N、P吸收对环境变化较敏感, 生活型是影响植物N、P吸收环境响应和敏感性的一个因素(Güsewell, 2004).对物种来说, 白毛羊胡子草、小叶章、笃斯越桔、越桔、地桂、头花杜鹃叶片N含量, 以及所有物种叶片P含量的地点变异呈中等变异性(图3C), 只有少数物种N含量地点变异弱(图3B), 表明该地区泥炭地多数植物种N、P吸收和固持存在环境异质性.因为叶片C含量变异较小而P含量变异较大(图3A、3C), 叶片C:N地点变异也较小而C:P和N:P变异较大(图3D-3F).草本植物N、P利用效率的地点变异高于灌木, 多数物种N、P利用效率的地点变异呈中等变异性, 少数呈弱变异性(图3D、3E), 这些结果说明大兴安岭泥炭地多数植物种N、P利用效率具有较高的空间异质性, 这些不同种、不同程度N、P吸收和利用效率的地点变异性差异体现了植物N、P利用对环境N、P变异的响应能力和生物适应性(Yang et al., 2015). ...

中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征
4
2012

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

... 叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004).植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002).与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱.叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大.叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因.与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4).叶片N含量比荒漠植物高, 比草原植物低.叶片P含量只高于荒漠植物(表4).这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制. ...

... Comparisons of leaf C, N, and P concentrations and their stoichiometry between plants of the Da Hinggan Ling peatlands and those in other studies
Table 4
研究区域
Study region
C (%) N (%) P (%) C:N C:P N:P 数据来源
Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Data source
泥炭地 Peatlands 42.2 2.9 275 1.9 0.4 276 0.18 0.07 263 23.6 6.2 275 269 110 262 11.6 4.6 263 本研究 This Study
森林 Forests 48.0 5.3 102 1.8 0.5 102 0.20 0.12 102 29.1 9.5 102 314 152 102 11.5 5.0 102 Ren et al., 2012
荒漠 Deserts 1.1 0.8 276 0.10 0.08 276 11.5 5.1 276 Zhang et al., 2014
草原 Grasslands 43.8 3.0 213 2.8 0.9 213 0.19 0.84 525 17.9 5.7 213 15.3 5.2 525 He et al., 2006, 2008
中国 China 2.0 0.8 554 0.15 0.10 745 16.3 9.3 547 Han et al., 2005
全球 Globe 46.2 7.2 76 2.0 0.9 1 251 0.18 0.11 923 23.8 17.3 62 301 237 43 13.8 9.5 894 Elser et al., 2000a; Reich & Oleksyn, 2004
在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

... 叶片C、N、P含量的地点间、种间CV分析能够进一步探讨植物C、N、P利用异质性的环境敏感性和生物学机制(任书杰等, 2012).研究区叶片P含量地点间变异最大(>10%), 叶片N含量次之, 叶片C含量的地点间变异最小(<10%).说明叶片C含量稳定性最高, 主要原因是C在植物生物质合成中主要起骨架作用, 是结构性物质的主要构建元素, 受外部环境条件变化影响较小(Bradshaw et al., 2012).叶片N含量出现中等地点间变异(图3B), 反映其受土壤N可利用性影响较大(Sterner & Elser, 2002).叶片P含量的地点间变异大于叶片N含量, 符合限制性元素稳定性假说(Han et al., 2011), 该假说指出植物P含量比植物N含量更容易被环境变化所改变, 反映了植物对不同元素稳态控制的程度.草本植物叶片C、N、P含量的地点间CV高于灌木(图3A-3C), 说明草本植物N、P吸收对环境变化较敏感, 生活型是影响植物N、P吸收环境响应和敏感性的一个因素(Güsewell, 2004).对物种来说, 白毛羊胡子草、小叶章、笃斯越桔、越桔、地桂、头花杜鹃叶片N含量, 以及所有物种叶片P含量的地点变异呈中等变异性(图3C), 只有少数物种N含量地点变异弱(图3B), 表明该地区泥炭地多数植物种N、P吸收和固持存在环境异质性.因为叶片C含量变异较小而P含量变异较大(图3A、3C), 叶片C:N地点变异也较小而C:P和N:P变异较大(图3D-3F).草本植物N、P利用效率的地点变异高于灌木, 多数物种N、P利用效率的地点变异呈中等变异性, 少数呈弱变异性(图3D、3E), 这些结果说明大兴安岭泥炭地多数植物种N、P利用效率具有较高的空间异质性, 这些不同种、不同程度N、P吸收和利用效率的地点变异性差异体现了植物N、P利用对环境N、P变异的响应能力和生物适应性(Yang et al., 2015). ...

Generality of leaf trait relationships: A test across six biomes
1
1999

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

Global patterns of plant leaf N and P in relation to temperature and latitude
6
2004

... 环境气候条件影响土壤N、P有效性, 属于影响植物N、P含量的重要外因(Chapin III et al., 1986; Kerkhoff & Enquist, 2006).Reich和Oleksyn (2004)通过叶片N、P含量和N:P证据揭示了植物N、P吸收和有效性随纬度升高和年平均气温降低而显著降低.Fisher等(2013)发现叶片N:P随海拔升高而降低, 认为高海拔地区植物生长受到N限制.此外, N沉降增加在一定程度上缓减植物N限制, 引起在P相对缺乏的生态系统中植物受P限制或N、P共同限制(Aerts et al., 1992).在相同的土壤N、P状态下, 降水量较高则可能增加土壤有效态N、P淋溶丢失, 使植物N、P含量随降水量增加而降低(Reich & Oleksyn, 2004).植物N、P指标随地点要素和环境因子的变化会因为空间尺度大小、生态系统类型和物种等不同而不同(Norby et al., 2010; ?gren et al., 2012; Tian et al., 2017).在区域尺度内特定生态系统类型植物的N、P含量水平和变异机制及其对地点环境的适应性值得进一步探讨. ...

... ).在相同的土壤N、P状态下, 降水量较高则可能增加土壤有效态N、P淋溶丢失, 使植物N、P含量随降水量增加而降低(Reich & Oleksyn, 2004).植物N、P指标随地点要素和环境因子的变化会因为空间尺度大小、生态系统类型和物种等不同而不同(Norby et al., 2010; ?gren et al., 2012; Tian et al., 2017).在区域尺度内特定生态系统类型植物的N、P含量水平和变异机制及其对地点环境的适应性值得进一步探讨. ...

... 叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004).植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002).与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱.叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大.叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因.与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4).叶片N含量比荒漠植物高, 比草原植物低.叶片P含量只高于荒漠植物(表4).这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制. ...

