A review on the relationships between plant genetic diversity and ecosystem functioning
ZHANG Li-Wen, HAN Guang-Xuan,*Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
Supported by the National Natural Science Foundation of China.31670533 the Youth Innovation Promotion Association of the Chinese Academy of Sciences.2018247
Abstract The loss of genetic diversity is accelerating due to habitat loss and population reduction caused by global change and anthropologenic activities. For species-poor ecosystems, the effect of genetic diversity on ecosystem functioning may not be smaller than that of species diversity. Therefore, understanding the relationship between genetic diversity and ecosystem functioning (GD-EF) and its underlying mechanisms is important for biodiversity conservation, responses of ecosystems to environmental change and ecological restoration. Here, we reviewed the studies on the effects of plant genetic diversity on ecosystem structures (community structure of the higher tropic level) and ecosystem functions (primary production, nutrient cycling and ecosystem stability), and the mechanisms underlying these relationships. We also discussed the influence of functional diversity on GD-EF, the comparison of effects of the genetic and species diversity on ecosystem functioning, and the application of GD-EF in the ecological restorations. We finally pointed out the limitations in current studies to provide references for the future: (1) further studies on the mechanisms of GD-EF are needed; (2) no study has evaluated the influence of genetic diversity on maltifunctinarity; (3) the impacts of different measurements of genetic diversity on ecosystem functioning are unclear; (4) there are lack of long-time GD-EF studies and GD-EF studies conducted at multidimensional scales; (5) the relative importance of genetic diversity and other factors on ecosystem functioning in the nature is unclear. Keywords:genetic diversity;genotypic diversity;ecosystem structure;ecosystem function;additive effect;complementarity effect
Table 1 表1 表1植物遗传多样性与生态系统功能关系的相关术语解释 Table 1The explanation of the plant genetic diversity-ecological functioning glossary
名词术语 Glossary
解释 Explanation
遗传多样性 Genetic diversity
种群内个体间遗传变异的程度。 The degree of genetic variation among individuals in a population.
基因丰富度 Allelic richness
所检测位点上等位基因的平均数目。 The average number of alleles detected at the detected locus.
基因多样性 Allelic diversity
包含位点上基因数目和频率信息的一类遗传多样性指数, 比如: Shannon信息指数和期望杂合度。 A class of genetic diversity indices containing information about the number and frequency of genes at a locus, such as: Shannon information index and expected heterozygosity.
基因型 Genotype
一个个体在指定数量的位点上等位基因的组成。 The composition of alleles of an individual at a specified number of loci.
基因型丰富度 Genotypic richness
一个种群中基因型的数目。 The number of genotypes in a population.
基因型均匀度 Genotypic eveness
基因型多度的分布。如果一个种群中各基因型多度等同, 那么基因型均匀度为1; 如果一个种群只有一个基因型, 那么该种群基因型均匀度为0。 The distribution of genotypic abundance. The genotype evenness is 1 if genotypic abundance is equal in a population, and 0 if there is only one genotype in a population.
基因型相异度 Genotypic dissimilarity
一个种群中两两基因型间遗传距离的平均值。 The average genetic distance between two genotypes in a population.
基因型亲缘度 Genotypic relatedness
与基因型相异度相反, 指一个种群中两两基因型间亲缘程度的平均值。对于植物微卫星分子标记数据, 二倍体可以用STORM软件(Frasier, 2008)或者R程序包“related” (Pew et al., 2015), 多倍体用POLYRELATEDNESS计算基因型亲缘度(Huang et al., 2015)。 The average value of relatedness between two genotypes in a population, which is contrary to genotypic dissimilarity. For plant microsatellite marker data, genotypic relatedness of diploids can be calculated with STORM software (Frasier, 2008) or R package “related” (Pew et al., 2015), and genotypic relatedness of polyploids can be calculated with POLYRELATEDNESS (Huang et al., 2015).
适应性遗传多样性 Adaptive genetic diversity
适应性遗传多样性是通过改变表达蛋白质的数量或结构或表达时间来影响表型以帮助个体适应环境或者提高个体适合度的变异。一般采用已知遗传关系的个体(比如, 来自同一母株种子生长的个体)开展同质园数量遗传实验进行估算, 但是这个方法比较费时费力费钱; 另外一种方法是开发和筛选出适应性分子标记来测定其遗传变异。 Adaptive genetic diversity is the variation that affects phenotypes by altering the number or structure of expressed proteins or the expression time to help individuals adapt to the environment or improve their fitness. Quantitative genetic common garden experiments are usually conducted to estimate the adaptive gentic variation by using individuals with known genetic relationships (e.g., individuals from seeds of the same mother tree), but this method is time-consuming and costly; another method is to develop and select adaptive molecular markers to determine their genetic variation.
中性遗传多样性 Neutral genetic diversity
中性遗传多样性是由不影响表型的序列变异组成。中性遗传多样性和适应性遗传多样性也可能有相关性, 原因是采用的中性分子标记位点与适应性遗传变异可能存在连锁不平衡的情况。 Neutral genetic diversity is composed of sequence variations that do not affect phenotypes. Neutral genetic diversity and adaptive genetic diversity may also be correlated, because there may be linkage imbalance between the neutral molecular marker loci and adaptive genetic variation.
品种 Cultivar
为特定的某一性状或若干性状的组合而选择出来的植物集合体, 在这些性状上是特异、一致、稳定的, 并且通过适当的有性或无性方式繁殖时仍保持这些性状。 Plants were selected for a particular trait or combination of several specific traits, and these traits are specific, consistent, and stable, and retained when propagated sexually or asexually.
近交衰退 Inbreeding depression
由于近交(自交和亲缘个体间的异交)导致后代适合度下降的现象, 产生的主要原因是由于近交增加了有害等位基因的纯合几率。 Inbreeding (selfing and outcrossing between related individuals) results in a decrease in fitness of offspring, mainly because inbreeding increases the probability of harmful homozygous alleles.
远交衰退 Outbreeding depression
不同生境的种群个体, 各自拥有适应当地生境的特有等位基因组合, 如果它们相互之间杂交(交配)将可能打破这种组合, 引起后代适应能力降低。 Individuals from different habitats have specific allele combinations adapted to local habitats. If they cross breeding (mate) with each other, they may break the specific allele combinations and reduce the adaptability of their offspring.
功能多样性 Functional diversity
植物个体水平上的形态、生理以及生活史特征等功能性状通过影响植物存活能力、生长和繁殖来影响其适合度, 这些功能性状特征值的大小、范围和分布状况称为功能多样性。 Functional traits such as morphology, physiology and life history at the individual level affect plant fitness by affecting its survival, growth and reproduction. The size, range and distribution of these functional trait values are called functional diversity.
奠基者多样性 Founder diversity
这里指的是, 在种群保护或者生态修复中, 所引物种种群的遗传多样性。奠基者效应是指由少数个体的基因频率决定了它们后代基因频率的效应。 This refers to the genetic diversity of founder in population conservation or ecological restoration. Founder effect is the gene frequency of a small number of individuals determines the gene frequency of their offspring.
系统发育多样性 Phylogenetic diversity
群落中物种的系统发育树形图(表示物种之间的亲缘关系)中所有分枝长度之和。 The sum of all the branch lengths in a phylogenetic tree of species in a community (representing the relatedness between species).
效应类别(按生物学角度来分类) Types of genetic diversity effects (in terms of biology)
效应区别 The differences among types of genetic diversity effect
生态系统功能 Ecosystem functioning
相关机制 假说 Hypothesis
假说内容 Content of hypothesis
加性效应 Additive effects
不同基因型对生态系统功能的效应是独立的、可加的; 基因型间相互作用不影响其生态系统功能效应。 The effects of different genotypes on ecosystem functioning are independent and additive, and the interactions among genotypes do not affect their effects on ecosystem functioning.
高营养级生物群落 结构、初级生产力、养分循环、生态系统稳定性 Community structure of higher trophic levels, primary productivity, nutrientcycling and ecosystem stability
优势效应 Dominant effect
基因型多样性高的系统中包含对系统有利的基因型概率高于单基因型系统, 因此基因型多样性高有利于维持生态系统结构和功能。验证方法请见1.1和1.2节。 Systems with high genotypic diversity have a higher probability of containing genotypes beneficial to the system than those with single genotype, and thus high genotypic diversity is conducive to maintaining ecosystem structure and function. Please see sections 1.1 and 1.2 for the methods for testing this hypotheses.
