删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

环境因子对常绿阔叶树种脱耦联系数及冠层气孔导度估算的影响

本站小编 Free考研考试/2022-01-01

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闂囧鏌ㄥ┑鍡欏妞ゅ繒濮风槐鎺楀焵椤掍胶绡€闁稿本顨嗛弬鈧梻浣虹帛钃辩憸鏉垮暣閸┾偓妞ゆ巻鍋撴い鏇ㄥ幘濡叉劙骞橀幇浣瑰兊闁哄鐗勯崝宀勫几閹达附鈷戦柛婵嗗閺嗘瑩鏌eΔ鈧€氫即宕洪埀顒併亜閹达絾纭剁紒鎰⒒閳ь剚顔栭崰鏇犲垝濞嗘挶鈧礁顫滈埀顒勫箖濞嗘挻鍤戦柛銊︾☉娴滈箖鏌涢…鎴濇灀闁衡偓娴犲鐓ユ繛鎴灻鈺伱归悩娆忔噽绾惧吋銇勯弴鐐村櫣闁诲骏濡囬埀顒侇問閸n噣宕戞繝鍥х畺闁冲搫鍟扮壕鍏间繆椤栫偞鏁遍悗姘偢濮婂宕掑▎鎴g獥闂佺ǹ顑呭Λ婵嗙暦閹存績妲堥柕蹇娾偓铏吅婵$偑鍊栭悧妤冪矙閹烘垟鏋嶉柣妯肩帛閻撴瑧绱撴担闈涚仼闁哄鍠栭弻锝夊箻鐠虹儤鐏堥梺鍝勭灱閸犳牕鐣疯ぐ鎺濇晩闁稿繐鍚嬮鍕攽閻愯尙鎽犵紒顔肩У缁旂喖宕卞☉妯煎姦濡炪倖甯掗崰姘缚閹邦厾绠鹃柛娆忣槺婢ь剟鏌¢崨鏉跨厫闁诡垱妫冩俊鎼佸Ψ瑜滈崬褰掓⒒娴e憡鍟炴繛璇х畵瀹曟粌顫濋鐔峰伎濠电姴锕ら悧濠囨偂濞戞﹩鐔嗛悹杞拌閸庡繑銇勯弴鐔虹煉闁哄矉绲鹃幆鏃堝閻橆偅鐏嗘繝娈垮枛閿曘倝鈥﹀畡鎵殾闁圭儤鍨熼弸搴ㄦ煙鐎电ǹ啸鐎规洘鐓″缁樼瑹閳ь剟鍩€椤掑倸浠滈柤娲诲灡閺呰埖瀵肩€涙ḿ鍘遍柣搴秵閸嬪棗煤閹绢喗鐓欑€规洖娲ら弸娑欍亜閵忥紕鈽夐柍钘夘槸閳诲酣骞囬鐓庘枏濠电姷鏁搁崑娑㈩敋椤撱垹鍌ㄧ憸鏃堝箖濞差亜惟闁冲搫鍊告禍妤呮⒑閸濆嫭鍌ㄩ柛銊︽そ閹繝鎮㈤梹鎰畾濡炪倖鐗楃换鍌炲触瑜版帗鐓曟繛鍡楄嫰娴滈箖姊婚崒娆戭槮闁硅绻濋幃鐑藉Ψ瑜夐崑鎾愁潩閻撳孩鐝濋梺绯曟杹閸嬫挸顪冮妶鍡楃瑨闁哥姵鑹惧玻鍧楀箛椤撶姷顔曢梺鍦帛鐢偟绮婚懡銈傚亾鐟欏嫭绀€缂傚秴锕獮濠囨倷閸濆嫀銊╂煏閸繃宸濋柣锝夌畺濮婄粯鎷呯粙娆炬闂佺ǹ顑呴幊搴e弲闂佸搫绋侀崢浠嬪磹瀹勬壋鏀介柣妯哄级婢跺嫰鏌i幘宕囩闁宠鍨块幃娆撴嚑椤戣儻妾搁梻浣告啞濮婄懓岣垮▎鎾寸畳闂備胶枪缁绘劙宕ョ€n剛鐭嗛悗锝庡亝閸欏繐鈹戦悩鎻掓殲闁靛洦绻堥弻鐔虹驳閸︻厾鐦堟繝纰樷偓宕囧煟鐎规洏鍔戦、娆撴煥椤栨矮澹曟俊銈忕到閸燁垶鍩涢幋锔界厾濠殿喗鍔曢埀顒佹礋瀵悂宕掗悙瀵稿幈闁瑰吋鐣崹褰掑煝閺囥垺鐓曢柍瑙勫劤娴滅偓淇婇悙顏勨偓鏍暜婵犲嫮鐭嗗〒姘e亾鐎规洜鏁婚、妤呭礋椤掑倸骞堟繝鐢靛仜濡鎹㈤幇鏉挎辈婵炲棙鍔戞禍婊堟煛閸ユ湹绨界紒澶樺枟椤ㄣ儵鎮欓弻銉ュ及闂佸湱枪閿曘儱顕ラ崟顖氱疀妞ゆ帊鐒﹀В鍡涙⒒閸屾艾鈧娆㈠顑肩細鐟滄梻鐦梺閫炲苯澧柍瑙勫灴閸ㄩ箖鎼归銏$亷闁诲氦顫夊ú蹇涘垂娴犲钃熼柛鈩冾殢閸氬鏌涢垾宕囩閻庢艾銈搁弻锝夋偄閸濄儳鐓傛繝鈷€鍕垫畼闁轰緡鍣i獮鎺楀箻妫版繃閿ゅ┑鐐差嚟閸樠囨偤閵娾晜鍋傞柡鍥ュ灪閻撴瑩鏌熼鍡楄嫰濞堝爼姊洪悷鏉挎毐婵炲樊鍙冨濠氬即閵忕姴鑰垮┑掳鍊愰崑鎾绘煛閸℃ḿ鎳囬柡灞界Ф閹风娀寮婚妷銉ュ強婵°倗濮烽崑娑㈩敄婢舵劕绠栭柍鍝勫暙閺嬪牆顭跨捄楦垮缂併劊鍎靛濠氬磼濮橆兘鍋撴搴g焼濞撴埃鍋撴鐐差樀閺佹捇鎮╅崘韫敾闂備焦瀵уú鏍磹瑜版帒鐤炬い蹇撶墛閻撶喖骞栧ǎ顒€鈧倕岣块幇鐗堢厵闁告縿鍎戠涵鍛罕婵犵數鍋為崹顖炲垂瑜版帗鍊块柛顭戝亖娴滄粓鏌熼悜妯虹仴闁哄鍊栫换娑㈠礂閻撳骸顫嶇紓浣虹帛閻╊垶鐛幘璇茬闁哄啫鍋嗛崯瀣煟鎼淬値娼愭繛鍙夅缚閹广垽宕奸妷褍绁﹂柣搴秵閸犳寮插┑瀣厓鐟滄粓宕滈悢濂夊殨闁告稑锕﹂悷褰掓煃瑜滈崜鐔奉嚕婵犳碍鍋勯柣鎾虫捣椤︻參鎮峰⿰鍐闁轰緡鍠栭埥澶愬閿涘嫬骞愰梻浣告啞娓氭宕板Δ鍛9闁规壆澧楅悡娑㈡倶閻愰鍤欏┑顔煎€块弻鐔碱敊閸濆嫧鍋撳┑鍡欐殾闁圭儤鍨熷Σ鍫熸叏濡も偓濡梻妲愰敓锟�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕婵犲倹鍋ラ柡灞诲姂瀵噣宕奸悢鍛婎唶闂備胶枪椤戝棝骞愰崜褍鍨濇い鎾跺亹濡插牊淇婇婵愬殭婵炲憞鍥ㄢ拺婵炶尪顕ч獮妤呮煟閻斿弶娅婄€殿喖顭烽幃銏ゅ川婵犲嫮肖濠德板€х徊浠嬪疮椤栫儐鏁佺€广儱顦伴埛鎴犵磼鐎n亞浠㈡い鎺嬪灲閺岋紕浠︾拠鎻掝潎闂佺硶鏅濋崑銈夌嵁鐎n喗鏅濋柍褜鍓涙竟鏇㈠礂閸忕厧寮垮┑顔筋殔濡鐛弽顓熺厸闁糕剝顨堟晶锔芥叏婵犲懏顏犵紒顔界懃閳诲酣骞嗚婢瑰姊绘担鍛婃喐濠殿喚鏁诲畷婵單旈崨顓狀唹闂侀潧绻掓慨顓炍i崼銉︾厪闊洦娲栧暩濡炪倖鎸搁幖顐﹀煘閹达附鍊烽柛娆忣樈濡偟绱撴担铏瑰笡閻㈩垱顨堢划瀣箳濡や礁娈愰梺鍐叉惈閸熶即鏁嶅⿰鍛=闁稿本鐟╁鐑芥煕閵娿儳绉洪柣娑卞櫍楠炲洭鎮ч崼銏犲箞闂佽鍑界紞鍡涘磻閸涱厾鏆﹂悘鐐靛亾閸欏繐鈹戦悩鍙夊櫤妞ゅ繒濞€閺岀喐顦版惔鈾€鏋呴悗娈垮枛椤攱淇婇悜绛嬫晩闁荤喖顣︽竟鏇炩攽鎺抽崐鎾绘嚄閸撲礁濮柍褜鍓熷娲焻閻愯尪瀚板褜鍨辩换娑㈡偂鎼达絿顔掓繝纰樺墲閹倿寮崘顔肩劦妞ゆ巻鍋撴い鏇秮瀹曠ǹ螖娴e搫骞楅梺鐟板悑閻n亪宕濆鍛鐟滄棃寮婚悢鍏煎殟闁靛/鍛帒缂傚倷绀侀鍛此囬鐑嗘晣濠靛倻枪楠炪垽鏌熼柇锔跨敖闁烩晛閰e缁樻媴閸涘﹥鍎撶紓浣割儎缁舵艾鐣烽幋锕€绀嬫い鎺戝亞濞村嫰姊洪幐搴㈢闁稿﹤缍婇幃锟犳偄閸忚偐鍘甸梺璇″瀻閸涱喗鍠栫紓鍌欒閸嬫捇鏌涢幇鍏哥敖缁炬崘鍋愮槐鎾存媴鐠愵垳绱板┑鐐村絻椤曨參鍩€椤掑喚娼愭繛鍙夌墪閻g兘顢楅崘顏冭埅闂傚倷绀侀幉锛勬崲閸屾壕鍋撳顒€妲诲畝锝呮健瀵挳鎮欓埡鍌涙澑闂備胶绮敃鈺呭磻閸涱喖鍨斿ù鐓庣摠閸婂爼鏌i幇顖氱厫妞ゃ儱顦伴妵鍕敃椤愶紕鏁栫紓浣介哺閹稿骞忛崨瀛樻優闁荤喐澹嗛鑲╃磽閸屾瑦绁版い鏇嗗洦鍋嬮柟鎯х-閺嗭附绻涘顔荤盎闁绘帒鐏氶妵鍕箳瀹ュ顎栨繛瀛樼矋缁捇寮婚悢鍏煎€绘俊顖濇娴犳潙顪冮妶鍛畾闁哄懏绻勫Σ鎰板箳濡や礁浜瑰銈嗘⒒閸樠勬叏閺囥垺鈷戦梻鍫熺⊕閹兼劙鎮楀顓熺凡妞ゆ洩缍侀、姘跺焵椤掑嫬鏄ラ柍褜鍓氶妵鍕箳閹存繍浠肩紒鐐劤濞硷繝寮诲☉銏犵疀妞ゆ牗姘ㄥВ銏ゆ⒑閸濆嫭锛旂紒鐘虫崌瀵寮撮悢椋庣獮闂佸壊鍋呯换鍌涙叏婢舵劖鈷戦悶娑掆偓鍏呭濠电偛顕慨鎾敄閸℃稒鍋傞柣鏂垮悑閻撴瑩姊洪銊х暠濠⒀屽枤缁辨帡鎮▎蹇擃仴濞存粍绮撻弻鏇熺珶椤栨艾鏆曟俊鍙夊姍濮婅櫣鎷犻垾铏亞缂備緡鍠楅悷鈺呭Υ娴g硶妲堟俊顖氬槻閻楁岸姊洪崨濠傚闁告洖鐏氱紞妤€鈹戦悩鍨毄濠殿喚鍏橀妴鍌涚鐎n亞鍔﹀銈嗗坊閸嬫挾鐥紒銏犲籍鐎规洘妞介弫鎰板幢閹邦亞鐩庨梻渚€娼х换鍡涘礈濠靛牏鐭嗛悗锝庡枟閻撴稑霉閿濆毥褰掑焵椤掆偓濞硷繝鐛崘顔肩鐟滃苯鈻介鍫熺參婵☆垯璀﹀Σ鐑樸亜閺傛寧鍠樻慨濠傤煼瀹曟帒顫濋钘変壕闁绘垼濮ら崵鍕煠閸濄儲鏆╁ù鐘冲哺濮婄粯鎷呴崨濠冨創闂佺粯顨嗙划鎾崇暦濠婂啠妲堟慨姗嗗墮閻忓﹤鈹戦悙鍙夘棡闁圭ǹ鎽滅划缁樼節濮橆厼浠梺鎼炲労娴滄粓鎯冨ú顏呯厽闁靛牆鎳忛崰妯绘叏婵犲懏顏犻柛鏍ㄧ墵瀵挳鎮欏ù瀣珶闂傚倷娴囧畷鐢稿闯閿斿墽涓嶉柟鎯х-閺嗭箓鏌熸潏鍓х暠闁告劏鍋撻梻渚€娼ц噹闁告粈绀侀弲顓㈡⒒閸屾瑨鍏岀痪顓炵埣瀹曟粌鈹戞繝鍐╁櫡闂備浇顕х换鎰崲鐎n喖纭€闁规儼妫勯拑鐔兼煥濠靛棭妲哥紒鐘差煼閹鈽夊▎瀣窗濡炪倧璐熼崝宥囨崲濞戙垺鏅查柛娑卞枟閹瑩姊洪幐搴㈠濞存粠浜俊瀛樻媴缁洘顫嶅┑鈽嗗灦閺€閬嶆倵婵犳碍鈷戦柛锔诲幖閸斿绱掔拠鎻掆偓瑙勭┍婵犲洤绠柤鎭掑劗閹风粯绻涙潏鍓у埌闁硅櫕鐟╁畷鐑筋敇濞戞ü澹曞┑鐐村灦鐢鈻嶆繝鍕ㄥ亾鐟欏嫭绀€缂傚秴锕ら悾鐑芥倻缁涘鏅i梺缁樻磻閻掞妇绱炲Δ鍛拻濞达絿鐡斿ḿ鎰偓瑙勬礃閿曘垽銆佸鎰佹Ь婵犮垼顫夊ú鐔风暦濡ゅ懎绀傞柣鎾抽娴煎孩绻濈喊妯活潑闁搞劋鍗抽獮鏍敃閿曗偓缁犳牠鏌熺€涙ɑ鍎曢柡鍐ㄧ墕缁秹鏌涢銈呮毐闁归绮换娑㈠箻閺夋垹鍔伴梺绋款儐閹瑰洭寮诲鍫闂佸憡鎸婚惄顖氱暦閹存績妲堥柕蹇娾偓铏吅婵$偑鍊栭悧妤冪矙閹烘垟鏋嶉柣妯肩帛閸婂灚绻涢幋鐐垫喗缂傚倹姘ㄧ槐鎺楁偐閸愭彃濮㈤梻鍥ь樀閺屻劌鈹戦崱妯烘闂佸搫妫濇禍鍫曞蓟濞戞﹩娼╂い鎺斺拡娴滎亪宕洪妷锕€绶炲┑鐐灮閸犳牠寮婚妸褉鍋撻敐鍛粵缂傚秴鐭傚濠氬磼濞嗘垹鐛㈠┑鐐板尃閸涱喖搴婇梺绯曞墲缁嬫垿鎮為崹顐犱簻闁瑰搫妫楁禍楣冩⒑閸涘鎴︽偋閻樿尙鏆︽繛鍡樻尰閸ゅ秹鏌曟竟顖氭噽濡插洭姊绘担鍦菇闁搞劏妫勫玻鑳槻闁烩槅鍙冨缁樻媴閻熼偊鍤嬪┑鐐村絻缁绘ê鐣烽幇顑芥斀閻庯綆浜為悾娲偡濠婂啯鎹i柟骞垮灩閳规垹鈧綆浜為崐鐐烘偡濠婂啰绠荤€殿喗妲掗ˇ鍙夈亜椤忓嫬鏆e┑鈥崇埣瀹曞崬螖閸愵亝鍣梻浣筋嚙鐎涒晠宕欒ぐ鎺戠煑闁告劦鍠栫粻鏍煥閻斿搫孝閸烆垶姊洪崘鍙夋儓闁稿﹤顭峰畷銏$鐎n偀鎷洪梺鍛婄箓鐎氼厼顔忓┑瀣厱閻庯綆鍋嗗ú鎾煕閳规儳浜炬俊鐐€栧濠氬磻閹惧绡€闁逞屽墴閺屽棗顓奸崨顖氬Е婵$偑鍊栫敮濠囨嚄閸洖鐤柡灞诲劜閻撴瑩鏌涢幋娆忊偓鏍偓姘炬嫹
张振振,1,*, 赵平2, 赵秀华2, 张锦秀1, 朱丽薇2, 欧阳磊2, 张笑颜11 浙江师范大学地理与环境科学学院, 浙江金华 231004
2 中国科学院华南植物园, 广州 510650

Impact of environmental factors on the decoupling coefficient and the estimation of canopy stomatal conductance for ever-green broad-leaved tree species

ZHANG Zhen-Zhen,1,*, ZHAO Ping2, ZHAO Xiu-Hua2, ZHANG Jin-Xiu1, ZHU Li-Wei2, OUYANG Lei2, ZHANG Xiao-Yan1 1 School of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 231004, China
2 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

通讯作者: E-mail: zhangzhen@zjnu.cn

编委: 周广胜
责任编辑: 李敏
收稿日期:2018-07-30修回日期:2018-10-23网络出版日期:2018-12-20
基金资助:国家自然科学基金.41630752
国家自然科学基金.41701226
国家自然科学基金.41030638


Received:2018-07-30Revised:2018-10-23Online:2018-12-20
Fund supported: Supported by the National Natural Science Foundation of China.41630752
Supported by the National Natural Science Foundation of China.41701226
Supported by the National Natural Science Foundation of China.41030638


摘要
精确模拟冠层气孔导度(GS)对于评估区域蒸散具有重要意义。该研究选择两种常见的人工阔叶树种尾叶桉(Eucalyptus urophylla, 外来种)和木荷(Schima superba, 本地种)作为研究对象, 利用K?stner法和修订的Penman-Monteith公式计算冠层平均气孔导度(分别定义为GS1GS2)。研究还分析了环境因子对冠层脱耦联系数(Ω)的影响, 并用其来评价两种方法模拟的冠层气孔导度的合理性。结果表明, 两个树种冠层气孔导度均与气象条件耦合较好(尾叶桉: Ω = 0.10 ± 0.03, 木荷: Ω = 0.17 ± 0.03)。主成分分析显示, 光合有效辐射(PAR)以及水汽压亏缺(D)显著影响Ω的大小, 而风速(u)的影响较小。单因素分析则发现各环境因子与Ω之间的相关性并不显著。边界线分析表明DPAR的增加使得Ω最终趋向于一个与树种有关的稳定值(木荷≈ 0.20, 尾叶桉≈ 0.05), 而Ωu的增加呈幂指数下降。与木荷相比, 尾叶桉具有更高的气孔导度(尾叶桉和木荷的GS2年平均值分别为(33.42 ± 9.37) mmol·m -2·s -1和(23.40 ± 2.03) mmol·m -2·s -1), 并且尾叶桉和木荷的GS1GS2的线性拟合斜率分别为0.92 (R2 ≈ 0.70)和0.98 (R2 ≈ 0.76) , 表明GS1GS2高估了冠层气孔导度。另外, GS1GS2对水汽压亏缺的敏感性与参比气孔导度(GSiref, D = 1 kPa时的气孔导度)的比值Pi与Ω紧密相关。根据统计, 尾叶桉和木荷的GS1估计值在Ω = 0.05-0.15 (83.1%的数据)和0.10-0.20 (47.8%的数据)之间时是相对可靠的。
关键词: 植物蒸腾;冠层导度;脱耦联系数;环境因子