... Comparisons of leaf C, N, and P concentrations and their stoichiometry between plants of the Da Hinggan Ling peatlands and those in other studies
Table 4
研究区域
Study region
C (%) N (%) P (%) C:N C:P N:P 数据来源
Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Data source
泥炭地 Peatlands 42.2 2.9 275 1.9 0.4 276 0.18 0.07 263 23.6 6.2 275 269 110 262 11.6 4.6 263 本研究 This Study
森林 Forests 48.0 5.3 102 1.8 0.5 102 0.20 0.12 102 29.1 9.5 102 314 152 102 11.5 5.0 102 Ren et al., 2012
荒漠 Deserts 1.1 0.8 276 0.10 0.08 276 11.5 5.1 276 Zhang et al., 2014
草原 Grasslands 43.8 3.0 213 2.8 0.9 213 0.19 0.84 525 17.9 5.7 213 15.3 5.2 525 He et al., 2006, 2008
中国 China 2.0 0.8 554 0.15 0.10 745 16.3 9.3 547 Han et al., 2005
全球 Globe 46.2 7.2 76 2.0 0.9 1 251 0.18 0.11 923 23.8 17.3 62 301 237 43 13.8 9.5 894 Elser et al., 2000a; Reich & Oleksyn, 2004
在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

... 叶片C、N、P、C:N以及C:P的变异来源均表现为采样地点影响最大, 采样地点和植物种类交互作用次之, 植物种类最小(表3).研究表明, 环境和物种分类对中国陆生植物叶片N的解释量分别为41.7%和4.9%, 对叶片P的解释量分别为33.3%和5.8% (Zhang et al., 2011).大兴安岭区域尺度泥炭地11种植物水平上, 地点对叶片C、N、P指标的影响大于物种, 与上述研究结果一致.采样地点对叶片C、N、P指标的影响可能来自于土壤的空间异质性和环境因子的变化(Reich & Oleksyn, 2004).植物种类对叶片C、N、P指标的影响主要来源于不同种植物自身的生物学特征和功能性状的差别(He et al., 2008).地点和环境因子在解释叶片C、N、P指标变异方面比植物种类更重要, 或许能更强烈地影响叶片C、N、P含量的空间格局. ...

Species composition interacts with fertilizer to control longterm change in tundra productivity
1
2001

... 研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃.同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997).由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同.草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis).灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014).这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017). ...

Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants
1
1972

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing’an Mountains, China
1
2014

... 研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃.同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997).由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同.草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis).灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014).这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017). ...

Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere
2
2002

... 叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004).植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002).与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱.叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大.叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因.与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4).叶片N含量比荒漠植物高, 比草原植物低.叶片P含量只高于荒漠植物(表4).这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制. ...

... 叶片C、N、P含量的地点间、种间CV分析能够进一步探讨植物C、N、P利用异质性的环境敏感性和生物学机制(任书杰等, 2012).研究区叶片P含量地点间变异最大(>10%), 叶片N含量次之, 叶片C含量的地点间变异最小(<10%).说明叶片C含量稳定性最高, 主要原因是C在植物生物质合成中主要起骨架作用, 是结构性物质的主要构建元素, 受外部环境条件变化影响较小(Bradshaw et al., 2012).叶片N含量出现中等地点间变异(图3B), 反映其受土壤N可利用性影响较大(Sterner & Elser, 2002).叶片P含量的地点间变异大于叶片N含量, 符合限制性元素稳定性假说(Han et al., 2011), 该假说指出植物P含量比植物N含量更容易被环境变化所改变, 反映了植物对不同元素稳态控制的程度.草本植物叶片C、N、P含量的地点间CV高于灌木(图3A-3C), 说明草本植物N、P吸收对环境变化较敏感, 生活型是影响植物N、P吸收环境响应和敏感性的一个因素(Güsewell, 2004).对物种来说, 白毛羊胡子草、小叶章、笃斯越桔、越桔、地桂、头花杜鹃叶片N含量, 以及所有物种叶片P含量的地点变异呈中等变异性(图3C), 只有少数物种N含量地点变异弱(图3B), 表明该地区泥炭地多数植物种N、P吸收和固持存在环境异质性.因为叶片C含量变异较小而P含量变异较大(图3A、3C), 叶片C:N地点变异也较小而C:P和N:P变异较大(图3D-3F).草本植物N、P利用效率的地点变异高于灌木, 多数物种N、P利用效率的地点变异呈中等变异性, 少数呈弱变异性(图3D、3E), 这些结果说明大兴安岭泥炭地多数植物种N、P利用效率具有较高的空间异质性, 这些不同种、不同程度N、P吸收和利用效率的地点变异性差异体现了植物N、P利用对环境N、P变异的响应能力和生物适应性(Yang et al., 2015). ...

Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems
1
2018

... 氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982).植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018).研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016). ...

A comparative study of leaf nutrient concentrations in a regional herbaceous flora
1
1997

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent
1
2017

... 环境气候条件影响土壤N、P有效性, 属于影响植物N、P含量的重要外因(Chapin III et al., 1986; Kerkhoff & Enquist, 2006).Reich和Oleksyn (2004)通过叶片N、P含量和N:P证据揭示了植物N、P吸收和有效性随纬度升高和年平均气温降低而显著降低.Fisher等(2013)发现叶片N:P随海拔升高而降低, 认为高海拔地区植物生长受到N限制.此外, N沉降增加在一定程度上缓减植物N限制, 引起在P相对缺乏的生态系统中植物受P限制或N、P共同限制(Aerts et al., 1992).在相同的土壤N、P状态下, 降水量较高则可能增加土壤有效态N、P淋溶丢失, 使植物N、P含量随降水量增加而降低(Reich & Oleksyn, 2004).植物N、P指标随地点要素和环境因子的变化会因为空间尺度大小、生态系统类型和物种等不同而不同(Norby et al., 2010; ?gren et al., 2012; Tian et al., 2017).在区域尺度内特定生态系统类型植物的N、P含量水平和变异机制及其对地点环境的适应性值得进一步探讨. ...

Nutrient cycling and nutrient use efficiency
1
1982

... 氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982).植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018).研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016). ...

The stoichiometry of carbon and nutrients in peat formation
1
2015

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

Future productivity and carbon storage limited by terrestrial nutrient availability
1
2015

... 氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982).植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018).研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016). ...