非加性效应 Non-additive effects
不同基因型对生态系统功能效应是非独立的、不可加的; 基因型间相互作用对生态系统功能产生交互效应。The effects of different genotypes on ecosystem functioning are dependent and nonadditive, and the interactions among genotypes affect their effects on ecosystem functioning.
高营养级生物群落结构 Community structure of higher trophic levels
资源化假说 The resource specialization hypothesis
大多数植食性节肢动物表现出一定程度的食性偏好, 随着基因型多样性的增加, 相关联的植食性节肢动物多样性也增加。验证方法请见1.1节。 Most of the herbivorous arthropods showed food preference. With the increase of genotypic diversity, the diversity of associated herbivorous arthropods also increased. Please see Section 1.1 for the methods for testing this hypothesis.
更多个体假说 The more individuals hypothesis
如果地上净生产力随着基因型多样性升高, 那么能够提供更多的能量给更多植食性节肢动物, 这些植食性节肢动物多样性随之增加, 继而捕食者也会增加。验证方法请见1.1节。 If net aboveground productivity increases with genotypic diversity, more energy can be provided to more herbivorous arthropods, and the diversity of these herbivorous arthropods increases, followed by increased predators. Please see Section 1.1 for the methods for testing this hypothesis.
初级生产力、养分循环、生态系统稳定性 Primary productivity, nutrient cycling and ecosystem stability
性状独立互补效应 Trait-indepen-dent complementarity
在多基因型系统, 如果某些基因型的生态系统功能比它们在单基因型系统提高了, 但与基因型的功能性状无关, 而且不以抑制其他基因型的适合度为代价(不同基因型占据不重叠的生态位形成生态位互补或者基因型间存在正作用), 则为正效应。验证方法请见1.2节。 In genotypic mixture, if the ecosystem functions of some genotypes are improved than that in the genotypic monoculture but are not related to the functional traits of the genotypes, and are also not at the expense of inhibiting the fitness of other genotypes (different genotypes occupy non-overlapping niches to form niche complementarities or have positive effects between genotypes). It is a positive effect. Please see section 1.2 for the methods for testing this hypothesis.
性状依赖互补效应 Trait-dependent complementarity
在多基因型系统, 如果具有特殊功能性状基因型(比如, 特殊功能性状使得基因型间形成嵌套生态位)的生态功能比其在单基因型系统增加了, 且不以抑制其他基因型适合度为代价, 则为正效应。验证方法请见1.2节。 In genotypic mixture, if the ecological functions of genotypes with special functional traits (for example, the nested niches formed between genotypes) are increased than those of genotypic monoculture, and not at the expense of inhibiting the fitness of other genotypes, the effect is positive. Please see section 1.2 the methods for testing this hypothesis.
All of these hypotheses of genetic diversity-ecological functioning (GD-EF) come from hypotheses of the short-term species diversity effects on ecosystem functioning to explain the positive effects of genetic diversity on ecosystem functioning, which are also the hypotheses of GD-EF that have been tested by many experiments. 这些遗传多样性-生态系统功能关系(GD-EF)假说均从物种多样性-生态系统功能假说的短期效应假说迁移而来, 以解释遗传多样性对生态系统功能的正效应, 也是目前实验验证比较多的GD-EF机制假说。
AbbottJM, GrosbergRK, WilliamsSL, StachowiczJJ ( 2017). Multiple dimensions of intraspecific diversity affect biomass of eelgrass and its associated community , 98, 3152-3164. DOIURL [本文引用: 1]
BaileyJK ( 2011). From genes to ecosystems: A genetic basis to ecosystem services , 53, 47-52. DOIURL [本文引用: 1]
BaileyJK, SchweitzerJA, UbedaF, KorichevaJ, LeRoyCJ, MadritchMD, RehillBJ, BangertRK, FischerDG, AllanGJ, WhithamTG ( 2009). From genes to ecosystems: A synthesis of the effects of plant genetic factors across levels of organization , 364, 1607-1616. [本文引用: 1]
BernaysE, GrahamM ( 1988). On the evolution of host specificity in phytophagous arthropods , 69, 886-892. DOIURL [本文引用: 1]
BruelheideH, NadrowskiK, AssmannT, BauhusJ, BothS, BuscotF, ChenXY, DingBY, DurkaW, ErfmeierA, GutknechtJLM, GuoDL, GuoLD, HardtleW, HeJS, KleinAM, KuhnP, LiangY, LiuXJ, MichalskiS, NiklausPA, PeiKQ, Scherer-LorenzenM, ScholtenT, SchuldtA, SeidlerG, TrogischS, von OheimbG, WelkE, WirthC, WubetT, YangXF, YuMJ, ZhangSR, ZhouHZ, FischerM, MaKP, SchmidB ( 2014). Designing forest biodiversity experiments: General considerations illustrated by a new large experiment in subtropical China , 5, 74-89. DOIURL [本文引用: 1]
CardinaleBJ, WrightJP, CadotteMW, CarrollIT, HectorA, SrivastavaDS, LoreauM, WeisJJ ( 2007). Impacts of plant diversity on biomass production increase through time because of species complementarity , 104, 18123-18128. DOIURL [本文引用: 1]
Cook-PattonSC, McArtSH, ParachnowitschAL, ThalerJS, AgrawalAA ( 2011). A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function , 92, 915-923. DOIURL [本文引用: 1]
CrawfordKM, RudgersJA ( 2012). Plant species diversity and genetic diversity within a dominant species interactively affect plant community biomass , 100, 1512-1521. DOIURL [本文引用: 1]
CrawfordKM, RudgersJA ( 2013). Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community , 94, 1025-1035. DOIURL [本文引用: 2]
CrutsingerGM, CollinsMD, FordyceJA, GompertZ, NiceCC, SandersNJ ( 2006). Plant genotypic diversity predicts community structure and governs an ecosystem process , 313, 966-968. DOIURL [本文引用: 6]
CrutsingerGM, CollinsMD, FordyceJA, SandersNJ ( 2008 a). Temporal dynamics in non-additive responses of arthropods to host-plant genotypic diversity , 117, 255-264. DOIURL [本文引用: 1]
CrutsingerGM, ReynoldsWN, ClassenAT, SandersNJ ( 2008 b). Disparate effects of plant genotypic diversity on foliage and litter arthropod communities , 158, 65-75. DOIURL [本文引用: 1]
DarwinC ( 1859). On the Origin of Species by Means of Natural Selection . [本文引用: 1]
DooleyA, IsbellF, KirwanL, ConnollyJ, FinnJA, BrophyC ( 2015). Testing the effects of diversity on ecosystem multifunctionality using a multivariate model , 18, 1242-1251. DOIURL [本文引用: 2]
DuffyJE, RichardsonJP, CanuelEA ( 2003). Grazer diversity effects on ecosystem functioning in seagrass beds , 6, 637-645. DOIURL [本文引用: 2]
EhlersA, WormB, ReuschTBH ( 2008). Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming , 355, 1-7. [本文引用: 2]
FischerDG, WimpGM, Hersch-GreenE, BangertRK, LeroyCJ, BaileyJK, SchweitzerJA, DirksC, HartSC, AllanGJ, WhithamTG ( 2017). Tree genetics strongly affect forest productivity, but intraspecific diversity-productivity relationships do not , 31, 520-529. DOIURL [本文引用: 1]
ForsmanA ( 2014). Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology , 111, 302-307. DOIURL [本文引用: 2]
FoxJW ( 2005). Interpreting the “selection effect” of biodiversity on ecosystem function , 8, 846-856. DOIURL [本文引用: 5]
FrasierTR ( 2008). STORM: Software for testing hypotheses of relatedness and mating patterns , 8, 1263-1266. DOIURL [本文引用: 2]
FridleyJD, GrimeJP ( 2010). Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity , 91, 2272-2283. DOIURL [本文引用: 1]
GamfeldtL, HillebrandH, JonssonPR ( 2008). Multiple functions increase the importance of biodiversity for overall ecosystem functioning , 89, 1223-1231. DOIURL [本文引用: 1]