Abstract
Aims Accurate simulation of canopy stomatal conductance (GS) is quite important for the assessment of regional evapotranspiration.Methods In this study, two planted broad-leaved tree species, Eucalyptus urophylla (exotic species) and Schima superba (native species), were chosen to estimate their GS with two different methods of K?stner (GS1) and inversed Penman-Monteith equation (GS2). The effect of environmental factors on canopy decoupling coefficient (Ω) was evaluated before they were adopted to assess the reasonability of GSsimulated by the two methods.Important findings Results showed that the GS of the two tree species was well coupled with meteorological conditions (Ω = 0.10 ± 0.03 for E. urophylla and 0.17 ± 0.03 for S. superba). Principal component analysis showed that photosynthetically active radiation (PAR) and vapor pressure deficit (D) significantly dominated the variations of Ω, while the effect of wind speed (u) was very weak. Multivariate correlation analysis also found weak relations between those environmental factors and Ω. Boundary line analysis revealed that the increase of D and PAR would eventually force Ω approaching a constant value as determined by tree species (S. superba ≈ 0.20, E. urophylla ≈ 0.05), while Ω decreases exponentially with the increase of u. Compared with S. superba, E. urophylla has higher GS. The annual averages GS2 of E. urophylla and S. superba were (33.42 ± 9.37) mmol·m-2·s-1 and (23.40 ± 2.03) mmol·m-2·s-1, respectively. Linear fitting showed that the GS2/GS1 ratio of E. urophylla and S. superba was 0.92 (R2 ≈ 0.70) and 0.98 (R2 ≈ 0.76), respectively, implying the overestimated canopy stomatal conductance for GS1 (p < 0.01). In addition, the ratio of the sensitivity of canopy stomatal conductance to vapor pressure deficit to stomatal conductance at D = 1 kPa (GSiref) for GS1 and GS2 is closely related to Ω. Based on the estimation, GS1 was relatively reliable when Ω = 0.05-0.15 (83.1% of all the data) and 0.10-0.20 (47.8% of all the data) for E. urophylla and S. superba.
Keywords:plant transpiration;canopy stomatal conductance;the decoupling coefficient;environmental factor


PDF (1703KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
张振振, 赵平, 赵秀华, 张锦秀, 朱丽薇, 欧阳磊, 张笑颜. 环境因子对常绿阔叶树种脱耦联系数及冠层气孔导度估算的影响. 植物生态学报[J], 2018, 42(12): 1179-1191 doi:10.17521/cjpe.2018.0176
ZHANG Zhen-Zhen. Impact of environmental factors on the decoupling coefficient and the estimation of canopy stomatal conductance for ever-green broad-leaved tree species. Chinese Journal of Plant Ecology[J], 2018, 42(12): 1179-1191 doi:10.17521/cjpe.2018.0176


植物蒸腾作为森林维持流域和区域水资源平衡的重要功能, 对社会和经济发展具有重要的生态意义(Anton et al., 2008; Little et al., 2009)。人类活动引起的环境变化可能会迫使森林蒸腾发生改变, 从而影响区域水资源平衡。

环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005)。冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004)。而两者对于GT的贡献目前仍存在争议。有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012)。同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006)。事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998)。冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能。尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响。

以往的研究中, 在不考虑边界层阻力的影响时, GS通常被认为等同于GT (Wullschleger et al., 2000)。而其中最常用的就是基于树干液流的K?stner公式计算的GS。其计算如下:

${{G}_{\text{S}}}=\frac{{{G}_{\text{V}}}{{T}_{\text{a}}}\rho {{E}_{\text{l}}}}{D}$
其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008)。该方法由于参数较少, 计算简单, 因此被广泛采用。但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000)。Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林。然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006)。尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估。而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003)。本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性。

1 材料和方法

1.1 研究区概况

本研究在乡土种木荷(Schima superba)和外来种尾叶桉(Eucalyptus urophylla)人工林中进行。前者位于广州市中国科学院华南植物园(23.18° N, 113.36° E, 海拔41 m)。所在地为典型的南亚热带季风气候, 年降水量1 612-1 909 mm, 年平均气温21.4-21.9 ℃。雨季从4月持续至9月, 旱季从9月持续到次年3月(Zhu et al., 2012)。坡向为东北向, 坡度为11.7°, 土壤pH值为4.0, 有机质含量为2.3%, 总氮含量为0.07%。从2011年1月到12月, 对21株木荷进行了树干液流的测定。尾叶桉林位于中国广西桂林黄冕林场(24.78° N, 109.87° E), 所在地坡向朝南(坡度28°), 为南亚热带和中亚热带过渡地带, 降水丰沛(1 750-2 000 mm), 年平均气温19 ℃。土壤以红砂岩和红壤为主, pH值为3.5, 有机质含量为2.8%, 总氮含量为0.1%。雨季是3月至8月, 其余月份为旱季。从2012年6月至2013年5月对15株树木进行了树干液流测定。两个林分中均建有一座观测塔(木荷林塔高18 m, 尾叶桉林塔高23.5 m), 用于冠层结构和生理参数及气象参数的测定。木荷林年平均叶面积指数(LAI)为4.33, 尾叶桉林为1.53 (表1)。

Table 1
表1
表1木荷和为尾叶桉林区参数
Table 1Stand parameters of Schima superba and Eucalyptus urophylla
树种 Species密度 DensitynDBHHAsLAIlAlAc
木荷 S. superba6032115.5 (1.3)a12.7 (0.5)a0.018 (0.002)a4.3 (0.1)a9.1 (0.4)a66.6 (10.2)a20.7 (2.9)a
尾叶桉 E. urophylla1 3751510.1 (0.6)b11.5 (0.8)a0.007 (0.001)b1.5 (0.1)b10.9 (0.2)b21.0 (2.7)b4.0 (0.2)b
Density is the number of trees per hectare within the two sites; Ac is mean crown size (East-West width times North-South width, m2); and Al is tree level leaf area (m2); AS is mean sapwood area (m2); d is mean leaf length (cm); DBH is mean stem diameter at 1.3 m height (cm); H is mean tree height (m); LAI is leaf area index (m2 ·m-2); n is the number of sampled trees for sap flux monitoring. Different lowercase letters indicate significant differences between sites (α = 0.05), and values in parentheses are standard deviations.
密度是两个林区内每hm2树木的数量; Ac是平均冠幅(东西宽度乘以南北宽度, m2); Al是株水平叶面积(m2); AS是边材面积平均值(m2); DBH是平均胸径(cm); H是平均树高(m); LAI是叶面积指数(m2·m-2); l是平均叶长(cm); n是树干液流通量监测的采样株数; 不同小写字母表示实验点之间的差异显著(α = 0.05), 括号中的值是标准偏差。

新窗口打开|下载CSV

1.2 树干液流监测

采用热消散探针法(TDP)测定树液通量密度 (Fd, g·H2O·m-2·s-1)。具体测定方法参见Granier (1987)的研究。探针长度为20 mm, 数据每30 s读取一次, 并用数据记录器(DL2e, Delta-T Devices, Cambridge, UK)平均每10 min记录一次。

1.3 环境因子监测

实验期间在塔顶安装AV-S3型温度和相对湿度探头, 测量冠层空气温度(T, ℃)和相对湿度(RH, %), 计算大气水汽压亏缺(D, kPa), 安装净辐射传感器(NR2-07, AVALON, London, UK)监测冠层净辐射(Rn, W·m-2), 并将3块土壤热通量板(HFP01, HUKSEFLUX, Delftechpark, Netherlands)埋入土壤表面下2 cm, 测量土壤热通量(G, W·m-2)。冠层上方的光合有效辐射(PAR, μmol·m-2·s-1)用光量子传感器(SKP 215, QT SYSTEM, London, UK)进行监测;冠层上方的风速(u, m·s-1)则利用风速计(AN4-05, Omega, Norwalk, USA)来记录。土壤含水量(SWC, m3·m-3)用3个埋入地表下30 cm的土壤水分传感器(SM300, Delta T device, Cambridge, UK)进行监测。以上所有的参数每30 s记录一次, 每10 min取平均值存储于数据采集仪(DL2, Delta T device, Cambridge, UK)中。

1.4 林分参数测定

实验期间, 在每月月初用LI-COR 2000植物冠层分析仪(LI-COR, Lincoln, USA)测定冠层LAI。样树的胸径(DBH)和树高(H)则分别用胸径尺和测高仪(SI-121, Sunto Tandem, Rotterdam, Netherlands)测定, 每年一月份开展一次。同时在样地外围用生长锥获取树木树芯, 并根据树芯上的颜色差异测定边材的深度及树皮厚度。样本的总叶面积可以根据2009年(木荷)和2012年(尾叶桉)样地附近树木DBH与总叶面积之间的异速生长关系获得。两个样地的林分参数如表1所示, 除树高外, 所有参数都有显著差异(p > 0.05), 尤其是LAI

1.5 冠层蒸腾

利用样地外围样树树芯分别获取木荷和尾叶桉的边材面积(AS)和DBH的异速生长关系:

AS = 0.0013e0.1526DBH (R2 = 0.97)

AS = 0.0012e0.1683DBH (R2 = 0.96)

冠层叶片蒸腾速率(El, g H2O·m-2·s-1)可以通过树液通量密度Fd、叶面积和AS的计算获得。前人研究发现, 木荷40-60 mm深度的树液通量密度显著低于外部20 mm处的树液通量密度, 而0-20和20-40 mm处的树液通量密度没有显著差异(梅婷婷等, 2010; Zhu et al., 2012)。因此, 可以通过使用Zhu等(2012)得出的等式来计算木荷的El, 其中包括了液流的径向分布(式4)。但由于尾叶桉边材深度(d)为(2.13 ± 0.40) cm, 接近TDP探针的长度, 即探针实际已经基本覆盖了整个边材部分, 因此不需要考虑液流在边材中的径向变化, 所以使用式5估计El的数值。

El = (Fd × 0.85As40 + Fd × As0-40)/Al (Zhu et al., 2012)

El = Fd × (As/Al)

其中, As40d > 40 mm的边材面积, As0-40为0 < d < 40 mm的边材面积, Al为总叶面积。

1.6 冠层气孔导度(GS)

根据式1计算简化的冠层气孔导度(GS1) , 根据Penman-Monteith公式的逆形式(公式6)计算GS2 (Wallace et al., 1990; Kelliher et al., 1993; Zeppel & Eamus, 2008)。由于其考虑了冠层阻力的影响, 因此也就能够更加精确的模拟冠层气孔导度。其计算公式如下:

${{G}_{\text{S2}}}=\frac{\gamma \lambda {{E}_{\text{l}}}{{g}_{\text{a}}}}{\Delta \left( {{R}_{\text{n}}}-G \right)+\rho {{c}_{\text{p}}}D{{g}_{\text{a}}}-\lambda \left( \Delta +\gamma \right){{E}_{\text{l}}}}$
其中, Δ为饱和水气压随温度的变化曲线(kPa·℃-1), Rn为冠层净辐射(MJ·m-2·h-1), G为地面土壤热通量(MJ·m-2·h-1), ρ为干燥空气密度(kg·m-3), cp为恒压干燥空气的比热(MJ·kg-1·℃-1), D为蒸气压差(kPa), ga为空气动力学导度(m·s-1), GS2为冠层气孔导度(mmol·m-2 s-1), λ为水汽化潜热(MJ·kg-1), γ为干湿表系数(kPa·℃-1), ga根据风速估算为:

${{g}_{\text{a}}}=\frac{{{k}^{2}}u}{\ln \left[ \left( z-{{d}_{0}} \right)/{{z}_{0}} \right]}$
其中, z0为表面粗糙度(约0.1 h), h为平均树高, d0为零平面位移(约0.75 h), k为冯卡门常数, u (m·s-1)为

z0水平下的风速。根据前人的研究, 当D < 100 Pa时, 叶片表面的边界层阻力远远大于气孔阻力, 而此时植物气孔导度的大小主要受到PAR的影响, 因此当D < 100 Pa时, GS的计算会存在极大的误差, 因此本研究中, GS是在排除D < 100 Pa时间段的数据后进行计算的(Sch?fer et al., 2000)。

1.7 冠层脱耦联系数Ω

冠层与大气解耦程度可用无量纲系数Ω来描述 (McNaughton, 1983):



其中, s是饱和水汽压的变化...率; γ是干湿表系数(Pa·℃-1); gc是冠层导度, 为GSLAI的乘积。Ω被分为6个等级(0-0.05、0.05-0.10、0.10-0.15、0.15-.0.20、0.20-0.25、0.25-0.30), 以量化大气解耦对气孔调节的影响。此外, 本研究中应用边界线分析来确定Ω与单因素气象条件和气孔导度(PAR, D, u, GS)之间的关系。

1.8 GSD的敏感度

Oren等(1999b)通过边界线分析发现, 当土壤湿度不受限制时, GSD之间的关系可以表示为:

GS = GSrief - mlnD

其中, GSiref是参比气孔导度(即在D = 1 kPa时GS的值), -m是回归拟合方程的斜率, 表示气孔导度对D的变化的敏感性(即GS随lnD的变化率dGS/dlnD)。通过边界线分析, 我们利用所得边界线数据分析利用这两种方法模拟的不同树种的GSD响应的差异性。该方法已在多因素作用下的GS响应研究中得到应用(Dye & Olbrich, 1993; Granier et al., 1996; Oren et al., 2001)。

1.9 统计分析

我们采用SAS 9.2对GSΩ进行ANOVA统计分析。同时对气象因子及Ω进行主成分分析以确定环境因子对Ω的影响程度及相关性。为了分析每个环境因子对Ω的定量关系, 我们在Excel 2010中进行边界线分析。分析结果使用Origin 8.6进行绘图。另外, 为了研究不同时间尺度两个树种的ΩGS的特征, 我们分别计算了Ω的日均值, 月均值和年均值, 并选择1、4、7、10月分别代表一年中的4个季节, 对两个树种进行配对t检验, 来比较它们的大小。

2 结果

2.1 林分气象条件

2012年6月至2013年5月尾叶桉林和2011年1月至12月木荷林的数据表明尾叶桉林和木荷林的平均气温分别为22.18和22.54 ℃, 且年变化相似(图1C, 配对t检验, p = 0.53)。两个林分PARD都有明显的季节性差异(图1A)。木荷林日平均D ((1.04 ± 0.64) kPa)显著高于尾叶桉林((0.74 ± 0.55) kPa), 表明了更强的蒸腾需求(配对t检验, p < 0.01)。尾叶桉林 的年平均SWC ((0.33 ± 0.06) m3·m-3)高于木荷林((0.28 ± 0.07) m3·m-3), 而生长在山坡上的尾叶桉林风速((1.36 ± 0.67) m·s-1)比木荷林的大((0.91 ± 0.54) m·s-1, p < 0.01)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1研究期间的气象条件。A, 光合有效辐射(PAR)。B, 水汽压亏缺(D)。C, 空气温度(Ta)。D, 土壤含水量(SWC)。

Fig. 1Meteorological conditions during study periods. A, Photosynthetic photon flux density (PAR). B, Vapor pressure deficit (D). C, Daily mean air temperature (Ta). D, Soil water content (SWC).



2.2 不同时间尺度下解耦系数(Ω)的变异性

根据公式(8), 我们使用GS2计算了Ω值, 来量化森林冠层蒸腾与大气气象因子的耦合度。木荷的Ω年均值为0.17 ± 0.03, 显著高于尾叶桉林(Ω = 0.10 ± 0.03, p = 0.000 1)。两个观测站之间Ω的差异则可能与LAI代表的冠层郁闭度的差异有关(表1)。另外由于环境条件的变化(图1, 图3A-3D), Ω也存在着显著的季节动态(图2)。而尾叶桉林Ω的季节变化幅度相对较大(从1月份的0.06 ± 0.02上升至7月份的0.15 ± 0.02, p <0.01), 明显高于木荷林(从1月份的0.17 ± 0.06到4月份的0.20 ± 0.04, p = 0.09)。另外Ω也存在显著的日变化(图3E、3F)。木荷林Ω的日变化呈明显的单峰曲线, 而尾叶桉林的Ω日变化呈逐渐增加的趋势。两个林分Ω值的最小值和最大值分别出现在10月的上午和4月的下午, 这可能与10月份较高的DPAR (DOY 210-240, 图1)和华南地区4月份较高的降水量有关。此外, 由于清晨低风速和高湿度有利于在叶面和冠层表面形成厚的边界层, 从而导致较高的Ω值(Motzer et al., 2005)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2尾叶桉林和木荷林每月脱耦联系数(Ω)。

Fig. 2Monthly decoupling coefficients (Ω) of Eucalyptus urophylla and Schima superba stands.



图3

新窗口打开|下载原图ZIP|生成PPT
图3尾叶桉林和木荷林光合有效辐射(PAR)、水汽压亏缺(D)和脱耦联系数(Ω)日变化(平均值±标准误差)。

Fig. 3Diurnal course of photosynthetically active radiation (PAR, μmol m-2·s-1) (A, B), vapor pressure deficit (D, kPa) (C, D), and decoupling coefficient (Ω) (E, F) for Eucalyptus urophylla and Schima superba stands (mean ± SE) respectively.



2.3 环境因子和气孔调控对Ω的影响

我们对大气气象因子以及GSΩ进行主成分分析, 结果前3个主成分分别占Ω变异的75.1% (尾叶桉)和76.4% (木荷)。其中以DPAR为主的第一主成分可解释Ω变异的45.9% (尾叶桉)和43.2% (木荷)。尽管如此, 当考虑单一因素时, 各因子与Ω之间的相关性并不显著。Ω与尾叶桉的PAR (r = -0.07)和D (r = -0.10)呈负相关关系。然而, Ω与木荷的PARD呈正相关关系。另外风会极大地改变叶片边界层阻力, 因此可能对叶和冠层表面与蒸腾产生解耦作用。然而事实上, Ωu之间相关性较弱(尾叶桉和木荷的r分别为-0.30和-0.20)。

我们对DPARΩ之间的关系进行了边界线分析(图4A、4B、4D、4E)。结果发现Ω均存在上下边界线, 分别代表多重环境影响下的最大值和最小值。上边界线与DPAR呈负相关关系, 而下边界线与DPAR呈正相关关系。当PARD进一步增加时, Ω都接近恒定值(木荷-0.2, 尾叶桉-0.05)。我们对Ωu以及GS之间的关系也进行了边界线分析(图4C、4F), 结果Ω作为u的函数也具有上边界线, 但没有显著的下边界线(图4C、4F)。两个树种Ω随着u的增加呈幂指数下降。并且Ω值也趋近恒定值(即0.20 (木荷)和0.05 (尾叶桉))。我们对GSΩ之间的关系也进行了边界线分析(图5), 结果ΩGS2间也存在上下边界, 且呈线性相关关系, 但尾叶桉和木荷的Ω值对GS响应的敏感性存在差异(斜率分别为0.001 86和0.003 56)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4尾叶桉林和木荷林中脱耦联系数(Ω)和光合有效辐射(PAR)(A, D)、水汽压亏缺(D) (B, E)及风速(C, F)之间的关系。图中仅显示了边界线数据区域。

Fig. 4Relationships between decoupling coefficient (Ω) and (A, D) photosynthetically active radiation (PAR,) as well as (B, E) vapor pressure deficit (D), (C, F) wind speed in Eucalyptus urophylla and Schima superba stands. Only boundary line data area shown in the figure.



