删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

地理来源与生物化学属性对泥炭地植物残体分解的影响

本站小编 Free考研考试/2022-01-01

刘媛媛1,2,3, 马进泽1,2,3, 卜兆君,1,2,3,*, 王升忠,1,2,3,*, 张雪冰1, 张婷玉1, 刘莎莎1,2,3, 付彪1, 康媛1,2,31 东北师范大学地理科学学院泥炭沼泽研究所, 长春 130024
2 国家环境保护湿地生态与植被恢复重点实验室, 长春 130024
3 长白山湿地生态过程与环境变化吉林省重点实验室, 长春 130024

Effect of geographical sources and biochemical traits on plant litter decomposition in a peatland

LIU Yuan-Yuan1,2,3, MA Jin-Ze1,2,3, BU Zhao-Jun,1,2,3,*, WANG Sheng-Zhong,1,2,3,*, ZHANG Xue-Bing1, ZHANG Ting-Yu1, LIU Sha-Sha1,2,3, FU Biao1, KANG Yuan1,2,3 1 Institute for Peat and Mire Research, School of Geographical Science, Northeast Normal University, Changchun 130024, China
2 Key Laboratory for Wetland Conservation and Vegetation Restoration, Ministry of Environmental Protection, Changchun 130024, China
3 Jilin Provincial Key Laboratory for Wetland Ecological Processes and Environmental Change in the Changbai Mountains, Changchun 130024, China

通讯作者: (Bu ZJ: buzhaojun@nenu.edu.cn) (Wang SZ: szwang@nenu.edu.cn)

编委: 代力民
责任编辑: 李敏
基金资助:国家自然科学基金(41371103)
国家自然科学基金(41471043)
国家自然科学基金(41601085)
国家重点研发计划(2016YFC0500407)


Online:2018-07-20
Supported by: SupportedbytheNationalNaturalScienceFoundationofChina(41371103)
Supported by the National Natural Science Foundation of China(41471043)
Supported by the National Natural Science Foundation of China(41601085)
the National Key Research and Development Program of China(2016YFC0500407)


摘要
不同地理来源的泥炭地植物残体在同一环境中的分解速率一直缺乏比较研究。该研究沿纬度梯度, 选择大九湖、哈泥和满归3处泥炭地, 以三地的10种植物为分解材料, 使用分解袋包装, 埋藏于长白山哈泥泥炭地, 开展为期1年的分解实验, 研究地理来源及生物化学属性对泥炭地植物残体分解的影响。结果表明, 如不考虑物种差异, 从总体上看, 随着纬度增加, 3处泥炭地植物残体的初始氮(N)含量下降, 初始木质素含量、碳氮比(C/N)和木质素/N上升。经一年分解后残体分解速率因植物类群不同而不同, 桦木属(Betula)和薹草属(Carex)植物残体的干质量损失率均接近50%, 远大于泥炭藓属(Sphagnum)植物(约为10%)。3处来源地植物残体干质量损失率总体上无差异, 但比较同种植物残体发现, 来自中纬度泥炭地哈泥的中位泥炭藓(S. magellanicum)的干质量损失率(19%)远高于来自高纬度泥炭地满归的(9%)。制约残体分解的因素因植物类群不同而不同, 残体初始总酚/N是决定属间残体干质量损失率差异的重要指标。薹草属植物初始N含量和C/N与残体分解速率、泥炭藓属植物初始Klason木质素含量和总酚/N与残体分解速率均呈正相关关系。该研究一定程度上表明, 若以纬度降低指代气候变暖, 当前持续的气候变暖可能通过改变高纬度泥炭地的植物组成和植物的生物化学属性, 来改变植物残体分解速率, 进而影响泥炭地的碳汇功能。
关键词: 纬度梯度格局;植物功能群;泥炭地;生物化学品质

Abstract
Aims Few comparative studies have been conducted on the decomposition of the plant litters from different geographical sources in the same site. We aimed to understand the effect of geographical sources and biochemical traits of peatland plants on litter decomposition.Methods Along a latitudinal gradient, we collected plant materials from three peatlands, Dajiuhu, Hani and Mangui, to carry out a one-year decomposition experiment with litter bags in Hani Peatland, Changbai Mountains.Important findings When species identity was not considered, we found that overall initial nitrogen (N) content decreased while initial lignin content, carbon nitrogen ratio (C/N) and lignin/N increased with latitude in the litters from 3 peatlands. Litter decomposition differed with plant functional groups. After one year of decomposition, dry mass loss of both birch and sedge (ca. 50%) was higher than that of peat mosses (ca. 10%). No significant difference was observed in litter dry mass loss among different geographical sources. However, dry mass loss of Sphagnum magellanicum from the middle latitudinal peatland (19%) was higher than that from the high latitudinal site (9%). The factors affecting litter decomposition differed among plant functional groups. Initial total phenolics/N was the important factor to determine the difference in litter dry mass loss among the 3 genera. The initial N content and C/N, and Klason lignin content and total phenolics/N were positively related to litter decomposition of Carex and Sphagnum, respectively. If the decrease in latitude is used to indicate climate warming, to some extent, our study suggests that current climate warming, by changing the plant composition and biochemical traits, may alter litter decomposition and even carbon accumulation in high latitudinal peatlands.
Keywords:latitudinal gradient pattern;plant functional group;peatland;biochemical quality


PDF (1289KB)摘要页面多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
引用本文
刘媛媛, 马进泽, 卜兆君, 王升忠, 张雪冰, 张婷玉, 刘莎莎, 付彪, 康媛. 地理来源与生物化学属性对泥炭地植物残体分解的影响. 植物生态学报, 2018, 42(7): 713-722 doi:10.17521/cjpe.2018.0029
LIU Yuan-Yuan, MA Jin-Ze, BU Zhao-Jun, WANG Sheng-Zhong, ZHANG Xue-Bing, ZHANG Ting-Yu, LIU Sha-Sha, FU Biao, KANG Yuan. Effect of geographical sources and biochemical traits on plant litter decomposition in a peatland. Chinese Journal of Plant Ecology, 2018, 42(7): 713-722 doi:10.17521/cjpe.2018.0029


泥炭地是有机物生产远大于分解的生态系统, 大量的植物死亡后, 缓慢分解, 长期累积形成泥炭。全球来看, 泥炭地主要分布于北方气候区。北方泥炭地虽仅占全球陆地面积的3%, 却存储了全球土壤大约1/3的碳, 相当于大气CO2中碳储量的一半, 在全球碳循环中发挥着十分重要的作用(Rydin & Jeglum, 2013)。

通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013)。大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001)。因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系。

大尺度的地理环境差异影响植物残体的分解。在中、北美洲跨越热带、温带和寒带的对比实验研究表明, 实验周期内热带分解常数最大, 温带和寒带相似, 但若考虑有效时间(度日超过0 ℃), 则寒带分解常数远高于热带和温带(Irons et al., 1994)。当对残体分解纬度梯度格局的机制深入分析时, Berg等(1993)发现, 蒸散发是决定从亚热带至亚北极近40°纬距范围内残体分解的最重要因素。此外, 植物生活型对残体分解的大尺度地理格局影响很大, K?rner (1989)的研究中, 草本植物更容易表现出清晰的地理格局, 而常绿木本植物则不然。事实上, 地理环境差异可影响植物生物化学属性和残体品质。例如, 对欧洲来自9个山区150种植物的比较研究显示, 草本植物叶片的N含量随海拔和纬度的增加而增加(K?rner, 1989); 在我国东部地区, 森林乔木的叶片中, N和P含量均随纬度增加而增加(Chen et al., 2013)。来自泥炭地的实验结果恰恰相反, Dorrepaal等(2005)在欧洲沿纬度梯度的分解实验发现, 70种实验植物存在随着纬度增加N含量下降、C/N增加的趋势。

迄今为止, 不同纬度来源植物残体在同一地理环境中分解的比较研究还较少, 而在泥炭地方面, 研究多集中于水淹厌氧、贫营养、较强酸性等对分解及碳累积的直接贡献(Rydin & Jeglum, 2013), 对地理环境导致的植物自身内在的化学品质差异关注不够。我们沿纬度梯度选择3处泥炭地, 以三地的植物为分解材料, 以长白山哈泥泥炭地为实验地, 开展植物残体分解研究, 尝试回答泥炭地不同地理来源植物类群的残体分解差异及其与化学品质之间的关系, 具体验证: 1)是否来自低纬度地区的植物残体具有更高的分解速率; 2)植物残体分解速率的不同是否是植物残体的初始化学属性差异决定的。

1 材料和方法

1.1 材料来源地与实验地概况

本研究中, 沿纬度梯度, 选择湖北神农架大九湖泥炭地(31.48° N, 109.98° E)、吉林长白山哈泥泥炭地(42.20° N, 126.52° E)和内蒙古大兴安岭满归泥炭地(52.03° N, 122.05° E)为取样地点。3处泥炭地分别位于亚热带、中温带和寒温带, 在区域内均具有代表性和典型性, 且均属于近原始状态的大型泥炭地, 以泥炭藓属(Sphagnum)植物为优势植物, 发育一定厚度的藓类泥炭层。实验样品埋藏地哈泥泥炭地地处湿润半湿润针阔叶林带, 气候为中温带大陆性季风气候, 年降水量757-930 mm (Bu et al., 2011b)。依据2014-2017年3年的实地监测, 大九湖、哈泥和满归3处泥炭地年平均气温分别为7.9、2.0和-1.1 ℃。

1.2 研究材料准备

实验材料包括泥炭藓(S. palustre)、中央泥炭藓(S. centrale)、中位泥炭藓(S. magellanicum)、锈色泥炭藓(S. fuscum)、签草(Carex doniana)、毛薹草(C. lasiocarpa)、瘤囊薹草(C. schmidtii)、红桦(Betula albosinensis)、油桦(B. fruticose var. ruprechtiana)和柴桦(B. fruticosa) 10个物种, 其来源地见表1。将每个实验样地的每种实验材料分别处理装入分解袋, 共11种分解袋(哈泥和满归两处泥炭地的中位泥炭藓分别制作两种分解袋)。2014年8月, 在3处研究地分别收集足量的泥炭藓植株和维管植物叶片作为材料, 为减少微生境等原因造成材料差异的影响, 同一种的植株或叶片需经充分混合后备用。室内将泥炭藓植株上部(4 cm)(Bragazza et al., 2006)和薹草叶剪成2 cm片段, 与油桦叶一起室温下风干后, 于30 ℃烘箱内烘干48 h。使用90目尼龙网袋制作分解袋, 每个分解袋中装入2.0 g分解材料。根据分解材料的体积设定分解袋大小, 泥炭藓植物分解袋大小为10 cm × 10 cm, 维管植物分解袋大小为5 cm × 10 cm。

Table 1
表1
表1实验用植物残体的来源地与埋放地
Table 1The sites for litter collection and litter decomposition
埋放地
Site for decomposition
来源地
Site for collection
物种 Species
哈泥 Hani大九湖 Dajiuhu泥炭藓 Sphagnum palustre
签草 Carex doniana
红桦 Betula albosinensis
哈泥 Hani中央泥炭藓 S. centrale
中位泥炭藓 S. magellanicum
毛薹草 C. lasiocarpa
油桦 B. fruticosa var. ruprechtiana
满归 Mangui中位泥炭藓 S. magellanicum
锈色泥炭藓S. fuscum
瘤囊薹草 C. schmidtii
柴桦 B. fruticosa

新窗口打开|下载CSV

1.3 实验设计

2014年10月初, 将来自3处泥炭地的11种(区分来源地)植物残体分解袋埋设到长白山哈泥泥炭地。实验总计55个分解袋(11种材料× 5次重复)。将分解袋分为5个区组, 每个区组包含11种分解材料各一个样品。在哈泥, 选择植被及水位状况最具典型性的地段, 即泥炭藓属植物的盖度在95%以上, 水位埋深为20-30 cm, 相对平整的泥炭藓藓丘(或泥炭藓密集生长区域)生境, 随机选择5个埋放点, 埋放点之间的距离不小于200 cm, 以便区分区组间的分解样品。在每个埋设点随机均匀埋设一个区组的分解袋。分解袋口朝上, 且袋口距泥炭藓丘表面4-6 cm。2015年9月末, 取出全部分解袋, 清理每个分解袋表面的杂质, 然后单独封入封口袋内, 带回实验室-20 ℃冷冻保存。

1.4 指标测量与方法

实验之初, 每种分解材料另外准备5袋, 用于样品初始化学指标的测定。实验初始和结束时分解样品进行如下处理与分析测定:

室内清除分解袋外附着的杂质及袋内维管植物根系后, 将植物残体置于烘箱中65 ℃烘干至恒质量, 称量干质量。先将样品研磨至粉状, 然后测定各项化学指标。使用重铬酸钾-硫酸氧化法测量全C含量(章家恩, 2007); 不同于桦木属和薹草属植物, 泥炭藓属植物无真正的木质素, 但含有的类木质素物质可通过乙酰溴-分光光度法测定, 参照Straková等(2010)的方法, 使用乙酰溴-分光光度法测量桦木属和薹草属的木质素和泥炭藓Klason木质素(以下均简称木质素)含量; 使用Folin-Ciocalteu法测量总酚含量(Singleton et al., 1999); 利用全自动间断化学分析仪(SmartChem 140, AMS-Alliance, Guidonia, Italy)测量全N含量。

各个指标的损失以(初始值-分解后值)/初始值× 100%计算。

1.5 数据处理

应用SPSS 19.0软件完成数据处理与分析, 用GraphPad Prism 6作图。实验涉及泥炭藓属、薹草属和桦木属3个属的植物物种, 运用单因素方差分析法分析泥炭地植物种、属和来源地对残体初始化学组成及其化学计量比的影响, 每个属内物种对残体分解的影响、各个属对残体分解的影响和3个来源地对残体分解的影响, 并使用Tukey检验进行多重比较分析。因泥炭藓属物种共计4种, 比其他两属多1个物种, 且仅中位泥炭藓涉及两个来源地, 所以中位泥炭藓不用于单因素方差分析, 而单独运用双因素方差分析法分析物种和来源地对其分解的影响。利用相关分析和逐步回归分析方法分析泥炭地植物残体的初始化学组分与干质量损失率之间的关系。显著性水平设置为α = 0.05。

2 结果

2.1 初始化学组分

不同属的植物残体其初始化学组分不同。泥炭藓属的木质素含量、C/N、木质素/C、木质素/N最高(图1, 图2)。桦木属的C、N、总酚含量、总酚/C、总酚/N和总酚/木质素最高。同一属中, 植物的初始化学成分及化学计量比也多存在差异(图1, 图2)。其中, 来自哈泥和满归泥炭地的中位泥炭藓的C/N分别为32.1 ± 1.1和45.9 ± 2.8。

图1

新窗口打开|下载原图ZIP|生成PPT
图1泥炭地每种植物残体及每处泥炭地所有植物残体的初始化学组成(平均值±标准误差, n = 5)。Ball, 桦木属; Ba, 红桦; Br, 油桦; Bf, 柴桦; Call, 薹草属; Cd, 签草; Cl, 毛薹草; Cs, 瘤囊薹草; Sall, 泥炭藓属; Sp, 泥炭藓; Sc, 中央泥炭藓; Sf, 锈色泥炭藓。D, 来源地为大九湖的平均值; H, 来源地为哈泥的平均值; M, 来源地为满归的平均值。不同大写字母表示不同属之间初始化学组成差异显著(p < 0.05), 不同小写字母表示不同种和不同来源地之间初始化学组成差异显著(p < 0.05)。

Fig. 1Initial chemical composition of each plant litter in a peatland and initial chemical composition of all the plant litters from each peatland (mean ± SE, n = 5). Ball, the mean of Betula; Ba, B. albosinensis; Br, B. fruticosa var. ruprechtiana; Bf, B. fruticosa; Call, the mean of Carex; Cd, C. doniana; Cl, C. lasiocarpa; Cs, C. schmidtii; Sall, the mean of Sphagnum; Sp, S. palustre; Sc, S. centrale; Sm, S. magellanicum; Sf, S. fuscum. D, the mean of Dajiuhu; H, the mean of Hani; M, the mean of Mangui. Different capital letters indicate significant differences in initial chemical composition among genera (p < 0.05), and different lowercase letters indicate significant differences in initial chemical composition between both species in a genus or average of all the species among three sites (p < 0.05).