GerstenmaierCE, Krueger-HadfieldSA, SotkaEE ( 2016). Genotypic diversity in a non-native ecosystem engineer has variable impacts on productivity , 556, 79-89. DOIURL [本文引用: 2]
GradyKC, FerrierSM, KolbTE, HartSC, AllanGJ, WhithamTG ( 2011). Genetic variation in productivity of foundation riparian species at the edge of their distribution: Implications for restoration and assisted migration in a warming climate , 17, 3724-3735. DOIURL [本文引用: 2]
HughesAR, StachowiczJJ ( 2004). Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance , 101, 8998-9002. DOIURL [本文引用: 5]
HughesAR, StachowiczJJ ( 2011). Seagrass genotypic diversity increases disturbance response via complementarity and dominance , 99, 445-453. [本文引用: 3]
HusbandBC, SabaraHA ( 2004). Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium(Onagraceae) , 161, 703-713. [本文引用: 1]
HustonMA ( 1997). Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity , 110, 449-460. DOIURL [本文引用: 1]
JahnkeM, OlsenJL, ProcacciniG ( 2015 a). A meta-analysis reveals a positive correlation between genetic diversity metrics and environmental status in the long-lived seagrass Posidonia oceanica , 24, 2336-2348. [本文引用: 1]
JahnkeM, PagesJF, AlcoverroT, LaveryPS, McMahonKM, ProcacciniG ( 2015 b). Should we sync? Seascape-level genetic and ecological factors determine seagrass flowering patterns , 103, 1464-1474. DOIURL [本文引用: 1]
JingX, SandersNJ, ShiY, ChuHY, ClassenAT, ZhaoK, ChenLT, ShiY, JiangYX, HeJS ( 2015). The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate , 6, 8159. DOI: 10.1038/ncomms9159. DOIURL [本文引用: 1]
JohnsonMTJ, LajeunesseMJ, AgrawalAA ( 2006). Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitness , 9, 24-34. [本文引用: 3]
JormalainenV, DanelliM, GagnonK, HillebrandH, RothauslerE, SalminenJP, SjoroosJ ( 2017). Genetic variation of a foundation rockweed species affects associated communities , 98, 2940-2951. DOIURL [本文引用: 1]
LoreauM, HectorA ( 2001). Partitioning selection and complementarity in biodiversity experiments , 413, 548-548. [本文引用: 3]
MassaSI, PaulinoCM, SerraoEA, DuarteCM, Arnaud-HaondS ( 2013). Entangled effects of allelic and clonal (genotypic) richness in the resistance and resilience of experimental populations of the seagrass Zostera noltii to diatom invasion , 13, 1-12. [本文引用: 3]
McKayJK, ChristianCE, HarrisonS, RiceKJ ( 2005). “How local is local?”—A review of practical and conceptual issues in the genetics of restoration , 13, 432-440. DOIURL [本文引用: 2]
PewJ, MuirPH, WangJL, FrasierTR ( 2015). Related: An R package for analysing pairwise relatedness from codominant molecular markers , 15, 557-561. DOIURL [本文引用: 2]
ShenDW, LiYY, ChenXY ( 2007). Review of clonal diversity and its effects on ecosystem functioning Journal of Plant Ecology (Chinese Version), 31, 552-560. [本文引用: 3]
ShenJF, XinXJ, ZhaoNX, GaoYB ( 2016). Effects of genotypic diversity of Leymus chinensis population on soil macrofauna and microorganism community Chinese Journal of Ecology, 35, 1226-1232. [本文引用: 1]
SmithsonJB, LennéJM ( 1996). Varietal mixtures: A viable strategy for sustainable productivity in subsistence agriculture , 128, 127-158. DOIURL [本文引用: 1]
SouzaL, StubleKL, GenungMA, ClassenAT ( 2017). Plant genotypic variation and intraspecific diversity trump soil nutrient availability to shape old-field structure and function , 31, 965-974. DOIURL [本文引用: 1]
SrivastavaDS, LawtonJH ( 1998). Why more productive sites have more species: An experimental test of theory using tree-hole communities , 152, 510-529. [本文引用: 2]
TomimatsuH, NakanoK, YamamotoN, SuyamaY ( 2014). Effects of genotypic diversity of Phragmites australis on primary productivity and water quality in an experimental wetland , 175, 163-172. [本文引用: 2]
WangXY, MiaoY, YuS, ChenXY, SchmidB ( 2014). Genotypic diversity of an invasive plant species promotes litter decomposition and associated processes , 174, 993-1005. DOIURL [本文引用: 2]
WhithamTG, BaileyJK, SchweitzerJA, ShusterSM, BangertRK, LeroyCJ, LonsdorfEV, AllanGJ, DiFazioSP, PottsBM, FischerDG, GehringCA, LindrothRL, MarksJC, HartSC, WimpGM, WooleySC ( 2006). A framework for community and ecosystem genetics: From genes to ecosystems , 7, 510-523. DOIURL [本文引用: 1]
WhitlockR ( 2014). Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: A meta-analysis , 102, 857-872. DOIURL [本文引用: 4]
WolfeMS ( 1985). The current status and prospects of multiline cultivars and variety mixtures for disease resistance , 23, 251-273. DOIURL [本文引用: 1]
XuW, JingX, MaZY, HeJS ( 2016 a). A review on the measurement of ecosystem multifunctionality Biodiversity Science, 24, 72-84. [本文引用: 1]
YangLX, CallawayRM, AtwaterDZ ( 2017). Ecotypic diversity of a dominant grassland species resists exotic invasion , 19, 1483-1493. DOIURL [本文引用: 2]
YangX, ShenJF, ZhaoNX, GaoYB ( 2017). Phenotypic plasticity and genetic differentiation of quantitative traits in genotypes of Leymus chinensis Chinese Journal of Plant Ecology, 41, 359-368. [本文引用: 1]
STORM: Software for testing hypotheses of relatedness and mating patterns 2 2008
... The explanation of the plant genetic diversity-ecological functioning glossary Table 1
名词术语 Glossary
解释 Explanation
遗传多样性 Genetic diversity
种群内个体间遗传变异的程度. The degree of genetic variation among individuals in a population.
基因丰富度 Allelic richness
所检测位点上等位基因的平均数目. The average number of alleles detected at the detected locus.
基因多样性 Allelic diversity
包含位点上基因数目和频率信息的一类遗传多样性指数, 比如: Shannon信息指数和期望杂合度. A class of genetic diversity indices containing information about the number and frequency of genes at a locus, such as: Shannon information index and expected heterozygosity.
基因型 Genotype
一个个体在指定数量的位点上等位基因的组成. The composition of alleles of an individual at a specified number of loci.
基因型丰富度 Genotypic richness
一个种群中基因型的数目. The number of genotypes in a population.
基因型均匀度 Genotypic eveness
基因型多度的分布.如果一个种群中各基因型多度等同, 那么基因型均匀度为1; 如果一个种群只有一个基因型, 那么该种群基因型均匀度为0. The distribution of genotypic abundance. The genotype evenness is 1 if genotypic abundance is equal in a population, and 0 if there is only one genotype in a population.
基因型相异度 Genotypic dissimilarity
一个种群中两两基因型间遗传距离的平均值. The average genetic distance between two genotypes in a population.
基因型亲缘度 Genotypic relatedness
与基因型相异度相反, 指一个种群中两两基因型间亲缘程度的平均值.对于植物微卫星分子标记数据, 二倍体可以用STORM软件(Frasier, 2008)或者R程序包“related” (Pew et al., 2015), 多倍体用POLYRELATEDNESS计算基因型亲缘度(Huang et al., 2015). The average value of relatedness between two genotypes in a population, which is contrary to genotypic dissimilarity. For plant microsatellite marker data, genotypic relatedness of diploids can be calculated with STORM software (Frasier, 2008) or R package “related” (Pew et al., 2015), and genotypic relatedness of polyploids can be calculated with POLYRELATEDNESS (Huang et al., 2015).