图5

新窗口打开|下载原图ZIP|生成PPT
图5使用修订的Penman-Monteith公式估算的冠层气孔导度及相关的脱耦联系数(Ω)。

Fig. 5Decoupling coefficient (Ω) in relation to canopy stomatal conductance estimated with the inverse Penman-Monteith equation (GS2).



2.4 不同时间尺度下两个树种冠层气孔导度(GS)的变化

不同季节, 两种树种的GS日变化相似, 均随PAR的增加而迅速增加, 并在中午达到顶峰, 然后逐渐下降(图6)。尾叶桉和木荷的GS1年平均值分别为(42.55 ± 14.69)和(33.43 ± 9.40) mmol·m-2·s-1 , GS2年平均值分别为(33.42 ± 9.37)和(23.40 ± 2.03) mmol·m-2·s-1, 表明公式(1)不考虑冠层阻力可能导致GS偏大。另外, 两个树种相比, 尾叶桉在雨季(5-9月)和旱季(10月-翌年4月)平均GS1值分别为(48.96 ± 42.32)和(33.48 ± 16.95) mmol·m-2·s-1, 而木荷的平均值为(24.1 ± 17.36)和(28.88 ± 21.95) mmol·m-2·s-1。另外与木荷不同, 尾叶桉GS1的季节动态与大气气象条件的变化相一致(图1)。

图6

新窗口打开|下载原图ZIP|生成PPT
图6根据K?stner公式(GS1, ○)和Penman-Monteith逆公式(GS2, △)估计的尾叶桉林(A-D)和木荷林(E-H)冠层气孔导度(GS)的日变化。

Fig. 6Daily variation of canopy stomatal conductance (GS) estimated from the K?stner equation (GS1, ○) and the inverse Penman-?Monteith equation (GS2, △) for Eucalyptus urophylla (A-D) and Schima superba (E-H).



2.5 不同方法下GS值的比较

我们对两个树种的GS1GS2进行线性分析,尽管大多数数据点在1:1的两侧分布(图7), 但总体来看, 无论是木荷还是尾叶桉, GS2往往低于GS1 (p < 0.01)。并且木荷的拟合效果比尾叶桉更好(R2更高, 图7)。我们对木荷和尾叶桉的GS响应D的敏感性-m以及参比气孔导度GSiref进行了计算, 结果表明, 木荷的-mGSiref的比例平均值为0.64 ± 0.20 (GS1)和0.63 ± 0.14 (GS2), 尾叶桉的分别为0.50 ± 0.11 (GS1)和0.56 ± 0.09 (GS2)。在此基础上, 我们进行GSirefm之间的线性拟合分析(图8)。两种树种dGSi/dlnDGSiref之间的关系都达到显著水平(p < 0.001)。

图7

新窗口打开|下载原图ZIP|生成PPT
图7尾叶桉和木荷利用K?stner法计算的气孔导度(GS1)和利用Penman-Monteith公式计算的气孔导度(GS2)之间的关系。

Fig. 7Relationship between stomatal conductance estimated from the K?stner equation (GS1) and the inverse Penman-Monteith equation (GS2) for Eucalyptus urophylla and Schima superba.



图8

新窗口打开|下载原图ZIP|生成PPT
图8冠层气孔导度(GS)对水汽压亏缺的敏感性(-m)与水汽压亏缺(D) = 1 kPa时的GS (GSref)之间的比例变化。数值来自一个月数据子集的边界线拟合。对于每种方法组合, 线是最小二乘拟合(p < 0.001)。GS1: 直线和空心圆, GS2: 点划线和星号。

Fig. 8Proportional increase of sensitivity of tree crown-level stomatal conductance (GS) to vapor pressure deficit (-m) with the conductance at vapor pressure deficit (D) = 1 kPa (GSref). Values are from boundary line fits of one month subsets of data. Lines are the least-square fit (p < 0.001) for each method combination. GS1, line and open circle; GS2, dash dot and asterisk



3 讨论

3.1 阔叶林分间Ω值的差异性

研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007)。然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性。我们的研究结果表明, LAI相对较高的木荷Ω值更大。但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究。事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008)。许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化。然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似。这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关。

3.2 不同林分Ω季节变化的差异性

除了种间差异, Ω的季节变化很大(Zeppel & Eamus, 2008; Forrester et al., 2010)。 Hutley等(2001)发现, Ω值在雨季(D较低, SWC较高)较高, 在旱季(D较高, SWC较低)较低, 尾叶桉的Ω变化模式与之类似(图1)。而同样的结果也在巴西巨桉(Eucalyptus grandis)中观测到(Mielke et al., 1999)。但这种显著的Ω季节性变化并没有在木荷林中观测到(图2)。然而, 我们同时也发现木荷Ω的日变化与DPAR的变化模式相一致, 甚至比尾叶桉的更为匹配(图3)。根据公式8, Ω的变化受gagc (GS × LAI)的制约, 前者与给定树高处的风速相关(Daudet et al., 1999), 而后者主要受DPAR的影响(Maruyama & Kuwagata, 2008; Nicolás et al., 2008)。即Ω是受大气直接和间接控制的(通过对GS的影响)。另外, 不同时间尺度和不同物种Ω变化的不一致表明, 单因素的直接影响在本研究中较弱。相反, 两个林分(图1F,图2, 图4)的ΩGS2季节变化则存在较好的一致性。因此可以认为, 在气象因子的作用下, 木荷自身的生理活动可能会起主导作用。而植物与冠层大气之间的脱耦联也很大程度上受到自身生理调节的反馈抑制。

3.3 Ω与大气条件之间的关系

大气对Ω的影响是各种环境因子的综合作用, 因此任何个体效应都可能被其他因素影响所掩盖。通常风速被认为会引起Ω的波动。例如, Wei等(2013)认为, 风速会增加冠层脱耦联程度。Mielke等(1999)也观察到uΩ之间存在显著正相关关系, 且中度水分亏缺会促进这种相关性。然而, 在我们的研究中没有发现这种正效应(尾叶桉和木荷的相关系数分别为-0.30和-0.20)。相反, 边界线分析显示Ωu呈指数下降(图4)。这说明u也并非仅仅是直接引起Ω的变化。同样DPARΩ之间也存在相似的结果。另外, 当DPAR不受限制时, Ω趋近于一个特定值。 图4中的边界线分析表明DPAR的增加导致Ω在较高DPAR处趋近收敛。而这种定值的种间变异(木荷为0.20, 尾叶桉为0.05)揭示了尾叶桉和木荷在碳水平衡调节策略上的差异性。

3.4 Ω对两种方法计算GS的影响

尽管尾叶桉和木荷Ω的平均值相对较小(分别为0.1和0.17), 表明两个林分与大气环境存在部分脱耦联, 即不满足“引言”中提出的用于估算GS1的条件(3)。本研究中, 尾叶桉和木荷的GS2:GS1分别为0.92和0.98, 表明GS1相对偏大(p < 0.01)。这表明即使具有良好大气耦合条件的森林, 在估算GS时边界层阻力也不可忽略。另外, 两种方法估算的GS对大气D的响应的差异性表明, GS1在描述植物生理响应时也存在一些偏差。研究发现-mGSiref之间0.6的比例是为防止植物木质部的过度空穴化, 维持最小叶水势(ΨL)而产生(Oren et al., 1999b; Ewers et al., 2005)。而在以下条件下这个比例值会出现实质性偏差: (1)非等水植物允许最小ΨL随着D的增加而下降; (2) D的变化范围极大; (3)边界层导度与GS的比值较低(Oren et al., 1999a)。前两个条件导致-mGSiref的比值Pi小于0.6, 而条件3则导致Pi大于0.6 (Oren et al., 1999a)。尾叶桉和木荷GS1Pi分别为0.53和0.57, 两者均略低于标准值0.6。与GS1相比, 尾叶桉和木荷GS2Pi分别为0.86和0.68, 远高于0.6, 故可推测这种偏差可能是较低的边界层导度引起的。这说明边界层阻力足够大时, 如阔叶树种, 简化公式所得的GS可能偏低, 并且无法反映真实的GS对环境因子的响应。

为了更加详细地评估边界层阻力对GS计算的影响, 我们用所有观测数据计算了每个Ω水平的Pi值(每个水平4-5个重复)(表3)。在0.05-0.15的范围内, 尾叶桉Pi与标准值0.6相当(p > 0.05)。一旦边界层较厚(Ω > 0.15), Pi高于0.6, Ω甚至可以达到0.3。Blanken等(1997)研究毛白杨(Populus tomentosa)林时选择Ω = 0.5作为界定粗糙表面森林的标准, 我们的结果则对这种标准提出了质疑。相比之下, 木荷的最佳Ω范围(Pi与0.6差异不显著)在0.1-0.2之间。因此可以认为对尾叶桉和木荷估计的Ω的最佳区间范围分别为0.05-0.15和0.10-0.20。

Table 2
表2
表2文中常用变量及其缩写
Table 2Common variables and their abbreviations
变量 Variables缩写 Abbreviations单位 Units
冠层气孔导度 Canopy stomatal conductanceGSmmol·m-2·s-1
冠层脱耦联系数 Canopy decoupling coefficientΩ无纲量 No dimension
光合有效辐射 Photosynthetically active radiationPARμmol·m-2·s-1
水汽压亏缺 Water vapor deficitDkPa
风速 Wind speedum·s-1
水汽导度 Water vapor conductanceGTmmol·m-2·s-1
冠层导度 Canopy conductancegcmmol·m-2·s-1
空气动力学导度 Aerodynamic conductancegammol·m-2·s-1
树木蒸腾速率 Tree transpiration ratesEg·m-2·s-1
叶面积指数 Leaf area indexLAIm2·m-2
胸径 Diameter at breast heightDBHcm
树高 Tree heightHm
边材面积 Sap wood areaASm2
总叶面积 Total leaf areaAlm2
气动阻力 Stomatal resistanceras·m-1
土壤含水量 Soil water contentSWCm3·m-3

新窗口打开|下载CSV

Table 3
表3
表3不同冠层脱耦联系数(Ω)区间范围尾叶桉和木荷的冠层气孔导度对水汽压亏缺的敏感性(-m)和参比气孔导度(GSiref)之间的比例(Pi)
Table 3The proportion between the ratio of the sensitivity of canopy stomatal conductance to vapor pressure deficit (-m) and stomatal conductance at vapor pressure deficit = 1 kPa (GSiref) (Pi) for Ecalyptus urophylla and Schima superba at each canopy decoupling coefficient (Ω) interval
树种 SpeciesΩ区间 Ω intervalPi
0.00-0.05-
0.05-0.100.57 (0.06)
尾叶桉
E. urophylla
0.10-0.150.58 (0.06)
0.15-0.201.04 (0.16)**
0.20-0.258.32 (7.62)**
0.25-0.31.43(5.02)**
0.00-0.05-
0.05-0.100.75 (0.13)**
木荷
S. superba
0.10-0.150.61 (0.10)
0.15-0.200.58 (0.08)
0.20-0.250.70 (0.13)**
0.25-0.301.21 (0.40)**
Numbers in brackets are standard deviations. *, significant difference from standard value (0.6) at α = 0.05; **, significant difference from standard value (0.6) at α = 0.01.
括号中为标准偏差。*, α = 0.05时与标准值(0.6)有显著差异; **, α = 0.01时与标准值(0.6)有显著差异。

新窗口打开|下载CSV

由于Ω具有较大的年变化和日变化(图2, 图3), 有必要量化GS数据最佳区间的百分比, 这样用简化的公式来估算GS更为合理。根据计算, 尾叶桉和木荷各自落在最佳区间范围的GS数据量分别为83.1%和47.8%, 因此可以认为一年中尾叶桉和木荷有83.1%和47.8%的Ω条件下适合利用简化公式计算GS

4 结论

尾叶桉林和木荷林的Ω分别为0.10 ± 0.03和0.17 ± 0.03, 表明森林冠层与大气之间具有较高的耦合度。而林分Ω的季节变化不仅受到气象条件的影响, 同时也与植物生理调节作用紧密相关。因此Ω的动态变化是各种环境因子综合相互作用的结果, 任何单因素效应都可能被其他影响所掩盖。这是导致不同地区、不同林分, 森林Ω变异的主要原因。另外尽管两个林分Ω值均相对较小, 但与GS2相比, GS1值仍然偏大(尾叶桉斜率为0.92, 木荷斜率为0.98), 而GSD的敏感性分析也表明, 简化公式计算的GS可能无法反映真实的气孔响应。这说明K?stner公式估算的阔叶树种的GS可能存在较大误差。尽管如此, 我们的结果也认为并非所有的GS值均不可信, 通过对GS1合理范围的分析, 以及相应数据量的统计, 我们发现, 当K?stner公式应用于GS的计算时, 尾叶桉和木荷林各自有83.1%和47.8%的数据是相对可靠的。因此, 我们的这些结果可以为更加精确的区域水量平衡的估算提供参考。

致谢 感谢中国科学院华南植物园赵培强、周娟、 孙振伟和高建国在现场工作中的帮助。



参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Anton H, Andrés I, James B ( 2008). Effect of Pinus radiata plantations on water balance in Chile
Hydrological Processes, 22, 142-148.

[本文引用: 1]

Aphalo P, Jarvis P ( 1991). Do stomata respond to relative humidity?
Plant, Cell & Environment, 14, 127-132.

DOI:10.1111/j.1365-3040.1991.tb01379.xURL [本文引用: 1]
Abstract. The objective of the work reported was to answer the following questions: (1) Do stomata respond to both humidity and temperature? (2) Do these responses interact in such a way that relative humidity at the leaf surface is a more appropriate variable than water vapour saturation deficit at the leaf surface and yields a simpler description of the compound response? To answer these questions, we measured the response of leaf conductance to humidity under constant leaf temperature, and the response to increasing leaf temperature under constant relative humidity and under constant water vapour saturation deficit. We found that, in Hedera helix subsp. canariensis (Willd.) Coutinho, there was a reversible response to humidity under constant temperature, and that there was also a response to temperature under constant relative humidity. The relationship between leaf conductance and relative humidity was different when measured at the same temperature rather than at different temperatures. An inversely proportional response was consistently obtained when stomatal conductance was expressed in relation to water vapour saturation deficit. The interaction between the effects of leaf temperature and water vapour saturation deficit was not compatible with a mechanism of response to humidity and temperature based solely on relative humidity. From these data, we conclude that water vapour saturation deficit is a more appropriate variable for describing stomatal responses to humidity.

Barradas VL, Nicolás E, Torrecillas A, Alarcón JJ ( 2005). Transpiration and canopy conductance in young apricot ( Prunus armenica L.) trees subjected to different PAR levels and water stress
Agricultural Water Management, 77, 323-333.

DOI:10.1016/j.agwat.2004.09.035URL [本文引用: 1]
Water use and canopy conductance were monitored in 2-year-old apricot ( Prunus armenica L.) trees growing in 70-L plastic pots. The experiment was carried out in a research field near Murcia, Spain, over a 3-week period between September 26 and October 16, 2000. Eight trees were used in the experiment, four of which were placed under a rectangular shading net, while the other four were maintained in the open air. Trees were irrigated adequately until October 5 (day 279); later the water was withheld in all trees for five days. The estimation of transpiration from sap flow measurements was done under both radiation conditions along the experiment, recording a significant decrease of transpiration in shaded trees with respect to the exposed trees. The mild water stress affected the exposed and shaded plants in a similar manner. In both cases, the water deficit induced a significant reduction of transpiration after two days of water withholding. Total conductance was obtained from daily measurements of transpiration and vapor pressure deficit between September 28 and October 10, and was similar to canopy conductance. Maximum canopy conductance showed the lowest values at the end of mild water stress (October 10) (0.0017 and 0.0012 m s 鈭1, shaded and sunny, respectively), and the highest values on September 28 when the trees were in well-irrigated condition (0.0024 and 0.0018 m s 鈭1, shaded and sunny, respectively). Finally, the decoupling coefficient reached the highest values in the shaded trees and the lowest in sun-exposed trees. The results showed that water vapor exchange was strongly dominated by vapor pressure deficit and controlled by leaf conductance. It was also noticeable that trees under shade were more decoupled from the atmosphere than those fully exposed to the sun, meaning that exposed trees resulted in a better control of water loss. We think that net shading could be extended to apricot culture in many areas in which irrigation water is scarce and insolation is high, because the water use clearly decreased in shaded trees with respect to the exposed ones.

Bladon KD, Silins U, Landh?usser SM, Lieffers VJ ( 2006). Differential transpiration by three boreal tree species in response to increased evaporative demand after variable retention harvesting
Agricultural and Forest Meteorology, 138, 104-119.

DOI:10.1016/j.agrformet.2006.03.015URL [本文引用: 1]
We compared the change in microclimate and tree water relations between a boreal mixedwood, variable retention (VR), partially harvested stand and an adjacent, unharvested control stand. A nearly three-fold increase in potential evapotranspiration (ET P) at the crown level in the VR site was approximately proportional to a 2.8-fold increase in wind speed ( u), along with subsidiary increases in net radiation ( Q *) and vapour pressure deficit ( D) after harvesting. Soil volumetric moisture content ( v) also increased, while there were negligible changes in air temperature ( T a) and relative humidity (RH) after partial harvesting. Whole-tree sap flow response to cutting was measured in white spruce ( Picea glauca), balsam poplar ( Populus balsamifera) and paper birch ( Betula papyrifera) with thermal-dissipation sap flow sensors. After partial harvesting, transpiration per unit leaf area ( Q l) in all three species began earlier in the morning and extended later in the day in VR trees than control trees. Mean maximum sap flow rates per leaf area ( Q l-max) during mid-day for P. glauca in the VR site were about 2.5 times greater than in the control trees, while B. papyrifera Q l-max was approximately 1.6 times higher in the VR site. For P. balsamifera, however, Q l-max was only marginally greater in the VR site than in the control. This suggests stomatal closure by the P. balsamifera and B. papyrifera residual trees likely occurred to prevent excessive xylem cavitation. Xylem pressure potential ( x) measurements of twigs also indicated water stress in both P. balsamifera and B. papyrifera in the VR stand, but not for P. glauca. However, similarity of sapwood hydraulic conductivity ( K ) between the two sites, for all three species, showed that xylem cavitation of the main stems was insignificant following VR harvesting. Decoupling coefficients ( ) indicated that all three species were more coupled to the atmosphere in the VR site than in the control. Species differences in susceptibility to atmospheric moisture-stress induced cavitation, combined with differences in stress-coping mechanisms and physiology, appeared to influence the response in transpiration to increased ET P following VR harvesting. Species susceptibility to atmospheric moisture-stress due to increased ET P following partial harvesting can be ranked as: P. balsamifera > B. papyrifera > P. glauca.

Blanken PD, Black TA, Yang PC, Neumann HH, Nesic Z, Staebler R, den Hartog G, Novak MD, Lee X ( 1997). Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components
Journal of Geophysical Research: Atmospheres, 102, 28915-28927.