2
2010

... Plant mycorrhizal types, leaf shapes and plant height in the Da Hinggan Ling peatlands
Table 5
生活型
Growth form
植物种
Species
菌根类型
Mycorrhizal type
植株高度
Plant height (cm)
叶形
Leaf shape
参考文献
Reference
草本植物 Graminoids 白毛羊胡子草
Eriophorum vaginatum
无菌根 Non-mycorrhizae 40-80 线形 Linear leaf Hobbie & Hobbie, 2006; Wu & Hong, 2010
玉簪薹草 Carex globularis 无菌根 Non-mycorrhizae 30-60 线形 Linear leaf
小叶章 Deyeuxia angustifolia 丛枝菌根 Arbuscular mycorrhizae 30-100 线形 Linear leaf
落叶灌木 Deciduous shrubs 柴桦 Betula fruticosa 外生菌根 Ecto-mycorrhizae 50-150 卵形 Ovate leaf
越桔柳 Salix myrtilloides 外生菌根 Ecto-mycorrhizae 30-80 椭圆形 Oblong leaf
细叶沼柳 Salix rosmarinifolia 外生菌根 Ecto-mycorrhizae 50-100 披针形 Lanceolate leaf
笃斯越桔 Vaccinium uliginosum 杜鹃花科菌根 Ericoid mycorrhizae 50-80 倒卵形 Obovate leaf
越桔 Vaccinium vitis-idaea 杜鹃花科菌根 Ericoid mycorrhizae 10-30 倒卵形 Obovate leaf
常绿灌木 Evergreen shrubs 杜香 Ledum palustre 杜鹃花科菌根 Ericoid mycorrhizae 40-50 线形 Linear leaf
地桂 Chamaedaphne calyculata 杜鹃花科菌根 Ericoid mycorrhizae 30-150 椭圆形 Oblong leaf
头花杜鹃 Rhododendron capitatum 杜鹃花科菌根 Ericoid mycorrhizae 40-100 椭圆形 Oblong leaf
在生活型内部, 草本植物白毛羊胡子草、落叶灌木柴桦、常绿灌木杜香的叶片C、N、P含量显著高于相同生活型的其他物种(图2A-2C), 反映了这几种植物在其功能群中具有较高的N、P竞争和利用.在俄罗斯北部季克西和中部雅库茨克, Kudo (1995)发现苔原杜香叶片N含量分别为(1.8 ± 0.2)% 和(1.6 ± 0.2)%.在阿拉斯加南部的泥炭地, 桦木(Betula glandulosa)叶片N、P含量分别为(1.5 ± 0.3)%和(0.18 ± 0.04)%, 白毛羊胡子草叶片N、P含量分别为(1.0 ± 0.1)%和(0.11 ± 0.04)% (Finger et al., 2016).和这些较高纬度地区泥炭地的同类或同种植物比较, 大兴安岭泥炭地植物总体上具有较高的N、P含量, 反映了在相对低纬度较高气温和人为N沉降下, 泥炭地N、P可利用性增加. ...

... 相同生活型不同植物C、N、P指标种间变异能够反映植物种系分化过程中元素吸收、同化的特异性(张文彦等, 2010).总体上, 叶片C含量的种间变异较小(平均为4.7%; 图4A), N、P含量及C:N、C:P、N:P种间变异较大, 常绿灌木叶片N、P含量和C:N、C:P的种间变异小于草本和落叶灌木(图4B-4F).这些结果说明在相同的环境条件下, 草本和落叶灌木N、P吸收和同化的种间变异性较高, 常绿灌木种间产生较相似的叶片N、P吸收策略.生活型内部遗传多样性高、叶性状和根系特征的差异是决定植物N、P吸收和利用效率种间变异的重要因素(Zhang et al., 2013).本研究中草本和落叶灌木植物种间分化差异大, 其中草本植物中白毛羊胡子草和玉簪薹草为无菌根植物, 小叶章为丛枝菌根植物; 落叶灌木中柴桦、越桔柳、细叶沼柳为外生菌根植物, 其叶片分别为卵形、椭圆形和披针形, 笃斯越桔和越桔为杜鹃花科菌根植物, 越桔地上部分植株高约20 cm, 远低于其他落叶灌木; 常绿灌木均是杜鹃花科植物, 其植物高度、叶片大小等形态特征更相似(吴征镒和洪德元, 2010, 表5).这些形态特征、生理性状以及生态位的种间特异性均会对植物光合固C和N、P吸收能力、利用效率产生影响.大兴安岭常绿灌木的N、P储存能力低, 利用效率高, 地点间、种间变异性较小, 或许成为泥炭地群落面对环境变化较为稳定的种群, 能够为评价或预测该地区泥炭地植被物种组成的改变提供有效信息. ...

2
2010

... Plant mycorrhizal types, leaf shapes and plant height in the Da Hinggan Ling peatlands
Table 5
生活型
Growth form
植物种
Species
菌根类型
Mycorrhizal type
植株高度
Plant height (cm)
叶形
Leaf shape
参考文献
Reference
草本植物 Graminoids 白毛羊胡子草
Eriophorum vaginatum
无菌根 Non-mycorrhizae 40-80 线形 Linear leaf Hobbie & Hobbie, 2006; Wu & Hong, 2010
玉簪薹草 Carex globularis 无菌根 Non-mycorrhizae 30-60 线形 Linear leaf
小叶章 Deyeuxia angustifolia 丛枝菌根 Arbuscular mycorrhizae 30-100 线形 Linear leaf
落叶灌木 Deciduous shrubs 柴桦 Betula fruticosa 外生菌根 Ecto-mycorrhizae 50-150 卵形 Ovate leaf
越桔柳 Salix myrtilloides 外生菌根 Ecto-mycorrhizae 30-80 椭圆形 Oblong leaf
细叶沼柳 Salix rosmarinifolia 外生菌根 Ecto-mycorrhizae 50-100 披针形 Lanceolate leaf
笃斯越桔 Vaccinium uliginosum 杜鹃花科菌根 Ericoid mycorrhizae 50-80 倒卵形 Obovate leaf
越桔 Vaccinium vitis-idaea 杜鹃花科菌根 Ericoid mycorrhizae 10-30 倒卵形 Obovate leaf
常绿灌木 Evergreen shrubs 杜香 Ledum palustre 杜鹃花科菌根 Ericoid mycorrhizae 40-50 线形 Linear leaf
地桂 Chamaedaphne calyculata 杜鹃花科菌根 Ericoid mycorrhizae 30-150 椭圆形 Oblong leaf
头花杜鹃 Rhododendron capitatum 杜鹃花科菌根 Ericoid mycorrhizae 40-100 椭圆形 Oblong leaf
在生活型内部, 草本植物白毛羊胡子草、落叶灌木柴桦、常绿灌木杜香的叶片C、N、P含量显著高于相同生活型的其他物种(图2A-2C), 反映了这几种植物在其功能群中具有较高的N、P竞争和利用.在俄罗斯北部季克西和中部雅库茨克, Kudo (1995)发现苔原杜香叶片N含量分别为(1.8 ± 0.2)% 和(1.6 ± 0.2)%.在阿拉斯加南部的泥炭地, 桦木(Betula glandulosa)叶片N、P含量分别为(1.5 ± 0.3)%和(0.18 ± 0.04)%, 白毛羊胡子草叶片N、P含量分别为(1.0 ± 0.1)%和(0.11 ± 0.04)% (Finger et al., 2016).和这些较高纬度地区泥炭地的同类或同种植物比较, 大兴安岭泥炭地植物总体上具有较高的N、P含量, 反映了在相对低纬度较高气温和人为N沉降下, 泥炭地N、P可利用性增加. ...