适应性遗传多样性 Adaptive genetic diversity
适应性遗传多样性是通过改变表达蛋白质的数量或结构或表达时间来影响表型以帮助个体适应环境或者提高个体适合度的变异.一般采用已知遗传关系的个体(比如, 来自同一母株种子生长的个体)开展同质园数量遗传实验进行估算, 但是这个方法比较费时费力费钱; 另外一种方法是开发和筛选出适应性分子标记来测定其遗传变异. Adaptive genetic diversity is the variation that affects phenotypes by altering the number or structure of expressed proteins or the expression time to help individuals adapt to the environment or improve their fitness. Quantitative genetic common garden experiments are usually conducted to estimate the adaptive gentic variation by using individuals with known genetic relationships (e.g., individuals from seeds of the same mother tree), but this method is time-consuming and costly; another method is to develop and select adaptive molecular markers to determine their genetic variation.
中性遗传多样性 Neutral genetic diversity
中性遗传多样性是由不影响表型的序列变异组成.中性遗传多样性和适应性遗传多样性也可能有相关性, 原因是采用的中性分子标记位点与适应性遗传变异可能存在连锁不平衡的情况. Neutral genetic diversity is composed of sequence variations that do not affect phenotypes. Neutral genetic diversity and adaptive genetic diversity may also be correlated, because there may be linkage imbalance between the neutral molecular marker loci and adaptive genetic variation.
品种 Cultivar
为特定的某一性状或若干性状的组合而选择出来的植物集合体, 在这些性状上是特异、一致、稳定的, 并且通过适当的有性或无性方式繁殖时仍保持这些性状. Plants were selected for a particular trait or combination of several specific traits, and these traits are specific, consistent, and stable, and retained when propagated sexually or asexually.
近交衰退 Inbreeding depression
由于近交(自交和亲缘个体间的异交)导致后代适合度下降的现象, 产生的主要原因是由于近交增加了有害等位基因的纯合几率. Inbreeding (selfing and outcrossing between related individuals) results in a decrease in fitness of offspring, mainly because inbreeding increases the probability of harmful homozygous alleles.
远交衰退 Outbreeding depression
不同生境的种群个体, 各自拥有适应当地生境的特有等位基因组合, 如果它们相互之间杂交(交配)将可能打破这种组合, 引起后代适应能力降低. Individuals from different habitats have specific allele combinations adapted to local habitats. If they cross breeding (mate) with each other, they may break the specific allele combinations and reduce the adaptability of their offspring.
功能多样性 Functional diversity
植物个体水平上的形态、生理以及生活史特征等功能性状通过影响植物存活能力、生长和繁殖来影响其适合度, 这些功能性状特征值的大小、范围和分布状况称为功能多样性. Functional traits such as morphology, physiology and life history at the individual level affect plant fitness by affecting its survival, growth and reproduction. The size, range and distribution of these functional trait values are called functional diversity.
奠基者多样性 Founder diversity
这里指的是, 在种群保护或者生态修复中, 所引物种种群的遗传多样性.奠基者效应是指由少数个体的基因频率决定了它们后代基因频率的效应. This refers to the genetic diversity of founder in population conservation or ecological restoration. Founder effect is the gene frequency of a small number of individuals determines the gene frequency of their offspring.
系统发育多样性 Phylogenetic diversity
群落中物种的系统发育树形图(表示物种之间的亲缘关系)中所有分枝长度之和. The sum of all the branch lengths in a phylogenetic tree of species in a community (representing the relatedness between species).
... The average value of relatedness between two genotypes in a population, which is contrary to genotypic dissimilarity. For plant microsatellite marker data, genotypic relatedness of diploids can be calculated with STORM software (Frasier, 2008) or R package “related” (Pew et al., 2015), and genotypic relatedness of polyploids can be calculated with POLYRELATEDNESS (Huang et al., 2015).
适应性遗传多样性 Adaptive genetic diversity
适应性遗传多样性是通过改变表达蛋白质的数量或结构或表达时间来影响表型以帮助个体适应环境或者提高个体适合度的变异.一般采用已知遗传关系的个体(比如, 来自同一母株种子生长的个体)开展同质园数量遗传实验进行估算, 但是这个方法比较费时费力费钱; 另外一种方法是开发和筛选出适应性分子标记来测定其遗传变异. Adaptive genetic diversity is the variation that affects phenotypes by altering the number or structure of expressed proteins or the expression time to help individuals adapt to the environment or improve their fitness. Quantitative genetic common garden experiments are usually conducted to estimate the adaptive gentic variation by using individuals with known genetic relationships (e.g., individuals from seeds of the same mother tree), but this method is time-consuming and costly; another method is to develop and select adaptive molecular markers to determine their genetic variation.
中性遗传多样性 Neutral genetic diversity
中性遗传多样性是由不影响表型的序列变异组成.中性遗传多样性和适应性遗传多样性也可能有相关性, 原因是采用的中性分子标记位点与适应性遗传变异可能存在连锁不平衡的情况. Neutral genetic diversity is composed of sequence variations that do not affect phenotypes. Neutral genetic diversity and adaptive genetic diversity may also be correlated, because there may be linkage imbalance between the neutral molecular marker loci and adaptive genetic variation.
品种 Cultivar
为特定的某一性状或若干性状的组合而选择出来的植物集合体, 在这些性状上是特异、一致、稳定的, 并且通过适当的有性或无性方式繁殖时仍保持这些性状. Plants were selected for a particular trait or combination of several specific traits, and these traits are specific, consistent, and stable, and retained when propagated sexually or asexually.
近交衰退 Inbreeding depression
由于近交(自交和亲缘个体间的异交)导致后代适合度下降的现象, 产生的主要原因是由于近交增加了有害等位基因的纯合几率. Inbreeding (selfing and outcrossing between related individuals) results in a decrease in fitness of offspring, mainly because inbreeding increases the probability of harmful homozygous alleles.
远交衰退 Outbreeding depression
不同生境的种群个体, 各自拥有适应当地生境的特有等位基因组合, 如果它们相互之间杂交(交配)将可能打破这种组合, 引起后代适应能力降低. Individuals from different habitats have specific allele combinations adapted to local habitats. If they cross breeding (mate) with each other, they may break the specific allele combinations and reduce the adaptability of their offspring.
功能多样性 Functional diversity
植物个体水平上的形态、生理以及生活史特征等功能性状通过影响植物存活能力、生长和繁殖来影响其适合度, 这些功能性状特征值的大小、范围和分布状况称为功能多样性. Functional traits such as morphology, physiology and life history at the individual level affect plant fitness by affecting its survival, growth and reproduction. The size, range and distribution of these functional trait values are called functional diversity.
奠基者多样性 Founder diversity
这里指的是, 在种群保护或者生态修复中, 所引物种种群的遗传多样性.奠基者效应是指由少数个体的基因频率决定了它们后代基因频率的效应. This refers to the genetic diversity of founder in population conservation or ecological restoration. Founder effect is the gene frequency of a small number of individuals determines the gene frequency of their offspring.
系统发育多样性 Phylogenetic diversity
群落中物种的系统发育树形图(表示物种之间的亲缘关系)中所有分枝长度之和. The sum of all the branch lengths in a phylogenetic tree of species in a community (representing the relatedness between species).
Multiple functions increase the importance of biodiversity for overall ecosystem functioning 1 2008
... 物种多样性与生态系统功能关系的研究已经进展到评估物种多样性和系统发育多样性对生态系统多功能性的影响(Jing et al., 2015; Lefcheck et al., 2015; 徐炜等, 2016b; Cadotte et al., 2017; Gamfeldt & Roger, 2017).生态系统多功能性是指生态系统同时维持多种生态系统功能和服务的能力, 生态系统功能之间的权衡可能会导致生态系统同时提供多个功能的能力降低(Hector & Bagchi, 2007; 徐炜等, 2016b), 那么一个生态系统需要多少物种多样性才能同时维持多个生态系统功能?而对于单一优势植物种形成的生态系统, 我们更关心的是需要多少基因型多样性才能同时维持多个生态系统功能?目前, GD-EF的研究还停留在基因型多样性对单个生态系统功能的影响, 并未涉及同时观测多种生态系统功能、测度基因型多样性对生态系统多功能性的影响以及探讨生态系统多功能性的维持机制.近来, ****们发展出了多种生态系统多功能性指数, 比如: 单功能法(Duffy et al., 2003)、功能-物种替代法(Hector & Bagchi, 2007)、平均值法(Duffy et al., 2003)、单阈值法(Gamfeldt et al., 2008)、多阈值法(Byrnes et al., 2014)和多元模型法(Dooley et al., 2015).其中, 多阈值法和多元模型法为最新、具有明显优点及互补的测度方法.多阈值法评估的是多样性的增加达到某一阈值水平时功能数的变化, 其克服单阈值法很难准确地选择恰当阈值的缺点, 并能够得出整体功能何时达到最大值; 多元模型法则考虑了不同方面的多样性(丰富度、均匀度及组成等)对多种生态系统功能的影响, 比较多样性和环境因素对生态系统功能的相对重要性, 而且还可以分析功能之间的权衡和协同等关系(Byrnes et al., 2014; Dooley et al., 2015; 徐炜等, 2016a).这些方法目前已经应用于评估物种多样性对生态系统多功能性的影响, 未来研究工作可以采用和改进这些研究方法来尝试评估遗传多样性对生态系统多功能性的影响. ...