DOI:10.1029/97JD00193URL [本文引用: 1]
The energy balance components were measured throughout most of 1994 in and above a southern boreal aspen (Populus tremuloides Michx.) forest (53.62900°N 106.20000°W) with a hazelnut (Corylus cornuta Marsh.) understory as part of the Boreal Ecosystem-Atmosphere Study. The turbulent fluxes were measured at both levels using the eddy-covariance technique. After rejection of suspect data due to instationarity or inhomogeneity, occasional erratic behavior in turbulent fluxes and lack of energy balance closure led to a recalculation of the fluxes of sensible and latent heat using their ratio and the available energy. The seasonal development in leaf area was reflected in a strong seasonal pattern of the energy balance. Leaf growth began during the third week of May with a maximum forest leaf area index of 5.6 m2 m0908082 reached by mid-July. During the full-leaf period, aspen and hazelnut accounted for approximately 40 and 60% of the forest leaf area, respectively. Sensible heat was the dominant consumer of forest net radiation during the preleaf period, while latent heat accounted for the majority of forest net radiation during the leafed period. Hazelnut transpiration accounted for 25% of the forest transpiration during the summer months. During the full-leaf period (June 1 to September 7) daytime dry-canopy mean aspen and hazelnut canopy conductances were 330 mmol m0908082 s0908081 (8.4 mm s0908081) (70% of the total forest conductance) and 113 mmol m0908082 s0908081 (2.9 mm s0908081) (24% of the total forest conductance), respectively. Maximum aspen and hazelnut canopy conductances were 1200 mmol m0908082 s0908081 (30 mm s0908081) and 910 mmol m0908082 s0908081 (23 mm s0908081 ), respectively, and maximum stomatal conductances were 490 mmol m0908082 s0908081 (12.5 mm s0908081) and 280 mmol m0908082 s0908081 (7 m s0908081), aspen and hazelnut, respectively. Both species showed a decrease in canopy conductance as the saturation deficit increased and both showed an increase in canopy conductance as the photosynthetic active radiation increased. There was a linear relationship between forest leaf area index and forest canopy conductance. The timing, duration, and maximum leaf area of this deciduous boreal forest was found to be an important control on transpiration at both levels of the canopy. The full-leaf hazelnut daytime mean Priestley and Taylor [1972] coefficient of 1.22 indicated transpiration was largely energy controlled and the quantity of energy received at the hazelnut surface was a function of aspen leaf area. The full-leaf aspen daytime mean of 0.91 indicated some stomatal control on transpiration, with a directly proportional relationship between forest leaf area and forest canopy conductance, varying during much of the season through a range very sensitive to regional scale transpiration and surface-convective boundary layer feedbacks.

Cabral OM, Rocha HR, Gash JH, Ligo MA, Freitas HC, Tatsch JD ( 2010). The energy and water balance of a Eucalyptus plantation in southeast Brazil
Journal of Hydrology, 388, 208-216.

DOI:10.1016/j.jhydrol.2010.04.041 [本文引用: 1]
The eddy covariance method was used to measure energy and water balance of a plantation of Eucalyptus ( grandis × urophylla) hybrids over a 2 year period. The average daily evaporation rates were 5.4 (±2.0) mm day 611 in summer, but fell to 1.2 (±0.3) mm day 611 in winter. In contrast, the sensible heat flux was relatively low in summer but dominated the energy balance in winter. Evaporation accounted for 80% and 26% of the available energy, in summer and winter respectively. The annual evaporation was 82% (1124 mm) and 96% (1235 mm) of the annual rainfall recorded during the first and second year, respectively. Daily average canopy and aerodynamic conductance to water vapour were in the summer 51.9 (±38.4) mm s 611 and 84.1 (±25.6) mm s 611, respectively; and in the winter 6.0 (±10.5) mm s 611 and 111.6 (±24.6) mm s 611, respectively.

Campbell-Clause J ( 1998). Stomatal response of grapevines to wind
Australian Journal of Experimental Agriculture, 38, 77-82.

DOI:10.1071/EA91220URL [本文引用: 1]

Cienciala E, Ku?era J, Malmer A ( 2000). Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo
Journal of Hydrology, 236, 109-120.

DOI:10.1016/S0022-1694(00)00291-2URLPMID:2617573 [本文引用: 1]
Water use of Acacia mangium trees grown in plantations was measured by a heat balance method in two stands that largely differed in tree density. Tree sap flow was closely coupled to climatic drivers and responded with minimal time delay. Using no time shift, sap flow rate could be tightly fitted to a simple equation that combined a parabolic response to radiation and an inverse linear response to air humidity. On the contrary, the analysis of canopy conductance showed no meaningful response to either individual or combined microclimatic variables. No indication of water deficit was observed, though the measurement period was during the dry period of the year. The measurements indicate a minimal diurnal use of water stored in plant tissues. The difference in tree water use from the two studied stands was effectively scaled by tree sapwood area. Canopy transpiration of the densest stand reached in average 3.9 mm d 611 compared with 2.7 mm d 611 for the stand representing the average conditions in the catchment.

Cienciala E, Kucera J, Ryan MG, Lindroth A ( 1998). Water flux in boreal forest during two hydrologically contrasting years: Species specific regulation of canopy conductance and transpiration
Annales des Sciences Forestieres, 55, 47-61.

DOI:10.1051/forest:19980104URL [本文引用: 1]

Daudet FA, Le Roux X, Sinoquet H, Adam B ( 1999). Wind speed and leaf boundary layer conductance variation within tree crown: Consequences on leaf-to-atmosphere coupling and tree functions
Agricultural and Forest Meteorology, 97, 171-185.

DOI:10.1016/S0168-1923(99)00079-9URL [本文引用: 1]

Dixon M, Grace J ( 1984). Effect of wind on the transpiration of young trees
Annals of Botany, 53, 811-819.

DOI:10.1093/oxfordjournals.aob.a086751URL [本文引用: 1]

Dye P, Olbrich B ( 1993). Estimating transpiration from 6-year-old Eucalyptus grandis trees: Development of a canopy conductance model and comparison with independent sap flux measurements
Plant, Cell & Environment, 16, 45-53.

[本文引用: 1]

Ewers B, Gower S, Bond-lamberty B, Wang C ( 2005). Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests
Plant, Cell & Environment, 28, 660-678.

DOI:10.1111/j.1365-3040.2005.01312.xURL [本文引用: 1]
We quantified the effect of stand age and tree species composition on canopy transpiration ( E C ) by analysing transpiration per unit leaf area ( E L ) and canopy stomatal conductance ( G S ) for boreal trees comprising a five stand wildfire chronosequence. A total of 196 sap flux sensors were used on 90 trees consisting of Betula papyrifera Marsh (paper birch; present in the youngest stand), Populus tremuloides Michx (quaking aspen), Pinus banksiana Lamb. (jack pine), and Picea mariana (Mill.) (black spruce). While fine roots were positively correlated with stand E C ; leaf area index, basal area, and sapwood area were not. Stands less than 70 years old were dominated by Populus tremuloides and Pinus banksiana and stands greater than 70 years old were composed almost entirely of Picea mariana. As Populus tremuloides and Pinus banksiana increased in size and age, they displayed an increasing sapwood to leaf area ratio ( A S : A L ), a constant minimum leaf water potential (Ψ L ), and a constant proportionality between G S at low vapour pressure deficit ( Dj G Sref ) and the sensitivity of G S to D (– δ ). In contrast, A S : A L , minimum Ψ L , and the proportionally between – δ and G Sref decreased with height and age in Picea mariana . A G S model that included the effects of D , A S : A L , tree height, and for Picea mariana an increasing soil to leaf water potential gradient with stand age, was able to capture the effects of contrasting hydraulic properties of Picea mariana , Populus tremuloides and Pinus banksiana during stand development after wildfire.

Ewers BE, Mackay DS, Samanta S ( 2007). Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species
Tree Physiology, 27, 11-24.

DOI:10.1093/treephys/27.1.11URLPMID:17169902 [本文引用: 1]
We investigated interannual variability of canopy transpiration per unit ground area (E(C)) and per unit leaf area (E(L)) across seven tree species in northern Wisconsin over two years. These species have previously been shown to be sufficient to upscale stand-level transpiration to the landscape level during one growing season. Our objective was to test whether a simple plant hydraulic model could capture interannual variation in transpiration. Three species, wetland balsam fir (Abies balsamea (L.) Mill), basswood (Tilia Americana L.) and speckled alder (Alnus rugosa (DuRoi) Spreng), had no change in E(C) or E(L) between 2000 and 2001. Red pine (Pinus resinosa Air) had a 57 and 19% increase in E(C) and E(L), respectively, and sugar maple (Acer saccharum Marsh) had an 83 and 41 % increase in E(C) and EL, respectively, from 2000 to 2001. Quaking aspen (Populus tremuloides Michx) had a 50 and 21 % decrease in E(C) and E(L), respectively, from 2000 to 2001 in response to complete defoliation by forest tent caterpillar (Malascoma district Huber) and subsequent lower total leaf area index of the reflushed foliage. White cedar (Thuja occidentalis L.) had a 20% decrease in both E(C) and E(L) caused by lowered surface water in wetlands in 2001 because of lower precipitation and wetland flow management. Upland A. balsamea increased E(L) and E(C) by 55 and 53 %, respectively, as a result of release from light competition of the defoliated, overstory P. tremuloides. We hypothesized that regardless of different drivers of interannual variability in E(C) and E(L), minimum leaf water potential would be regulated at the same value. Minimum midday water potentials were consistent over the two years within each of the seven species despite large changes in transpiration between years. This regulation was independently verified by the exponential saturation between daily E(C) and vapor pressure deficit (D) and the tradeoff between a reference canopy stomatal conductance (G(S)) and the sensitivity of G(S) to D, indicating that trees with high G(S) must decrease G(S) in response to atmospheric drought faster than trees with low G(S). Our results show that models of forest canopy transpiration can be simplified by incorporating G(S) regulation of minimum leaf water potential for isohydric species.

Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE ( 2010). Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation
Forest Ecology and Management, 259, 1761-1770.

[本文引用: 2]

Granier A ( 1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements
Tree Physiology, 3, 309-320.

DOI:10.1093/treephys/3.4.309URLPMID:14975915 [本文引用: 1]
Abstract Transpiration of a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand was evaluated by sap flow measurements during a 4-month period. Between-tree variation in sap flow depended on crown class. On a sunny day, total transpiration was 1.6, 8.0 and 22.0 liters day(-1) for suppressed, codominant and dominant trees, respectively. Transpiration estimated by sap flow fell below potential evapotranspiration when available soil water decreased below 30% of its maximum value. Sap flow measurements gave transpiration values similar to those obtained by the water balance method.

Granier A, Biron P, Bréda N, Pontailler J, Saugier B ( 1996). Transpiration of trees and forest stands: Short and long-term monitoring using sap flow methods
Global Change Biology, 2, 265-274.

DOI:10.1111/gcb.1996.2.issue-3URL [本文引用: 2]

Granier A, Loustau D ( 1994). Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data
Agricultural and Forest Meteorology, 71, 61-81.

DOI:10.1016/0168-1923(94)90100-7URL [本文引用: 1]
ABSTRACT The transpiration of a maritime pine canopy was determined from sap-flow measurements obtained from three experiments carried out at two sites in the Landes de Gascogne Forest, southwest France. From these data, the canopy stomatal conductance was estimated by inverting the Penman-Monteith equation, and a canopy conductance model which included the effects of air vapour pressure deficit, soil moisture deficit and irradiance was tested. Values of canopy transpiration simulated by the model for the three sites were compared with field data. The canopy stomatal conductance was decreasingly sensitive to air vapour pressure deficit, soil moisture deficit and global irradiance. There was better agreement between predicted and actual data for transpiration (R2 = 0.83–0.87) than for canopy stomatal conductance (R2 = 0.50–0.78). Values of daily transpiration simulated by the model were in good agreement with field data (R2 = 0.85–0.93).

Granier A , Loustau, D, Bréda, N ( 2000). A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index
Annals of Forest Science, 57, 755-765.

DOI:10.1051/forest:2000158URL [本文引用: 1]

Gutiérrez M, Meinzer F, Grantz D ( 1994). Regulation of transpiration in coffee hedgerows: Covariation of environmental variables and apparent responses of stomata to wind and humidity
Plant, Cell & Environment, 17, 1305-1313.

DOI:10.1111/j.1365-3040.1994.tb00532.xURL [本文引用: 1]
Stomatal regulation of transpiration was studied in hedgerow coffee ( Coffea arabica L.) at different stages of canopy development encompassing a range of leaf area indices ( L ) from 0 7 to 6 7. Stomatal ( g s ) and crown ( g c ) conductance attained maximum values early during the day and then declined as both leaf-to-bulk air water vapour mole fraction difference ( V a ) and photosynthetically active photon flux density ( I ) continued to increase. Covariation of environmental variables during the day, particularly V, I , and wind speed ( u ), obscured stomatal responses to individual variables. This also caused diurnal hysteresis in the relationship between g c and individual variables. Normalization of g s and g c by I removed the hysteresis and revealed a strong stomatal response to humidity. At the crown scale, transpiration ( E ) increased linearly with net radiation ( R n ) and seemed to increase with increasing wind speed. Increasing wind speed imposed higher leaf interior to leaf surface water vapour mole fraction differences ( V s ) at given levels of V a . However, strong relationships between declining g c and E and increasing wind speed were obtained when g c and E were normalized by I and R n , respectively, without invoking additional potential interactions involving temperature or CO 2 concentration at the leaf surface. Apparent stomatal responses to wind were thus at least partially a reflection of the stomatal response to humidity.

Herbst M ( 1995). Stomatal behaviour in a beech canopy: An analysis of Bowen ratio measurements compared with porometer data
Plant, Cell & Environment, 18, 1010-1018.

DOI:10.1111/j.1365-3040.1995.tb00611.xURL [本文引用: 1]
On the basis of measurements or stand transpiration and microclimate, the bulk stomatal or bulk leaf conductance ( g L ) of a beech forest in northern Germany was calculated for periods in which leaves were fully expanded and the canopy was dry. This conductance depends strongly on light and humidity conditions above the forest. During periods with photosynthetic photon flux densities Q > 1200 μmol m 612 s 611 , g L was reduced from 1500mmol m 612 s 611 at a vapour pressure deficit D = 0.5kPa to 500 mmol m 612 s 611 at D = 2kPa. Light saturation of g L was not reached until Q = 1200 μmol m 612 s 611 at low D , or until even higher Q at higher D . The dependence of g L , on Q and D was described mathematically by a non-linear equation that requires two empirical parameters. Values for g L as simulated by this equation provided a satisfactory agreement with independent porometer data collected on single leaves and scaled up to the canopy. A comparison of stomatal and aerodynamic conductances showed a strong coupling between the forest canopy and the atmosphere, indicating that transpiration of the beech forest is controlled mainly by the stomata.

Hutley LB, O’grady AP, Eamus D ( 2001). Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia
Oecologia, 126, 434-443.

DOI:10.1007/s004420000539URLPMID:28547459 [本文引用: 1]
Data from savannas of northern Australia are presented for net radiation, latent and sensible heat, ecosystem surface conductance (Gs) and stand water use for sites covering a latitudinal range of 5掳 or 700 km. Measurements were made at three locations of increasing distance from the northern coastline and represent high- (1,750 mm), medium- (890 mm) and low- (520 mm) rainfall sites. This rainfall gradient arises from the weakened monsoonal influence with distance inland. Data were coupled to seasonal estimates of leaf area index (LAI) for the tree and understorey strata. All parameters were measured at the seasonal extremes of late wet and dry seasons. During the wet season, daily rates of evapotranspiration were 3.1-3.6 mm day-1and were similar for all sites along the rainfall gradient and did not reflect site differences in annual rainfall. During the dry season, site differences were very apparent with evapotranspiration 2-18 times lower than wet season rates, the seasonal differences increasing with distance from coast and reduced annual rainfall. Due to low overstorey LAI, more than 80% of water vapour flux was attributed to the understorey. Seasonal differences in evapotranspiration were mostly due to reductions in understorey leaf area during the dry season. Water use of individual trees did not differ between the wet and dry seasons at any of the sites and stand water use was a simple function of tree density. Gsdeclined markedly during the dry season at all sites, and we conclude that the savanna water (and carbon) balance is largely determined by Gsand its response to atmospheric and soil water content and by seasonal adjustments to canopy leaf area.

Jarvis P ( 1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field
Philosophical Transactions of the Royal Society of London B, 273, 593-610.

DOI:10.1098/rstb.1976.0035URL [本文引用: 1]

Jarvis P, McNaughton K ( 1986). Stomatal control of transpiration: Scaling up from leaf to region
Advances in Ecological Research, 15, 1-49.

DOI:10.1016/S0065-2504(08)60119-1URL [本文引用: 2]

Jones H ( 1992). Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology. Cambridge University Press, Cambridge, UK.
[本文引用: 1]

Katsoulas N, Baille A, Kittas C ( 2007). Leaf boundary layer conductance in ventilated greenhouses: An experimental approach
Agricultural and Forest Meteorology, 144, 180-192.

DOI:10.1016/j.agrformet.2007.03.003URL [本文引用: 1]
Improving the design, control and management of greenhouse ventilation systems requires a better insight into the coupling and feedback mechanisms between the crop, the internal atmosphere and the outside atmosphere. The objective of this work was to characterize the leaf boundary-layer conductance ( g b) in highly ventilated greenhouse conditions and to study its dependence on the ventilation conductance ( g v) and outside conditions. For this purpose, measurements of g b were carried out in a greenhouse cultivated with rose plants, using rose leaf replicas consisting of a pair of artificial leaves, one being heated and the other unheated. The relation between g b and g v was established and quantified, and further generalised to the case of large greenhouses. By implementing the relation into the expression of the canopy aerodynamic conductance, the influence of the leaf area index (LAI) on the total greenhouse conductance was addressed. It was shown that LAI plays a major role in determining the degree of coupling between the greenhouse canopy and the outside atmosphere. The results underline the importance of integrating estimates of the canopy aerodynamic conductance in greenhouse climate control algorithms.

Kelliher F, Leuning R, Schulze E ( 1993). Evaporation and canopy characteristics of coniferous forests and grasslands
Oecologia, 95, 153-163.

DOI:10.1007/BF00323485URLPMID:28312937 [本文引用: 1]
Canopy-scale evaporation rate (E) and derived surface and aerodynamic conductances for the transfer of water vapour ($\text{g}_{\text{s}}$and$\text{g}_{\text{a}}$, respectively) are reviewed for coniferous forests and grasslands. Despite the extremes of canopy structure, the two vegetation types have similar maximum hourly evaporation rates (Emax) and maximum surface conductances ($\text{g}_{\text{smax}}$) (medians = 0.46 mm h-1and 22 mm s-1). However, on a daily basis, median Emaxof coniferous forest (4.0 mm d-1) is significantly lower than that of grassland (4.6 mm d-1). Additionally, a representative value of$\text{g}_{\text{a}}$for coniferous forest (200 mm s-1) is an order of magnitude more than the corresponding value for grassland (25 mm s-1). The proportional sensitivity of E, calculated by the Penman-Monteith equation, to changes in$\text{g}_{\text{s}}$is >0.7 for coniferous forest, but as low as 0.3 for grassland. The proportional sensitivity of E to changes in$\text{g}_{\text{a}}$is generally 卤0.15 or less. Boundary-line relationships between$\text{g}_{\text{s}}$and light and air saturation deficit (D) vary considerably. Attainment of$\text{g}_{\text{smax}}$occurs at a much lower irradiance for coniferous forest than for grassland (15 versus about 45% of full sunlight). Relationships between$\text{g}_{\text{s}}$and D measured above the canopy appear to be fairly uniform for coniferous forest, but are variable for grassland. More uniform relationships may be found for surfaces with relatively small$\text{g}_{\text{a}}$, like grassland, by using D at the evaporating surface ($\text{D}_{\text{o}}$) as the independent variable rather than D at a reference point above the surface. An analytical expression is given for determining$\text{D}_{\text{o}}$from measurable quantities. Evaporation rate also depends on the availability of water in the root zone. Below a critical value of soil water storage, the ratio of evaporation rate to the available energy tends to decrease sharply and linearly with decreasing soil water content. At the lowest value of soil water content, this ratio declines by up to a factor of 4 from the non-soil-water-limiting plateau. Knowledge about functional rooting depth of different plant species remains rather limited. Ignorance of this important variable makes it generally difficult to obtain accurate estimates of seasonal evaporation from terrestrial ecosystems.