... 相同生活型不同植物C、N、P指标种间变异能够反映植物种系分化过程中元素吸收、同化的特异性(张文彦等, 2010).总体上, 叶片C含量的种间变异较小(平均为4.7%; 图4A), N、P含量及C:N、C:P、N:P种间变异较大, 常绿灌木叶片N、P含量和C:N、C:P的种间变异小于草本和落叶灌木(图4B-4F).这些结果说明在相同的环境条件下, 草本和落叶灌木N、P吸收和同化的种间变异性较高, 常绿灌木种间产生较相似的叶片N、P吸收策略.生活型内部遗传多样性高、叶性状和根系特征的差异是决定植物N、P吸收和利用效率种间变异的重要因素(Zhang et al., 2013).本研究中草本和落叶灌木植物种间分化差异大, 其中草本植物中白毛羊胡子草和玉簪薹草为无菌根植物, 小叶章为丛枝菌根植物; 落叶灌木中柴桦、越桔柳、细叶沼柳为外生菌根植物, 其叶片分别为卵形、椭圆形和披针形, 笃斯越桔和越桔为杜鹃花科菌根植物, 越桔地上部分植株高约20 cm, 远低于其他落叶灌木; 常绿灌木均是杜鹃花科植物, 其植物高度、叶片大小等形态特征更相似(吴征镒和洪德元, 2010, 表5).这些形态特征、生理性状以及生态位的种间特异性均会对植物光合固C和N、P吸收能力、利用效率产生影响.大兴安岭常绿灌木的N、P储存能力低, 利用效率高, 地点间、种间变异性较小, 或许成为泥炭地群落面对环境变化较为稳定的种群, 能够为评价或预测该地区泥炭地植被物种组成的改变提供有效信息. ...

中国东北主要植被类型的分布与气候的关系
1
1986

... 研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃.同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997).由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同.草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis).灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014).这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017). ...

中国东北主要植被类型的分布与气候的关系
1
1986

... 研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃.同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997).由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同.草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis).灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014).这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017). ...

Nutrient limitation of alpine plants: Implications from leaf N:P stoichiometry and leaf δ 15N.
1
2014

... 氮(N)和磷(P)是陆生植物生长最重要的限制性营养元素(Vitousek, 1982).植物N、P的吸收利用影响植物功能性状、物种组成、生产力和固碳(C)能力(Xu et al., 2014; Liu et al., 2018; Tang et al., 2018).研究表明, 植物叶片C、N、P含量及其计量值不仅能够指示生态系统整体的N、P状态(Han et al., 2005; Wieder et al., 2015), 也能够解释植物的群落结构、生态位、共存和竞争关系(Elser et al., 2000b; Hu et al., 2018), 还能够反映植物生长速率或生物量与N、P吸收能力、利用效率之间的关系并诊断植物受N、P限制的状况(Koerselman & Meuleman, 1996; ?gren, 2004; 胡朝臣等, 2016). ...

An assessment on the uncertainty of the nitrogen to phosphorus ratio as a threshold for nutrient limitation in plants
3
2017

... (Güsewell, 2004).由此可见, 叶片N:P评估植物N、P限制类型存在不确定性.使用N:P阈值为14和16 (或10和20)来评估N和P限制时可能产生32.5% (或16.2%)的误差.与此同时, 叶片N、P含量越高, 误差风险越低, 10和20的阈值比14和16的误差风险低(Yan et al., 2017).本研究中, 泥炭地植物叶片N:P小于10同时其N含量低于全球植物叶片N含量平均值(1.9%)的植物占28.5%, 以小叶章和头花杜鹃为主(图5).叶片N:P大于20同时其P含量低于全球植物叶片P含量平均值(0.12%)的植物占9% (图5).这些结果说明大兴安岭泥炭地小叶章和头花杜鹃相比多数其他植物来说更易受N限制, 而多数其他植物可能更易受N、P共同限制, 这也与较高纬度地区多数泥炭地植物受N限制不同.对于相对较低纬度的北方泥炭地, 人为因素进行的大气N沉降输入可能一定程度已经减缓了植物受N的限制(曾竞等, 2013), 使大兴安岭地区泥炭地植物更多出现N、P共同限制的状态. ...

... 大兴安岭泥炭地植物叶片N、P含量与N:P阈值.虚线分别表示N:P阈值为10, 14, 16和20.星星表示全球植物叶片N含量平均值(1.9%)和P含量平均值(0.12%)(Yan et al., 2017). Leaf N and P concentrations and N:P threshold in peatland plants of Da Hinggan Ling. Dash lines represent the N:P ratios of 10, 14, 16 and 20, respectively. Star-shaped symbol represents the global mean leaf N concentration (1.9%) and P concentration (0.12%) (<xref ref-type="bibr" rid="b57">Yan <i>et al</i>., 2017</xref>). Bf, <i>Betula fruticosa; </i>Cc, <i>Chamaedaphne calyculata;</i> Cg, <i>Carex globularis;</i> Da, <i>Deyeuxia angustifolia;</i> Ev, <i>Eriophorum vaginatum;</i> Lp, <i>Ledum palustre;</i> Rc, <i>Rhododendron capitatum</i>; Sm, <i>Salix myrtilloides;</i> Sr, <i>Salix rosmarinifolia;</i> Vu, <i>Vaccinium uliginosum;</i> Vv, <i>Vaccinium vitis-idaea</i>. Fig. 5 3.3 叶片C、N、P指标的地点间和种间变异 叶片C、N、P、C:N以及C:P的变异来源均表现为采样地点影响最大, 采样地点和植物种类交互作用次之, 植物种类最小(表3).研究表明, 环境和物种分类对中国陆生植物叶片N的解释量分别为41.7%和4.9%, 对叶片P的解释量分别为33.3%和5.8% (Zhang et al., 2011).大兴安岭区域尺度泥炭地11种植物水平上, 地点对叶片C、N、P指标的影响大于物种, 与上述研究结果一致.采样地点对叶片C、N、P指标的影响可能来自于土壤的空间异质性和环境因子的变化(Reich & Oleksyn, 2004).植物种类对叶片C、N、P指标的影响主要来源于不同种植物自身的生物学特征和功能性状的差别(He et al., 2008).地点和环境因子在解释叶片C、N、P指标变异方面比植物种类更重要, 或许能更强烈地影响叶片C、N、P含量的空间格局. ...