图2

新窗口打开|下载原图ZIP|生成PPT
图2泥炭地每种植物残体及每处泥炭地所有植物残体平均的初始化学计量比(平均值±标准误差, n = 5)。不同大写字母表示不同属之间初始化学计量比差异显著(p < 0.05)。不同小写字母表示不同种和3处来源地之间初始化学计量比差异显著(p < 0.05)。图注同图1。

Fig. 2Initial stoichiometric ratio of each plant litter in a peatland and average initial stoichiometric ratios of all the plant litters from each peatland (mean ± SE, n = 5). Different capital letters indicate significant differences in initial stoichiometric ratios among genera (p < 0.05). Different lowercase letters indicate significant differences in initial stoichiometric ratios between both species in a genus and average of all the species from three sources (p < 0.05). See Fig. 1 for notes.



Table 2
表2
表2泥炭地植物种、属和来源地对残体初始化学组成及其化学计量比影响的单因素方差分析
Table 2One-way analysis of variance for the effect of species, genus and source of plants on initial chemical index and stoichiometric ratios of litters
因素
Factor
相关系数 Correlation coefficient
CN总酚
Total
phenolics
木质素
Lignin
C/N总酚/C
Total
phenolics /C
木质素/C
Lignin/C
总酚/N
Total
phenolics/N
木质素/N
Lignin/N
总酚/木质素Total
phenolics/Lignin
种 SpeciesB106.293***41.509***62.296***0.40019.628***69.213***3.82145.356***24.485***25.207***
<0.001<0.001<0.0010.679<0.001<0.0010.052<0.001<0.001<0.001
C2.6578.308**45.047***4.476*16.272***40.042***5.066*18.049***15.195**16.497***
0.1110.005<0.0010.035<0.001<0.0010.025<0.0010.001<0.001
S0.82752.314***6.552*3.242*73.627***6.765**2.5441.10934.728***9.823**
0.461<0.0010.0120.075<0.0010.0110.1200.361<0.0010.003
属 Genus-129.384***43.542***257.553***21.628***24.742***229.423***47.086***84.932***28.998***184.473***
<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001<0.001
来源地
Source
-0.6603.341*0.3462.3247.034**0.4621.2942.4735.306**0.200
0.5220.0450.7090.1100.0020.6330.2850.0970.0090.819
*, p < 0.05; **, p < 0.01; ***, p < 0.001。B, 桦木属; C, 薹草属; S, 泥炭藓属。种因素分析属内物种差异同时也是来源地差异; 来源地因素分析不同来源地的所有植物间的差异。
B, Betula; C, Carex; S, Sphagnum. Species factor was used to analyze differences between species and also their sources. Source factor was used to analyze the differences between the averages of all the species in different sites.

新窗口打开|下载CSV

当不区分种属, 仅就地理来源看, 3处来源地植物残体的N (p = 0.045)、C/N (p = 0.002)和木质素/N (p = 0.009)初始化学成分存在显著差异。大九湖泥炭地植物残体N含量为(17.4 ± 2.1)‰, 显著高于满归的(11.7 ± 1.4)‰ (p = 0.035); 哈泥的植物残体木质素含量为(192.1 ± 7.5)‰, 显著低于满归的(217.0 ± 8.4)‰ (p = 0.091); C/N和木质素/N的规律相似, 满归的数值均高于其他两地。

2.2 植物残体分解的属、种效应

植物残体干质量(p < 0.001)、C (p < 0.001)、总酚(p < 0.001)和木质素(p = 0.049)的损失均因植物属的不同而存在显著差异(表3)。桦木属和薹草属的干质量和C损失均无显著差异(图3)。平均而言, 桦木属和薹草属的干质量损失分别为(46.6 ± 3.9)%和(47.0 ± 2.2)%, 均超过泥炭藓属(10.3 ± 1.8)%的2倍以上(图3A)。同样, 桦木属(46.2 ± 3.9)%和薹草属(46.4 ± 2.2)%的C损失亦远高于泥炭藓属(12.0 ± 1.7)% (图3B)。

Table 3
表3
表3泥炭地植物种、属和来源地对残体分解影响的单因素方差分析
Table 3One-way analysis of variance for the effect of species, genus and source of plant litters on decomposition in a peatland
因素
Factor
干质量损失
Dry mass loss (%)
C损失
Carbon loss (%)
N损失
Nitrogen loss (%)
总酚损失
Total phenolics loss (%)
木质素损失
Lignin loss (%)
FpFpFpFpFp
种 SpeciesB1.4110.2820.9200.4250.9900.4000.0200.9804.726*0.031
C16.381*** <0.00114.883**0.00115.432***<0.0018.005**0.0062.2290.150
S2.5240.1222.9020.09438.145***<0.0014.842*0.02918.463***<0.001
属 Genus-57.069*** <0.00150.719***<0.0010.3870.681417.741***<0.0013.235*0.049
来源地 Source-0.0460.9950.0250.9761.5980.2140.2010.8181.8040.177
*, p < 0.05; **, p < 0.01; ***, p < 0.001。B, 桦木属; C, 薹草属; S, 泥炭藓属。种因素分析属内物种差异同时也是来源地差异; 来源地因素分析不同来源地的所有植物间的差异。
B, Betula; C, Carex; S, Sphagnum. Species factor was used to analyze difference between species and also its sources. Source factor was used to analyze the difference between the averages of all the species in different sites.

新窗口打开|下载CSV

图3

新窗口打开|下载原图ZIP|生成PPT
图3物种及来源地对植物残体干质量(A)、C (B)、N (C)、总酚(D)和木质素(E)损失的影响(平均值±标准误差, n = 5)。不同大写字母表示不同属之间在干质量、C、N、总酚和木质素损失存在显著差异(p < 0.05), 不同小写字母表示属内不同种和不同来源地所有植物物种之间在干质量、C、N、总酚和木质素损失存在显著差异(p < 0.05)。图注同图1。

Fig. 3The effects of species and source on losses of litter dry mass (A), C (B), N (C), total phenolics (D) and lignin (E)(mean ± SE, n = 5). Different capital letters indicate significant differences in the effects of different genera on dry mass, C, N, total phenolics and lignin loss (p < 0.05). Different lowercase letters indicate significant differences in dry mass, C, N, total phenolics and lignin losses between different species in a same genus and among all species from different sources (p < 0.05). See Fig. 1 for notes.



桦木属和泥炭藓属内, 干质量损失均无显著的物种间差异(图3)。桦木属中, 物种显著影响植物残体木质素损失(p = 0.031)。薹草属中, 物种显著影响植物残体干质量(p < 0.001)、C (p = 0.001)、N (p < 0.001)和总酚损失(p = 0.006)。泥炭藓属中, 物种显著影响N损失(p < 0.001)、木质素(p < 0.001)和总酚的损失(p = 0.029) (表3)。

薹草属内, 平均而言, 芒尖薹草和毛薹草的干质量损失分别为(52.1 ± 2.3)%和(51.9 ± 1.2)%, 均高于瘤囊薹草(36.9 ± 2.7)% (图3A), 同样, 芒尖薹草(51.5 ± 2.2)%和毛薹草(51.3 ± 1.3)%的C损失均远高于瘤囊薹草(36.4 ± 2.9)% (图3B)。此外, 芒尖薹草和毛薹草两种薹草的N和总酚损失亦高于瘤囊薹草(图3C, 3D)。

2.3 植物残体分解的来源地效应

总体上看, 来自3处泥炭地的植物残体经一年的分解后, 在干质量、C、N、总酚和木质素损失方面均无显著差异(图3; 表3)。然而, 中位泥炭藓植物残体干质量(p = 0.001)、C (p < 0.001)和N (p < 0.001)和木质素(p < 0.001)的损失均因来源地的不同而不同(图4)。来自哈泥的干质量损失达(19.4 ± 1.5)%, 超过来自满归的(9.0± 1.5)% 1倍以上。

图4

新窗口打开|下载原图ZIP|生成PPT
图4来源地对中位泥炭藓植物残体干质量(A)、C (B)、N (C)、总酚(D)和木质素(E)损失的影响(平均值±标准误差, n = 5)。**, p < 0.01; ***, p < 0.001。

Fig. 4Effect of plant litter source on the losses of dry mass (A), C (B), N (C), total phenolics (D) and lignin (E) of Sphagnum magellanicum litters (mean ± SE, n = 5). **, p < 0.01; ***, p < 0.001.



2.4 初始化学组分与分解的关系

Pearson相关分析(表4)表明, 桦木属植物残体分解率各初始化学组分无关; 薹草属植物残体的分解率与它的初始N含量(p < 0.01)呈显著正相关关系, 与初始木质素含量(p < 0.05)、C/N (p < 0.01)、木质素/C (p < 0.05)、总酚/N (p < 0.01)和木质素/N (p < 0.01)呈显著负相关关系; 泥炭藓属植物残体的分解率与初始Klason木质素含量(p < 0.01)、C/N (p < 0.01) 、木质素/C (p < 0.01)和木质素/N比例(p < 0.01)呈显著正相关关系。3个属总体来看, 除N、C/N和木质素/N外, 其他指标都与干质量损失率相关。

Table 4
表4
表4泥炭地植物残体干质量损失与初始化学组分的相关分析
Table 4Correlation analysis between dry mass loss and initial chemical traits in plant litters
相关系数 Correlation coefficient
CN总酚
Total phenolics
木质素
Lignin
C/N总酚/C
Total phenolics/C
木质素/C
Lignin/C
多酚/N
Total phenolics/N
木质素/N
Lignin/N
多酚/木质素
Total phenolics/Lignin
B-0.291-0.3010.3700.2640.2860.4040.2800.4330.2810.345
C0.4000.720**0.002-0.526*-0.787**-0.014-0.518*-0.784**-0.740**0.251
S0.469-0.493-0.4030.544*0.516*-0.4030.543*0.4720.523*-0.444
总体
Total
0.796*0.5310.801**-0.793**-0.5550.815**-0.840**0.870**-0.6550.793*
*, p < 0.05; **, p < 0.01。B, 桦木属; C, 薹草属; S, 泥炭藓属。
*, p < 0.05; **, p < 0.01. B, Betula; C, Carex; S, Sphagnum.

新窗口打开|下载CSV

逐步回归分析表明, C/N (X1)和N含量(X2)显著抑制薹草属植物残体分解(Y = 258.354 - 3.088X1 - 6.687X2, p < 0.05), 二者可解释薹草属植物残体干质量损失率变化的70%。木质素含量(X3)显著促进泥炭藓属植物残体分解(Y = 0.276X3 - 54.767, p = 0.36), 可解释干质量损失率变化的24%。3个属总体来看, 残体初始总酚/N (X4)显著促进植物残体分解(Y = 11.921+8.439X4, p = 0.002), 可解释干质量损失率变化的72%。

3 讨论

3.1 植物残体分解的等级结构

许多分解实验均揭示了残体分解的植物类群差异性。Moore和Basiliko (2006)甚至提出, 泥炭地植物残体分解率存在清晰的等级结构: 木本材料<藓丘泥炭藓<丘间和丘坡泥炭藓<针叶叶片<阔叶树叶片<灌木叶片<莎草。本研究发现, 以桦木属为代表的灌木叶片和以薹草属为代表的莎草叶的干质量损失均超过泥炭藓属2倍以上, 符合该分解率等级结构, 也与Dorreapaal等(2005)结果相一致。按照该等级结构, 丘间泥炭藓的分解率要远高于藓丘种, 如狭叶泥炭藓(S. cuspidatum)比锈色泥炭藓的分解速率快1.5倍(Johnson & Damman, 1991); 偏叶泥炭藓(S. subsecundum)和钝叶泥炭藓(S. flexosum)的平均分解率(23.8%)高于锈色泥炭藓和尖叶泥炭藓(S. capillifolium)的平均值(16.8%)(Bragazza et al., 2007); 喙叶泥炭藓(S. fallax)的干质量损失(26.3%)超过藓丘种中央泥炭藓(12.1%) 1倍以上(李伟等, 2013)。然而, 本研究中发现, 同为藓丘种的泥炭藓属植物的分解率却差异巨大。中位泥炭藓和锈色泥炭藓的干质量损失比泥炭藓均高出1倍以上, 而且通常形成低丘的中位泥炭藓分解速率却与形成高丘的锈色泥炭藓相近, 此外, 灌木桦木属和薹草属叶的分解率没有显著差异, 这些均与等级结构存在差异, 表明Moore和Basiliko (2006)提出的分解等级结构应仅适用于同一甚至相近地理来源的植物泥炭地植物残体。