Kim D, Oren R, Oishi AC, Hsieh CI, Phillips N, Novick KA, Stoy PC ( 2014). Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest
Agricultural and Forest Meteorology, 187, 62-71.

DOI:10.1016/j.agrformet.2013.11.013URL [本文引用: 1]
Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to water vapor flux out of leaves (RC, dominated by stomatal resistance, Rstom), and the rate at which RA decreases with increasing U. We investigated the effect of U on transpiration at the canopy scale using filtered meteorological data and sap flux measurements gathered from six diverse species of a mature broadleaved deciduous forest. Only under high light conditions, stand transpiration (EC) increased slightly (6.5%) with increasing U ranging from 650.7 to 654.7ms611. Under other conditions, sap flux density (Js) and EC responded weakly or did not change with U. RA, estimated from Monin–Obukhov similarity theory, decreased with increasing U, but this decline was offset by increasing RC, estimated from a rearranged Penman–Monteith equation, due to a concurrent increase in vapor pressure deficit (D). The increase of RC with D over the observed range of U was consistent with increased Rstom by 6540% based on hydraulic theory. Except for very rare half-hourly values, the proportion of RA to total resistance (RT) remained <15% over the observed range of conditions. These results suggest that in similar forests and conditions, the direct effect of U reducing RA and thus increasing transpiration is negligible. However, the observed U–D relationship and its effect on Rstom must be considered when modeling canopy photosynthesis.

Kim D, Oren R, Oishi AC, Hsieh CI, Phillips N, Novick KA, Stoy PC ( 2014). Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest
Agricultural and Forest Meteorology, 187, 62-71.

DOI:10.1016/j.agrformet.2013.11.013URL
Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to water vapor flux out of leaves (RC, dominated by stomatal resistance, Rstom), and the rate at which RA decreases with increasing U. We investigated the effect of U on transpiration at the canopy scale using filtered meteorological data and sap flux measurements gathered from six diverse species of a mature broadleaved deciduous forest. Only under high light conditions, stand transpiration (EC) increased slightly (6.5%) with increasing U ranging from 650.7 to 654.7ms611. Under other conditions, sap flux density (Js) and EC responded weakly or did not change with U. RA, estimated from Monin–Obukhov similarity theory, decreased with increasing U, but this decline was offset by increasing RC, estimated from a rearranged Penman–Monteith equation, due to a concurrent increase in vapor pressure deficit (D). The increase of RC with D over the observed range of U was consistent with increased Rstom by 6540% based on hydraulic theory. Except for very rare half-hourly values, the proportion of RA to total resistance (RT) remained <15% over the observed range of conditions. These results suggest that in similar forests and conditions, the direct effect of U reducing RA and thus increasing transpiration is negligible. However, the observed U–D relationship and its effect on Rstom must be considered when modeling canopy photosynthesis.

Kim HS, Oren R, Hinckley TM ( 2008). Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation
Tree Physiology, 28, 559-577.

DOI:10.1093/treephys/28.4.559URLPMID:18244943 [本文引用: 1]
Abstract We examined the tradeoffs between stand-level water use and carbon uptake that result when biomass production of trees in plantations is maximized by removing nutrient and water limitations. A Populus trichocarpa Torr. x P. deltoides Bartr. & Marsh. plantation was irrigated and received frequent additions of nutrients to optimize biomass production. Sap flux density was measured continuously over four of the six growing-season months, supplemented with periodic measurements of leaf gas exchange and water potential. Measurements of tree diameter and height were used to estimate leaf area and biomass production based on allometric relationships. Sap flux was converted to canopy conductance and analyzed with an empirical model to isolate the effects of water limitation. Actual and soil-water-unlimited potential CO(2) uptakes were estimated with a canopy conductance constrained carbon assimilation (4C-A) scheme, which couples actual or potential canopy conductance with vertical gradients of light distribution, leaf-level conductance, maximum Rubisco capacity and maximum electron transport. Net primary production (NPP) was about 43% of gross primary production (GPP); when estimated for individual trees, this ratio was independent of tree size. Based on the NPP/GPP ratio, we found that current irrigation reduced growth by about 18% compared with growth with no water limitation. To achieve maximum growth, however, would require 70% more water for transpiration, and would reduce water-use efficiency by 27%, from 1.57 to 1.15 g stem wood C kg(-1) water. Given the economic and social values of water, plantation managers appear to have optimized water use.

Komatsu H ( 2003). Values of the decoupling factor observed on forest canopies
Journal of Japan Society of Hydrology and Water Resources, 16, 423-438.

DOI:10.3178/jjshwr.16.423URL [本文引用: 1]

Komatsu H, Onozawa Y, Kume T, Tsuruta K, Shinohara Y, Otsuki K ( 2012). Canopy conductance for a Moso bamboo ( Phyllostachys pubescens) forest in western Japan.
Agricultural and Forest Meteorology, 156, 111-120.

[本文引用: 1]

Kumagai T, Saitoh TM, Sato Y, Morooka T, Manfroi OJ, Kuraji K, Suzuki M ( 2004). Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo: Dry spell effects
Journal of Hydrology, 287, 237-251.

DOI:10.1016/j.jhydrol.2003.10.002URL [本文引用: 3]

Kumagai T, Tateishi M, Shimizu T, Otsuki K ( 2008). Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed
Agricultural and Forest Meteorology, 148, 1444-1455.

DOI:10.1016/j.agrformet.2008.04.010URL [本文引用: 1]
Plant–soil system patterns and processes along a slope are among the greatest causes of uncertainty in estimating watershed-scale transpiration ( E). Tree-to-tree and radial variations in xylem sap flux density ( F d), in addition to tree biometrics, were measured over a 2-year period (2005–2006) in two slope stand positions. The areas of interest consisted of an upper slope plot (UP) and a lower slope plot (LP) in a Japanese cedar ( Cryptomeria japonica D. Don) forest watershed and the environmental controls of stand E for each plot were compared. Canopy stand E ( E C) and canopy stomatal conductance ( G C) in the UP were less than those in the LP during the growing season, while those in the UP were greater than those in the LP over winter. In addition, mean stand F d ( J S) in the UP was greater than that in the LP over winter, but J S values were similar in the UP and LP except in the winter, which allows us to extrapolate watershed-scale E based on J S estimated from F d measurements of a partial stand in the watershed. However, this relationship contains a bias and differed between 2005 and 2006. Although there were significant differences in soil moisture conditions between the UP and LP in both years, a systematic relationship between the similarity in J S and soil moisture conditions was not found. The bias was due to a tendency for J S in the LP to be greater than that in the UP in 2006. This tendency was amplified because J S in the LP was greater than that in the UP around an atmospheric humidity deficit ( D) of 1–1.5 kPa and frequencies of this D range were higher in 2006 than in 2005. The greater J S in the LP at D 65 1–1.5 kPa could be explained by the difference in the response of G C to D between the UP and LP. Our results suggest this to be the cause of the similarity in J S values for the UP and LP and for the occasional abortion of its similarity. However, even when the bias or the occasional deviation is disregarded, the error in estimating stand E from a partial stand is so small that it is comparable to an F d measurement error. For example, the error when using only the LP was 6.6% for stand E.

Law BE, Goldstein AH, Anthoni PM, Unsworth MH, Panek JA, Bauer MR, Fracheboud JM, Hultman N ( 2001). Carbon dioxide and water vapor exchange by young and old ponderosa pine ecosystems during a dry summer
Tree Physiology, 21, 299-308.

DOI:10.1093/treephys/21.5.299URLPMID:11262921 [本文引用: 1]
Abstract We investigated key factors controlling mass and energy exchange by a young (6-year-old) ponderosa pine (Pinus ponderosa Laws.) plantation on the west side of the Sierra Nevada Mountains and an old-growth ponderosa pine forest (mix of 45- and 250-year-old trees) on the east side of the Cascade Mountains, from June through September 1997. At both sites, we operated eddy covariance systems above the canopy to measure net ecosystem exchange of carbon dioxide and water vapor, and made concurrent meteorological and ecophysiological measurements. Our objective was to understand and compare the controls on ecosystem processes in these two forests. Precipitation is much higher in the young plantation than in the old-growth forest (1660 versus 550 mm year-1), although both forests experienced decreasing soil water availability and increasing vapor pressure deficits (D) as the summer of 1997 progressed. As a result, drought stress increased at both sites during this period, and changes in D strongly influenced ecosystem conductance and net carbon uptake. Ecosystem conductance for a given D was higher in the young pine plantation than in the old-growth forest, but decreased dramatically following several days of high D in late summer, possibly because of xylem cavitation. Net CO2 exchange generally decreased with conductance at both sites, although values were roughly twice as high at the young site. Simulations with the 3-PG model, which included the effect of tree age on fluxes, suggest that, during the fall through spring period, milder temperatures and ample water availability at the young site provide better conditions for photosynthesis than at the old pine site. Thus, over the long-term, the young site can carry more leaf area, and the climatic conditions between fall and spring offset the more severe limitations imposed by summer drought.

Little C, Lara A, McPhee J, Urrutia R ( 2009). Revealing the impact of forest exotic plantations on water yield in large scale watersheds in South-Central Chile
Journal of Hydrology, 374, 162-170.

DOI:10.1016/j.jhydrol.2009.06.011URL [本文引用: 1]
Land-use and forest cover change play important roles in socio-economic processes and have been linked with water supply and other ecosystem services in various regions of the world. Water yield from watersheds is a major ecosystem service for human activities but has been dramatically altered by landscape management superimposed on climatic variability and change. Many studies from different regions of the world have documented that in small watersheds (<100 ha) fast-growing forest plantations reduce water yield. Nevertheless, these effects have not been adequately documented in large watersheds >10,000 ha. In this paper, we examine the temporal variation of the residuals between best-fit precipitation–runoff relationships and instrumental streamflow records for two large watersheds (Purapel en Nirivilo, PNN and Cauquenes en el Arrayán, CQA) located in the Mediterranean-climate coastal range of South-Central Chile. In these watersheds, high resolution satellite imagery shows a decline in native forest cover from 52.3% to 14.2% for PPN and 36.1% to 8.1% in CQA, between 1975 and 2000. Conversely, in the same period the percentage area covered by forest plantations, mainly Pinus radiata, increased from 12% to 55% in PPN, and 4.7% to 42% in CQA. We observed a decreasing trend in summer runoff residuals regressed against annual precipitation in the same period, with slopes significantly different from zero for PPN ( p = 0.035) and CQA ( p = 0.008). We interpreted this pattern as an evidence of change in the hydrological regime in these watersheds as a consequence of forest cover and land-use changes. From a reanalysis of the observed data we estimate a decrease in runoff from 13.1 to 7.5 mm/summer for PPN and from 7.3 to 5 mm/summer for CQA, refer to the period 1991–2000 compared to 1981–1990. Multiple regression analyses of annual and seasonal flows show that besides precipitation, percentage-cover of forest plantations is a statistically significant predictor of summer flow with a partial negative correlation of 610.45 and 610.44 for PPN and CQA, respectively, p < 0.05. This study clearly shows the important effect that land-use change can have on water yield and to our knowledge this is the first study documenting the decrease in summer runoff in a landscape where native forest cover has dramatically declined and forest exotic plantations have expanded. Similar methods could be used elsewhere to inform policy and decision-making regarding forest and land-use planning.

Lu P, Yunusa IAM, Walker RR, Müller WJ ( 2003). Regulation of canopy conductance and transpiration and their modelling in irrigated grapevines
Functional Plant Biology, 30, 689-698.

DOI:10.1071/FP02181URL [本文引用: 1]
Whole-vine transpiration was estimated for well-watered nine-year-old Sultana grapevines (Vitis vinifera L. cv. Sultana) from xylem sap flow measured with Granier's heat-dissipation probes. Canopy conductance of the grapevine was calculated by inverting the Penman Monteith equation. Transpiration from grapevine canopies was strongly controlled by the canopy conductance. Canopy conductance decreased exponentially with increasing vapour pressure deficit (VPD) except in the morning when solar radiation was less than 200 W m^2 and the canopy conductance was predominantly limited by the solar radiation. A non-linear model of canopy conductance as a function of the solar radiation and VPD explained > 90% of the variation observed in canopy conductance. Under contrasting VPD conditions (daytime maximum of 3 kPa vs 8 kPa), grapevines were able to regulate their canopy conductance from 0.006 to 0.001 m s-1 to maintain a near constant transpiration. Whole-canopy transpiration calculated from modelled canopy conductance using the PenmanMonteith equation was highly correlated with the measured transpiration (sap flow) values over the range of 0-0.20 mm h-1 (R2 > 0.85). Cross-validation shows that these mechanistic models based on solar radiation and VPD provide good predictions of canopy conductance and transpiration under the conditions of the study.

Magnani F, Leonardi S, Tognetti R, Grace J, Borghetti M ( 1998). Modelling the surface conductance of a broad-leaf canopy: Effects of partial decoupling from the atmosphere
Plant, Cell & Environment, 21, 867-879.

DOI:10.1046/j.1365-3040.1998.00328.xURL [本文引用: 1]
The transpiration of a mature beech ( Fagus sylvatica L.) forest was measured over a whole season by the heat pulse velocity technique and the results analysed in terms of a new analytical canopy conductance model, which takes into account the effects of partial decoupling from the atmosphere on the local humidity environment experienced by the canopy. Stand daily transpiration ranged from 0·62 to 2·97 mm d –1 , with a seasonal mean value of 1·97 mm d –1 . Maximum canopy conductance was 18·5 mm s –1 , with a mean estimated value of 5·0 mm s –1 ; computed values were little affected by the assumption of neutral atmospheric conditions. The decoupling coefficient Ω varied greatly on a daily and seasonal basis, with an average value of 0·28. As a result of partial decoupling, the estimated vapour pressure deficit at the notional canopy surface exceeded the values measured above the canopy by 380 Pa on average. When correctly expressed in terms of humidity at the canopy surface, the model explained 80% of the variance in half-hourly transpiration measurements. Upon cross-validation it still explained 72% of the variance, as compared to only 40% when correction for partial decoupling was not introduced. A baseline canopy conductance of 0·7 mm s –1 , not modulated by the environment, was estimated. The implications of the model are discussed for the representation of canopy conductance and transpiration of broad-leaf forests.

Martin T, Brown KJ, Cermak J, Ceulemans R, Kucera J, Meinzer FC, Rombold JS, Sprugel DG, Hinckley TM ( 1997). Crown conductance and tree and stand transpiration in a second-growth Abies amabilis forest
Canadian Journal of Forest Research, 27, 2457-2464.

[本文引用: 2]

Maruyama A, Kuwagata T ( 2008). Diurnal and seasonal variation in bulk stomatal conductance of the rice canopy and its dependence on developmental stage
Agricultural and Forest Meteorology, 148, 1161-1173.

DOI:10.1016/j.agrformet.2008.03.001URL [本文引用: 1]
Bulk stomatal conductance (g(S)) is an important factor that expresses the effect of stomatal movements on water transfer between the plant and atmosphere at the canopy scale and is widely used as a parameter in many micrometeorological models. Diurnal and seasonal variations in gs of the rice canopy were determined using a heat transfer model based on heat flux measurements in irrigated rice fields. Season-long observations from transplanting to maturation of rice plants were conducted to obtain heat flux data in a humid temperate climate at three experimental sites with widely differing cropping seasons in Japan. A double source model was used as the heat transfer model to calculate gs. Seasonal variations in heat fluxes differed for sensible heat and latent heat. Sensible heat flux was smaller and relatively constant within the range -50 to So W m(-2), whereas latent heat flux showed large variations from 0 to 250 W m(-2) throughout the growth period. It was suggested that this would be a common pattern for paddy rice fields in all cropping seasons. Diurnal variation in g(s). showed a common trend in all growth periods with lower values in the morning and evening, and higher values during the midday because of its dependence on solar radiation. The relationship between absorbed solar radiation (S-abs) and g(s) was determined using a Jarvis-type model for each growth period. Maximum values of bulk stomatal conductance (g(Smax)) for saturated S-abs, rapidly decreased from 0.06 to 0.02 m s(-1) between the active tillering and panicle formation stages, and moderately decreased from 0.02 to 0.01 m s(-1) during the ripening stage. This was considered to be due to the change in leaf chlorophyll concentration. Seasonal variation in q(Smax) can be commonly expressed for all cropping seasons using the function of developmental stage (P-S). Using this function, the gs value can be obtained easily at a given developmental stage, which makes it possible to use micrometeorological models in relation to rice phenological development for evaluating important factors, such as water temperature and transpiration, that affect rice production. (C) 2008 Elsevier B.V. All rights reserved.

McNaughton K, Jarvis PG ( 1983). Predicting effects of vegetation changes on transpiration and evaporation. In: Kozlowski TT ed. Water Deficits and Plant Growth. Academic Press, New York. 1-47.
[本文引用: 1]

Mei TT, Zhao P, Wang Q, Cai XA, Yu MH, Zhu LW, Zou LL, Zeng XP ( 2010). Effects of tree diameter at breast height and soil moisture on transpiration of Schima superba based on sap flow pattern and normalization.
Chinese Journal of Applied Ecology, 21, 2457-2464.

URL [本文引用: 1]
基于液流格型特征值-偏度和峰度分析了不同胸径荷木在水分利用方面的差异,并利用标准化的方法消除强影响 因子(光合有效辐射,PAR)对液流的影响,研究了弱影响因子(土壤湿度)与液流的关系.结果表明:荷木胸径越大,偏度越小,液流密度峰值越靠后,相应的 液流峰值越大,蒸腾量也越大.与旱季相比,荷木大树在湿季偏度较小,液流密度到达峰值时间靠后,峰值大,蒸腾量也大;而小树偏度在旱、湿季的差异不明显, 蒸腾量差异也不大.用PAR峰值对荷木个体蒸腾和土壤湿度进行标准化后,荷木个体蒸腾与土壤湿度呈更明显的正相关关系.在土壤湿度较大的季节,荷木大树的 蒸腾量随土壤湿度增加而上升的速率基本稳定;而中等木和小树的某些个体则明显下降,说明这些树木的蒸腾和吸收土壤水分的能力可能接近极限.
[ 梅婷婷, 赵平, 王权, 蔡锡安, 余孟好, 朱丽薇, 邹绿柳, 曾小平 ( 2010). 基于液流格型特征值和标准化方法分析胸径和土壤水分对荷木液流的影响
应用生态学报, 21, 2457-2464.]

URL [本文引用: 1]
基于液流格型特征值-偏度和峰度分析了不同胸径荷木在水分利用方面的差异,并利用标准化的方法消除强影响 因子(光合有效辐射,PAR)对液流的影响,研究了弱影响因子(土壤湿度)与液流的关系.结果表明:荷木胸径越大,偏度越小,液流密度峰值越靠后,相应的 液流峰值越大,蒸腾量也越大.与旱季相比,荷木大树在湿季偏度较小,液流密度到达峰值时间靠后,峰值大,蒸腾量也大;而小树偏度在旱、湿季的差异不明显, 蒸腾量差异也不大.用PAR峰值对荷木个体蒸腾和土壤湿度进行标准化后,荷木个体蒸腾与土壤湿度呈更明显的正相关关系.在土壤湿度较大的季节,荷木大树的 蒸腾量随土壤湿度增加而上升的速率基本稳定;而中等木和小树的某些个体则明显下降,说明这些树木的蒸腾和吸收土壤水分的能力可能接近极限.

Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Jackson P ( 1997). Control of transpiration from the upper canopy of a tropical forest: The role of stomatal, boundary layer and hydraulic architecture components.
Plant, Cell & Environment, 20, 1242-1252.