... Leaf N and P concentrations and N:P threshold in peatland plants of Da Hinggan Ling. Dash lines represent the N:P ratios of 10, 14, 16 and 20, respectively. Star-shaped symbol represents the global mean leaf N concentration (1.9%) and P concentration (0.12%) (Yan et al., 2017). Bf, Betula fruticosa; Cc, Chamaedaphne calyculata; Cg, Carex globularis; Da, Deyeuxia angustifolia; Ev, Eriophorum vaginatum; Lp, Ledum palustre; Rc, Rhododendron capitatum; Sm, Salix myrtilloides; Sr, Salix rosmarinifolia; Vu, Vaccinium uliginosum; Vv, Vaccinium vitis-idaea. Fig. 5
3.3 叶片C、N、P指标的地点间和种间变异 叶片C、N、P、C:N以及C:P的变异来源均表现为采样地点影响最大, 采样地点和植物种类交互作用次之, 植物种类最小(表3).研究表明, 环境和物种分类对中国陆生植物叶片N的解释量分别为41.7%和4.9%, 对叶片P的解释量分别为33.3%和5.8% (Zhang et al., 2011).大兴安岭区域尺度泥炭地11种植物水平上, 地点对叶片C、N、P指标的影响大于物种, 与上述研究结果一致.采样地点对叶片C、N、P指标的影响可能来自于土壤的空间异质性和环境因子的变化(Reich & Oleksyn, 2004).植物种类对叶片C、N、P指标的影响主要来源于不同种植物自身的生物学特征和功能性状的差别(He et al., 2008).地点和环境因子在解释叶片C、N、P指标变异方面比植物种类更重要, 或许能更强烈地影响叶片C、N、P含量的空间格局. ...

Variations of leaf N, P concentrations in shrubland biomes across northern China: Phylogeny, climate and soil
1
2015

... 叶片C、N、P含量的地点间、种间CV分析能够进一步探讨植物C、N、P利用异质性的环境敏感性和生物学机制(任书杰等, 2012).研究区叶片P含量地点间变异最大(>10%), 叶片N含量次之, 叶片C含量的地点间变异最小(<10%).说明叶片C含量稳定性最高, 主要原因是C在植物生物质合成中主要起骨架作用, 是结构性物质的主要构建元素, 受外部环境条件变化影响较小(Bradshaw et al., 2012).叶片N含量出现中等地点间变异(图3B), 反映其受土壤N可利用性影响较大(Sterner & Elser, 2002).叶片P含量的地点间变异大于叶片N含量, 符合限制性元素稳定性假说(Han et al., 2011), 该假说指出植物P含量比植物N含量更容易被环境变化所改变, 反映了植物对不同元素稳态控制的程度.草本植物叶片C、N、P含量的地点间CV高于灌木(图3A-3C), 说明草本植物N、P吸收对环境变化较敏感, 生活型是影响植物N、P吸收环境响应和敏感性的一个因素(Güsewell, 2004).对物种来说, 白毛羊胡子草、小叶章、笃斯越桔、越桔、地桂、头花杜鹃叶片N含量, 以及所有物种叶片P含量的地点变异呈中等变异性(图3C), 只有少数物种N含量地点变异弱(图3B), 表明该地区泥炭地多数植物种N、P吸收和固持存在环境异质性.因为叶片C含量变异较小而P含量变异较大(图3A、3C), 叶片C:N地点变异也较小而C:P和N:P变异较大(图3D-3F).草本植物N、P利用效率的地点变异高于灌木, 多数物种N、P利用效率的地点变异呈中等变异性, 少数呈弱变异性(图3D、3E), 这些结果说明大兴安岭泥炭地多数植物种N、P利用效率具有较高的空间异质性, 这些不同种、不同程度N、P吸收和利用效率的地点变异性差异体现了植物N、P利用对环境N、P变异的响应能力和生物适应性(Yang et al., 2015). ...

三种温带树种非结构性碳水化合物的分配
1
2011

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

三种温带树种非结构性碳水化合物的分配
1
2011

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

氮沉降对泥炭地影响的研究进展
1
2013

... (Güsewell, 2004).由此可见, 叶片N:P评估植物N、P限制类型存在不确定性.使用N:P阈值为14和16 (或10和20)来评估N和P限制时可能产生32.5% (或16.2%)的误差.与此同时, 叶片N、P含量越高, 误差风险越低, 10和20的阈值比14和16的误差风险低(Yan et al., 2017).本研究中, 泥炭地植物叶片N:P小于10同时其N含量低于全球植物叶片N含量平均值(1.9%)的植物占28.5%, 以小叶章和头花杜鹃为主(图5).叶片N:P大于20同时其P含量低于全球植物叶片P含量平均值(0.12%)的植物占9% (图5).这些结果说明大兴安岭泥炭地小叶章和头花杜鹃相比多数其他植物来说更易受N限制, 而多数其他植物可能更易受N、P共同限制, 这也与较高纬度地区多数泥炭地植物受N限制不同.对于相对较低纬度的北方泥炭地, 人为因素进行的大气N沉降输入可能一定程度已经减缓了植物受N的限制(曾竞等, 2013), 使大兴安岭地区泥炭地植物更多出现N、P共同限制的状态. ...