3.2 生物化学属性与残体分解

植物残体的品质是由其生物化学属性决定的。本研究发现, 制约残体分解的因素因植物类群的不同而不同, 残体初始总酚/N是决定属间残体干质量损失率差异的重要指标。桦木属植物的初始生物化学属性与残体分解间完全没有关系; 薹草属和泥炭藓属植物中, 一半左右的初始化学属性与残体分解显著相关(表4)。这可能意味着, 薹草和泥炭藓属植物残体的化学品质在残体分解中的决定性作用, 而木本植物的分解方面可能更多受控于分解者或者分解环境。来自满归泥炭地的中位泥炭藓的初始C/N高于哈泥, 同时, 来自满归的锈色泥炭藓的残体具有异于其他泥炭藓植物的突出特征, 其初始C/N达70, 总酚/N达5‰, 分别远高于和低于其他3种泥炭藓和来自哈泥泥炭地的锈色泥炭藓(分别平均为41‰和7‰, 未发表), 异于寻常的生物化学属性可能是对较高纬度地区低温胁迫的一种适应响应, 也是导致其与分解间存在异常关系的重要原因。

木质素和总酚是植物残体中难分解的物质, 通常与植物残体分解呈负相关关系(Tahvanainen & Haraguchi, 2013)。然而, 本研究中, Pearson相关分析表明, 泥炭藓残体分解竟然因这些难分解化学物质含量的增加而增加, 进一步的逐步回归也表明, 初始Klason木质素含量越高, 泥炭藓属植物残体分解将越快, 这应与锈色泥炭藓独特的化学属性及分解特征有关(当剔除该物种时, 这些相关关系会消失)。同样, 当将3种生活型植物总体分析时, 不仅未发现总酚/N (Bragazza et al., 2007)或木质素/N (Moore et al., 2005)对残体干质量损失的负效应, 还发现C、总酚、总酚/N指标都与分解呈正相关关系。这种异于常识的结果可能是本研究材料使用多种生活型材料造成的。其中涉及的总酚本身是混合物, 不同类群甚至物种都可能在总酚的组成上存在差异; 总酚的积累可能是厌氧条件下氧化酶活性低导致的(Tahvanainen & Haraguchi 2013; Medvedeff et al., 2015), 一旦所有材料放置于厌氧水平一致的环境中, 这种原有差异可能会发生改变从而影响分解, 而泥炭藓的Klason木质素非严格意义的木质素, 因此也可能影响我们对木质素和分解关系的认识。

3.3 残体分解的来源地效应

本研究中发现, 若不考虑物种及生活型差异, 地理来源对残体分解无影响; 若选择来自两地的同一物种比较来看, 来自哈泥的中位泥炭藓的分解远大于来自满归的, 进而说明物种差异将极大影响残体分解纬度梯度格局。本研究中, 同一物种的来源地效应一方面原因是, 地理纬度环境的差异可影响残体的品质, 高纬度地区的植物残体往往比低纬度地区的植物残体分解更慢, 同样, 薹草属内, 来源于高纬度寒温带地区的瘤囊薹草较来自亚热带的签草和温带的毛薹草的干质量损失率均低许多; 另一方面原因可能是植物残体分解的家域优势(home field advantage), 即专属分解者的高效性导致植物残体往往在其来源地表现出更快的分解速率(Ayres et al., 2009)。这一点在最新的泥炭地分解试验研究中也得到了证实, 无论泥炭藓还是薹草均在其为优势植物的生境中表现出明显的家域优势(Palozzi & Lindo, 2017)。

3.4 气候变化与碳累积

在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014)。泥炭累积是净初级生产力大于分解作用的结果。在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008)。然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加。本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累。当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能。当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的。事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性。

综上所述, 来自3地10种植物残体经过一年的分解后, 不同属植物残体分解率(干质量损失率)差异巨大。在同一环境条件下, 来自不同地理来源植物残体(不考虑生活型)总体上无差异, 相同植物(中位泥炭藓)则存在明显地理来源效应, 高纬度地区的植物残体分解缓慢。制约残体分解的因素因植物类群而不同, 残体初始总酚/N是决定不同生活型(属)间残体干质量损失率差异的重要指标。桦木属植物的初始化学属性与残体分解无关, 而薹草属植物初始N含量和C/N与残体分解、泥炭藓属植物初始Klason木质素含量和总酚/N与植物残体分解均呈正相关关系。综合来看, 长期的气候变暖可能通过改变高纬度泥炭地植物的生物化学属性, 来改变植物残体分解, 进而影响泥炭地的碳汇功能。

致谢 感谢东北师范大学陈永达参与了野外样品的处理。



参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Aerts R ( 1997). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship
Oikos, 79, 439-449.

DOI:10.2307/3546886URL [本文引用: 1]

Ayres E, Steltzer H, Simmons BL, Simpson RT, Steinweg JM, Wallenstein MD, Mellor N, Parton WJ, Moore JC, Wall DH ( 2009). Home-field advantage accelerates leaf litter decomposition in forests
Soil Biology & Biochemistry, 41, 606-610.

DOI:10.1016/j.soilbio.2008.12.022URL [本文引用: 1]
Several leaf litter decay studies have indicated that decomposition occurs more rapidly when litter is placed beneath the plant species from which it had been derived than beneath a different plant species (i.e. home-field advantage, HFA), although support for this notion has not been universal. We provide the first quantification of HFA in relation to leaf litter decomposition using published litter mass loss data from forest ecosystems in North America, South America, and Europe. Our findings indicate that HFA is widespread in forest ecosystems; on average litter mass loss was 8% faster at home than away. We hypothesize that HFA results from specialization of the soil biotic community in decomposing litter derived from the plant above it. Climate and initial litter quality data can be used to explain about 70% of the variability in litter decomposition at a global scale, leaving about 30% unexplained. We suggest that HFA be recognized as a factor that explains some of this remaining variability.

Bai GR, Wang SZ, Gao J, Yu JL ( 2004). Liquid-heat conditions and microbic decomposition on the forming of turf deposits
Journal of Shanghai Normal University (Natural Sciences), 33(3), 91-97.

[本文引用: 1]

[ 白光润, 王淑珍, 高峻, 于金莲 ( 2004). 中国亚热带、热带泥炭形成的水热条件与微生物分解相关性
上海师范大学学报(自然科学版), 33(3), 91-97.]

[本文引用: 1]

Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Anta RCD, Couteaux M, Escudero A, Gallardo A, Kratz WR, Madeira M, M?lk?nen E, McClaugherty CA, Meentemeyer V, Mu?oz F, Piussi P, Remacle JA, Santo AVD ( 1993). Litter mass loss rates in pine forest of Europe and Eastern United States: Some relationships with climate and litter quality
Biogeochemistry, 20(3), 127-159.

DOI:10.1007/BF00000785URL [本文引用: 1]
The purpose of this study was to relate regional variation in litter mass-loss rates (first year) in pine forests to climate across a large, continental-scale area. The variation in mass-loss rate was analyzed using 39 experimental sites spanning climatic regions from the subarctic to subtropical and Mediterranean: the latitudinal gradient ranged from 31 N to 70 N and may represent the the largest geographical area that has ever been sampled and observed for the purpose of studying biogeochemical processes. Because of unified site design and uniform laboratory procedures, data from all sites were directly comparable and permitted a determination of the relative influence of climate versus substrate quality viewed from the perspective of broad regional scales. Simple correlation applied to the entire data set indicated that annual actual evapotranspiration (AET) should be the leading climatic constraint on mass-loss rates (Radj2=0.496). The combination of AET, average July temp. and average annual temp. could explain about 70% of the sites' variability on litter mass-loss. In an analysis of 23 Scots pine sites north of the Alps and Carpatians AET alone could account for about 65% of the variation and the addition of a substrate-quality variable was sufficiently significant to be used in a model. The influence of litter quality was introduced into a model, using data from 11 sites at which litter of different quality had been incubated. These sites are found in Germany, the Netherlands, Sweden and Finland. At any one site most (> 90%) of the variation in mass-loss rates could be explained by one of the litter-quality variables giving concentration of nitrogen, phosphorus or water solubles. However, even when these models included nitrogen or phosphorus even small changes in potential evapotranspiration resulted in large changes in early-phase decay rates. Further regional subdivision of the data set, resulted in a range of strength in the relationship between loss rate and climatic variables, from very weak in Central Europe to strong for the Scandinavian and Atlantic coast sites (Radj2=0.912; AET versus litter mass loss). Much of the variation in observed loss rates could be related to continental versus marine/Atlantic influences. Inland locations had mass-loss rates lower than should be expected on the basis of for example AET alone. Attempts to include seasonality variables were not successful. It is clear that either unknown errors and biases, or, unknown variables are causing these regional differences in response to climatic variables. Nevertheless these results show the powerful influence of climate as a control of the broad-scale geography of mass-loss rates and substrate quality at the stand level. Some of these relationships between mass-loss rate and climatic variables are among the highest ever reported, probably because of the care taken to select uniform sites and experimental methods. This suggest that superior, base line maps of predicted mass-loss rates could be produced using climatic data. These models should be useful to predict the changing equilibrium litter dynamics resulting from climatic change.

Bragazza L, Freeman C, Jones T, Rydin H, Limpens J, Fenner N, Ellis T, Gerdol R, Hájek M, Hájek T, Iacumin P, Kutnar L, Tahvanainen T, Toberman H ( 2006). Atmospheric nitrogen deposition promotes carbon loss from peat bogs
Proceedings of the National Academy of Sciences of the United States of America, 103, 19386-19389.

DOI:10.1073/pnas.0606629104URLPMID:17151199 [本文引用: 2]
Peat bogs have historically represented exceptional carbon (C) sinks because of their extremely low decomposition rates and consequent accumulation of plant remnants as peat. Among the factors favoring that peat accumulation, a major role is played by the chemical quality of plant litter itself, which is poor in nutrients and characterized by polyphenols with a strong inhibitory effect on microbial breakdown. Because bogs receive their nutrient supply solely from atmospheric deposition, the global increase of atmospheric nitrogen (N) inputs as a consequence of human activities could potentially alter the litter chemistry with important, but still unknown, effects on their C balance. Here we present data showing the decomposition rates of recently formed litter peat samples collected in nine European countries under a natural gradient of atmospheric N deposition from ≈0.2 to 2 g·m6305·yr6301. We found that enhanced decomposition rates for material accumulated under higher atmospheric N supplies resulted in higher carbon dioxide (CO60) emissions and dissolved organic carbon release. The increased N availability favored microbial decomposition (i) by removing N constraints on microbial metabolism and (ii) through a chemical amelioration of litter peat quality with a positive feedback on microbial enzymatic activity. Although some uncertainty remains about whether decay-resistant Sphagnum will continue to dominate litter peat, our data indicate that, even without such changes, increased N deposition poses a serious risk to our valuable peatland C sinks.

Bragazza L, Siffi C, Iacumin P, Gerdol R ( 2007). Mass loss and nutrient release during litter decay in peatland: The role of microbial adaptability to litter chemistry
Soil Biology & Biochemistry, 39, 257-267.

DOI:10.1016/j.soilbio.2006.07.014URL [本文引用: 2]
In peatlands the reduced decomposition rate of plant litter is the fundamental mechanism making these peat-accumulating ecosystems effective carbon sinks. A better knowledge of litter decomposition and nutrient cycling is thus crucial to improve our predictions of the effects of anthropogenic perturbation on the capacity of peatlands to continue to behave as carbon sinks. We investigated patterns of plant litter decomposition and nutrient release along a minerotrophic mbrotrophic gradient in a bog on the south-eastern Alps of Italy. We determined mass loss as well as P, N, K, and C release of seven vascular plant species and four moss species after 1 year in both native and transplanted habitats. Hence, differences in litter decay were supposed to reflect the degree of adaptability of microbial communities to litter quality. Polyphenols/nutrient and C/nutrient quotients appeared as the main parameters accounting for decomposition rates of Sphagnum litter. In particular, litter of minerotrophic Sphagnum species decomposed always faster than litter of ombrotrophic Sphagnum species, both in native and transplanted habitats. Decomposition rates of vascular plant litter in native habitats were always higher than the corresponding mass loss rates of Sphagnum litter. Minerotrophic forbs showed the fastest decomposition both in native and transplanted habitats in accordance with low C/P and C/N litter quotients. On the other hand, C/P quotient seems to play a primary role also in controlling decomposition of graminoids. Decomposition of deciduous and evergreen shrubs was negatively related to their high lignin content. Nitrogen release from Sphagnum litter was primarily controlled by C/N quotient, so that minerotrophic Sphagnum litter released more N than ombrotrophic Sphagnum litter. Overall, we observed slower N release from litter of ombrotrophic vascular plant species compared to minerotrophic vascular plant species. No single chemical parameter could predict the variability associated with different functional groups. The release of K was very high compared to all the other nutrients and rather similar between ombrotrophic and minerotrophic litter types. In Sphagnum litter, a higher C/P quotient was associated with a slower P mineralisation, whereas a faster P release from vascular plant litter seems primarily associated with lower C/P and polyphenols/P quotients.

Breeuwer A, Heijmans M, Robroek BJM, Limpens J, Berendse F ( 2008). The effect of increased temperature and nitrogen deposition on decomposition in bogs
Oikos, 117, 1258-1268.

DOI:10.1111/j.0030-1299.2008.16518.xURL [本文引用: 1]
Despite their low primary production, ombrotrophic peatlands have a considerable potential to store atmospheric carbon as a result of their extremely low litter decomposition rates. Projected changes in temperature and nitrogen (N) deposition may increase decomposition rates by their positive effects on microbial activity and litter quality, which can be expected to result in enhanced mass loss and N release from Sphagnum and vascular plant litter. This is the first study that examines the combined effects of increased temperature and N deposition on decomposition in bogs. We investigated mass loss and N release at four bog sites along a gradient from north Sweden to northeast Germany in which both temperature and N deposition increased from north to south. We performed two litterbag experiments: one reciprocal experiment with Eriophorum vaginatum litter and one experiment using recalcitrant ( Sphagnum fuscum ) and more degradable ( Sphagnum balticum ) Sphagnum litter collected from the most northern site. We measured mass loss and N release during two ( Sphagnum ) and three ( E. vaginatum ) years. The N concentration and decomposability of the E. vaginatum litter did not differ between the sites. Mass loss from E. vaginatum litter increased over the gradient from north to south, but there was no such effect on Sphagnum litter. N loss of all litter types was affected by collection site, incubation site and time and all interactions between these factors. N release in Sphagnum was positively related to N concentration. We conclude that decomposition of vascular plants and Sphagnum litter is influenced by different environmental drivers, with enhanced temperatures stimulating mass loss of vascular plant litter, but not of Sphagnum . Enhanced N deposition increases Sphagnum litter N loss. As long-term consequences of climate change will presumably entail a higher vascular plant production, overall litter decomposition rates are likely to increase, especially in combination with increased temperature.