[本文引用: 1]

Mielke MS, Oliva MA, de Barros NF, Penchel RM, Martinez CA, de Almeida AC ( 1999). Stomatal control of transpiration in the canopy of a clonal Eucalyptus grandis plantation
Trees, 13, 152-160.

DOI:10.1007/PL00009746URL [本文引用: 2]
Predawn leaf water potential, stomatal conductance and microclimatic variables were measured on 13 sampling days from November 1995 through August 1996 to determine how environmental and physiological factors affect water use at the canopy scale in a plantation of mature clonal Eucalyptus grandis Hill ex-Maiden hybrids in the State of Espirito Santo, Brazil. The simple ”big leaf” Penman-Monteith model was used to estimate canopy transpiration. During the study period the predawn leaf water potential varied from –0.4 to –1.302MPa, with the minimum values observed in the winter months (June and August 1996), while the average estimated values for canopy conductance and canopy transpiration fell from 17.3 to 5.802mm s –1 and from 0.54 to 0.1802mm h –1 , respectively. On the basis of all measurements, the average value of the decoupling coefficient was 0.25. During continuous soil water shortage a proportional reduction was observed in predawn leaf water potential and in daily maximum values of stomatal conductance, canopy transpiration and decoupling coefficient. The results showed that water vapour exchange in this canopy is strongly dominated by the regional vapour pressure deficit and that canopy transpiration is controlled mainly by stomatal conductance. On a seasonal basis, stomatal conductance and canopy transpiration were mainly related to predawn leaf water potential and, thus, to soil moisture and rainfall. Good results were obtained with a multiplicative empirical model that uses values of photosynthetically active radiation, vapour pressure deficit and predawn leaf water potential to estimate stomatal conductance.

Monteith JL, Unsworth MH ( 2007). Principles of Environmental Physics. Academic Press, New York.
[本文引用: 1]

Motzer T, Munz N, Küppers M, Schmitt D, Anhuf D ( 2005). Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes
Tree Physiology, 25, 1283-1293.

DOI:10.1093/treephys/25.10.1283URLPMID:16076777 [本文引用: 3]
Abstract We investigated tree water relations in a lower tropical montane rain forest at 1950-1975 m a.s.l. in southern Ecuador. During two field campaigns, sap flow measurements (Granier-type) were carried out on 16 trees (14 species) differing in size and position within the forest stand. Stomatal conductance (g(s)) and leaf transpiration (E(l)) were measured on five canopy trees and 10 understory plants. Atmospheric coupling of stomatal transpiration was good (decoupling coefficient Omega = 0.25-0.43), but the response of g(s) and E(l) to the atmospheric environment appeared to be weak as a result of the offsetting effects of vapor pressure deficit (VPD) and photosynthetic photon flux (PPF) on g(s). In contrast, sap flow (F) followed these atmospheric parameters more precisely. Daily F depended chiefly on PPF sums, whereas on short time scales, VPD impeded transpiration when it exceeded a value of 1-1.2 kPa. This indicates an upper limit to transpiration in the investigated trees, even when soil water supply was not limiting. Mean g(s) was 165 mmol m(-2) s(-1) for the canopy trees and about 90 mmol m(-2) s(-1) for the understory species, but leaf-to-leaf as well as tree-to-tree variation was large. Considering whole-plant water use, variation in the daily course of F was more pronounced among trees differing in size and crown status than among species. Daily F increased sharply with stem diameter and tree height, and ranged between 80 and 120 kg day(-1) for dominant canopy trees, but was typically well below 10 kg day(-1) for intermediate and suppressed trees of the forest interior.

Nicolás E, Barradas VL, Ortu?o MF, Navarro A, Torrecillas A, Alarcón JJ ( 2008). Environmental and stomatal control of transpiration, canopy conductance and decoupling coefficient in young lemon trees under shading net
Environmental and Experimental Botany, 63, 200-206.

DOI:10.1016/j.envexpbot.2007.11.007URL [本文引用: 1]
Sap flow, as a measure of transpiration, was monitored in 2-year-old lemon trees growing in pots. Eight trees were used in the experiment, four of which were placed under a rectangular shading net, while the other four were maintained in the open air. Daily averages of canopy conductance and photosynthesis were not affected by shading; however, the daily transpiration was reduced in shaded plants, which displayed an increase in water use efficiency compared with exposed trees. The decoupling coefficient was higher in the shaded trees, indicating that the transpiration of lemon trees was efficiently controlled by stomata in exposed plants, while the transpiration rate was mainly influenced by radiation in the plants growing under the net. This influence was more pronounced in the afternoon, when the whole tree transpiration was largely dominated by equilibrium transpiration in the plants under netting, and the relationship between transpiration and radiation showed a steeper slope in shaded trees. The reduction in transpiration and the maintenance of photosynthesis in shaded plants with respect to exposed trees indicated that screen structures in semi-arid and arid environments could be considered as an intermediate solution for reducing plant water stress and increasing water use efficiency.

Oren R, Ewers BE, Todd P, Phillips N, Katul G ( 1998). Water balance delineates the soil layer in which moisture affects canopy conductance
Ecological Applications, 8, 990-1002.

DOI:10.1890/1051-0761(1998)008[0990:WBDTSL]2.0.CO;2URL [本文引用: 1]
To link variation in canopy conductance to soil moisture in the rooting zone, measurements of throughfall (PT), volumetric soil moisture (theta) to 0.7 m, transpiration from trees >10 mm in diameter (EC), and vapor pressure deficit (D) were made in a forest dominated by Pinus taeda. Total evapotranspiration (ET) was estimated from PT, changes in volumetric soil water content within a defined soil volume (AS), and drainage out of that volume (Q), calculated from unsaturated soil hydraulic conductivity and theta. Our calculations suggest that over 145 growing-season days, Q was negligible, and most of PT, averaging apprx2 mm/d, was partitioned between soil moisture recharge (0.4 mm/d) and ET (1.6 mm/d, not including apprx0.4 mm/d of interception, I, by canopy trees), of which EC was estimated from direct measurements at nearly 1.2 mm/d. Evapotranspiration by the subcanopy component accounted for slightly over 0.4 mm/d, about a third of ET (a fourth if I is included). Most of the water used for ET (>90%) was taken from the upper soil layer (top 0.35 m, or less). Canopy leaf conductance, calculated from EC, D, and canopy leaf area, was strongly related to theta in the upper soil layer once theta decreased below 0.22.

Oren R, Phillips N, Ewers BE, Pataki DE, Megonigal JP ( 1999 a). Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest.
Tree Physiology, 19, 337-347.

DOI:10.1093/treephys/19.6.337URLPMID:12651555 [本文引用: 2]
Abstract We used 20-mm-long, Granier-type sensors to quantify the effects of tree size, azimuth and radial position in the xylem on the spatial variability in xylem sap flux in 64-year-old trees of Taxodium distichum L. Rich. growing in a flooded forest. This information was used to scale flux to the stand level to investigate variations in half-hourly and daily (24-hour) sums of sap flow, transpiration per unit of leaf area, and stand transpiration in relation to vapor pressure deficit (D) and photosynthetically active radiation (Q(o)). Measurements of xylem sap flux density (J(s)) indicated that: (1) J(s) in small diameter trees was 0.70 of that in medium and large diameter trees, but the relationship between stem diameter as a continuous variable and J(s) was not significant; (2) J(s) at 20-40 mm depth in the xylem was 0.40 of that at 0-20 mm depth; and (3) J(s) on the north side of trees was 0.64 of that in directions 120 degrees from the north. Daily transpiration was linearly related to daily daytime mean D, and reached a modest value of 1.3 mm day(-1), reflecting the low leaf area index (LAI = 2.2) of the stand. Because there was no soil water limitation, half-hourly water uptake was nearly linearly related to D at D < 0.6 kPa during both night and day, increasing to saturation during daytime at higher values of D. The positive effect of Q(o) on J(s) was significant, but relatively minor. Thus, a second-order polynomial with D explained 94% of the variation in J(s) and transpiration. An approximately 40% reduction in LAI by a hurricane resulted in decreases of about 18% in J(s) and stand transpiration, indicating partial stomatal compensation.

Oren R, Sperry JS, Ewers BE, Pataki DE, Phillips N, Megonigal JP ( 2001). Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: Hydraulic and non-hydraulic effects
Oecologia, 126, 21-29.

DOI:10.1007/s004420000497URLPMID:28547434 [本文引用: 1]
We measured the xylem sap flux in 64-year-old Taxodium distichum (L.) Richard trees growing in a flooded forest using Granier-type sensors to estimate mean canopy stomatal conductance of the stand ($G_{\text{S}}$). Temporal variations in$G_{\text{S}}$were investigated in relation to variation in vapor pressure deficit (D), photosynthetic photon flux density ($Q_{\text{o}}$), and the transpiration rate per unit of leaf area ($E_{\text{L}}$), the latter variable serving as a proxy for plant water potential. We found that$G_{\text{S}}$was only weakly related to$Q_{\text{o}}$below 500 μmol m-2s-1(r2=0.29), but unrelated to$Q_{\text{o}}$above this value. Above$Q_{\text{o}}$=500 μmol m-2s-1and D=0.6 kPa,$G_{\text{S}}$decreased linearly with increasing$E_{\text{L}}$with a poor fit (r2=0.31), and linearly with lnD with a much better fit (r2=0.81). The decrease of$G_{\text{S}}$with lnD was at a rate predicted based on a simple hydraulic model in which stomata regulate the minimum leaf water potential. Based on the hydraulic model, stomatal sensitivity to D is proportional to stomatal conductance at low D. A hurricane caused an 6541% reduction in leaf area. This resulted in a 28% increase in$G_{\text{S}}$at D=1 kPa ($G_{\text{Sref}}$), indicating only partial compensation. As predicted, the increase in$G_{\text{Sref}}$after the hurricane was accompanied by a similar increase in stomatal sensitivity to D (29%). At night,$G_{\text{Sref}}$was 6520% of the daytime value under non-limiting light ($Q_{\text{o}}$>500 μmol m-2s-1). However, stomatal sensitivity to D decreased only to 6546% (both reductions referenced to prehurricane daytime values), thus having more than twice the sensitivity expected based on hydraulic considerations alone. Therefore, non-hydraulic processes must cause heightened nighttime stomatal sensitivity to D.

Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Sch?fer KVR ( 1999 b). Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit
Plant, Cell & Environment, 22, 1515-1526.

DOI:10.1046/j.1365-3040.1999.00513.xURL [本文引用: 2]
ABSTRACT Responses of stomatal conductance ( g s ) to increasing vapour pressure deficit ( D ) generally follow an exponential decrease described equally well by several empirical functions. However, the magnitude of the decrease – the stomatal sensitivity – varies considerably both within and between species. Here we analysed data from a variety of sources employing both porometric and sap flux estimates of g s to evaluate the hypothesis that stomatal sensitivity is proportional to the magnitude of g s at low D ( ≤ 1 kPa). To test this relationship we used the function g s = g sref – m · ln D where m is the stomatal sensitivity and g sref = g s at D = 1 kPa. Regardless of species or methodology, m was highly correlated with g sref (average r 2 = 0·75) with a slope of approximately 0·6. We demonstrate that this empirical slope is consistent with the theoretical slope derived from a simple hydraulic model that assumes stomatal regulation of leaf water potential. The theoretical slope is robust to deviations from underlying assumptions and variation in model parameters. The relationships within and among species are close to theoretical predictions, regardless of whether the analysis is based on porometric measurements of g s in relation to leaf-surface D ( D s ), or on sap flux-based stomatal conductance of whole trees ( G Si ), or stand-level stomatal conductance ( G S ) in relation to D . Thus, individuals, species, and stands with high stomatal conductance at low D show a greater sensitivity to D , as required by the role of stomata in regulating leaf water potential.

Sch?fer KV, Oren R, Tenhunen J ( 2000). The effect of tree height on crown level stomatal conductance
Plant, Cell & Environment, 23, 365-375.

DOI:10.1046/j.1365-3040.2000.00553.xURL [本文引用: 3]
ABSTRACT Variation in stomatal conductance is typically explained in relation to environmental conditions. However, tree height may also contribute to the variability in mean stomatal conductance. Mean canopy stomatal conductance of individual tree crowns ( G Si ) was estimated using sap flux measurements in Fagus sylvatica L., and the hypothesis that G Si decreases with tree height was tested. Over 13 d of the growing season during which soil moisture was not limiting, G Si decreased linearly with the natural logarithm of vapour pressure deficit ( D ), and increased exponentially to saturation with photosynthetic photon flux density ( Q o ). Under conditions of D = 1 kPa and saturating Q o , G Si decreased by approximately 60% with 30 m increase in tree height. Over the same range in height, sapwood-to-leaf area ratio ( A S : A L ) doubled. A simple hydraulic model explained the variation in G Si based on an inverse relationship with height, and a linear relationship with A S : A L . Thus, in F. sylvatica , adjustments in A S : A L partially compensate for the negative effect of increased flow-path length on leaf conductance. Furthermore, because stomata with low conductance are less sensitive to D , gas exchange of tall trees is reduced less by high D . Despite these compensations, decreasing hydraulic conductance with tree height in F. sylvatica reduces carbon uptake through a corresponding decrease in stomatal conductance.

Taylor PJ, Nuberg IK, Hatton TJ ( 2001). Enhanced transpiration in response to wind effects at the edge of a blue gum (Eucalyptus globulus) plantation.
Tree Physiology, 21, 403-408.

DOI:10.1093/treephys/21.6.403URLPMID:11282580 [本文引用: 1]
In Australia, tree planting has been widely promoted to alleviate dryland salinity and one proposed planting configuration is that of strategically placed interception belts. We conducted an experiment to determine the effect of tree position in a belt on rate. We also assessed how much the effect of tree position can be explained by advection and environmental conditions. Daily rates were determined by the heat pulse velocity technique for four edge and 12 inner trees in a 7-year-old Tasmanian () plantation in South Australia. Various climatic variables were logged automatically at one edge of the plantation. The relationship between daily sap flow and sapwood area was strongly linear for the edge trees (r2 = 0.97), but only moderately correlated for the inner trees (r2 = 0.46), suggesting an edge effect. For all trees, sap flow normalized to sapwood area (Qs) increased with potential evaporation (PE) initially and then became independent as PE increased further. There was a fairly close correlation between of the edge and inner trees, implying that availability was partially responsible for the difference between inner and edge trees. However, the ratio of edge tree to inner tree differed from unity, indicating differences in canopy conductance, which were estimated by an inverse form of the Penman-Monteith equation. When canopy conductances were less than a critical value, there was a strong linear relationship between Qs of the edge and inner trees. When canopy conductances of the edge trees were greater than the critical value, the slope of the linear relationship was steeper, indicating greater of the edge trees compared with the inner trees. This was interpreted as evidence for enhancement of of the edge trees by advection of wind energy.

Wallace J, Roberts J, Sivakumar M ( 1990). The estimation of transpiration from sparse dryland millet using stomatal conductance and vegetation area indices
Agricultural and Forest Meteorology, 51, 35-49.

DOI:10.1016/0168-1923(90)90040-DURL [本文引用: 2]
The stomatal conductances of the leaves and panicles of a sparse dryland millet crop grown at ICRISAT Sahelian Center, Sadoré, in southwest Niger were measured using a diffusion porometer and an infrared gas analyser, respectively. Leaf conductances were found to be high, up to 12 mm s 611 or 480 mmol m 612 s 611, and varied according to the leaf surface, age and position in the canopy. These data were combined with measurements of leaf area index to calculate canopy conductance. Because of the low leaf area (maximum 1.3), canopy conductances were low and varied both diurnally and seasonally. Transpiration was calculated using the above canopy conductance values using the Penman-Monteith and Shuttleworth-Wallace models. In comparison to the Shuttleworth-Wallace model, it was found that the Penman-Monteith equation underestimated transpiration when the soil was dry and overestimated it when the soil was wet. These differences in transpiration arise because of the modification of the in-canopy vapour pressure deficit caused by heat and water vapour fluxes from the soil, a mechanism which is only present in the Shuttleworth-Wallace model.

Wei Z, Liu Y, Xu D, Cai J, Zhang B ( 2013). Application and comparison of winter wheat canopy resistance estimation models based on the scaling-up of leaf stomatal conductance
Chinese Science Bulletin, 58, 2909-2916.

DOI:10.1007/s11434-013-5858-3URL [本文引用: 1]
Canopy resistance estimation model based on the scaling-up leaf stomatal resistance is the focus of evapotrantion research, as there is a need to select the proper scaling-up model for winter wheat in typical areas of North China. Two years of field experimental data are used for the Leuning-Ball and Jarvis stomatal model calibration and validation, canopy resistance estimation models are established based on Leuning-Ball and Jarvis stomatal models, their application effects are compared and verified. Results show that daily variation of stomatal resistance of winter wheat is higher than that of canopy resistance, and there exists scale differences between leaf and canopy scale; Leuning-Ball stomatal model can be better explicated by the response of stomatal conductance towards environmental factors; Leuning-Ball canopy resistance estimation models turn out to be an effective canopy resistance simulation, and thus can be applied to research on the scaling-up of vapor transmission resistance of winter wheat in typical areas of North China.

Whitley R, Medlyn B, Zeppel M, Macinnis-Ng C, Eamus D ( 2009). Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance
Journal of Hydrology, 373, 256-266.

DOI:10.1016/j.jhydrol.2009.04.036URL [本文引用: 1]

Wullschleger SD, Wilson KB, Hanson PJ ( 2000). Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees
Agricultural and Forest Meteorology, 104, 157-168.

DOI:10.1016/S0168-1923(00)00152-0URL [本文引用: 1]
There is a strong need to extend whole-tree measurements of sap flow into broad-leaved forests where characteristics of stand structure, surface roughness, leaf dimension, and aerodynamic and canopy conductance may interact to partially decouple the canopy from the atmosphere. The implications of this partial decoupling to understanding the environmental control of canopy transpiration and to the modeling of forest water use are many. Therefore, thermal dissipation probes were used over a three-month period (June through August, 1997) to quantify day-to-day and tree-to-tree variation in whole-tree sap flow ( Q) for 12 red maple ( Acer rubrum L.) trees growing in an upland oak forest of eastern Tennessee. Whole-tree Q was calculated as the product of measured sap velocity, sapwood area and the fraction of sapwood functional in water transport. Daily canopy transpiration ( E c) was calculated from whole-tree Q and projected crown area, whereas average daily conductance ( g c) was derived by inverting the Penman–Monteith equation. Maximum Q averaged 73 kg per tree per day and varied between 45 and 160 kg per day for trees that ranged in stem diameter (DBH) from 17 to 35 cm, and from 19 to 26 m in height. Canopy transpiration peaked at 3.0 mm per day in early July and averaged 1.5 mm per day over the 3-month measurement period. Tree-to-tree variability for E c was high. Maximum rates of E c varied from 1.9 mm per day for the tree with the smallest projected crown area to 5.7 mm per day for one of the largest trees. Day-to-day variation in E c was a function of daily differences in net radiation ( R n) and atmospheric humidity deficit ( δ e). Increases in daily R n and δ e led to linear increases in canopy transpiration and there was no indication that a plateau-style relationship existed between E c and average daily δ e. Mean daily g c ranged from 1.4 to 6.7 mm s 611, and averaged 3.4 mm s 611 across the 12 study trees. Some of the tree-to-tree variation observed for E c and g c was related to the fact that not all trees occupied the same vertical position within the stand. Variation in estimates of the daily decoupling coefficient (0≤Ω≤1) was also considerable and for individual trees the seasonally-averaged Ω varied from 0.12 to 0.37, and averaged 0.23 for the 12 study trees. An Ω of this magnitude indicates that red maple canopies are partially decoupled from the atmosphere and suggests that significant vertical gradients of air temperature and δ e from the canopy surface to the bulk air several meters above the canopy are possible. Model analysis of hourly data indicated that simulated surface temperatures in mid-July were 3.6–5.8°C higher than above-canopy reference temperatures, and δ e at the canopy surface was 0.3 kPa higher than that of the bulk atmosphere. These calculations were partially supported by leaf-level measurements taken on one of the trees from a 20-m canopy-access tower. The implications of this partial decoupling to understanding and modeling the environmental control of canopy transpiration are discussed.