Revisiting the biodiversity-?ecosystem multifunctionality relationship 1 2017
... 物种多样性与生态系统功能关系的研究已经进展到评估物种多样性和系统发育多样性对生态系统多功能性的影响(Jing et al., 2015; Lefcheck et al., 2015; 徐炜等, 2016b; Cadotte et al., 2017; Gamfeldt & Roger, 2017).生态系统多功能性是指生态系统同时维持多种生态系统功能和服务的能力, 生态系统功能之间的权衡可能会导致生态系统同时提供多个功能的能力降低(Hector & Bagchi, 2007; 徐炜等, 2016b), 那么一个生态系统需要多少物种多样性才能同时维持多个生态系统功能?而对于单一优势植物种形成的生态系统, 我们更关心的是需要多少基因型多样性才能同时维持多个生态系统功能?目前, GD-EF的研究还停留在基因型多样性对单个生态系统功能的影响, 并未涉及同时观测多种生态系统功能、测度基因型多样性对生态系统多功能性的影响以及探讨生态系统多功能性的维持机制.近来, ****们发展出了多种生态系统多功能性指数, 比如: 单功能法(Duffy et al., 2003)、功能-物种替代法(Hector & Bagchi, 2007)、平均值法(Duffy et al., 2003)、单阈值法(Gamfeldt et al., 2008)、多阈值法(Byrnes et al., 2014)和多元模型法(Dooley et al., 2015).其中, 多阈值法和多元模型法为最新、具有明显优点及互补的测度方法.多阈值法评估的是多样性的增加达到某一阈值水平时功能数的变化, 其克服单阈值法很难准确地选择恰当阈值的缺点, 并能够得出整体功能何时达到最大值; 多元模型法则考虑了不同方面的多样性(丰富度、均匀度及组成等)对多种生态系统功能的影响, 比较多样性和环境因素对生态系统功能的相对重要性, 而且还可以分析功能之间的权衡和协同等关系(Byrnes et al., 2014; Dooley et al., 2015; 徐炜等, 2016a).这些方法目前已经应用于评估物种多样性对生态系统多功能性的影响, 未来研究工作可以采用和改进这些研究方法来尝试评估遗传多样性对生态系统多功能性的影响. ...
Genotypic diversity in a non-native ecosystem engineer has variable impacts on productivity 2 2016
... 与遗传多样性对生态系统结构的效应和机制类似, 植物基因型多样性对于生态系统初级生产力、养分循环、外来种入侵能力和生态系统稳定性也具有正效应, 其内在机制可能是非加性效应或者两种效应均有(Reusch et al., 2005; Schweitzer et al., 2005; Crutsinger et al., 2006; Tomimatsu et al., 2014; Gerstenmaier et al., 2016; Sjoqvist & Kremp, 2016), 单独的加性效应较少.对于生态系统初级生产力, 北美一枝黄花基因型丰富度最高的样方(12-基因型)比单基因型样方的地上净初级生产力高36%, 这是因为非加性效应中的生态位互补机制在起作用(Crutsinger et al., 2006).同样, Reusch等(2005)研究表明大叶藻(Zostera marina)的6-基因型样方比单基因型样方的生物量提高了26%, 其内在机制则是生态位互补和基因型间的正作用强于负抽样效应.另外, 遗传多样性不仅对植物成年阶段, 而且对整个生活史阶段(幼苗到成年)的表现都可能产生促进作用.比如: 大叶藻基因型丰富度高的样方下一代幼苗(种子繁殖)的地上和地下生物量比单基因型样方更大, 互补效应是主要机制(Hughes et al., 2016); 基因型丰富度对拟南芥(Arabidopsis thaliana)的幼苗萌发、生物量、花期和繁殖成功也有正效应, 是因为加性效应和非加性效应共同起作用(Crawford & Whitney, 2010). ...
... 为了探讨物种多样性对生态系统功能的影响机制, Loreau和Hector (2001)将多样性效应机制分离为选择效应和互补效应, 通过比较选择效应和互补效应与0的差异来判断效应的效果.Fox (2005)认为上述方法中的选择效应包括了优势效应和性状依赖互补效应, 应该将其分开, 否则高估选择效应的作用.多样性效应被分为三部分(表2): 优势效应、性状依赖互补效应和性状独立互补效应.近年较少研究运用Fox (2005)的方法将遗传多样性效应细分为这三部分(Hughes & Stachowicz, 2011; Gerstenmaier et al., 2016; Hughes et al., 2016; Yang et al., 2017).因此, 在今后GD-EF的机制研究时, 应多采用Fox (2005)的方法.但由于肉眼难以区分不同基因型的植株个体, 在实验后期需要借助分子标记来区分系统中不同基因型的植株个体, 工作量往往非常大. ...
Genetic variation in productivity of foundation riparian species at the edge of their distribution: Implications for restoration and assisted migration in a warming climate 2 2011
... 在应对物种入侵方面, 降低入侵种种群遗传多样性, 提高本地种种群遗传多样性或许是一种控制入侵种扩张的方法.有研究证明, 入侵种遗传多样性越高则其入侵能力越强(Wang et al., 2012), 但本地种遗传多样性高的样方能够更有效地抑制物种入侵.Yang等(2017)研究发现本地种Pseudoroegneria spicata遗传多样性高的样方中, 外来种Centaurea stoebe初级生产力减少44%.在应对富营养化环境问题方面, 有研究报道基因型多样性高的植物个体组合能够有效降低营养盐浓度(Tomimatsu et al., 2014).在应对气候变暖方面, 生态修复时运用本地物种基因型以及来自温暖(或热带)地区的基因型以提高生态系统初级生产力, 来适应未来快速气候变暖的环境变化(Grady et al., 2011). ...
Biodiversity and ecosystem multifunctionality 2 2007
... 物种多样性与生态系统功能关系的研究已经进展到评估物种多样性和系统发育多样性对生态系统多功能性的影响(Jing et al., 2015; Lefcheck et al., 2015; 徐炜等, 2016b; Cadotte et al., 2017; Gamfeldt & Roger, 2017).生态系统多功能性是指生态系统同时维持多种生态系统功能和服务的能力, 生态系统功能之间的权衡可能会导致生态系统同时提供多个功能的能力降低(Hector & Bagchi, 2007; 徐炜等, 2016b), 那么一个生态系统需要多少物种多样性才能同时维持多个生态系统功能?而对于单一优势植物种形成的生态系统, 我们更关心的是需要多少基因型多样性才能同时维持多个生态系统功能?目前, GD-EF的研究还停留在基因型多样性对单个生态系统功能的影响, 并未涉及同时观测多种生态系统功能、测度基因型多样性对生态系统多功能性的影响以及探讨生态系统多功能性的维持机制.近来, ****们发展出了多种生态系统多功能性指数, 比如: 单功能法(Duffy et al., 2003)、功能-物种替代法(Hector & Bagchi, 2007)、平均值法(Duffy et al., 2003)、单阈值法(Gamfeldt et al., 2008)、多阈值法(Byrnes et al., 2014)和多元模型法(Dooley et al., 2015).其中, 多阈值法和多元模型法为最新、具有明显优点及互补的测度方法.多阈值法评估的是多样性的增加达到某一阈值水平时功能数的变化, 其克服单阈值法很难准确地选择恰当阈值的缺点, 并能够得出整体功能何时达到最大值; 多元模型法则考虑了不同方面的多样性(丰富度、均匀度及组成等)对多种生态系统功能的影响, 比较多样性和环境因素对生态系统功能的相对重要性, 而且还可以分析功能之间的权衡和协同等关系(Byrnes et al., 2014; Dooley et al., 2015; 徐炜等, 2016a).这些方法目前已经应用于评估物种多样性对生态系统多功能性的影响, 未来研究工作可以采用和改进这些研究方法来尝试评估遗传多样性对生态系统多功能性的影响. ...