Bubier JL, Moore TR, Bledzki LA ( 2007). Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog
Global Change Biology, 13, 1168-1186.

DOI:10.1111/j.1365-2486.2007.01346.xURL [本文引用: 1]
We measured net ecosystem CO 2 exchange (NEE), plant biomass and growth, species composition, peat microclimate, and litter decomposition in a fertilization experiment at Mer Bleue Bog, Ottawa, Ontario. The bog is located in the zone with the highest atmospheric nitrogen deposition for Canada, estimated at 0.8–1.2 g N m 612 yr 611 (wet deposition as NH 4 and NO 3 ). To establish the effect of nutrient addition on this ecosystem, we fertilized the bog with six treatments involving the application of 1.6–6 g N m 612 yr 611 (as NH 4 NO 3 ), with and without P and K, in triplicate 3 m × 3 m plots. The initial 5–6 years have shown a loss of first Sphagnum , then Polytrichum mosses, and an increase in vascular plant biomass and leaf area index. Analyses of NEE, measured in situ with climate-controlled chambers, indicate that contrary to expectations, the treatments with the highest levels of nutrient addition showed lower rates of maximum NEE and gross photosynthesis, but little change in ecosystem respiration after 5 years. Although shrub biomass and leaf area increased in the high nutrient plots, loss of moss photosynthesis owing to nutrient toxicity, increased vascular plant shading and greater litter accumulation contributed to the lower levels of CO 2 uptake. Our study highlights the importance of long-term experiments as we did not observe lower NEE until the fifth year of the experiment. However, this may be a transient response as the treatment plots continue to change. Higher levels of nutrients may cause changes in plant composition and productivity and decrease the ability of peatlands to sequester CO 2 from the atmosphere.

Bu ZJ, Joosten H, Li HK, Zhao GL, Zheng XX, Ma JZ, Zeng J ( 2011 a). The response of peatlands to climate warming: A review
Acta Ecologica Sinica, 31, 157-162.

DOI:10.1016/j.chnaes.2011.03.006URL [本文引用: 1]
Peatlands hold a large portion of the Earth terrestrial organic carbon and serve as important pools in the global carbon cycle. Due to their strong feedbacks, peatlands are one of the most important ecosystems with respect to climate warming. This paper reviews the effects of climate warming on peatland ecosystems. Climate warming will shift the point in time when vascular peatland plants flower and reach maximum biomass to an earlier date. Flower production for some plants will increase, but how the phenology of peatland bryophytes will react is still unknown. Climate warming may increase productivity of peatlands, especially ombrotrophic Sphagnum bogs, but in the long run the negative effects from decreased water availability may prevail. Climate warming will change the basic characteristics of peatlands: their wetness and the related cold environment and nutrient shortage. By increased mineralization and nitrogen and phosphorus availability, climate warming will facilitate the growth of vascular plants. This will suppress endangered plant species (which usually grow in low-productive, phosphorus-limited habitats) and lead to a change in vegetation composition and a decrease in peatland biodiversity. Climate warming will change the competitive balance between bryophytes and between Sphagnum and vascular plants. Climate warming in the Late Pleistocene facilitated the initiation of peatland formation, but most current experiments show an obvious tendency for climate warming to drive many peatlands to regressive succession with a shift in dominance from Sphagnum to vascular plants. This change in vegetation will increase the flux of CH 4 and possibly also CO 2. The effect of accelerated peat decay as a result of climate warming will vary between types of peatlands. Since climate warming will generally enhance peat respiration more than net primary production, more and more peatlands will become carbon sources rather than carbon sinks, which will aggravate climate warming by positive feedback. Finally, this paper addresses some problems with current manipulative experimental studies on peatland response to climate warming and makes suggestions for further studies.

Bu ZJ, Rydin H, Chen X ( 2011 b). Direct and interaction-mediated effects of environmental changes on peatland bryophytes
Oecologia, 166, 555-563.

DOI:10.1007/s00442-010-1880-1URLPMID:21170747 [本文引用: 1]
Ecosystem processes of northern peatlands are largely governed by the vitality and species composition in the bryophyte layer, and may be affected by global warming and eutrophication. In a factorial experiment in northeast China, we tested the effects of raised levels of nitrogen (0, 1 and 2 g m6305 year6301), phosphorus (0,0.1 and 0.2 g m6305 year6301) and temperature (ambient and +3°C) on Polytrichum strictum, Sphagnum magellanicum and S. palustre, to see if the effects could be altered by interspecific interactions. In all species, growth declined with nitrogen addition and increased with phosphorus addition, but only P. strictum responded to raised temperature with increased production of side-shoots (branching). In Sphagnum, growth and branching changed in the same direction, but in Polytrichum, the two responses were uncoupled: with nitrogen addition there was a decrease in growth (smaller than in Sphagnum) but an increase in branching; with phosphorus addition growth increased but branching was unaffected. There were no two-way interactions among the P, N and T treatments. With increasing temperature, our results indicate that S. palustre should decrease relative to P. strictum (Polytrichum increased its branching and had a negative neighbor effect on S. palustre). With a slight increase in phosphorus availability, the increase in length growth and production of side-shoots in P. strictum and S. magellanicum may give them a competitive superiority over S. palustre. The negative response in Sphagnum to nitrogen could favor the expansion of vascular plants, but P. strictum may endure thanks to its increased branching.

Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, Mu M, Saatchi S, Santoro M, Thurner M, Weber U, Ahrens B, Beer C, Cescatti A, Randerson JT, Reichstein M ( 2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems
Nature, 514, 213-217.

DOI:10.1038/nature13731URLPMID:25252980 [本文引用: 1]
The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is 23(+7)(-4) years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75 north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.

Chen YH, Han WX, Tang LY, Tang ZY, Fang JY ( 2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form
Ecography, 36, 178-184.

DOI:10.1111/j.1600-0587.2011.06833.xURL [本文引用: 1]
Leaf chemistry is important in predicting the functioning and dynamics of ecosystems. As two key traits, leaf nitrogen (N) and phosphorus (P) concentrations set the limits for plant growth, and leaf N:P ratios indicate the shift between N- and P-limitation. To understand the responses of leaf chemistry to their potential drivers, we measured leaf N and P concentrations of 386 woody species at 14 forest sites across eastern China, and explored the effects of climate, soil, and plant growth form on leaf N, P and N:P ratios. In general, leaf N and P were both negatively related to mean annual temperature and precipitation, and positively related to soil N and P concentrations. Leaf N:P ratios showed opposite trends. General linear models showed that variation in leaf N was mainly determined by a shift in plant growth form (from evergreen broadleaved to deciduous broadleaved to conifer species) along the latitudinal gradient, while variations in leaf P and N:P were driven by climate, plant growth form, and their interaction. These differences may reflect differences in nutrient cycling and physiological regulations of P and N. Our results should help understand the ecological patterns of leaf chemical traits and modeling ecosystem nutrient cycling.

Coq S, Weigel J, Butenschoen O, Bonal D, H?ttenschwiler S ( 2011). Litter composition rather than plant presence affects decomposition of tropical litter mixtures
Plant and Soil, 343, 273-286.

DOI:10.1007/s11104-011-0717-yURL [本文引用: 1]
Litter decomposition is strongly controlled by litter quality, but the composition of litter mixtures and potential interactions with live plants through root activity may also influence decomposers. In a greenhouse experiment in French Guiana we studied the combined effects of the presence of tropical tree seedlings and of distinct litter composition on mass and nitrogen (N) loss from decomposing litter and on microbial biomass. Different litter mixtures decomposed for 435 days in pots filled with sand and containing an individual seedling from one of four different tree species. We found both additive and negative non-additive effects (NAE) of litter mixing on mass loss, whereas N loss showed negative and positive NAE of litter mixing. If litter from the two tree species, Platonia insignis and Goupia glabra were present, litter mixtures showed more positive and more negative NAE on N loss, respectively. Overall, decomposition, and in particular non-additive effects, were only weakly affected by the presence of tree seedlings. Litter mass loss weakly yet significantly decreased with increasing fine root biomass in presence of Goupia seedlings, but not in the presence of seedlings of any other tree species. Our results showed strong litter composition effects and also clear, mostly negative, non-additive effects on mass loss and N loss. Species identity of tree seedlings can modify litter decomposition, but these live plant effects remain quantitatively inferior to litter composition effects.

Dorrepaal E, Cornelissen JHC, Aerts R, Wallén B, van Logtestijn RSP ( 2005). Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient?
Journal of Ecology, 93, 817-828.

DOI:10.1111/j.1365-2745.2005.01024.xURL [本文引用: 2]
1 Plant growth forms are widely used to predict the effects of environmental changes, such as climate warming and increased nitrogen deposition, on plant communities, and the consequences of species shifts for carbon and nutrient cycling. We investigated whether the relationship between growth forms and patterns in litter quality and decomposition are independent of environmental conditions and whether growth forms are as good as litter chemistry at predicting decomposability. 2 We used a natural, latitudinal gradient in NW Europe as a spatial analogue for future increases in temperature and nitrogen availability. Our screening of 70 species typical of Sphagnum-dominated peatlands showed that leaf litters of Sphagnum mosses, evergreen and deciduous shrubs, graminoids and forbs differed significantly in litter chemistry and that the ranking of the growth forms was independent of the region for all litter chemistry variables. Differences among growth forms were usually larger than differences related to the environmental gradient. 3 After 8 and 20 months incubation in outdoor, Sphagnum-based decomposition beds, growth forms generally differed in decomposability, but these patterns varied with latitude. Sphagnum litters decomposed slower than other litters in all regions, again explaining its high representation in organic deposits of peatlands. Forb litters generally decomposed fastest, while the differences among the other growth forms were small, particularly at higher latitudes. 4 Multiple regression analyses showed that growth forms were better at predicting leaf litter decomposition than chemical variables in warm-temperate peatlands with a high N-load, but less so in the subarctic, low-N region. 5 Our results indicate that environmental changes may be less important in determining ecosystem leaf litter chemistry directly than are their indirect effects through changes in the relative abundance of growth forms. However, climatic and nutritional constraints in high-latitude peatlands promote convergence towards nutrient-efficient plant traits, resulting in similar decomposition rates of vascular growth forms despite differences in litter chemistry. The usefulness of the growth-form concept in predicting plant community controls on ecosystem functioning is therefore somewhat limited.

Dyer ML, Meentemeyer V, Berg B ( 1990). Apparent controls of mass loss rate of leaf litter on a regional scale
Scandinavian Journal of Forest Research, 5, 311-323.

DOI:10.1080/02827589009382615URL [本文引用: 1]
First year litter mass loss was well correlated with actual evapotranspiration (AET) on a global scale. Decomposition values (in the range 009000990% accumulated mass loss) from the literature were compared with AET and to the litters090005 nitrogen and lignin concentrations. As much as 65% of the decomposition rate could be explained by AET (n=92). Although both nitrogen and lignin separately gave significant relationships they did not appreciably change the coefficient of determination when added to the AET relationship. Dividing the data into boreal and tropical sets led to a change in the degree of relationship with AET and the chemical components. Higher coefficients of determination were obtained in the tropical systems (about 78 % of the decomposition could be explained by AET and lignin concentration) whereas in the boreal systems AET and nitrogen concentration could explain about 16%. Data on 92 observations of mass090006loss conducted at 25 sites ranging in AET from 285 to 1105 mm were combined to develop new continental scale models of mass loss and to test for the significance of litter quality variables at such scales. Highest monthly precipitation (HPRE), annual precipitation range (PRANGE) and annual AET could each account for about 65% of the variability in rates of mass loss. The best two090006variable model was provided by the combination of AET and PRANGE, explaining about 71% of the mass loss.

Gogo S, Laggoun-Défarge F, Merzouki F, Mounier S, Guirimand-Dufour A, Jozja N, Huguet A, Delarue F, Défarge C ( 2016). In situ and laboratory non-additive litter mixture effect on C dynamics of Sphagnum rubellum and Molinia caerulea litters
Journal of Soils & Sediments, 16, 13-27.

[本文引用: 1]

Hobbie SE ( 2008). Nitrogen effects on decomposition: A five-year experiment in eight temperate sites
Ecology, 89, 2633-2644.

DOI:10.1890/07-1119.1URLPMID:18831184 [本文引用: 1]
The influence of inorganic nitrogen (N) inputs on decomposition is poorly understood. Some prior studies suggest that N may reduce the decomposition of substrates with high concentrations of lignin via inhibitory effects on the activity of lignin-degrading enzymes, although such inhibition has not always been demonstrated. I studied the effects of N addition on decomposition of seven substrates ranging in initial lignin concentrations (from 7.4% to 25.6%) over five years in eight different grassland and forest sites in central Minnesota, USA. I predicted that N would stimulate the decomposition of lignin-poor substrates but retard the decomposition of lignin-rich substrates. Across these sites, N had neutral or negative effects on decomposition rates. However, in contrast to my hypothesis, effects of N on decomposition were independent of substrate initial lignin concentrations, and decomposition of the lignin fraction was unaffected by N fertilization. Rather, substrate ite combinations that exhibited more rapid decomposition rates in the control treatment were affected more negatively by addition of N fertilization. Taken together, these results suggest that decreased decomposition with added N did not result from inhibition of lignin-degrading enzyme activity, but may have resulted from abiotic interactions between N fertilizer and products of microbial degradation or synthesis or from N effects on the decomposer community. Low initial substrate N concentrations and N fertilization both stimulated N immobilization, but the differences among substrates were generally much larger than the effects of fertilization. This study suggests that atmospheric N addition could stimulate ecosystem carbon sequestration in some ecosystems as a result of reduced rates of forest floor decomposition.