Zeppel M, Eamus D ( 2008). Coordination of leaf area, sapwood area and canopy conductance leads to species convergence of tree water use in a remnant evergreen woodland
Australian Journal of Botany, 56, 97-108.

DOI:10.1071/BT07091URL [本文引用: 3]

Zhao P, Rao XQ, Ma L, Cai XA, Zeng XP ( 2006). Responses of canopy stomatal conductance of Acacia mangium forest to environmental driving factors.
Journal of Applied Ecology, 17, 1149-1156.

DOI:10.3321/j.issn:1000-0933.2006.12.018 [本文引用: 1]
利用G ran ier热消散探针在2003年10月测定了广东鹤山丘陵地马占相思林14株样树的树干液流,同时监测林冠上方的光合有效辐射、空气湿度和气温,结合树木的形态和林分的结构特征,计算马占相思的整树蒸腾(E)、林分总蒸腾(Et)以及冠层平均气孔导度(gc),分析树形特征与整树水分利用的关系、冠层气孔导度对光合有效辐射(PAR)和空气水汽压亏缺(D)的响应.结果表明,整树蒸腾与胸径(P0.0001)、边材面积(P0.0001)和冠幅(P=0.0007)以自然对数的形式、与树高(P=0.014)以幂函数的形式呈现显著正相关.冠层气孔导度最大值(gcm ax)随D的上升呈对数函数下降(P0.0001),对光合有效辐射的响应则呈双曲线函数增加(P0.0001).液流测定系统能提供连续和准确的整树和林分蒸腾速率值,经严格数学推导公式计算,最终可求出冠层气孔导度,是研究森林水分利用与环境因子相互关系的有效方法.
[ 赵平, 饶兴权, 马玲, 蔡锡安, 曾小平 ( 2006). 马占相思林冠层气孔导度对环境驱动因子的响应
应用生态学报, 17, 1149-1156.]

DOI:10.3321/j.issn:1000-0933.2006.12.018 [本文引用: 1]
利用G ran ier热消散探针在2003年10月测定了广东鹤山丘陵地马占相思林14株样树的树干液流,同时监测林冠上方的光合有效辐射、空气湿度和气温,结合树木的形态和林分的结构特征,计算马占相思的整树蒸腾(E)、林分总蒸腾(Et)以及冠层平均气孔导度(gc),分析树形特征与整树水分利用的关系、冠层气孔导度对光合有效辐射(PAR)和空气水汽压亏缺(D)的响应.结果表明,整树蒸腾与胸径(P0.0001)、边材面积(P0.0001)和冠幅(P=0.0007)以自然对数的形式、与树高(P=0.014)以幂函数的形式呈现显著正相关.冠层气孔导度最大值(gcm ax)随D的上升呈对数函数下降(P0.0001),对光合有效辐射的响应则呈双曲线函数增加(P0.0001).液流测定系统能提供连续和准确的整树和林分蒸腾速率值,经严格数学推导公式计算,最终可求出冠层气孔导度,是研究森林水分利用与环境因子相互关系的有效方法.

Zhu LW, Zhao P, Cai XA, Zeng XP, Ni GY, Zhang JY, Zou LL, Mei TT, Yu MH ( 2012). Effects of sap velocity on the daytime increase of stem CO2 efflux from stems of Schima superba trees.
Trees, 26, 535-542.

DOI:10.1007/s00468-011-0615-1URL [本文引用: 4]
Abstract efflux () has been estimated from a temperature-related equation, but sap flux often affects measurements of , which leads to misunderstanding real stem respiration. In order to observe the relationship between and stem temperature and to analyze the effect of sap velocity on , stem temperature, and sap flux were measured from a subtropical and sap velocity were significantly higher in July than in October. Stem temperature could explain 17–41 and 54–75% variations of in July and October, respectively. A negative relationship between and stem temperature was found during 1800–230002hours in July. The daytime was 9.2, 4.3 and 2.4% higher than the predicted for three trees in July, and this occurred only on Tree 1 in October. Sap velocity was positively correlated with for three trees in July, and the increase of with the increase of sap velocity was only observed on Tree 1 in October. These results demonstrated that the occurrence of sap flux could account for the increase of daytime , and the effect of sap velocity on varied with the seasons from the S. superba stem.
Effect of Pinus radiata plantations on water balance in Chile
1
2008

... 植物蒸腾作为森林维持流域和区域水资源平衡的重要功能, 对社会和经济发展具有重要的生态意义(Anton et al., 2008; Little et al., 2009).人类活动引起的环境变化可能会迫使森林蒸腾发生改变, 从而影响区域水资源平衡. ...

Do stomata respond to relative humidity?
1
1991

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

Transpiration and canopy conductance in young apricot ( Prunus armenica L.) trees subjected to different PAR levels and water stress
1
2005

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Differential transpiration by three boreal tree species in response to increased evaporative demand after variable retention harvesting
1
2006

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components
1
1997

... 为了更加详细地评估边界层阻力对GS计算的影响, 我们用所有观测数据计算了每个Ω水平的Pi值(每个水平4-5个重复)(表3).在0.05-0.15的范围内, 尾叶桉Pi与标准值0.6相当(p > 0.05).一旦边界层较厚(Ω > 0.15), Pi高于0.6, Ω甚至可以达到0.3.Blanken等(1997)研究毛白杨(Populus tomentosa)林时选择Ω = 0.5作为界定粗糙表面森林的标准, 我们的结果则对这种标准提出了质疑.相比之下, 木荷的最佳Ω范围(Pi与0.6差异不显著)在0.1-0.2之间.因此可以认为对尾叶桉和木荷估计的Ω的最佳区间范围分别为0.05-0.15和0.10-0.20. ...

The energy and water balance of a Eucalyptus plantation in southeast Brazil
1
2010

... 研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007).然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性.我们的研究结果表明, LAI相对较高的木荷Ω值更大.但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究.事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008).许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化.然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似.这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关. ...

Stomatal response of grapevines to wind
1
1998

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo
1
2000

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Water flux in boreal forest during two hydrologically contrasting years: Species specific regulation of canopy conductance and transpiration
1
1998

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

Wind speed and leaf boundary layer conductance variation within tree crown: Consequences on leaf-to-atmosphere coupling and tree functions
1
1999

... 除了种间差异, Ω的季节变化很大(Zeppel & Eamus, 2008; Forrester et al., 2010). Hutley等(2001)发现, Ω值在雨季(D较低, SWC较高)较高, 在旱季(D较高, SWC较低)较低, 尾叶桉的Ω变化模式与之类似(图1).而同样的结果也在巴西巨桉(Eucalyptus grandis)中观测到(Mielke et al., 1999).但这种显著的Ω季节性变化并没有在木荷林中观测到(图2).然而, 我们同时也发现木荷Ω的日变化与DPAR的变化模式相一致, 甚至比尾叶桉的更为匹配(图3).根据公式8, Ω的变化受gagc (GS × LAI)的制约, 前者与给定树高处的风速相关(Daudet et al., 1999), 而后者主要受DPAR的影响(Maruyama & Kuwagata, 2008; Nicolás et al., 2008).即Ω是受大气直接和间接控制的(通过对GS的影响).另外, 不同时间尺度和不同物种Ω变化的不一致表明, 单因素的直接影响在本研究中较弱.相反, 两个林分(图1F,图2, 图4)的ΩGS2季节变化则存在较好的一致性.因此可以认为, 在气象因子的作用下, 木荷自身的生理活动可能会起主导作用.而植物与冠层大气之间的脱耦联也很大程度上受到自身生理调节的反馈抑制. ...

Effect of wind on the transpiration of young trees
1
1984

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Estimating transpiration from 6-year-old Eucalyptus grandis trees: Development of a canopy conductance model and comparison with independent sap flux measurements
1
1993

... 其中, GSiref是参比气孔导度(即在D = 1 kPa时GS的值), -m是回归拟合方程的斜率, 表示气孔导度对D的变化的敏感性(即GS随lnD的变化率dGS/dlnD).通过边界线分析, 我们利用所得边界线数据分析利用这两种方法模拟的不同树种的GSD响应的差异性.该方法已在多因素作用下的GS响应研究中得到应用(Dye & Olbrich, 1993; Granier et al., 1996; Oren et al., 2001). ...

Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests
1
2005

... 尽管尾叶桉和木荷Ω的平均值相对较小(分别为0.1和0.17), 表明两个林分与大气环境存在部分脱耦联, 即不满足“引言”中提出的用于估算GS1的条件(3).本研究中, 尾叶桉和木荷的GS2:GS1分别为0.92和0.98, 表明GS1相对偏大(p < 0.01).这表明即使具有良好大气耦合条件的森林, 在估算GS时边界层阻力也不可忽略.另外, 两种方法估算的GS对大气D的响应的差异性表明, GS1在描述植物生理响应时也存在一些偏差.研究发现-mGSiref之间0.6的比例是为防止植物木质部的过度空穴化, 维持最小叶水势(ΨL)而产生(Oren et al., 1999b; Ewers et al., 2005).而在以下条件下这个比例值会出现实质性偏差: (1)非等水植物允许最小ΨL随着D的增加而下降; (2) D的变化范围极大; (3)边界层导度与GS的比值较低(Oren et al., 1999a).前两个条件导致-mGSiref的比值Pi小于0.6, 而条件3则导致Pi大于0.6 (Oren et al., 1999a).尾叶桉和木荷GS1Pi分别为0.53和0.57, 两者均略低于标准值0.6.与GS1相比, 尾叶桉和木荷GS2Pi分别为0.86和0.68, 远高于0.6, 故可推测这种偏差可能是较低的边界层导度引起的.这说明边界层阻力足够大时, 如阔叶树种, 简化公式所得的GS可能偏低, 并且无法反映真实的GS对环境因子的响应. ...

Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species
1
2007

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation
2
2010

... 研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007).然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性.我们的研究结果表明, LAI相对较高的木荷Ω值更大.但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究.事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008).许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化.然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似.这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关. ...

... 除了种间差异, Ω的季节变化很大(Zeppel & Eamus, 2008; Forrester et al., 2010). Hutley等(2001)发现, Ω值在雨季(D较低, SWC较高)较高, 在旱季(D较高, SWC较低)较低, 尾叶桉的Ω变化模式与之类似(图1).而同样的结果也在巴西巨桉(Eucalyptus grandis)中观测到(Mielke et al., 1999).但这种显著的Ω季节性变化并没有在木荷林中观测到(图2).然而, 我们同时也发现木荷Ω的日变化与DPAR的变化模式相一致, 甚至比尾叶桉的更为匹配(图3).根据公式8, Ω的变化受gagc (GS × LAI)的制约, 前者与给定树高处的风速相关(Daudet et al., 1999), 而后者主要受DPAR的影响(Maruyama & Kuwagata, 2008; Nicolás et al., 2008).即Ω是受大气直接和间接控制的(通过对GS的影响).另外, 不同时间尺度和不同物种Ω变化的不一致表明, 单因素的直接影响在本研究中较弱.相反, 两个林分(图1F,图2, 图4)的ΩGS2季节变化则存在较好的一致性.因此可以认为, 在气象因子的作用下, 木荷自身的生理活动可能会起主导作用.而植物与冠层大气之间的脱耦联也很大程度上受到自身生理调节的反馈抑制. ...

Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements
1
1987

... 采用热消散探针法(TDP)测定树液通量密度 (Fd, g·H2O·m-2·s-1).具体测定方法参见Granier (1987)的研究.探针长度为20 mm, 数据每30 s读取一次, 并用数据记录器(DL2e, Delta-T Devices, Cambridge, UK)平均每10 min记录一次. ...

Transpiration of trees and forest stands: Short and long-term monitoring using sap flow methods
2
1996

... 其中, GSiref是参比气孔导度(即在D = 1 kPa时GS的值), -m是回归拟合方程的斜率, 表示气孔导度对D的变化的敏感性(即GS随lnD的变化率dGS/dlnD).通过边界线分析, 我们利用所得边界线数据分析利用这两种方法模拟的不同树种的GSD响应的差异性.该方法已在多因素作用下的GS响应研究中得到应用(Dye & Olbrich, 1993; Granier et al., 1996; Oren et al., 2001). ...

... 研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007).然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性.我们的研究结果表明, LAI相对较高的木荷Ω值更大.但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究.事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008).许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化.然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似.这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关. ...

Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data
1
1994

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index
1
2000

... 研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007).然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性.我们的研究结果表明, LAI相对较高的木荷Ω值更大.但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究.事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008).许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化.然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似.这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关. ...

Regulation of transpiration in coffee hedgerows: Covariation of environmental variables and apparent responses of stomata to wind and humidity
1
1994

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Stomatal behaviour in a beech canopy: An analysis of Bowen ratio measurements compared with porometer data
1
1995

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia
1
2001

... 除了种间差异, Ω的季节变化很大(Zeppel & Eamus, 2008; Forrester et al., 2010). Hutley等(2001)发现, Ω值在雨季(D较低, SWC较高)较高, 在旱季(D较高, SWC较低)较低, 尾叶桉的Ω变化模式与之类似(图1).而同样的结果也在巴西巨桉(Eucalyptus grandis)中观测到(Mielke et al., 1999).但这种显著的Ω季节性变化并没有在木荷林中观测到(图2).然而, 我们同时也发现木荷Ω的日变化与DPAR的变化模式相一致, 甚至比尾叶桉的更为匹配(图3).根据公式8, Ω的变化受gagc (GS × LAI)的制约, 前者与给定树高处的风速相关(Daudet et al., 1999), 而后者主要受DPAR的影响(Maruyama & Kuwagata, 2008; Nicolás et al., 2008).即Ω是受大气直接和间接控制的(通过对GS的影响).另外, 不同时间尺度和不同物种Ω变化的不一致表明, 单因素的直接影响在本研究中较弱.相反, 两个林分(图1F,图2, 图4)的ΩGS2季节变化则存在较好的一致性.因此可以认为, 在气象因子的作用下, 木荷自身的生理活动可能会起主导作用.而植物与冠层大气之间的脱耦联也很大程度上受到自身生理调节的反馈抑制. ...

The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field
1
1976

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Stomatal control of transpiration: Scaling up from leaf to region
2
1986

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

... 研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007).然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性.我们的研究结果表明, LAI相对较高的木荷Ω值更大.但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究.事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008).许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化.然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似.这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关. ...

1
1992

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Leaf boundary layer conductance in ventilated greenhouses: An experimental approach
1
2007

... 研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007).然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性.我们的研究结果表明, LAI相对较高的木荷Ω值更大.但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究.事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008).许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化.然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似.这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关. ...

Evaporation and canopy characteristics of coniferous forests and grasslands
1
1993

... 根据式1计算简化的冠层气孔导度(GS1) , 根据Penman-Monteith公式的逆形式(公式6)计算GS2 (Wallace et al., 1990; Kelliher et al., 1993; Zeppel & Eamus, 2008).由于其考虑了冠层阻力的影响, 因此也就能够更加精确的模拟冠层气孔导度.其计算公式如下: ...

Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest
1
2014

... 研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007).然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性.我们的研究结果表明, LAI相对较高的木荷Ω值更大.但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究.事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008).许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化.然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似.这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关. ...

Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest
2014

Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation
1
2008

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

Values of the decoupling factor observed on forest canopies
1
2003

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Canopy conductance for a Moso bamboo ( Phyllostachys pubescens) forest in western Japan.
1
2012

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo: Dry spell effects
3
2004

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

... ; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

... 研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007).然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性.我们的研究结果表明, LAI相对较高的木荷Ω值更大.但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究.事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008).许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化.然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似.这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关. ...

Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed
1
2008

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Carbon dioxide and water vapor exchange by young and old ponderosa pine ecosystems during a dry summer
1
2001

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Revealing the impact of forest exotic plantations on water yield in large scale watersheds in South-Central Chile
1
2009

... 植物蒸腾作为森林维持流域和区域水资源平衡的重要功能, 对社会和经济发展具有重要的生态意义(Anton et al., 2008; Little et al., 2009).人类活动引起的环境变化可能会迫使森林蒸腾发生改变, 从而影响区域水资源平衡. ...

Regulation of canopy conductance and transpiration and their modelling in irrigated grapevines
1
2003

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

Modelling the surface conductance of a broad-leaf canopy: Effects of partial decoupling from the atmosphere
1
1998

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

Crown conductance and tree and stand transpiration in a second-growth Abies amabilis forest
2
1997

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

... ; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

Diurnal and seasonal variation in bulk stomatal conductance of the rice canopy and its dependence on developmental stage
1
2008

... 除了种间差异, Ω的季节变化很大(Zeppel & Eamus, 2008; Forrester et al., 2010). Hutley等(2001)发现, Ω值在雨季(D较低, SWC较高)较高, 在旱季(D较高, SWC较低)较低, 尾叶桉的Ω变化模式与之类似(图1).而同样的结果也在巴西巨桉(Eucalyptus grandis)中观测到(Mielke et al., 1999).但这种显著的Ω季节性变化并没有在木荷林中观测到(图2).然而, 我们同时也发现木荷Ω的日变化与DPAR的变化模式相一致, 甚至比尾叶桉的更为匹配(图3).根据公式8, Ω的变化受gagc (GS × LAI)的制约, 前者与给定树高处的风速相关(Daudet et al., 1999), 而后者主要受DPAR的影响(Maruyama & Kuwagata, 2008; Nicolás et al., 2008).即Ω是受大气直接和间接控制的(通过对GS的影响).另外, 不同时间尺度和不同物种Ω变化的不一致表明, 单因素的直接影响在本研究中较弱.相反, 两个林分(图1F,图2, 图4)的ΩGS2季节变化则存在较好的一致性.因此可以认为, 在气象因子的作用下, 木荷自身的生理活动可能会起主导作用.而植物与冠层大气之间的脱耦联也很大程度上受到自身生理调节的反馈抑制. ...

1

... 冠层与大气解耦程度可用无量纲系数Ω来描述 (McNaughton, 1983): ...

基于液流格型特征值和标准化方法分析胸径和土壤水分对荷木液流的影响
1
2010

... 冠层叶片蒸腾速率(El, g H2O·m-2·s-1)可以通过树液通量密度Fd、叶面积和AS的计算获得.前人研究发现, 木荷40-60 mm深度的树液通量密度显著低于外部20 mm处的树液通量密度, 而0-20和20-40 mm处的树液通量密度没有显著差异(梅婷婷等, 2010; Zhu et al., 2012).因此, 可以通过使用Zhu等(2012)得出的等式来计算木荷的El, 其中包括了液流的径向分布(式4).但由于尾叶桉边材深度(d)为(2.13 ± 0.40) cm, 接近TDP探针的长度, 即探针实际已经基本覆盖了整个边材部分, 因此不需要考虑液流在边材中的径向变化, 所以使用式5估计El的数值. ...

基于液流格型特征值和标准化方法分析胸径和土壤水分对荷木液流的影响
1
2010

... 冠层叶片蒸腾速率(El, g H2O·m-2·s-1)可以通过树液通量密度Fd、叶面积和AS的计算获得.前人研究发现, 木荷40-60 mm深度的树液通量密度显著低于外部20 mm处的树液通量密度, 而0-20和20-40 mm处的树液通量密度没有显著差异(梅婷婷等, 2010; Zhu et al., 2012).因此, 可以通过使用Zhu等(2012)得出的等式来计算木荷的El, 其中包括了液流的径向分布(式4).但由于尾叶桉边材深度(d)为(2.13 ± 0.40) cm, 接近TDP探针的长度, 即探针实际已经基本覆盖了整个边材部分, 因此不需要考虑液流在边材中的径向变化, 所以使用式5估计El的数值. ...