氮沉降对泥炭地影响的研究进展
1
2013

... (Güsewell, 2004).由此可见, 叶片N:P评估植物N、P限制类型存在不确定性.使用N:P阈值为14和16 (或10和20)来评估N和P限制时可能产生32.5% (或16.2%)的误差.与此同时, 叶片N、P含量越高, 误差风险越低, 10和20的阈值比14和16的误差风险低(Yan et al., 2017).本研究中, 泥炭地植物叶片N:P小于10同时其N含量低于全球植物叶片N含量平均值(1.9%)的植物占28.5%, 以小叶章和头花杜鹃为主(图5).叶片N:P大于20同时其P含量低于全球植物叶片P含量平均值(0.12%)的植物占9% (图5).这些结果说明大兴安岭泥炭地小叶章和头花杜鹃相比多数其他植物来说更易受N限制, 而多数其他植物可能更易受N、P共同限制, 这也与较高纬度地区多数泥炭地植物受N限制不同.对于相对较低纬度的北方泥炭地, 人为因素进行的大气N沉降输入可能一定程度已经减缓了植物受N的限制(曾竞等, 2013), 使大兴安岭地区泥炭地植物更多出现N、P共同限制的状态. ...

Sampling date, leaf age and root size: Implications for the study of plant C:N:P stoichiometry
1
2013

... 相同生活型不同植物C、N、P指标种间变异能够反映植物种系分化过程中元素吸收、同化的特异性(张文彦等, 2010).总体上, 叶片C含量的种间变异较小(平均为4.7%; 图4A), N、P含量及C:N、C:P、N:P种间变异较大, 常绿灌木叶片N、P含量和C:N、C:P的种间变异小于草本和落叶灌木(图4B-4F).这些结果说明在相同的环境条件下, 草本和落叶灌木N、P吸收和同化的种间变异性较高, 常绿灌木种间产生较相似的叶片N、P吸收策略.生活型内部遗传多样性高、叶性状和根系特征的差异是决定植物N、P吸收和利用效率种间变异的重要因素(Zhang et al., 2013).本研究中草本和落叶灌木植物种间分化差异大, 其中草本植物中白毛羊胡子草和玉簪薹草为无菌根植物, 小叶章为丛枝菌根植物; 落叶灌木中柴桦、越桔柳、细叶沼柳为外生菌根植物, 其叶片分别为卵形、椭圆形和披针形, 笃斯越桔和越桔为杜鹃花科菌根植物, 越桔地上部分植株高约20 cm, 远低于其他落叶灌木; 常绿灌木均是杜鹃花科植物, 其植物高度、叶片大小等形态特征更相似(吴征镒和洪德元, 2010, 表5).这些形态特征、生理性状以及生态位的种间特异性均会对植物光合固C和N、P吸收能力、利用效率产生影响.大兴安岭常绿灌木的N、P储存能力低, 利用效率高, 地点间、种间变异性较小, 或许成为泥炭地群落面对环境变化较为稳定的种群, 能够为评价或预测该地区泥炭地植被物种组成的改变提供有效信息. ...

Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol
1
2004

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

C:N:P stoichiometry in China’s forests: From organs to ecosystems
1
2018

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

阿拉善荒漠典型植物功能群氮、磷化学计量特征
3
2014

... 叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004).植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002).与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱.叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大.叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因.与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4).叶片N含量比荒漠植物高, 比草原植物低.叶片P含量只高于荒漠植物(表4).这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制. ...

... Comparisons of leaf C, N, and P concentrations and their stoichiometry between plants of the Da Hinggan Ling peatlands and those in other studies
Table 4
研究区域
Study region
C (%) N (%) P (%) C:N C:P N:P 数据来源
Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Data source
泥炭地 Peatlands 42.2 2.9 275 1.9 0.4 276 0.18 0.07 263 23.6 6.2 275 269 110 262 11.6 4.6 263 本研究 This Study
森林 Forests 48.0 5.3 102 1.8 0.5 102 0.20 0.12 102 29.1 9.5 102 314 152 102 11.5 5.0 102 Ren et al., 2012
荒漠 Deserts 1.1 0.8 276 0.10 0.08 276 11.5 5.1 276 Zhang et al., 2014
草原 Grasslands 43.8 3.0 213 2.8 0.9 213 0.19 0.84 525 17.9 5.7 213 15.3 5.2 525 He et al., 2006, 2008
中国 China 2.0 0.8 554 0.15 0.10 745 16.3 9.3 547 Han et al., 2005
全球 Globe 46.2 7.2 76 2.0 0.9 1 251 0.18 0.11 923 23.8 17.3 62 301 237 43 13.8 9.5 894 Elser et al., 2000a; Reich & Oleksyn, 2004
在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

阿拉善荒漠典型植物功能群氮、磷化学计量特征
3
2014

... 叶片C含量主要受植物光合生理特性影响, 而叶片N、P含量与其吸收同化能力有关(?gren, 2004).植物叶片C和N、N和P呈极显著正相关关系(p < 0.01), N含量与C:P、P含量与C:N呈极显著负相关关系(p < 0.01, 表2), 体现了泥炭地植物群落光合固C、N和P吸收同化之间存在耦合和相互促进的关系, 植物的光合固C功能、硝酸还原酶代谢N和分配给RNA以P等生理过程相互依赖(Sterner & Elser, 2002).与全国和全球尺度的研究(Elser et al., 2000a; Reich & Oleksyn 2004; Han et al., 2005)相比, 大兴安岭泥炭地植物叶片C含量平均值(42.2%)小于全球尺度观测水平(46.2%), 这表明其叶片有机化合物含量不是很高, C储存能力比全球植物弱.叶片N含量(1.9%)小于全国(全球)平均值(2.0%), 差异并不大.叶片P含量(0.18%)大于全国植物平均值(0.15%), 接近全球植物平均值(0.18%)(表4), 在中国区域土壤全P数据库中, 东北地区土壤P含量较高(>0.10%), 叶片P含量与土壤P含量密切相关(Aerts & Chapin III, 2000), 这可能是大兴安岭泥炭地植物叶片P含量较高的原因.与中国森林、荒漠和草原生态系统(He et al., 2006, 2008; 任书杰等, 2012; 张珂等, 2014)相比, 大兴安岭泥炭地植物叶片C含量比森林和草原生态系统低(表4).叶片N含量比荒漠植物高, 比草原植物低.叶片P含量只高于荒漠植物(表4).这表明, 泥炭地植物的生长环境比荒漠典型植物富集营养元素, 但是与森林和草地生态系统相比, C储存能力不高, 植物生长易受N、P养分限制. ...