... )、功能-物种替代法(Hector & Bagchi, 2007)、平均值法(Duffy et al., 2003)、单阈值法(Gamfeldt et al., 2008)、多阈值法(Byrnes et al., 2014)和多元模型法(Dooley et al., 2015).其中, 多阈值法和多元模型法为最新、具有明显优点及互补的测度方法.多阈值法评估的是多样性的增加达到某一阈值水平时功能数的变化, 其克服单阈值法很难准确地选择恰当阈值的缺点, 并能够得出整体功能何时达到最大值; 多元模型法则考虑了不同方面的多样性(丰富度、均匀度及组成等)对多种生态系统功能的影响, 比较多样性和环境因素对生态系统功能的相对重要性, 而且还可以分析功能之间的权衡和协同等关系(Byrnes et al., 2014; Dooley et al., 2015; 徐炜等, 2016a).这些方法目前已经应用于评估物种多样性对生态系统多功能性的影响, 未来研究工作可以采用和改进这些研究方法来尝试评估遗传多样性对生态系统多功能性的影响. ...
Community genetics: What have we accomplished and where should we be going? 2 2011
... 多年来群落遗传学领域的****们致力于将微观的基因和宏观的群落乃至生态系统关联起来, 试图结合进化生物学和生态学来揭示群落和生态系统的格局及机制(Whitham et al., 2006; Bailey et al., 2009; Bailey, 2011; Hersch-Green et al., 2011).遗传多样性研究不再只关注遗传变异在种群进化中的作用, 即遗传变异如何影响种群个体的功能性状从而影响种群适合度, 同时群落生态学、生态系统生态学的研究也不再满足只探究物种水平、群落水平、生态系统水平上的格局和机制, 希望更深入地从个体、基因层面去探索和解决一些宏观生态学的科学问题.其中, 探索GD-EF是一个很好的切入点. ...
... 虽然大多数GD-EF控制实验证明遗传多样性对高营养级生物群落结构和生态系统功能为正向作用, 但是有关这种作用在自然界中相对于其他因子的重要性的研究比较少, 这类研究可以通过操控多种因子来实现(Hughes et al., 2008; Hersch-Green et al., 2011).比如: 通过同时操控土壤养分和遗传多样性水平的实验, Crutsinger等(2013)研究发现土壤养分因子比种内(Baccharis pilularis)遗传变异对林下植物群落多样性、盖度和生物量的影响更为重要; Souza等(2017)则发现北美一枝黄花基因型多样性比养分对初级生产力、碳循环和水分交换产生的影响更大.目前这些研究结果不一致, 还需要开展更多的多因子控制实验以取得普遍性的结论. ...
Estimating pairwise relatedness between individuals with different levels of ploidy 2 2015
... The explanation of the plant genetic diversity-ecological functioning glossary Table 1
名词术语 Glossary
解释 Explanation
遗传多样性 Genetic diversity
种群内个体间遗传变异的程度. The degree of genetic variation among individuals in a population.
基因丰富度 Allelic richness
所检测位点上等位基因的平均数目. The average number of alleles detected at the detected locus.
基因多样性 Allelic diversity
包含位点上基因数目和频率信息的一类遗传多样性指数, 比如: Shannon信息指数和期望杂合度. A class of genetic diversity indices containing information about the number and frequency of genes at a locus, such as: Shannon information index and expected heterozygosity.
基因型 Genotype
一个个体在指定数量的位点上等位基因的组成. The composition of alleles of an individual at a specified number of loci.
基因型丰富度 Genotypic richness
一个种群中基因型的数目. The number of genotypes in a population.
基因型均匀度 Genotypic eveness
基因型多度的分布.如果一个种群中各基因型多度等同, 那么基因型均匀度为1; 如果一个种群只有一个基因型, 那么该种群基因型均匀度为0. The distribution of genotypic abundance. The genotype evenness is 1 if genotypic abundance is equal in a population, and 0 if there is only one genotype in a population.
基因型相异度 Genotypic dissimilarity
一个种群中两两基因型间遗传距离的平均值. The average genetic distance between two genotypes in a population.
基因型亲缘度 Genotypic relatedness
与基因型相异度相反, 指一个种群中两两基因型间亲缘程度的平均值.对于植物微卫星分子标记数据, 二倍体可以用STORM软件(Frasier, 2008)或者R程序包“related” (Pew et al., 2015), 多倍体用POLYRELATEDNESS计算基因型亲缘度(Huang et al., 2015). The average value of relatedness between two genotypes in a population, which is contrary to genotypic dissimilarity. For plant microsatellite marker data, genotypic relatedness of diploids can be calculated with STORM software (Frasier, 2008) or R package “related” (Pew et al., 2015), and genotypic relatedness of polyploids can be calculated with POLYRELATEDNESS (Huang et al., 2015).
适应性遗传多样性 Adaptive genetic diversity
适应性遗传多样性是通过改变表达蛋白质的数量或结构或表达时间来影响表型以帮助个体适应环境或者提高个体适合度的变异.一般采用已知遗传关系的个体(比如, 来自同一母株种子生长的个体)开展同质园数量遗传实验进行估算, 但是这个方法比较费时费力费钱; 另外一种方法是开发和筛选出适应性分子标记来测定其遗传变异. Adaptive genetic diversity is the variation that affects phenotypes by altering the number or structure of expressed proteins or the expression time to help individuals adapt to the environment or improve their fitness. Quantitative genetic common garden experiments are usually conducted to estimate the adaptive gentic variation by using individuals with known genetic relationships (e.g., individuals from seeds of the same mother tree), but this method is time-consuming and costly; another method is to develop and select adaptive molecular markers to determine their genetic variation.
中性遗传多样性 Neutral genetic diversity
中性遗传多样性是由不影响表型的序列变异组成.中性遗传多样性和适应性遗传多样性也可能有相关性, 原因是采用的中性分子标记位点与适应性遗传变异可能存在连锁不平衡的情况. Neutral genetic diversity is composed of sequence variations that do not affect phenotypes. Neutral genetic diversity and adaptive genetic diversity may also be correlated, because there may be linkage imbalance between the neutral molecular marker loci and adaptive genetic variation.
品种 Cultivar
为特定的某一性状或若干性状的组合而选择出来的植物集合体, 在这些性状上是特异、一致、稳定的, 并且通过适当的有性或无性方式繁殖时仍保持这些性状. Plants were selected for a particular trait or combination of several specific traits, and these traits are specific, consistent, and stable, and retained when propagated sexually or asexually.
近交衰退 Inbreeding depression
由于近交(自交和亲缘个体间的异交)导致后代适合度下降的现象, 产生的主要原因是由于近交增加了有害等位基因的纯合几率. Inbreeding (selfing and outcrossing between related individuals) results in a decrease in fitness of offspring, mainly because inbreeding increases the probability of harmful homozygous alleles.
远交衰退 Outbreeding depression
不同生境的种群个体, 各自拥有适应当地生境的特有等位基因组合, 如果它们相互之间杂交(交配)将可能打破这种组合, 引起后代适应能力降低. Individuals from different habitats have specific allele combinations adapted to local habitats. If they cross breeding (mate) with each other, they may break the specific allele combinations and reduce the adaptability of their offspring.
功能多样性 Functional diversity
植物个体水平上的形态、生理以及生活史特征等功能性状通过影响植物存活能力、生长和繁殖来影响其适合度, 这些功能性状特征值的大小、范围和分布状况称为功能多样性. Functional traits such as morphology, physiology and life history at the individual level affect plant fitness by affecting its survival, growth and reproduction. The size, range and distribution of these functional trait values are called functional diversity.
奠基者多样性 Founder diversity
这里指的是, 在种群保护或者生态修复中, 所引物种种群的遗传多样性.奠基者效应是指由少数个体的基因频率决定了它们后代基因频率的效应. This refers to the genetic diversity of founder in population conservation or ecological restoration. Founder effect is the gene frequency of a small number of individuals determines the gene frequency of their offspring.