Irons III JG, Oswood MW, Stout RJ, Pringle CM ( 1994). Latitudinal patterns in leaf litter breakdown: Is temperature really important?
Freshwater Biology, 32, 401-411.

DOI:10.1111/j.1365-2427.1994.tb01135.xURL [本文引用: 1]
1. Forest stream food webs depend largely on input of dead riparian zone leaves for their energy, which is converted into living biomass by microbes, macroinvertebrates and fish. 2. Temperature has been invoked as important in controlling breakdown rates, and aquatic biologists have suggested that by normalizing processing rates to degree days rather than days, one can 'factor out' the effect of temperature and compare processing rates in streams with different thermal regimes (e.g. different seasons or study sites in different biomes). 3. We examined processing rates (k) along a latitudinal (i.e. thermal) gradient by using reciprocal transplants of leafpacks. We placed leafpacks of ten tree species (representing a large range of leaf litter quality) in streams in Costa Rica, Michigan and Alaska using coarse-mesh (20mm) litter bags. We then examined both the 'per day' (k day ) and 'per degree day' (k degree day ) models of leaf litter processing. While processing rates (per day) were fastest at the Costa Rica site (as expected), rates at the Alaska and Michigan sites were similar to each other, which we would not predict if temperature were the principal factor controlling breakdown rate. If using degree days eliminates any effect of differing thermal regimes, rates should be similar across latitudes; however, rates at the Alaska site were much faster (per degree day) than rates at the sites in Costa Rica and Michigan. 4. We compared our data with studies in the North American literature. Regression analysis of k day and k degree day against latitude of the study site revealed that processing rates (k day ) of leaves (from a wide range of tree species in a wide range of stream types) showed no significant change with increasing latitude. However, when normalized for temperature (k Degree day ), a positive correlation was found between processing rates and latitude, causing us to reject the hypothesis that normalizing processing rates to cumulative degree days removes the effect of temperature. 5. We suggest three hypotheses: (i) shredding insect populations have adapted to the local thermal regime, and invertebrate-mediated processing rates are either similar between regions (showing no latitudinal pattern), or increase with latitude; (ii) microbial populations are less active at colder temperatures, and the rate of microbially mediated processing of leaf litter will show a decrease with latitude, and consequently (iii) the relative importance of invertebrate v microbial processing changes on a latitudinal gradient, with invertebrates being more important at high latitudes.

Johnson LC, Damman AWH ( 1993). Decay and its regulation in Sphagnum peatlands
Advances in Bryology, 5, 249-296.

[本文引用: 1]

Johnson LC, Damman AWH ( 1991). Species-controlled Sphagnum decay on a South Swedish raised bog
Oikos, 61, 234-242.

DOI:10.2307/3545341URL [本文引用: 1]
The decay of Sphagnum cuspidatum and S. fuscum was measured in an ombrotrophic (rain-fed) raised bog. These species most commonly occupy the two major bog microhabitats, hollows and hummocks, respectively. Plants of these two species, excluding their capitulum, were enclosed in nylon mesh decomposition bags and reciprocally transplanted into hummocks and hollows at several levels with respect to the water table for 10 and 22 months. The reciprocal transplants enabled us to identify whether decay was species or microhabitat regulated. S. cuspidatum in the hollows decayed 1.5 times as fast as S. fuscum in the oxic part of the hummocks (16.9% vs 11.3% mass loss). The reciprocal litter transplants showed that differences in decay between species completely overruled the effects of microhabitat. Thus, S. cuspidatum decayed relatively fast in the hollows in spite of the wetness, whereas S. fuscum decayed slowly even in the hummocks where conditions are most favorable for decay. Decay rates for S. cuspidatum and S. fuscum were much lower during the second incubation interval (5.7% and 1.5% additional mass loss, respectively, in the oxic part of the hummock). Even though decay slowed down greatly in the second interval, differences between species were still maintained through 22 months. The differences in decay of these two species may initiate and maintain the hummock-hollow microtopography.

K?rner C ( 1989). The nutritional status of plants from high altitudes
Oecologia, 81, 379-391.

DOI:10.1007/BF00377088URL [本文引用: 2]

Li W, Bu ZJ, Zhang BJ, Long C, Tang RJ, Cui QW ( 2013). Decomposition of Sphagnum litter in 4 peatlands of the Changbai Mountains along an altitudinal gradient
Journal of Mountain Science , 31, 442-447.

[本文引用: 1]

[ 李伟, 卜兆君, 张兵将, 龙川, 唐瑞江, 崔钱王 ( 2013). 长白山不同海拔泥炭地泥炭藓残体的分解
山地学报, 31, 442-447.]

[本文引用: 1]

Medvedeff CA, Bridgham SD, Pfeifer-Meister L, Keller JK ( 2015). Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands?
Soil Biology & Biochemistry, 86, 34-41.

DOI:10.1016/j.soilbio.2015.03.016URL [本文引用: 1]
61Sphagnum-derived dissolved organic matter increased anaerobic CO2 production.61The response of CH4 to Sphagnum-derived dissolved organic matter was complex.61Changes in CH4 production were driven by shifts in acetoclastic methanogenesis.61Sphagnum-derived dissolved organic matter can regulate CO2 and CH4 in peatlands.

Melillo JM, Aber JD, Muratore JF ( 1982). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics
Ecology, 63, 621-626.

DOI:10.2307/1936780URL [本文引用: 1]

Moore TR, Basiliko N ( 2006). Decomposition in boreal peatlands
In: Wieder RK, Vitt DH eds. Boreal Peatland Ecosystems. Springer-Verlag, Berlin.

DOI:10.1007/978-3-540-31913-9_7URL [本文引用: 3]
The slow rates of decomposition of plant tissues and peat are critical to the accumulation of large amounts of organic matter in boreal peatlands. This slowness is a combination of the poor nutrient c

Moore TR, Trofymow JA, Siltanen M, Prescott C, Group CW ( 2005). Patterns of decomposition and carbon, nitrogen, and phosphorus dynamic
Canadian Journal of Forest Research, 35, 133-142.

DOI:10.1139/x04-149URL [本文引用: 1]

Müller T, Magid J, Jensen LS, Nielsen NE ( 2003). Decomposition of plant residues of different quality in soil—DAISY model calibration and simulation based on experimental data
Ecological Modelling, 166, 3-18.

DOI:10.1016/S0304-3800(03)00114-5URL [本文引用: 1]
A parameter setup for the DAISY model calibrated on data measured in the field was evaluated on data obtained from a lab-incubation experiment with residues of leguminous green manure plants, blue grass, rape straw and barley straw. The aim of this study was to test and further develop the principles and parameters for the turnover and the initial characterisation of these plant materials in the DAISY model. The field-calibrated parameter set led to considerable problems when applied to the lab-incubation experiment. For mineral N, soil microbial biomass N and added organic matter, none of the model simulations was fully satisfactory. The only exception was the treatment without addition of plant material. As a consequence, the parameters controlling the turnover of added organic matter and soil microbial biomass have been modified. Further conceptual changes have been suggested. It was not possible to simulate the initial decay and N release from added organic matter (AOM) by simply subdividing it into a water-insoluble part (AOM1) and a water-soluble part (AOM2). However, the C/N ratio and the cellulose content of the added plant residues may be useful indicators for the partitioning of plant materials into a slowly decomposable (AOM1) and a rapidly decomposable (AOM2) part. The general concept of two AOM-pools with predefined constant turnover rates and C/N ratios is questioned for plant residues with very different properties. After addition of easily decomposable green plant materials, death and maintenance respiration rates of modelled soil microbial biomass pools had to be reduced considerably in order to fit simulated mineral N to measured values. This is in contrast to the assumption of two SMB-pools with different but constant properties. After these modifications it was possible to achieve reliable simulations of mineral N, cumulative soil respiration and added organic matter. However, a major problem remained after recalibration. It was not possible to simulate SMB-N satisfactorily in the treatments with red clover, white clover or white melilot. It is concluded that the DAISY model does not fully reflect the flow of N through SMB after addition of easily decomposable leguminous plant materials and the following turnover into soil microbial residual N (SMR-N). The introduction of a separate SMR-pool is proposed.

Ouyang LM, Wang C, Wang WQ, Tong C ( 2013). Carbon, nitrogen and phosphorus stoichiometric characteristics during the decomposition of Spartina alterniflora and Cyperus malaccensis var. brevifolius litters
Acta Ecologica Sinica, 33, 389-394.

DOI:10.5846/stxb201111211777URL [本文引用: 1]
为了揭示植物枯落物分解过程中元素生态化学计量学特征,对闽江河口湿地互花米草和短叶茳芏枯落物分解过程进行了测定。结果表明:整个分解期间内(2007年1—10月),在近潮沟生境和远潮沟生境,互花米草枯落物分解速率、氮磷养分含量低于短叶茳芏枯落物,但热值高于短叶茳芏枯落物;近潮沟生境,互花米草和短叶茳芏枯落物分解过程中平均C/N、C/P和N/P分别为70.5和34.7,2285.8和1210.7,32.8和35.4;远潮沟生境互花米草和短叶茳芏枯落物分解过程中平均C/N、C/P和N/P分别为72.7和33.2,2519.2和1167.0,34.0和35.9,两种生境下均表现为互花米草具有较高的C/N、C/P和较低的N/P;互花米草枯落物分解过程中具有较高的C/N和C/P,其分解速率较低。
[ 欧阳林梅, 王纯, 王维奇, 仝川 ( 2013). 互花米草与短叶茳芏枯落物分解过程中碳氮磷化学计量学特征
生态学报, 33, 389-394.]

DOI:10.5846/stxb201111211777URL [本文引用: 1]
为了揭示植物枯落物分解过程中元素生态化学计量学特征,对闽江河口湿地互花米草和短叶茳芏枯落物分解过程进行了测定。结果表明:整个分解期间内(2007年1—10月),在近潮沟生境和远潮沟生境,互花米草枯落物分解速率、氮磷养分含量低于短叶茳芏枯落物,但热值高于短叶茳芏枯落物;近潮沟生境,互花米草和短叶茳芏枯落物分解过程中平均C/N、C/P和N/P分别为70.5和34.7,2285.8和1210.7,32.8和35.4;远潮沟生境互花米草和短叶茳芏枯落物分解过程中平均C/N、C/P和N/P分别为72.7和33.2,2519.2和1167.0,34.0和35.9,两种生境下均表现为互花米草具有较高的C/N、C/P和较低的N/P;互花米草枯落物分解过程中具有较高的C/N和C/P,其分解速率较低。

Palozzi JE, Lindo Z ( 2017). Pure and mixed litters of Sphagnum and Carex exhibit a home-field advantage in Boreal peatlands
Soil Biology & Biochemistry, 115, 161-168.

[本文引用: 2]

Rydin H, Jeglum JK ( 2013). The Biology of Peatlands. Oxford University Press, Oxford.
[本文引用: 2]

Singleton VL, Orthofer R, Lamuela-Raventós RM ( 1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent
Methods in Enzymology, 299, 152-178.

DOI:10.1016/S0076-6879(99)99017-1URL [本文引用: 1]

Straková P, Anttila J, Spetz P, Kitunen V, Tapanila T, Laiho R ( 2010). Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level
Plant and Soil, 335, 501-520.

DOI:10.1007/s11104-010-0447-6URL [本文引用: 1]
Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In longterm (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.

Stubbs TL, Kennedy AC, Reisenauer PE, Burns JW ( 2009). Chemical composition of residue from cereal crops and cultivars in dryland ecosystems
Agronomy Journal, 101, 538-545.

DOI:10.2134/agronj2008.0107xURL [本文引用: 1]

Tahvanainen T, Haraguchi A ( 2013). Effect of pH on phenol oxidase activity on decaying Sphagnum mosses
European Journal of Soil Biology, 54, 41-47.

[本文引用: 2]

Wang HJ, Richardson CJ, Ho MC ( 2015). Dual controls on carbon loss during drought in peatlands
Nature Climate Change, 5, 584-587.

DOI:10.1038/nclimate2643URL [本文引用: 1]
2015 Macmillan Publishers Limited. Peatlands store one-third of global soil carbon. Drought/drainage coupled with climate warming present the main threat to these stores. Hence, understanding drought effects and inherent feedbacks related to peat decomposition has been a primary global challenge. However, widely divergent results concerning drought in recent studies challenge the accepted paradigm that waterlogging and associated anoxia are the overarching controls locking up carbon stored in peat. Here, by linking field and microcosm experiments, we show how previously unrecognized mechanisms regulate the build-up of phenolics, which protects stored carbon directly by reducing phenol oxidase activity during short-term drought and, indirectly, through a shift from low-phenolic Sphagnum/herbs to high-phenolic shrubs after long-term moderate drought. We demonstrate that shrub expansion induced by drought/warming in boreal peatlands might be a long-term self-adaptive mechanism not only increasing carbon sequestration but also potentially protecting historic soil carbon. We therefore propose that the projected 'positive feedback loop'between carbon emission and drought in peatlands may not occur in the long term.

Wang H, Yan PF, Zhan PF, Zhang XN, Liu ZY, Guo YJ, Xiao DR ( 2018). The relative contributions of litter quality, simulated rising temperature, and habitat to litter decomposition
Chinese Journal of Applied Ecology, 29, 474-482.

URL [本文引用: 1]
采用凋落物袋法对比研究了茭草和杉叶藻两种初始质量差异显著的湿地植物凋落物,在模拟增温(1.5~2.0℃)及不同生境(大气、大气-水界面与水-土界面)下的质量残留率和不同化学组分的含量变化.结果表明:在一年的分解周期内,凋落物残留率表现出季节性变化特征,并与环境因子之间存在显著的交互作用.各因子对凋落物分解的贡献大小不同,植物质量解释了28.8%的变异,模拟增温解释了6.3%的变异,而生境解释了34.9%的变异.随着分解时间的延长,凋落物中不同组分(难、易分解)的含量发生明显变化.杉叶藻中氮含量在分解后期显著降低了53.1%,而木质素含量显著增加了45.4%.生境是影响凋落物分解最重要的环境因子,其次是植物质量,而模拟增温对凋落物分解的影响程度较小.
[ 王行, 闫鹏飞, 展鹏飞, 张晓宁, 刘振亚, 郭玉静, 肖德荣 ( 2018). 凋落物植物质量、模拟增温及生境对凋落物分解的相对贡献
应用生态学报, 29, 474-482.]