... Comparisons of leaf C, N, and P concentrations and their stoichiometry between plants of the Da Hinggan Ling peatlands and those in other studies
Table 4
研究区域
Study region
C (%) N (%) P (%) C:N C:P N:P 数据来源
Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Data source
泥炭地 Peatlands 42.2 2.9 275 1.9 0.4 276 0.18 0.07 263 23.6 6.2 275 269 110 262 11.6 4.6 263 本研究 This Study
森林 Forests 48.0 5.3 102 1.8 0.5 102 0.20 0.12 102 29.1 9.5 102 314 152 102 11.5 5.0 102 Ren et al., 2012
荒漠 Deserts 1.1 0.8 276 0.10 0.08 276 11.5 5.1 276 Zhang et al., 2014
草原 Grasslands 43.8 3.0 213 2.8 0.9 213 0.19 0.84 525 17.9 5.7 213 15.3 5.2 525 He et al., 2006, 2008
中国 China 2.0 0.8 554 0.15 0.10 745 16.3 9.3 547 Han et al., 2005
全球 Globe 46.2 7.2 76 2.0 0.9 1 251 0.18 0.11 923 23.8 17.3 62 301 237 43 13.8 9.5 894 Elser et al., 2000a; Reich & Oleksyn, 2004
在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

... 在生活型之间, 灌木叶片C、N、P含量高于草本(图2A-2C), 这与前人研究的结果不同, 在阿拉善荒漠以及北京周边温带地区, 研究者发现草本植物叶片N、P含量均显著高于灌木(韩文轩等, 2009; 张珂等, 2014), 认为符合植物相对生长速率的假说(Elser et al., 2000b).具体而言, 短命或生长较快的草本植物在生长期内N、P需求较高、吸收能力较强, 因此其叶片N、P含量高于生长较慢的灌木(Thompson et al., 1997; Reich & Oleksyn, 2004).本研究中的草本植物均为多年生, 不包括短命或相对快速生长的一年生植物种, 本研究的灌木植物多有菌根, 柴桦、越桔柳、细叶沼柳为外生菌根, 杜香、地桂等为杜鹃花科菌根(表5), 其根际微生物群落数量和活性通常高于草本.有些灌木如杜香和柴桦被认为是以泥炭藓和草本植物为主的泥炭地的入侵植物(杜晓明等, 2002; Bragazza et al., 2004), 其N、P有效性和吸收能力比草本植物高(Hobbie & Hobbie, 2006).因此, 本研究中灌木叶片N、P含量高于草本植物, 反映了在气候更寒冷, N、P限制性更强的大兴安岭泥炭地生态系统, 植物生长速率与N、P利用能力之间的调控机制可能与较低纬度的其他生态系统不同.此外, 在落叶灌木中, 外生菌根植物(柴桦、越桔柳) N、P含量也比杜鹃花科菌根植物(笃斯越桔、越桔)高(图2B、2C), 尽管有研究表明杜鹃花科菌根植物对菌根获取有机N的依赖性较强, 但这种获取有机N的吸收方式对植物总N吸收的贡献不大(Michelsen et al., 1998), 外生菌根植物依然具有较强的N、P吸收能力.常绿灌木叶片C含量显著高于落叶灌木(图2A), N、P含量低于落叶灌木(图2B、2C), 这可能是由于常绿灌木分布的海拔相对较高, 在寒冷环境下, 叶片为维持渗透压而储存较多的非结构性碳(于丽敏等, 2011), 而落叶植物对N、P的需求和吸收比常绿灌木高, 因为落叶灌木在一个生长季内重新合成叶的生物质, 其N、P需求更高(Small, 1972).这些结果详细展示了东北泥炭地不同生活型植物存在明显的N、P生态位分化和吸收利用差异. ...

Leaf element concentrations of terrestrial plants across China are influenced by taxonomy and the environment
1
2011

... 叶片C、N、P、C:N以及C:P的变异来源均表现为采样地点影响最大, 采样地点和植物种类交互作用次之, 植物种类最小(表3).研究表明, 环境和物种分类对中国陆生植物叶片N的解释量分别为41.7%和4.9%, 对叶片P的解释量分别为33.3%和5.8% (Zhang et al., 2011).大兴安岭区域尺度泥炭地11种植物水平上, 地点对叶片C、N、P指标的影响大于物种, 与上述研究结果一致.采样地点对叶片C、N、P指标的影响可能来自于土壤的空间异质性和环境因子的变化(Reich & Oleksyn, 2004).植物种类对叶片C、N、P指标的影响主要来源于不同种植物自身的生物学特征和功能性状的差别(He et al., 2008).地点和环境因子在解释叶片C、N、P指标变异方面比植物种类更重要, 或许能更强烈地影响叶片C、N、P含量的空间格局. ...

中国典型草原优势植物功能群氮磷化学计量学特征研究
2
2010

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

... 相同生活型不同植物C、N、P指标种间变异能够反映植物种系分化过程中元素吸收、同化的特异性(张文彦等, 2010).总体上, 叶片C含量的种间变异较小(平均为4.7%; 图4A), N、P含量及C:N、C:P、N:P种间变异较大, 常绿灌木叶片N、P含量和C:N、C:P的种间变异小于草本和落叶灌木(图4B-4F).这些结果说明在相同的环境条件下, 草本和落叶灌木N、P吸收和同化的种间变异性较高, 常绿灌木种间产生较相似的叶片N、P吸收策略.生活型内部遗传多样性高、叶性状和根系特征的差异是决定植物N、P吸收和利用效率种间变异的重要因素(Zhang et al., 2013).本研究中草本和落叶灌木植物种间分化差异大, 其中草本植物中白毛羊胡子草和玉簪薹草为无菌根植物, 小叶章为丛枝菌根植物; 落叶灌木中柴桦、越桔柳、细叶沼柳为外生菌根植物, 其叶片分别为卵形、椭圆形和披针形, 笃斯越桔和越桔为杜鹃花科菌根植物, 越桔地上部分植株高约20 cm, 远低于其他落叶灌木; 常绿灌木均是杜鹃花科植物, 其植物高度、叶片大小等形态特征更相似(吴征镒和洪德元, 2010, 表5).这些形态特征、生理性状以及生态位的种间特异性均会对植物光合固C和N、P吸收能力、利用效率产生影响.大兴安岭常绿灌木的N、P储存能力低, 利用效率高, 地点间、种间变异性较小, 或许成为泥炭地群落面对环境变化较为稳定的种群, 能够为评价或预测该地区泥炭地植被物种组成的改变提供有效信息. ...