系统发育多样性 Phylogenetic diversity
群落中物种的系统发育树形图(表示物种之间的亲缘关系)中所有分枝长度之和. The sum of all the branch lengths in a phylogenetic tree of species in a community (representing the relatedness between species).
适应性遗传多样性是通过改变表达蛋白质的数量或结构或表达时间来影响表型以帮助个体适应环境或者提高个体适合度的变异.一般采用已知遗传关系的个体(比如, 来自同一母株种子生长的个体)开展同质园数量遗传实验进行估算, 但是这个方法比较费时费力费钱; 另外一种方法是开发和筛选出适应性分子标记来测定其遗传变异. Adaptive genetic diversity is the variation that affects phenotypes by altering the number or structure of expressed proteins or the expression time to help individuals adapt to the environment or improve their fitness. Quantitative genetic common garden experiments are usually conducted to estimate the adaptive gentic variation by using individuals with known genetic relationships (e.g., individuals from seeds of the same mother tree), but this method is time-consuming and costly; another method is to develop and select adaptive molecular markers to determine their genetic variation.
中性遗传多样性 Neutral genetic diversity
中性遗传多样性是由不影响表型的序列变异组成.中性遗传多样性和适应性遗传多样性也可能有相关性, 原因是采用的中性分子标记位点与适应性遗传变异可能存在连锁不平衡的情况. Neutral genetic diversity is composed of sequence variations that do not affect phenotypes. Neutral genetic diversity and adaptive genetic diversity may also be correlated, because there may be linkage imbalance between the neutral molecular marker loci and adaptive genetic variation.
品种 Cultivar
为特定的某一性状或若干性状的组合而选择出来的植物集合体, 在这些性状上是特异、一致、稳定的, 并且通过适当的有性或无性方式繁殖时仍保持这些性状. Plants were selected for a particular trait or combination of several specific traits, and these traits are specific, consistent, and stable, and retained when propagated sexually or asexually.
近交衰退 Inbreeding depression
由于近交(自交和亲缘个体间的异交)导致后代适合度下降的现象, 产生的主要原因是由于近交增加了有害等位基因的纯合几率. Inbreeding (selfing and outcrossing between related individuals) results in a decrease in fitness of offspring, mainly because inbreeding increases the probability of harmful homozygous alleles.
远交衰退 Outbreeding depression
不同生境的种群个体, 各自拥有适应当地生境的特有等位基因组合, 如果它们相互之间杂交(交配)将可能打破这种组合, 引起后代适应能力降低. Individuals from different habitats have specific allele combinations adapted to local habitats. If they cross breeding (mate) with each other, they may break the specific allele combinations and reduce the adaptability of their offspring.
功能多样性 Functional diversity
植物个体水平上的形态、生理以及生活史特征等功能性状通过影响植物存活能力、生长和繁殖来影响其适合度, 这些功能性状特征值的大小、范围和分布状况称为功能多样性. Functional traits such as morphology, physiology and life history at the individual level affect plant fitness by affecting its survival, growth and reproduction. The size, range and distribution of these functional trait values are called functional diversity.
奠基者多样性 Founder diversity
这里指的是, 在种群保护或者生态修复中, 所引物种种群的遗传多样性.奠基者效应是指由少数个体的基因频率决定了它们后代基因频率的效应. This refers to the genetic diversity of founder in population conservation or ecological restoration. Founder effect is the gene frequency of a small number of individuals determines the gene frequency of their offspring.
系统发育多样性 Phylogenetic diversity
群落中物种的系统发育树形图(表示物种之间的亲缘关系)中所有分枝长度之和. The sum of all the branch lengths in a phylogenetic tree of species in a community (representing the relatedness between species).
A meta-analysis reveals a positive correlation between genetic diversity metrics and environmental status in the long-lived seagrass Posidonia oceanica 1 2015
... 为了探讨物种多样性对生态系统功能的影响机制, Loreau和Hector (2001)将多样性效应机制分离为选择效应和互补效应, 通过比较选择效应和互补效应与0的差异来判断效应的效果.Fox (2005)认为上述方法中的选择效应包括了优势效应和性状依赖互补效应, 应该将其分开, 否则高估选择效应的作用.多样性效应被分为三部分(表2): 优势效应、性状依赖互补效应和性状独立互补效应.近年较少研究运用Fox (2005)的方法将遗传多样性效应细分为这三部分(Hughes & Stachowicz, 2011; Gerstenmaier et al., 2016; Hughes et al., 2016; Yang et al., 2017).因此, 在今后GD-EF的机制研究时, 应多采用Fox (2005)的方法.但由于肉眼难以区分不同基因型的植株个体, 在实验后期需要借助分子标记来区分系统中不同基因型的植株个体, 工作量往往非常大. ...
Entangled effects of allelic and clonal (genotypic) richness in the resistance and resilience of experimental populations of the seagrass Zostera noltii to diatom invasion 3 2013
... 随着全球变化形势愈来愈严重, ****们越来越关注植物GD-EF对环境变化的响应.在面对环境变化时, 植物基因型丰富度往往能够提高生态系统的稳定性(Hughes & Stachowicz, 2004; Ehlers et al., 2008; Massa et al., 2013; McArt & Thaler, 2013).面对干扰, 大叶藻基因型丰富度高的样方表现出更快的恢复能力(Hughes & Stachowicz, 2004); 面对全球变暖, 大叶藻基因型丰富度能够抵抗全球变暖对生态系统功能造成的负面影响(Ehlers et al., 2008); 面对外来入侵种, 本地种植物基因型丰富度的增加能减少和抵御外来昆虫啃食(McArt & Thaler, 2013).但是, 遗传多样性维持生态系统功能稳定性的机制不明确, 需要更深入的研究. ...
... 遗传多样性对生态系统功能的影响可能取决于遗传多样性与表型性状变异(功能多样性)的关联程度(Hughes et al., 2008), 基因型多样性的增加可能会提高功能多样性(杨雪等, 2017), 从而加剧基因型间对资源或空间利用的分化或者导致植食性动物产生生态位分化, 因此影响GD-EF, 是互补效应产生的原因之一.另一方面, 也有研究发现单基因型系统, 功能多样性越高, 生态系统功能越高(Hughes, 2014), 那么从这个角度来说, 单基因型系统植株的功能多样性也是加性效应产生的原因之一.大叶藻基因型在功能性状(生长速率、营养吸收、光合效率、多酚含量、对植食作用的敏感性和碎屑产量)表现出不同, 造成植食性动物生态位分化, 可能是基因型多样性正效应的机制(Hughes & Stachowicz, 2004, 2011; Reusch et al., 2005; Massa et al., 2013).但是如果植物基因型在一个功能性状表现出来的差异还未造成生态位分化, 那么功能多样性不一定影响到GD-EF, 这样则需要测定多个功能性状来解释GD-EF (Fischer et al., 2017; Jormalainen et al., 2017).而且基因型多样性和功能多样性对生态系统功能的影响不是简单的相加关系, 而是具有交互作用.有研究表明, 在功能多样性低时, 基因型多样性正效应显著, 而在功能多样性高时, 基因型多样性效应不明显(Hughes, 2014). ...
Related: An R package for analysing pairwise relatedness from codominant molecular markers 2 2015
... The explanation of the plant genetic diversity-ecological functioning glossary Table 1
名词术语 Glossary
解释 Explanation
遗传多样性 Genetic diversity
种群内个体间遗传变异的程度. The degree of genetic variation among individuals in a population.
基因丰富度 Allelic richness
所检测位点上等位基因的平均数目. The average number of alleles detected at the detected locus.
基因多样性 Allelic diversity
包含位点上基因数目和频率信息的一类遗传多样性指数, 比如: Shannon信息指数和期望杂合度. A class of genetic diversity indices containing information about the number and frequency of genes at a locus, such as: Shannon information index and expected heterozygosity.
基因型 Genotype
一个个体在指定数量的位点上等位基因的组成. The composition of alleles of an individual at a specified number of loci.
基因型丰富度 Genotypic richness
一个种群中基因型的数目. The number of genotypes in a population.