URL [本文引用: 1]
采用凋落物袋法对比研究了茭草和杉叶藻两种初始质量差异显著的湿地植物凋落物,在模拟增温(1.5~2.0℃)及不同生境(大气、大气-水界面与水-土界面)下的质量残留率和不同化学组分的含量变化.结果表明:在一年的分解周期内,凋落物残留率表现出季节性变化特征,并与环境因子之间存在显著的交互作用.各因子对凋落物分解的贡献大小不同,植物质量解释了28.8%的变异,模拟增温解释了6.3%的变异,而生境解释了34.9%的变异.随着分解时间的延长,凋落物中不同组分(难、易分解)的含量发生明显变化.杉叶藻中氮含量在分解后期显著降低了53.1%,而木质素含量显著增加了45.4%.生境是影响凋落物分解最重要的环境因子,其次是植物质量,而模拟增温对凋落物分解的影响程度较小.

Wang J, Huang JH ( 2001). Comparison of major nutrient release patterns in leaf litter decomposition in warm temperate zone of China
Acta Phytoecologica Sinica, 25, 375-380.

DOI:10.4236/ojf.2015.57061URL [本文引用: 1]
应用分解网袋法对暖温带落叶阔叶林内分布较为优势的辽东栎(Quercus liaotungensis)、五角枫(Acermono)、蒙椴(Tilia mongolica)、糠椴(T.mandshurica)等4种植物叶片凋落物第一年的分解速率损失过程基本符合Olson的指数降解模型。4种凋落物的分解速率(凋落物的年重量损失)依次为五角枫>糠椴>蒙椴>辽乐栎。N、P、Na、Fe、Cu、Mn在几种凋落物残留物中各自有不同程度的富集。C、K含量显著单调下降,其它几种元素含量变化不太规律。可以看出,元素的初始含量对其释放速率有很大影响,当微生物固持作用使C与其它元素比升高到某一阈值时,元素开始释放;初始含量较高的元素则从最初开始释放。高含量的木质素对元素的净释放有一定抑制作用,而在凋落物分解初期影响不大。
[ 王瑾, 黄建辉 ( 2001). 暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较
植物生态学报, 25, 375-380.]

DOI:10.4236/ojf.2015.57061URL [本文引用: 1]
应用分解网袋法对暖温带落叶阔叶林内分布较为优势的辽东栎(Quercus liaotungensis)、五角枫(Acermono)、蒙椴(Tilia mongolica)、糠椴(T.mandshurica)等4种植物叶片凋落物第一年的分解速率损失过程基本符合Olson的指数降解模型。4种凋落物的分解速率(凋落物的年重量损失)依次为五角枫>糠椴>蒙椴>辽乐栎。N、P、Na、Fe、Cu、Mn在几种凋落物残留物中各自有不同程度的富集。C、K含量显著单调下降,其它几种元素含量变化不太规律。可以看出,元素的初始含量对其释放速率有很大影响,当微生物固持作用使C与其它元素比升高到某一阈值时,元素开始释放;初始含量较高的元素则从最初开始释放。高含量的木质素对元素的净释放有一定抑制作用,而在凋落物分解初期影响不大。

Zeng J, Bu ZJ, Wang M, Ma JZ, Zhao HY, Li HK, Wang SZ ( 2013). Effects of nitrogen deposition on peatland: A review
Chinese Journal of Ecology, 32, 473-481.

[本文引用: 1]

[ 曾竞, 卜兆君, 王猛, 马进泽, 赵红艳, 李鸿凯, 王升忠 ( 2013). 氮沉降对泥炭地影响的研究进展
生态学杂志, 32, 473-481.]

[本文引用: 1]

Zhang JE (2007). Commonly Used Experimental Research Methods and Techniques in Ecology. Chemical Industry Press, Beijing.
[本文引用: 1]

[ 章家恩 (2007). 生态学常用实验研究方法与技术. 化学工业出版社, 北京.]
[本文引用: 1]

Zhang LH, Zhang SJ, Ye GF, Shao HB, Lin GH, Brestic M ( 2013). Changes of tannin and nutrients during decomposition of branchlets of Casuarina equisetifolia plantation in subtropical coastal areas of China
Plant Soil & Environment, 59, 74-79.

DOI:10.2478/v10247-012-0075-xURL [本文引用: 1]
A litterbag experiment was conducted to investigate the changes of tannins and nutrients in branchlets at different decomposition stages of Casuarina equisetifolia in southern subtropical coastal zone, China, using the colorimetric assays. The time required for the loss of half of the initial dry weight (t(50)) was 9.13 months. Total phenolics (TP), extractable condensed tannins (ECT), protein-bound condensed tannins (PBCT), total condensed tannins (TCT) and protein precipitation capacity (PPC) of branchlets litter decreased rapidly, while fibre-bound condensed tannins (FBCT) increased during decomposition. Nitrogen and phosphorus concentration of the branchlet litter both increased gradually during decay. Negative correlations between TP and nitrogen or phosphorus, as well as TCT and nitrogen or phosphorus were found. These chemical changes enhanced the current knowledge on the potential ecological role of nutrient transformation in tannins in C. equisetifolia plantations.
Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship
1
1997

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

Home-field advantage accelerates leaf litter decomposition in forests
1
2009

... 本研究中发现, 若不考虑物种及生活型差异, 地理来源对残体分解无影响; 若选择来自两地的同一物种比较来看, 来自哈泥的中位泥炭藓的分解远大于来自满归的, 进而说明物种差异将极大影响残体分解纬度梯度格局.本研究中, 同一物种的来源地效应一方面原因是, 地理纬度环境的差异可影响残体的品质, 高纬度地区的植物残体往往比低纬度地区的植物残体分解更慢, 同样, 薹草属内, 来源于高纬度寒温带地区的瘤囊薹草较来自亚热带的签草和温带的毛薹草的干质量损失率均低许多; 另一方面原因可能是植物残体分解的家域优势(home field advantage), 即专属分解者的高效性导致植物残体往往在其来源地表现出更快的分解速率(Ayres et al., 2009).这一点在最新的泥炭地分解试验研究中也得到了证实, 无论泥炭藓还是薹草均在其为优势植物的生境中表现出明显的家域优势(Palozzi & Lindo, 2017). ...

中国亚热带、热带泥炭形成的水热条件与微生物分解相关性
1
2004

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

中国亚热带、热带泥炭形成的水热条件与微生物分解相关性
1
2004

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

Litter mass loss rates in pine forest of Europe and Eastern United States: Some relationships with climate and litter quality
1
1993

... 大尺度的地理环境差异影响植物残体的分解.在中、北美洲跨越热带、温带和寒带的对比实验研究表明, 实验周期内热带分解常数最大, 温带和寒带相似, 但若考虑有效时间(度日超过0 ℃), 则寒带分解常数远高于热带和温带(Irons et al., 1994).当对残体分解纬度梯度格局的机制深入分析时, Berg等(1993)发现, 蒸散发是决定从亚热带至亚北极近40°纬距范围内残体分解的最重要因素.此外, 植物生活型对残体分解的大尺度地理格局影响很大, K?rner (1989)的研究中, 草本植物更容易表现出清晰的地理格局, 而常绿木本植物则不然.事实上, 地理环境差异可影响植物生物化学属性和残体品质.例如, 对欧洲来自9个山区150种植物的比较研究显示, 草本植物叶片的N含量随海拔和纬度的增加而增加(K?rner, 1989); 在我国东部地区, 森林乔木的叶片中, N和P含量均随纬度增加而增加(Chen et al., 2013).来自泥炭地的实验结果恰恰相反, Dorrepaal等(2005)在欧洲沿纬度梯度的分解实验发现, 70种实验植物存在随着纬度增加N含量下降、C/N增加的趋势. ...

Atmospheric nitrogen deposition promotes carbon loss from peat bogs
2
2006

... 实验材料包括泥炭藓(S. palustre)、中央泥炭藓(S. centrale)、中位泥炭藓(S. magellanicum)、锈色泥炭藓(S. fuscum)、签草(Carex doniana)、毛薹草(C. lasiocarpa)、瘤囊薹草(C. schmidtii)、红桦(Betula albosinensis)、油桦(B. fruticose var. ruprechtiana)和柴桦(B. fruticosa) 10个物种, 其来源地见表1.将每个实验样地的每种实验材料分别处理装入分解袋, 共11种分解袋(哈泥和满归两处泥炭地的中位泥炭藓分别制作两种分解袋).2014年8月, 在3处研究地分别收集足量的泥炭藓植株和维管植物叶片作为材料, 为减少微生境等原因造成材料差异的影响, 同一种的植株或叶片需经充分混合后备用.室内将泥炭藓植株上部(4 cm)(Bragazza et al., 2006)和薹草叶剪成2 cm片段, 与油桦叶一起室温下风干后, 于30 ℃烘箱内烘干48 h.使用90目尼龙网袋制作分解袋, 每个分解袋中装入2.0 g分解材料.根据分解材料的体积设定分解袋大小, 泥炭藓植物分解袋大小为10 cm × 10 cm, 维管植物分解袋大小为5 cm × 10 cm. ...

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

Mass loss and nutrient release during litter decay in peatland: The role of microbial adaptability to litter chemistry
2
2007

... 许多分解实验均揭示了残体分解的植物类群差异性.Moore和Basiliko (2006)甚至提出, 泥炭地植物残体分解率存在清晰的等级结构: 木本材料<藓丘泥炭藓<丘间和丘坡泥炭藓<针叶叶片<阔叶树叶片<灌木叶片<莎草.本研究发现, 以桦木属为代表的灌木叶片和以薹草属为代表的莎草叶的干质量损失均超过泥炭藓属2倍以上, 符合该分解率等级结构, 也与Dorreapaal等(2005)结果相一致.按照该等级结构, 丘间泥炭藓的分解率要远高于藓丘种, 如狭叶泥炭藓(S. cuspidatum)比锈色泥炭藓的分解速率快1.5倍(Johnson & Damman, 1991); 偏叶泥炭藓(S. subsecundum)和钝叶泥炭藓(S. flexosum)的平均分解率(23.8%)高于锈色泥炭藓和尖叶泥炭藓(S. capillifolium)的平均值(16.8%)(Bragazza et al., 2007); 喙叶泥炭藓(S. fallax)的干质量损失(26.3%)超过藓丘种中央泥炭藓(12.1%) 1倍以上(李伟等, 2013).然而, 本研究中发现, 同为藓丘种的泥炭藓属植物的分解率却差异巨大.中位泥炭藓和锈色泥炭藓的干质量损失比泥炭藓均高出1倍以上, 而且通常形成低丘的中位泥炭藓分解速率却与形成高丘的锈色泥炭藓相近, 此外, 灌木桦木属和薹草属叶的分解率没有显著差异, 这些均与等级结构存在差异, 表明Moore和Basiliko (2006)提出的分解等级结构应仅适用于同一甚至相近地理来源的植物泥炭地植物残体. ...

... 木质素和总酚是植物残体中难分解的物质, 通常与植物残体分解呈负相关关系(Tahvanainen & Haraguchi, 2013).然而, 本研究中, Pearson相关分析表明, 泥炭藓残体分解竟然因这些难分解化学物质含量的增加而增加, 进一步的逐步回归也表明, 初始Klason木质素含量越高, 泥炭藓属植物残体分解将越快, 这应与锈色泥炭藓独特的化学属性及分解特征有关(当剔除该物种时, 这些相关关系会消失).同样, 当将3种生活型植物总体分析时, 不仅未发现总酚/N (Bragazza et al., 2007)或木质素/N (Moore et al., 2005)对残体干质量损失的负效应, 还发现C、总酚、总酚/N指标都与分解呈正相关关系.这种异于常识的结果可能是本研究材料使用多种生活型材料造成的.其中涉及的总酚本身是混合物, 不同类群甚至物种都可能在总酚的组成上存在差异; 总酚的积累可能是厌氧条件下氧化酶活性低导致的(Tahvanainen & Haraguchi 2013; Medvedeff et al., 2015), 一旦所有材料放置于厌氧水平一致的环境中, 这种原有差异可能会发生改变从而影响分解, 而泥炭藓的Klason木质素非严格意义的木质素, 因此也可能影响我们对木质素和分解关系的认识. ...

The effect of increased temperature and nitrogen deposition on decomposition in bogs
1
2008

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog
1
2007

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

a). The response of peatlands to climate warming: A review
1
2011

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

b). Direct and interaction-mediated effects of environmental changes on peatland bryophytes
1
2011

... 本研究中, 沿纬度梯度, 选择湖北神农架大九湖泥炭地(31.48° N, 109.98° E)、吉林长白山哈泥泥炭地(42.20° N, 126.52° E)和内蒙古大兴安岭满归泥炭地(52.03° N, 122.05° E)为取样地点.3处泥炭地分别位于亚热带、中温带和寒温带, 在区域内均具有代表性和典型性, 且均属于近原始状态的大型泥炭地, 以泥炭藓属(Sphagnum)植物为优势植物, 发育一定厚度的藓类泥炭层.实验样品埋藏地哈泥泥炭地地处湿润半湿润针阔叶林带, 气候为中温带大陆性季风气候, 年降水量757-930 mm (Bu et al., 2011b).依据2014-2017年3年的实地监测, 大九湖、哈泥和满归3处泥炭地年平均气温分别为7.9、2.0和-1.1 ℃. ...

Global covariation of carbon turnover times with climate in terrestrial ecosystems
1
2014

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form
1
2013

... 大尺度的地理环境差异影响植物残体的分解.在中、北美洲跨越热带、温带和寒带的对比实验研究表明, 实验周期内热带分解常数最大, 温带和寒带相似, 但若考虑有效时间(度日超过0 ℃), 则寒带分解常数远高于热带和温带(Irons et al., 1994).当对残体分解纬度梯度格局的机制深入分析时, Berg等(1993)发现, 蒸散发是决定从亚热带至亚北极近40°纬距范围内残体分解的最重要因素.此外, 植物生活型对残体分解的大尺度地理格局影响很大, K?rner (1989)的研究中, 草本植物更容易表现出清晰的地理格局, 而常绿木本植物则不然.事实上, 地理环境差异可影响植物生物化学属性和残体品质.例如, 对欧洲来自9个山区150种植物的比较研究显示, 草本植物叶片的N含量随海拔和纬度的增加而增加(K?rner, 1989); 在我国东部地区, 森林乔木的叶片中, N和P含量均随纬度增加而增加(Chen et al., 2013).来自泥炭地的实验结果恰恰相反, Dorrepaal等(2005)在欧洲沿纬度梯度的分解实验发现, 70种实验植物存在随着纬度增加N含量下降、C/N增加的趋势. ...