中国典型草原优势植物功能群氮磷化学计量学特征研究
2
2010

... 生理特征和功能性状是决定植物叶片C、N、P含量及其计量值特征和变异大小的重要内因(Reich et al., 1999; Hall et al., 2010).研究表明, 草本植物生长迅速, 尤其一年生草本, 生长和发育周期比木本植物短, 其N、P吸收速率和竞争能力较高, 从而表现出叶片N、P含量较高, 而C:N、C:P较低(Güsewell & Koerselman, 2002).常绿植物可能因为营养代谢的时间和物种变异较小, 其叶片N、P含量总体较低(Aerts, 1995), 而C:N、C:P偏高; 相对而言, 落叶植物新叶生长和落叶频繁存在季节变化, 这些使得落叶和常绿植物的叶片N、P吸收、再吸收和利用效率存在差异(Aerts & Chapin III, 2000).同科或同属的植物生理学差异和遗传变异小, 植物N、P含量的种间变异小(He et al., 2008).总体而言, 不同生活型和不同植物种在特定土壤N、P条件下存在吸收和竞争能力、利用效率上的差异, 因此, 叶片C、N、P含量及其计量值变化特征可以详细区分其吸收状况和利用机制(张文彦等, 2010; Zhang et al., 2018).目前, 相关的研究更多针对森林和草地生态系统(Zhang et al., 2004; Han et al., 2011; 任书杰等, 2012), 而北方泥炭地是我国陆地重要的储C生态系统, 也是气候变化敏感区(Mao et al., 2018).泥炭地植被类型丰富且生活型和功能性状差异大, 植被吸收大气CO2以泥炭形式的沉积有效减缓了气候变暖, 植物叶片C、N、P含量及其计量值变化特征对评价其植被动态和固碳能力具有重要意义(Bragazza et al., 2013).但是, 泥炭地植物叶片C、N、P含量的详细分析并不多, 阻碍了对其N、P吸收利用、限制性及其环境敏感性等的理解(Wang et al., 2015). ...

... 相同生活型不同植物C、N、P指标种间变异能够反映植物种系分化过程中元素吸收、同化的特异性(张文彦等, 2010).总体上, 叶片C含量的种间变异较小(平均为4.7%; 图4A), N、P含量及C:N、C:P、N:P种间变异较大, 常绿灌木叶片N、P含量和C:N、C:P的种间变异小于草本和落叶灌木(图4B-4F).这些结果说明在相同的环境条件下, 草本和落叶灌木N、P吸收和同化的种间变异性较高, 常绿灌木种间产生较相似的叶片N、P吸收策略.生活型内部遗传多样性高、叶性状和根系特征的差异是决定植物N、P吸收和利用效率种间变异的重要因素(Zhang et al., 2013).本研究中草本和落叶灌木植物种间分化差异大, 其中草本植物中白毛羊胡子草和玉簪薹草为无菌根植物, 小叶章为丛枝菌根植物; 落叶灌木中柴桦、越桔柳、细叶沼柳为外生菌根植物, 其叶片分别为卵形、椭圆形和披针形, 笃斯越桔和越桔为杜鹃花科菌根植物, 越桔地上部分植株高约20 cm, 远低于其他落叶灌木; 常绿灌木均是杜鹃花科植物, 其植物高度、叶片大小等形态特征更相似(吴征镒和洪德元, 2010, 表5).这些形态特征、生理性状以及生态位的种间特异性均会对植物光合固C和N、P吸收能力、利用效率产生影响.大兴安岭常绿灌木的N、P储存能力低, 利用效率高, 地点间、种间变异性较小, 或许成为泥炭地群落面对环境变化较为稳定的种群, 能够为评价或预测该地区泥炭地植被物种组成的改变提供有效信息. ...

基于典范对应分析的苏北滩涂土壤春季盐渍化特征研究
1
2010

... 为了分析相同生活型和同种植物的叶片C、N、P指标的地点间变异, 以及相同生活型内不同植物种叶片C、N、P指标的种间变异, 我们计算了对应的数据变异系数(CV, 以%比表示), 计算方法为: 标准偏差除以算术平均值乘以100%.按照反映离散程度的大小可以将CV进行粗略分级: CV < 10%为弱变异性; 10% ≤ CV ≤ 100%为中等变异性; CV > 100%为强变异性(赵秀芳等, 2010).对仅有一个样品重复的数据, 没有计算其地点变异和种间变异. ...

基于典范对应分析的苏北滩涂土壤春季盐渍化特征研究
1
2010

... 为了分析相同生活型和同种植物的叶片C、N、P指标的地点间变异, 以及相同生活型内不同植物种叶片C、N、P指标的种间变异, 我们计算了对应的数据变异系数(CV, 以%比表示), 计算方法为: 标准偏差除以算术平均值乘以100%.按照反映离散程度的大小可以将CV进行粗略分级: CV < 10%为弱变异性; 10% ≤ CV ≤ 100%为中等变异性; CV > 100%为强变异性(赵秀芳等, 2010).对仅有一个样品重复的数据, 没有计算其地点变异和种间变异. ...

1
1997

... 研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃.同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997).由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同.草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis).灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014).这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017). ...

1
1997

... 研究区地处大兴安岭地区(50.42°-53.42° N, 121.20°-126.00° E)(图1), 属于寒温带大陆性季风气候, 年降水量约403 mm, 约80%集中在6-9月, 年平均气温-4.9 ℃, 最低气温达-52.3 ℃.同时, 该地位于欧亚大陆冻土区南缘(徐文铎, 1986), 属于多年冻土带, 年冻结期长达8个月, 是我国主要的泥炭分布区(郭东信等, 1981; 周以良, 1997).由于气候环境变化, 该区域泥炭地植物群落结构相对于以泥炭藓为主的泥炭地已经发生明显变化, 目前已经有多种草本植物和矮灌木(Mao et al., 2018), 尽管物种组成和北方苔原(如阿拉斯加北部)相似(Shaver et al., 2001; Liu et al., 2018), 但优势度明显不同.草本植物主要有禾本科小叶章(Deyeuxia angustifolia)、莎草科白毛羊胡子草(Eriophorum vaginatum)和玉簪薹草(Carex globularis).灌木主要有桦木科柴桦(Betula fruticosa), 杨柳科越桔柳(Salix myrtilloides)、细叶沼柳(Salix rosmarinifolia), 杜鹃花科杜香(Ledum palustre)、头花杜鹃(Rhododendron capitatum)、地桂(Chamaedaphne calyculata)、笃斯越桔(Vaccinium uliginosum)、越桔(Vaccinium vitis-idaea), 其中杜香、地桂和头花杜鹃为常绿灌木, 其余为落叶灌木(Song et al., 2014).这些喜湿耐酸的草本和灌木成为泥炭地植被群落中的优势种, 总盖度超过80% (陈慧敏等, 2017). ...




相关话题/植物 环境 土壤 指标 叶片