基因型均匀度 Genotypic eveness
基因型多度的分布.如果一个种群中各基因型多度等同, 那么基因型均匀度为1; 如果一个种群只有一个基因型, 那么该种群基因型均匀度为0. The distribution of genotypic abundance. The genotype evenness is 1 if genotypic abundance is equal in a population, and 0 if there is only one genotype in a population.
基因型相异度 Genotypic dissimilarity
一个种群中两两基因型间遗传距离的平均值. The average genetic distance between two genotypes in a population.
基因型亲缘度 Genotypic relatedness
与基因型相异度相反, 指一个种群中两两基因型间亲缘程度的平均值.对于植物微卫星分子标记数据, 二倍体可以用STORM软件(Frasier, 2008)或者R程序包“related” (Pew et al., 2015), 多倍体用POLYRELATEDNESS计算基因型亲缘度(Huang et al., 2015). The average value of relatedness between two genotypes in a population, which is contrary to genotypic dissimilarity. For plant microsatellite marker data, genotypic relatedness of diploids can be calculated with STORM software (Frasier, 2008) or R package “related” (Pew et al., 2015), and genotypic relatedness of polyploids can be calculated with POLYRELATEDNESS (Huang et al., 2015).
适应性遗传多样性 Adaptive genetic diversity
适应性遗传多样性是通过改变表达蛋白质的数量或结构或表达时间来影响表型以帮助个体适应环境或者提高个体适合度的变异.一般采用已知遗传关系的个体(比如, 来自同一母株种子生长的个体)开展同质园数量遗传实验进行估算, 但是这个方法比较费时费力费钱; 另外一种方法是开发和筛选出适应性分子标记来测定其遗传变异. Adaptive genetic diversity is the variation that affects phenotypes by altering the number or structure of expressed proteins or the expression time to help individuals adapt to the environment or improve their fitness. Quantitative genetic common garden experiments are usually conducted to estimate the adaptive gentic variation by using individuals with known genetic relationships (e.g., individuals from seeds of the same mother tree), but this method is time-consuming and costly; another method is to develop and select adaptive molecular markers to determine their genetic variation.
中性遗传多样性 Neutral genetic diversity
中性遗传多样性是由不影响表型的序列变异组成.中性遗传多样性和适应性遗传多样性也可能有相关性, 原因是采用的中性分子标记位点与适应性遗传变异可能存在连锁不平衡的情况. Neutral genetic diversity is composed of sequence variations that do not affect phenotypes. Neutral genetic diversity and adaptive genetic diversity may also be correlated, because there may be linkage imbalance between the neutral molecular marker loci and adaptive genetic variation.
品种 Cultivar
为特定的某一性状或若干性状的组合而选择出来的植物集合体, 在这些性状上是特异、一致、稳定的, 并且通过适当的有性或无性方式繁殖时仍保持这些性状. Plants were selected for a particular trait or combination of several specific traits, and these traits are specific, consistent, and stable, and retained when propagated sexually or asexually.
近交衰退 Inbreeding depression
由于近交(自交和亲缘个体间的异交)导致后代适合度下降的现象, 产生的主要原因是由于近交增加了有害等位基因的纯合几率. Inbreeding (selfing and outcrossing between related individuals) results in a decrease in fitness of offspring, mainly because inbreeding increases the probability of harmful homozygous alleles.
远交衰退 Outbreeding depression
不同生境的种群个体, 各自拥有适应当地生境的特有等位基因组合, 如果它们相互之间杂交(交配)将可能打破这种组合, 引起后代适应能力降低. Individuals from different habitats have specific allele combinations adapted to local habitats. If they cross breeding (mate) with each other, they may break the specific allele combinations and reduce the adaptability of their offspring.
功能多样性 Functional diversity
植物个体水平上的形态、生理以及生活史特征等功能性状通过影响植物存活能力、生长和繁殖来影响其适合度, 这些功能性状特征值的大小、范围和分布状况称为功能多样性. Functional traits such as morphology, physiology and life history at the individual level affect plant fitness by affecting its survival, growth and reproduction. The size, range and distribution of these functional trait values are called functional diversity.
奠基者多样性 Founder diversity
这里指的是, 在种群保护或者生态修复中, 所引物种种群的遗传多样性.奠基者效应是指由少数个体的基因频率决定了它们后代基因频率的效应. This refers to the genetic diversity of founder in population conservation or ecological restoration. Founder effect is the gene frequency of a small number of individuals determines the gene frequency of their offspring.
系统发育多样性 Phylogenetic diversity
群落中物种的系统发育树形图(表示物种之间的亲缘关系)中所有分枝长度之和. The sum of all the branch lengths in a phylogenetic tree of species in a community (representing the relatedness between species).
... ) or R package “related” (Pew et al., 2015), and genotypic relatedness of polyploids can be calculated with POLYRELATEDNESS (Huang et al., 2015).
适应性遗传多样性 Adaptive genetic diversity
适应性遗传多样性是通过改变表达蛋白质的数量或结构或表达时间来影响表型以帮助个体适应环境或者提高个体适合度的变异.一般采用已知遗传关系的个体(比如, 来自同一母株种子生长的个体)开展同质园数量遗传实验进行估算, 但是这个方法比较费时费力费钱; 另外一种方法是开发和筛选出适应性分子标记来测定其遗传变异. Adaptive genetic diversity is the variation that affects phenotypes by altering the number or structure of expressed proteins or the expression time to help individuals adapt to the environment or improve their fitness. Quantitative genetic common garden experiments are usually conducted to estimate the adaptive gentic variation by using individuals with known genetic relationships (e.g., individuals from seeds of the same mother tree), but this method is time-consuming and costly; another method is to develop and select adaptive molecular markers to determine their genetic variation.
中性遗传多样性 Neutral genetic diversity
中性遗传多样性是由不影响表型的序列变异组成.中性遗传多样性和适应性遗传多样性也可能有相关性, 原因是采用的中性分子标记位点与适应性遗传变异可能存在连锁不平衡的情况. Neutral genetic diversity is composed of sequence variations that do not affect phenotypes. Neutral genetic diversity and adaptive genetic diversity may also be correlated, because there may be linkage imbalance between the neutral molecular marker loci and adaptive genetic variation.
品种 Cultivar
为特定的某一性状或若干性状的组合而选择出来的植物集合体, 在这些性状上是特异、一致、稳定的, 并且通过适当的有性或无性方式繁殖时仍保持这些性状. Plants were selected for a particular trait or combination of several specific traits, and these traits are specific, consistent, and stable, and retained when propagated sexually or asexually.
近交衰退 Inbreeding depression
由于近交(自交和亲缘个体间的异交)导致后代适合度下降的现象, 产生的主要原因是由于近交增加了有害等位基因的纯合几率. Inbreeding (selfing and outcrossing between related individuals) results in a decrease in fitness of offspring, mainly because inbreeding increases the probability of harmful homozygous alleles.
远交衰退 Outbreeding depression
不同生境的种群个体, 各自拥有适应当地生境的特有等位基因组合, 如果它们相互之间杂交(交配)将可能打破这种组合, 引起后代适应能力降低. Individuals from different habitats have specific allele combinations adapted to local habitats. If they cross breeding (mate) with each other, they may break the specific allele combinations and reduce the adaptability of their offspring.
功能多样性 Functional diversity
植物个体水平上的形态、生理以及生活史特征等功能性状通过影响植物存活能力、生长和繁殖来影响其适合度, 这些功能性状特征值的大小、范围和分布状况称为功能多样性. Functional traits such as morphology, physiology and life history at the individual level affect plant fitness by affecting its survival, growth and reproduction. The size, range and distribution of these functional trait values are called functional diversity.
奠基者多样性 Founder diversity
这里指的是, 在种群保护或者生态修复中, 所引物种种群的遗传多样性.奠基者效应是指由少数个体的基因频率决定了它们后代基因频率的效应. This refers to the genetic diversity of founder in population conservation or ecological restoration. Founder effect is the gene frequency of a small number of individuals determines the gene frequency of their offspring.
系统发育多样性 Phylogenetic diversity
群落中物种的系统发育树形图(表示物种之间的亲缘关系)中所有分枝长度之和. The sum of all the branch lengths in a phylogenetic tree of species in a community (representing the relatedness between species).