Litter composition rather than plant presence affects decomposition of tropical litter mixtures
1
2011

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient?
2
2005

... 大尺度的地理环境差异影响植物残体的分解.在中、北美洲跨越热带、温带和寒带的对比实验研究表明, 实验周期内热带分解常数最大, 温带和寒带相似, 但若考虑有效时间(度日超过0 ℃), 则寒带分解常数远高于热带和温带(Irons et al., 1994).当对残体分解纬度梯度格局的机制深入分析时, Berg等(1993)发现, 蒸散发是决定从亚热带至亚北极近40°纬距范围内残体分解的最重要因素.此外, 植物生活型对残体分解的大尺度地理格局影响很大, K?rner (1989)的研究中, 草本植物更容易表现出清晰的地理格局, 而常绿木本植物则不然.事实上, 地理环境差异可影响植物生物化学属性和残体品质.例如, 对欧洲来自9个山区150种植物的比较研究显示, 草本植物叶片的N含量随海拔和纬度的增加而增加(K?rner, 1989); 在我国东部地区, 森林乔木的叶片中, N和P含量均随纬度增加而增加(Chen et al., 2013).来自泥炭地的实验结果恰恰相反, Dorrepaal等(2005)在欧洲沿纬度梯度的分解实验发现, 70种实验植物存在随着纬度增加N含量下降、C/N增加的趋势. ...

... 许多分解实验均揭示了残体分解的植物类群差异性.Moore和Basiliko (2006)甚至提出, 泥炭地植物残体分解率存在清晰的等级结构: 木本材料<藓丘泥炭藓<丘间和丘坡泥炭藓<针叶叶片<阔叶树叶片<灌木叶片<莎草.本研究发现, 以桦木属为代表的灌木叶片和以薹草属为代表的莎草叶的干质量损失均超过泥炭藓属2倍以上, 符合该分解率等级结构, 也与Dorreapaal等(2005)结果相一致.按照该等级结构, 丘间泥炭藓的分解率要远高于藓丘种, 如狭叶泥炭藓(S. cuspidatum)比锈色泥炭藓的分解速率快1.5倍(Johnson & Damman, 1991); 偏叶泥炭藓(S. subsecundum)和钝叶泥炭藓(S. flexosum)的平均分解率(23.8%)高于锈色泥炭藓和尖叶泥炭藓(S. capillifolium)的平均值(16.8%)(Bragazza et al., 2007); 喙叶泥炭藓(S. fallax)的干质量损失(26.3%)超过藓丘种中央泥炭藓(12.1%) 1倍以上(李伟等, 2013).然而, 本研究中发现, 同为藓丘种的泥炭藓属植物的分解率却差异巨大.中位泥炭藓和锈色泥炭藓的干质量损失比泥炭藓均高出1倍以上, 而且通常形成低丘的中位泥炭藓分解速率却与形成高丘的锈色泥炭藓相近, 此外, 灌木桦木属和薹草属叶的分解率没有显著差异, 这些均与等级结构存在差异, 表明Moore和Basiliko (2006)提出的分解等级结构应仅适用于同一甚至相近地理来源的植物泥炭地植物残体. ...

Apparent controls of mass loss rate of leaf litter on a regional scale
1
1990

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

In situ and laboratory non-additive litter mixture effect on C dynamics of Sphagnum rubellum and Molinia caerulea litters
1
2016

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

Nitrogen effects on decomposition: A five-year experiment in eight temperate sites
1
2008

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

Latitudinal patterns in leaf litter breakdown: Is temperature really important?
1
1994

... 大尺度的地理环境差异影响植物残体的分解.在中、北美洲跨越热带、温带和寒带的对比实验研究表明, 实验周期内热带分解常数最大, 温带和寒带相似, 但若考虑有效时间(度日超过0 ℃), 则寒带分解常数远高于热带和温带(Irons et al., 1994).当对残体分解纬度梯度格局的机制深入分析时, Berg等(1993)发现, 蒸散发是决定从亚热带至亚北极近40°纬距范围内残体分解的最重要因素.此外, 植物生活型对残体分解的大尺度地理格局影响很大, K?rner (1989)的研究中, 草本植物更容易表现出清晰的地理格局, 而常绿木本植物则不然.事实上, 地理环境差异可影响植物生物化学属性和残体品质.例如, 对欧洲来自9个山区150种植物的比较研究显示, 草本植物叶片的N含量随海拔和纬度的增加而增加(K?rner, 1989); 在我国东部地区, 森林乔木的叶片中, N和P含量均随纬度增加而增加(Chen et al., 2013).来自泥炭地的实验结果恰恰相反, Dorrepaal等(2005)在欧洲沿纬度梯度的分解实验发现, 70种实验植物存在随着纬度增加N含量下降、C/N增加的趋势. ...

Decay and its regulation in Sphagnum peatlands
1
1993

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

Species-controlled Sphagnum decay on a South Swedish raised bog
1
1991

... 许多分解实验均揭示了残体分解的植物类群差异性.Moore和Basiliko (2006)甚至提出, 泥炭地植物残体分解率存在清晰的等级结构: 木本材料<藓丘泥炭藓<丘间和丘坡泥炭藓<针叶叶片<阔叶树叶片<灌木叶片<莎草.本研究发现, 以桦木属为代表的灌木叶片和以薹草属为代表的莎草叶的干质量损失均超过泥炭藓属2倍以上, 符合该分解率等级结构, 也与Dorreapaal等(2005)结果相一致.按照该等级结构, 丘间泥炭藓的分解率要远高于藓丘种, 如狭叶泥炭藓(S. cuspidatum)比锈色泥炭藓的分解速率快1.5倍(Johnson & Damman, 1991); 偏叶泥炭藓(S. subsecundum)和钝叶泥炭藓(S. flexosum)的平均分解率(23.8%)高于锈色泥炭藓和尖叶泥炭藓(S. capillifolium)的平均值(16.8%)(Bragazza et al., 2007); 喙叶泥炭藓(S. fallax)的干质量损失(26.3%)超过藓丘种中央泥炭藓(12.1%) 1倍以上(李伟等, 2013).然而, 本研究中发现, 同为藓丘种的泥炭藓属植物的分解率却差异巨大.中位泥炭藓和锈色泥炭藓的干质量损失比泥炭藓均高出1倍以上, 而且通常形成低丘的中位泥炭藓分解速率却与形成高丘的锈色泥炭藓相近, 此外, 灌木桦木属和薹草属叶的分解率没有显著差异, 这些均与等级结构存在差异, 表明Moore和Basiliko (2006)提出的分解等级结构应仅适用于同一甚至相近地理来源的植物泥炭地植物残体. ...

The nutritional status of plants from high altitudes
2
1989

... 大尺度的地理环境差异影响植物残体的分解.在中、北美洲跨越热带、温带和寒带的对比实验研究表明, 实验周期内热带分解常数最大, 温带和寒带相似, 但若考虑有效时间(度日超过0 ℃), 则寒带分解常数远高于热带和温带(Irons et al., 1994).当对残体分解纬度梯度格局的机制深入分析时, Berg等(1993)发现, 蒸散发是决定从亚热带至亚北极近40°纬距范围内残体分解的最重要因素.此外, 植物生活型对残体分解的大尺度地理格局影响很大, K?rner (1989)的研究中, 草本植物更容易表现出清晰的地理格局, 而常绿木本植物则不然.事实上, 地理环境差异可影响植物生物化学属性和残体品质.例如, 对欧洲来自9个山区150种植物的比较研究显示, 草本植物叶片的N含量随海拔和纬度的增加而增加(K?rner, 1989); 在我国东部地区, 森林乔木的叶片中, N和P含量均随纬度增加而增加(Chen et al., 2013).来自泥炭地的实验结果恰恰相反, Dorrepaal等(2005)在欧洲沿纬度梯度的分解实验发现, 70种实验植物存在随着纬度增加N含量下降、C/N增加的趋势. ...

... 的研究中, 草本植物更容易表现出清晰的地理格局, 而常绿木本植物则不然.事实上, 地理环境差异可影响植物生物化学属性和残体品质.例如, 对欧洲来自9个山区150种植物的比较研究显示, 草本植物叶片的N含量随海拔和纬度的增加而增加(K?rner, 1989); 在我国东部地区, 森林乔木的叶片中, N和P含量均随纬度增加而增加(Chen et al., 2013).来自泥炭地的实验结果恰恰相反, Dorrepaal等(2005)在欧洲沿纬度梯度的分解实验发现, 70种实验植物存在随着纬度增加N含量下降、C/N增加的趋势. ...

长白山不同海拔泥炭地泥炭藓残体的分解
1
2013

... 许多分解实验均揭示了残体分解的植物类群差异性.Moore和Basiliko (2006)甚至提出, 泥炭地植物残体分解率存在清晰的等级结构: 木本材料<藓丘泥炭藓<丘间和丘坡泥炭藓<针叶叶片<阔叶树叶片<灌木叶片<莎草.本研究发现, 以桦木属为代表的灌木叶片和以薹草属为代表的莎草叶的干质量损失均超过泥炭藓属2倍以上, 符合该分解率等级结构, 也与Dorreapaal等(2005)结果相一致.按照该等级结构, 丘间泥炭藓的分解率要远高于藓丘种, 如狭叶泥炭藓(S. cuspidatum)比锈色泥炭藓的分解速率快1.5倍(Johnson & Damman, 1991); 偏叶泥炭藓(S. subsecundum)和钝叶泥炭藓(S. flexosum)的平均分解率(23.8%)高于锈色泥炭藓和尖叶泥炭藓(S. capillifolium)的平均值(16.8%)(Bragazza et al., 2007); 喙叶泥炭藓(S. fallax)的干质量损失(26.3%)超过藓丘种中央泥炭藓(12.1%) 1倍以上(李伟等, 2013).然而, 本研究中发现, 同为藓丘种的泥炭藓属植物的分解率却差异巨大.中位泥炭藓和锈色泥炭藓的干质量损失比泥炭藓均高出1倍以上, 而且通常形成低丘的中位泥炭藓分解速率却与形成高丘的锈色泥炭藓相近, 此外, 灌木桦木属和薹草属叶的分解率没有显著差异, 这些均与等级结构存在差异, 表明Moore和Basiliko (2006)提出的分解等级结构应仅适用于同一甚至相近地理来源的植物泥炭地植物残体. ...

长白山不同海拔泥炭地泥炭藓残体的分解
1
2013

... 许多分解实验均揭示了残体分解的植物类群差异性.Moore和Basiliko (2006)甚至提出, 泥炭地植物残体分解率存在清晰的等级结构: 木本材料<藓丘泥炭藓<丘间和丘坡泥炭藓<针叶叶片<阔叶树叶片<灌木叶片<莎草.本研究发现, 以桦木属为代表的灌木叶片和以薹草属为代表的莎草叶的干质量损失均超过泥炭藓属2倍以上, 符合该分解率等级结构, 也与Dorreapaal等(2005)结果相一致.按照该等级结构, 丘间泥炭藓的分解率要远高于藓丘种, 如狭叶泥炭藓(S. cuspidatum)比锈色泥炭藓的分解速率快1.5倍(Johnson & Damman, 1991); 偏叶泥炭藓(S. subsecundum)和钝叶泥炭藓(S. flexosum)的平均分解率(23.8%)高于锈色泥炭藓和尖叶泥炭藓(S. capillifolium)的平均值(16.8%)(Bragazza et al., 2007); 喙叶泥炭藓(S. fallax)的干质量损失(26.3%)超过藓丘种中央泥炭藓(12.1%) 1倍以上(李伟等, 2013).然而, 本研究中发现, 同为藓丘种的泥炭藓属植物的分解率却差异巨大.中位泥炭藓和锈色泥炭藓的干质量损失比泥炭藓均高出1倍以上, 而且通常形成低丘的中位泥炭藓分解速率却与形成高丘的锈色泥炭藓相近, 此外, 灌木桦木属和薹草属叶的分解率没有显著差异, 这些均与等级结构存在差异, 表明Moore和Basiliko (2006)提出的分解等级结构应仅适用于同一甚至相近地理来源的植物泥炭地植物残体. ...

Can Sphagnum leachate chemistry explain differences in anaerobic decomposition in peatlands?
1
2015

... 木质素和总酚是植物残体中难分解的物质, 通常与植物残体分解呈负相关关系(Tahvanainen & Haraguchi, 2013).然而, 本研究中, Pearson相关分析表明, 泥炭藓残体分解竟然因这些难分解化学物质含量的增加而增加, 进一步的逐步回归也表明, 初始Klason木质素含量越高, 泥炭藓属植物残体分解将越快, 这应与锈色泥炭藓独特的化学属性及分解特征有关(当剔除该物种时, 这些相关关系会消失).同样, 当将3种生活型植物总体分析时, 不仅未发现总酚/N (Bragazza et al., 2007)或木质素/N (Moore et al., 2005)对残体干质量损失的负效应, 还发现C、总酚、总酚/N指标都与分解呈正相关关系.这种异于常识的结果可能是本研究材料使用多种生活型材料造成的.其中涉及的总酚本身是混合物, 不同类群甚至物种都可能在总酚的组成上存在差异; 总酚的积累可能是厌氧条件下氧化酶活性低导致的(Tahvanainen & Haraguchi 2013; Medvedeff et al., 2015), 一旦所有材料放置于厌氧水平一致的环境中, 这种原有差异可能会发生改变从而影响分解, 而泥炭藓的Klason木质素非严格意义的木质素, 因此也可能影响我们对木质素和分解关系的认识. ...

Nitrogen and lignin control of hardwood leaf litter decomposition dynamics
1
1982

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

Decomposition in boreal peatlands
3
2006

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

... 许多分解实验均揭示了残体分解的植物类群差异性.Moore和Basiliko (2006)甚至提出, 泥炭地植物残体分解率存在清晰的等级结构: 木本材料<藓丘泥炭藓<丘间和丘坡泥炭藓<针叶叶片<阔叶树叶片<灌木叶片<莎草.本研究发现, 以桦木属为代表的灌木叶片和以薹草属为代表的莎草叶的干质量损失均超过泥炭藓属2倍以上, 符合该分解率等级结构, 也与Dorreapaal等(2005)结果相一致.按照该等级结构, 丘间泥炭藓的分解率要远高于藓丘种, 如狭叶泥炭藓(S. cuspidatum)比锈色泥炭藓的分解速率快1.5倍(Johnson & Damman, 1991); 偏叶泥炭藓(S. subsecundum)和钝叶泥炭藓(S. flexosum)的平均分解率(23.8%)高于锈色泥炭藓和尖叶泥炭藓(S. capillifolium)的平均值(16.8%)(Bragazza et al., 2007); 喙叶泥炭藓(S. fallax)的干质量损失(26.3%)超过藓丘种中央泥炭藓(12.1%) 1倍以上(李伟等, 2013).然而, 本研究中发现, 同为藓丘种的泥炭藓属植物的分解率却差异巨大.中位泥炭藓和锈色泥炭藓的干质量损失比泥炭藓均高出1倍以上, 而且通常形成低丘的中位泥炭藓分解速率却与形成高丘的锈色泥炭藓相近, 此外, 灌木桦木属和薹草属叶的分解率没有显著差异, 这些均与等级结构存在差异, 表明Moore和Basiliko (2006)提出的分解等级结构应仅适用于同一甚至相近地理来源的植物泥炭地植物残体. ...

... ).然而, 本研究中发现, 同为藓丘种的泥炭藓属植物的分解率却差异巨大.中位泥炭藓和锈色泥炭藓的干质量损失比泥炭藓均高出1倍以上, 而且通常形成低丘的中位泥炭藓分解速率却与形成高丘的锈色泥炭藓相近, 此外, 灌木桦木属和薹草属叶的分解率没有显著差异, 这些均与等级结构存在差异, 表明Moore和Basiliko (2006)提出的分解等级结构应仅适用于同一甚至相近地理来源的植物泥炭地植物残体. ...

Patterns of decomposition and carbon, nitrogen, and phosphorus dynamic
1
2005

... 木质素和总酚是植物残体中难分解的物质, 通常与植物残体分解呈负相关关系(Tahvanainen & Haraguchi, 2013).然而, 本研究中, Pearson相关分析表明, 泥炭藓残体分解竟然因这些难分解化学物质含量的增加而增加, 进一步的逐步回归也表明, 初始Klason木质素含量越高, 泥炭藓属植物残体分解将越快, 这应与锈色泥炭藓独特的化学属性及分解特征有关(当剔除该物种时, 这些相关关系会消失).同样, 当将3种生活型植物总体分析时, 不仅未发现总酚/N (Bragazza et al., 2007)或木质素/N (Moore et al., 2005)对残体干质量损失的负效应, 还发现C、总酚、总酚/N指标都与分解呈正相关关系.这种异于常识的结果可能是本研究材料使用多种生活型材料造成的.其中涉及的总酚本身是混合物, 不同类群甚至物种都可能在总酚的组成上存在差异; 总酚的积累可能是厌氧条件下氧化酶活性低导致的(Tahvanainen & Haraguchi 2013; Medvedeff et al., 2015), 一旦所有材料放置于厌氧水平一致的环境中, 这种原有差异可能会发生改变从而影响分解, 而泥炭藓的Klason木质素非严格意义的木质素, 因此也可能影响我们对木质素和分解关系的认识. ...

Decomposition of plant residues of different quality in soil—DAISY model calibration and simulation based on experimental data
1
2003

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

互花米草与短叶茳芏枯落物分解过程中碳氮磷化学计量学特征
1
2013

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

互花米草与短叶茳芏枯落物分解过程中碳氮磷化学计量学特征
1
2013

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

Pure and mixed litters of Sphagnum and Carex exhibit a home-field advantage in Boreal peatlands
2
2017

... 本研究中发现, 若不考虑物种及生活型差异, 地理来源对残体分解无影响; 若选择来自两地的同一物种比较来看, 来自哈泥的中位泥炭藓的分解远大于来自满归的, 进而说明物种差异将极大影响残体分解纬度梯度格局.本研究中, 同一物种的来源地效应一方面原因是, 地理纬度环境的差异可影响残体的品质, 高纬度地区的植物残体往往比低纬度地区的植物残体分解更慢, 同样, 薹草属内, 来源于高纬度寒温带地区的瘤囊薹草较来自亚热带的签草和温带的毛薹草的干质量损失率均低许多; 另一方面原因可能是植物残体分解的家域优势(home field advantage), 即专属分解者的高效性导致植物残体往往在其来源地表现出更快的分解速率(Ayres et al., 2009).这一点在最新的泥炭地分解试验研究中也得到了证实, 无论泥炭藓还是薹草均在其为优势植物的生境中表现出明显的家域优势(Palozzi & Lindo, 2017). ...

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

2
2013

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

... 迄今为止, 不同纬度来源植物残体在同一地理环境中分解的比较研究还较少, 而在泥炭地方面, 研究多集中于水淹厌氧、贫营养、较强酸性等对分解及碳累积的直接贡献(Rydin & Jeglum, 2013), 对地理环境导致的植物自身内在的化学品质差异关注不够.我们沿纬度梯度选择3处泥炭地, 以三地的植物为分解材料, 以长白山哈泥泥炭地为实验地, 开展植物残体分解研究, 尝试回答泥炭地不同地理来源植物类群的残体分解差异及其与化学品质之间的关系, 具体验证: 1)是否来自低纬度地区的植物残体具有更高的分解速率; 2)植物残体分解速率的不同是否是植物残体的初始化学属性差异决定的. ...

Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent
1
1999

... 室内清除分解袋外附着的杂质及袋内维管植物根系后, 将植物残体置于烘箱中65 ℃烘干至恒质量, 称量干质量.先将样品研磨至粉状, 然后测定各项化学指标.使用重铬酸钾-硫酸氧化法测量全C含量(章家恩, 2007); 不同于桦木属和薹草属植物, 泥炭藓属植物无真正的木质素, 但含有的类木质素物质可通过乙酰溴-分光光度法测定, 参照Straková等(2010)的方法, 使用乙酰溴-分光光度法测量桦木属和薹草属的木质素和泥炭藓Klason木质素(以下均简称木质素)含量; 使用Folin-Ciocalteu法测量总酚含量(Singleton et al., 1999); 利用全自动间断化学分析仪(SmartChem 140, AMS-Alliance, Guidonia, Italy)测量全N含量. ...

Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level
1
2010

... 室内清除分解袋外附着的杂质及袋内维管植物根系后, 将植物残体置于烘箱中65 ℃烘干至恒质量, 称量干质量.先将样品研磨至粉状, 然后测定各项化学指标.使用重铬酸钾-硫酸氧化法测量全C含量(章家恩, 2007); 不同于桦木属和薹草属植物, 泥炭藓属植物无真正的木质素, 但含有的类木质素物质可通过乙酰溴-分光光度法测定, 参照Straková等(2010)的方法, 使用乙酰溴-分光光度法测量桦木属和薹草属的木质素和泥炭藓Klason木质素(以下均简称木质素)含量; 使用Folin-Ciocalteu法测量总酚含量(Singleton et al., 1999); 利用全自动间断化学分析仪(SmartChem 140, AMS-Alliance, Guidonia, Italy)测量全N含量. ...

Chemical composition of residue from cereal crops and cultivars in dryland ecosystems
1
2009

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

Effect of pH on phenol oxidase activity on decaying Sphagnum mosses
2
2013

... 木质素和总酚是植物残体中难分解的物质, 通常与植物残体分解呈负相关关系(Tahvanainen & Haraguchi, 2013).然而, 本研究中, Pearson相关分析表明, 泥炭藓残体分解竟然因这些难分解化学物质含量的增加而增加, 进一步的逐步回归也表明, 初始Klason木质素含量越高, 泥炭藓属植物残体分解将越快, 这应与锈色泥炭藓独特的化学属性及分解特征有关(当剔除该物种时, 这些相关关系会消失).同样, 当将3种生活型植物总体分析时, 不仅未发现总酚/N (Bragazza et al., 2007)或木质素/N (Moore et al., 2005)对残体干质量损失的负效应, 还发现C、总酚、总酚/N指标都与分解呈正相关关系.这种异于常识的结果可能是本研究材料使用多种生活型材料造成的.其中涉及的总酚本身是混合物, 不同类群甚至物种都可能在总酚的组成上存在差异; 总酚的积累可能是厌氧条件下氧化酶活性低导致的(Tahvanainen & Haraguchi 2013; Medvedeff et al., 2015), 一旦所有材料放置于厌氧水平一致的环境中, 这种原有差异可能会发生改变从而影响分解, 而泥炭藓的Klason木质素非严格意义的木质素, 因此也可能影响我们对木质素和分解关系的认识. ...

... )对残体干质量损失的负效应, 还发现C、总酚、总酚/N指标都与分解呈正相关关系.这种异于常识的结果可能是本研究材料使用多种生活型材料造成的.其中涉及的总酚本身是混合物, 不同类群甚至物种都可能在总酚的组成上存在差异; 总酚的积累可能是厌氧条件下氧化酶活性低导致的(Tahvanainen & Haraguchi 2013; Medvedeff et al., 2015), 一旦所有材料放置于厌氧水平一致的环境中, 这种原有差异可能会发生改变从而影响分解, 而泥炭藓的Klason木质素非严格意义的木质素, 因此也可能影响我们对木质素和分解关系的认识. ...

Dual controls on carbon loss during drought in peatlands
1
2015

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

凋落物植物质量、模拟增温及生境对凋落物分解的相对贡献
1
2018

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

凋落物植物质量、模拟增温及生境对凋落物分解的相对贡献
1
2018

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较
1
2001

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较
1
2001

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...

氮沉降对泥炭地影响的研究进展
1
2013

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

氮沉降对泥炭地影响的研究进展
1
2013

... 在纬度梯度上, 当仅考虑以泥炭藓为重要成分的贫营养型泥炭地时, 在北半球, 从亚热带至亚北极, 泥炭地的面积随纬度增加呈现以53° N为峰值的单峰型曲线变化规律(Carvalhais et al., 2014).泥炭累积是净初级生产力大于分解作用的结果.在纬度梯度上, 随纬度增加, 植物残体分解可呈现下降趋势(白光润等, 2004; Breeuwer et al., 2008).然而, 多年来气候变暖(Bu et al., 2011a; Wang et al., 2015)、N沉降等(Bragazza et al., 2006; Bubier et al., 2007; 曾竞等, 2013)一定程度改变了泥炭地冷、湿润、贫营养等环境特征, 造成许多北方泥炭地中维管植物如小灌木甚至草本植物优势度增加.本研究中, 桦木属、薹草属和铁木属等维管植物的分解率远大于泥炭藓属植物, 表明泥炭地中树木和草本植物的数量增加会使分解加快, 可能不利于碳积累.当以分解材料自寒温带移置于中温带反映气候变暖对植物残体分解的影响时, 可以看出, 短期气候变暖对植物残体分解的影响可能较弱; 长期气候变暖通过影响植物的生物化学属性(如中位泥炭藓), 将大大提高植物残体的分解, 降低泥炭地的碳累积功能.当然, 目前我们关于未来泥炭地的残体分解方面的认识, 主要都是基于单一类型残体分解实验而获得的.事实上, 泥炭地的植物残体分解往往是不同残体在混合条件下进行的, 植物多样性(Gogo et al., 2016; Palozzi & Lindo, 2017)、组成(Coq et al., 2011)等对于残体分解均可能产生影响, 因此分解作用以及碳累积可能很复杂, 有明显的不确定性. ...

1
2007

... 室内清除分解袋外附着的杂质及袋内维管植物根系后, 将植物残体置于烘箱中65 ℃烘干至恒质量, 称量干质量.先将样品研磨至粉状, 然后测定各项化学指标.使用重铬酸钾-硫酸氧化法测量全C含量(章家恩, 2007); 不同于桦木属和薹草属植物, 泥炭藓属植物无真正的木质素, 但含有的类木质素物质可通过乙酰溴-分光光度法测定, 参照Straková等(2010)的方法, 使用乙酰溴-分光光度法测量桦木属和薹草属的木质素和泥炭藓Klason木质素(以下均简称木质素)含量; 使用Folin-Ciocalteu法测量总酚含量(Singleton et al., 1999); 利用全自动间断化学分析仪(SmartChem 140, AMS-Alliance, Guidonia, Italy)测量全N含量. ...

1
2007

... 室内清除分解袋外附着的杂质及袋内维管植物根系后, 将植物残体置于烘箱中65 ℃烘干至恒质量, 称量干质量.先将样品研磨至粉状, 然后测定各项化学指标.使用重铬酸钾-硫酸氧化法测量全C含量(章家恩, 2007); 不同于桦木属和薹草属植物, 泥炭藓属植物无真正的木质素, 但含有的类木质素物质可通过乙酰溴-分光光度法测定, 参照Straková等(2010)的方法, 使用乙酰溴-分光光度法测量桦木属和薹草属的木质素和泥炭藓Klason木质素(以下均简称木质素)含量; 使用Folin-Ciocalteu法测量总酚含量(Singleton et al., 1999); 利用全自动间断化学分析仪(SmartChem 140, AMS-Alliance, Guidonia, Italy)测量全N含量. ...

Changes of tannin and nutrients during decomposition of branchlets of Casuarina equisetifolia plantation in subtropical coastal areas of China
1
2013

... 通常认为, 较低的温度、酸性条件、微生物多样性低以及植物残体自身耐分解的化学品质特征, 决定北方泥炭地的植物残体分解速率普遍很低(Moore & Basiliko, 2006; Rydin & Jeglum, 2013).大多数研究认为, 植物残体的分解速率与残体的氮(N)(Johnson & Damman, 1993; Müller et al., 2003; Stubbs et al., 2009; 王行等, 2018 )和磷(P)等营养元素含量正相关, 与木质素、纤维素和总酚含量负相关(Dyer et al., 1990; 王瑾和黄建辉, 2001).因此, 残体分解有难易差异, 残体的质量有优劣之分, 甚至一些指标间的化学计量比如碳氮比(C/N)和木质素/N是表明残体品质或易分解程度的良好指标, 其数值越高, 植物残体将越难分解(Melillo et al., 1982; Aerts, 1997; Hobbie, 2008; 欧阳林梅等, 2013; Zhang et al., 2013), 即残体的分解速率通常与C/N、木质素/N呈负相关关系. ...




Copyright © 2021 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19

相关话题/植物 质量 化学 实验 材料