Control of transpiration from the upper canopy of a tropical forest: The role of stomatal, boundary layer and hydraulic architecture components.
1
1997

... 研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007).然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性.我们的研究结果表明, LAI相对较高的木荷Ω值更大.但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究.事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008).许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化.然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似.这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关. ...

Stomatal control of transpiration in the canopy of a clonal Eucalyptus grandis plantation
2
1999

... 除了种间差异, Ω的季节变化很大(Zeppel & Eamus, 2008; Forrester et al., 2010). Hutley等(2001)发现, Ω值在雨季(D较低, SWC较高)较高, 在旱季(D较高, SWC较低)较低, 尾叶桉的Ω变化模式与之类似(图1).而同样的结果也在巴西巨桉(Eucalyptus grandis)中观测到(Mielke et al., 1999).但这种显著的Ω季节性变化并没有在木荷林中观测到(图2).然而, 我们同时也发现木荷Ω的日变化与DPAR的变化模式相一致, 甚至比尾叶桉的更为匹配(图3).根据公式8, Ω的变化受gagc (GS × LAI)的制约, 前者与给定树高处的风速相关(Daudet et al., 1999), 而后者主要受DPAR的影响(Maruyama & Kuwagata, 2008; Nicolás et al., 2008).即Ω是受大气直接和间接控制的(通过对GS的影响).另外, 不同时间尺度和不同物种Ω变化的不一致表明, 单因素的直接影响在本研究中较弱.相反, 两个林分(图1F,图2, 图4)的ΩGS2季节变化则存在较好的一致性.因此可以认为, 在气象因子的作用下, 木荷自身的生理活动可能会起主导作用.而植物与冠层大气之间的脱耦联也很大程度上受到自身生理调节的反馈抑制. ...

... 大气对Ω的影响是各种环境因子的综合作用, 因此任何个体效应都可能被其他因素影响所掩盖.通常风速被认为会引起Ω的波动.例如, Wei等(2013)认为, 风速会增加冠层脱耦联程度.Mielke等(1999)也观察到uΩ之间存在显著正相关关系, 且中度水分亏缺会促进这种相关性.然而, 在我们的研究中没有发现这种正效应(尾叶桉和木荷的相关系数分别为-0.30和-0.20).相反, 边界线分析显示Ωu呈指数下降(图4).这说明u也并非仅仅是直接引起Ω的变化.同样DPARΩ之间也存在相似的结果.另外, 当DPAR不受限制时, Ω趋近于一个特定值. 图4中的边界线分析表明DPAR的增加导致Ω在较高DPAR处趋近收敛.而这种定值的种间变异(木荷为0.20, 尾叶桉为0.05)揭示了尾叶桉和木荷在碳水平衡调节策略上的差异性. ...

1

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes
3
2005

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

... 根据公式(8), 我们使用GS2计算了Ω值, 来量化森林冠层蒸腾与大气气象因子的耦合度.木荷的Ω年均值为0.17 ± 0.03, 显著高于尾叶桉林(Ω = 0.10 ± 0.03, p = 0.000 1).两个观测站之间Ω的差异则可能与LAI代表的冠层郁闭度的差异有关(表1).另外由于环境条件的变化(图1, 图3A-3D), Ω也存在着显著的季节动态(图2).而尾叶桉林Ω的季节变化幅度相对较大(从1月份的0.06 ± 0.02上升至7月份的0.15 ± 0.02, p <0.01), 明显高于木荷林(从1月份的0.17 ± 0.06到4月份的0.20 ± 0.04, p = 0.09).另外Ω也存在显著的日变化(图3E、3F).木荷林Ω的日变化呈明显的单峰曲线, 而尾叶桉林的Ω日变化呈逐渐增加的趋势.两个林分Ω值的最小值和最大值分别出现在10月的上午和4月的下午, 这可能与10月份较高的DPAR (DOY 210-240, 图1)和华南地区4月份较高的降水量有关.此外, 由于清晨低风速和高湿度有利于在叶面和冠层表面形成厚的边界层, 从而导致较高的Ω值(Motzer et al., 2005). ...

... 研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007).然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性.我们的研究结果表明, LAI相对较高的木荷Ω值更大.但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究.事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008).许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化.然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似.这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关. ...

Environmental and stomatal control of transpiration, canopy conductance and decoupling coefficient in young lemon trees under shading net
1
2008

... 除了种间差异, Ω的季节变化很大(Zeppel & Eamus, 2008; Forrester et al., 2010). Hutley等(2001)发现, Ω值在雨季(D较低, SWC较高)较高, 在旱季(D较高, SWC较低)较低, 尾叶桉的Ω变化模式与之类似(图1).而同样的结果也在巴西巨桉(Eucalyptus grandis)中观测到(Mielke et al., 1999).但这种显著的Ω季节性变化并没有在木荷林中观测到(图2).然而, 我们同时也发现木荷Ω的日变化与DPAR的变化模式相一致, 甚至比尾叶桉的更为匹配(图3).根据公式8, Ω的变化受gagc (GS × LAI)的制约, 前者与给定树高处的风速相关(Daudet et al., 1999), 而后者主要受DPAR的影响(Maruyama & Kuwagata, 2008; Nicolás et al., 2008).即Ω是受大气直接和间接控制的(通过对GS的影响).另外, 不同时间尺度和不同物种Ω变化的不一致表明, 单因素的直接影响在本研究中较弱.相反, 两个林分(图1F,图2, 图4)的ΩGS2季节变化则存在较好的一致性.因此可以认为, 在气象因子的作用下, 木荷自身的生理活动可能会起主导作用.而植物与冠层大气之间的脱耦联也很大程度上受到自身生理调节的反馈抑制. ...

Water balance delineates the soil layer in which moisture affects canopy conductance
1
1998

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

a). Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest.
2
1999

... 尽管尾叶桉和木荷Ω的平均值相对较小(分别为0.1和0.17), 表明两个林分与大气环境存在部分脱耦联, 即不满足“引言”中提出的用于估算GS1的条件(3).本研究中, 尾叶桉和木荷的GS2:GS1分别为0.92和0.98, 表明GS1相对偏大(p < 0.01).这表明即使具有良好大气耦合条件的森林, 在估算GS时边界层阻力也不可忽略.另外, 两种方法估算的GS对大气D的响应的差异性表明, GS1在描述植物生理响应时也存在一些偏差.研究发现-mGSiref之间0.6的比例是为防止植物木质部的过度空穴化, 维持最小叶水势(ΨL)而产生(Oren et al., 1999b; Ewers et al., 2005).而在以下条件下这个比例值会出现实质性偏差: (1)非等水植物允许最小ΨL随着D的增加而下降; (2) D的变化范围极大; (3)边界层导度与GS的比值较低(Oren et al., 1999a).前两个条件导致-mGSiref的比值Pi小于0.6, 而条件3则导致Pi大于0.6 (Oren et al., 1999a).尾叶桉和木荷GS1Pi分别为0.53和0.57, 两者均略低于标准值0.6.与GS1相比, 尾叶桉和木荷GS2Pi分别为0.86和0.68, 远高于0.6, 故可推测这种偏差可能是较低的边界层导度引起的.这说明边界层阻力足够大时, 如阔叶树种, 简化公式所得的GS可能偏低, 并且无法反映真实的GS对环境因子的响应. ...

... 大于0.6 (Oren et al., 1999a).尾叶桉和木荷GS1Pi分别为0.53和0.57, 两者均略低于标准值0.6.与GS1相比, 尾叶桉和木荷GS2Pi分别为0.86和0.68, 远高于0.6, 故可推测这种偏差可能是较低的边界层导度引起的.这说明边界层阻力足够大时, 如阔叶树种, 简化公式所得的GS可能偏低, 并且无法反映真实的GS对环境因子的响应. ...

Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: Hydraulic and non-hydraulic effects
1
2001

... 其中, GSiref是参比气孔导度(即在D = 1 kPa时GS的值), -m是回归拟合方程的斜率, 表示气孔导度对D的变化的敏感性(即GS随lnD的变化率dGS/dlnD).通过边界线分析, 我们利用所得边界线数据分析利用这两种方法模拟的不同树种的GSD响应的差异性.该方法已在多因素作用下的GS响应研究中得到应用(Dye & Olbrich, 1993; Granier et al., 1996; Oren et al., 2001). ...

b). Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit
2
1999

... Oren等(1999b)通过边界线分析发现, 当土壤湿度不受限制时, GSD之间的关系可以表示为: ...

... 尽管尾叶桉和木荷Ω的平均值相对较小(分别为0.1和0.17), 表明两个林分与大气环境存在部分脱耦联, 即不满足“引言”中提出的用于估算GS1的条件(3).本研究中, 尾叶桉和木荷的GS2:GS1分别为0.92和0.98, 表明GS1相对偏大(p < 0.01).这表明即使具有良好大气耦合条件的森林, 在估算GS时边界层阻力也不可忽略.另外, 两种方法估算的GS对大气D的响应的差异性表明, GS1在描述植物生理响应时也存在一些偏差.研究发现-mGSiref之间0.6的比例是为防止植物木质部的过度空穴化, 维持最小叶水势(ΨL)而产生(Oren et al., 1999b; Ewers et al., 2005).而在以下条件下这个比例值会出现实质性偏差: (1)非等水植物允许最小ΨL随着D的增加而下降; (2) D的变化范围极大; (3)边界层导度与GS的比值较低(Oren et al., 1999a).前两个条件导致-mGSiref的比值Pi小于0.6, 而条件3则导致Pi大于0.6 (Oren et al., 1999a).尾叶桉和木荷GS1Pi分别为0.53和0.57, 两者均略低于标准值0.6.与GS1相比, 尾叶桉和木荷GS2Pi分别为0.86和0.68, 远高于0.6, 故可推测这种偏差可能是较低的边界层导度引起的.这说明边界层阻力足够大时, 如阔叶树种, 简化公式所得的GS可能偏低, 并且无法反映真实的GS对环境因子的响应. ...

The effect of tree height on crown level stomatal conductance
3
2000

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

... ).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

... 在z0水平下的风速.根据前人的研究, 当D < 100 Pa时, 叶片表面的边界层阻力远远大于气孔阻力, 而此时植物气孔导度的大小主要受到PAR的影响, 因此当D < 100 Pa时, GS的计算会存在极大的误差, 因此本研究中, GS是在排除D < 100 Pa时间段的数据后进行计算的(Sch?fer et al., 2000). ...

Enhanced transpiration in response to wind effects at the edge of a blue gum (Eucalyptus globulus) plantation.
1
2001

... 环境变化带来的森林蒸腾变化可以通过冠层水汽导度对环境因子的响应来表征(Martin et al., 1997; Cienciala et al., 2000; Kumagai et al., 2004, 2008; Barradas et al., 2005).冠层上方的水汽导度(GT)可以分为两个部分: 森林冠层气孔导度(GS)和空气动力学导度(ga), 两者都与叶片生理、冠层结构以及冠层上方和内部的气象条件有关(Jones, 1992; Kumagai et al., 2004).而两者对于GT的贡献目前仍存在争议.有研究认为当ga/GS > 10时, 蒸腾主要受GS控制(Herbst, 1995; Law et al., 2001; Komatsu, 2003; Komatsu et al., 2012).同时也有研究发现, 风速(u)的增加可以通过引起ga的变化显著促进冠层蒸腾(Taylor et al., 2001; Bladon et al., 2006).事实上, ga对水汽运动的贡献随森林类型及其生境的变化而变化(Dixon & Grace, 1984; Gutiérrez et al., 1994; Campbell-Clause, 1998).冠层脱耦联系数(Ω)的提出为评估gaGS对冠层水分传输的影响提供了可能.尽管已有大量关于土壤-植物-大气连续体(SPAC)的水分运动与环境条件之间的关系的研究(Jarvis, 1976; Jarvis & McNaughton, 1986; Granier & Loustau, 1994; Martin et al., 1997), 却很少有****关注Ω的大小对于冠层水汽通量计算的影响. ...

The estimation of transpiration from sparse dryland millet using stomatal conductance and vegetation area indices
2
1990

... 根据式1计算简化的冠层气孔导度(GS1) , 根据Penman-Monteith公式的逆形式(公式6)计算GS2 (Wallace et al., 1990; Kelliher et al., 1993; Zeppel & Eamus, 2008).由于其考虑了冠层阻力的影响, 因此也就能够更加精确的模拟冠层气孔导度.其计算公式如下: ...

... 研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007).然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性.我们的研究结果表明, LAI相对较高的木荷Ω值更大.但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究.事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008).许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化.然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似.这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关. ...

Application and comparison of winter wheat canopy resistance estimation models based on the scaling-up of leaf stomatal conductance
1
2013

... 大气对Ω的影响是各种环境因子的综合作用, 因此任何个体效应都可能被其他因素影响所掩盖.通常风速被认为会引起Ω的波动.例如, Wei等(2013)认为, 风速会增加冠层脱耦联程度.Mielke等(1999)也观察到uΩ之间存在显著正相关关系, 且中度水分亏缺会促进这种相关性.然而, 在我们的研究中没有发现这种正效应(尾叶桉和木荷的相关系数分别为-0.30和-0.20).相反, 边界线分析显示Ωu呈指数下降(图4).这说明u也并非仅仅是直接引起Ω的变化.同样DPARΩ之间也存在相似的结果.另外, 当DPAR不受限制时, Ω趋近于一个特定值. 图4中的边界线分析表明DPAR的增加导致Ω在较高DPAR处趋近收敛.而这种定值的种间变异(木荷为0.20, 尾叶桉为0.05)揭示了尾叶桉和木荷在碳水平衡调节策略上的差异性. ...

Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance
1
2009

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees
1
2000

... 以往的研究中, 在不考虑边界层阻力的影响时, GS通常被认为等同于GT (Wullschleger et al., 2000).而其中最常用的就是基于树干液流的K?stner公式计算的GS.其计算如下: ...

Coordination of leaf area, sapwood area and canopy conductance leads to species convergence of tree water use in a remnant evergreen woodland
3
2008

... 根据式1计算简化的冠层气孔导度(GS1) , 根据Penman-Monteith公式的逆形式(公式6)计算GS2 (Wallace et al., 1990; Kelliher et al., 1993; Zeppel & Eamus, 2008).由于其考虑了冠层阻力的影响, 因此也就能够更加精确的模拟冠层气孔导度.其计算公式如下: ...

... 研究认为, 随着LAI的增加, 冠层GS随之增加(Granier et al., 1996, 2000; Katsoulas et al., 2007).然而, 另一方面, 冠层叶面积的增加可能会阻碍空气流动, 降低ga (Kim et al., 2014), 这将导致阔叶树种Ω变化的不确定性.我们的研究结果表明, LAI相对较高的木荷Ω值更大.但与其他阔叶树种相比, 两个树种的Ω相对较小(尾叶桉和木荷1-4月的Ω值分别为0.10和0.17), 明显低于Meinzer等(1997)的研究(1-3月平均Ω = 0.75)和Wallace等(1990)的研究(林下树木, 干季平均Ω = 0.78), Kumagai等(2004)(年平均值0.4)及Motzer等(2005)(0.25-0.43, 11月至次年3月)在南美的热带雨林研究.事实上, 我们的结果更加接近于针叶树种的数值大小(0.05-0.2)(Jarvis & McNaughton, 1986; Zeppel & Eamus, 2008).许多****对世界各地的尾叶桉进行了较为充分的研究(Forrester et al., 2010), 并指出即使在蓝桉(Eucalyptus globulus)和金合欢(Acacia farnesiana)混交的人工林中, 尾叶桉的Ω值也在0.1-0.2之间变化.然而Cabral等(2010)则发现尾叶桉杂交种(E. globulus × E. urophylla)在夏季和冬季的平均Ω分别为0.6 ± 0.08和0.13 ± 0.07, 尽管其密度(1 370 ind.·hm-2)与本研究中的尾叶桉林相似.这些结果的差异表明, 阔叶树种的Ω值不仅取决于各自的林分特征, 同时还与其所处的大气环境条件紧密相关. ...

... 除了种间差异, Ω的季节变化很大(Zeppel & Eamus, 2008; Forrester et al., 2010). Hutley等(2001)发现, Ω值在雨季(D较低, SWC较高)较高, 在旱季(D较高, SWC较低)较低, 尾叶桉的Ω变化模式与之类似(图1).而同样的结果也在巴西巨桉(Eucalyptus grandis)中观测到(Mielke et al., 1999).但这种显著的Ω季节性变化并没有在木荷林中观测到(图2).然而, 我们同时也发现木荷Ω的日变化与DPAR的变化模式相一致, 甚至比尾叶桉的更为匹配(图3).根据公式8, Ω的变化受gagc (GS × LAI)的制约, 前者与给定树高处的风速相关(Daudet et al., 1999), 而后者主要受DPAR的影响(Maruyama & Kuwagata, 2008; Nicolás et al., 2008).即Ω是受大气直接和间接控制的(通过对GS的影响).另外, 不同时间尺度和不同物种Ω变化的不一致表明, 单因素的直接影响在本研究中较弱.相反, 两个林分(图1F,图2, 图4)的ΩGS2季节变化则存在较好的一致性.因此可以认为, 在气象因子的作用下, 木荷自身的生理活动可能会起主导作用.而植物与冠层大气之间的脱耦联也很大程度上受到自身生理调节的反馈抑制. ...

马占相思林冠层气孔导度对环境驱动因子的响应
1
2006

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

马占相思林冠层气孔导度对环境驱动因子的响应
1
2006

... 其中, GV是通用气体常数(0.462 m3·kPa·K-1·kg-1), Ta是空气温度(K), ρ是水的密度(998 kg·m-3), El是冠层叶片蒸腾速率(Magnani et al., 1998; Oren et al., 1998; Kim et al., 2008).该方法由于参数较少, 计算简单, 因此被广泛采用.但是有研究认为, 只有满足以下条件, 这种方法才能够使用: (1)植物储存水对蒸腾作用贡献较小;2)在冠层内部没有垂直水汽压梯度变化;(3)叶片边界层导度远高于气孔导度(Aphalo & Jarvis, 1991; Cienciala et al., 1998; Sch?fer et al., 2000).Sch?fer等(2000)指出, 这种方法对于Ω较小的林分来说计算较为精确, 如针叶林.然而事实上, 在亚热带常绿阔叶林中, 以上这些条件都无法得到满足(Motzer et al., 2005; 赵平等, 2006).尽管如此, 这一方法仍被用于一些阔叶林分蒸腾的研究(Ewers et al., 2007; Whitley et al., 2009), 但其所带来的误差并未得到评估.而基于Penman-Monteith公式(Monteith & Unsworth, 2007)计算的冠层气孔导度则通过整合植物生理性状和微气象因子, 综合考虑了冠层气孔阻力和空气动力学阻力对冠层水汽通量的影响, 因此也就能够更精确定量冠层蒸腾过程(Lu et al., 2003).本研究将通过与基于Penman- Monteith公式计算的GS进行对比, 分析利用K?stner公式计算阔叶树种GS的可行性. ...

Effects of sap velocity on the daytime increase of stem CO2 efflux from stems of Schima superba trees.
4
2012

... 本研究在乡土种木荷(Schima superba)和外来种尾叶桉(Eucalyptus urophylla)人工林中进行.前者位于广州市中国科学院华南植物园(23.18° N, 113.36° E, 海拔41 m).所在地为典型的南亚热带季风气候, 年降水量1 612-1 909 mm, 年平均气温21.4-21.9 ℃.雨季从4月持续至9月, 旱季从9月持续到次年3月(Zhu et al., 2012).坡向为东北向, 坡度为11.7°, 土壤pH值为4.0, 有机质含量为2.3%, 总氮含量为0.07%.从2011年1月到12月, 对21株木荷进行了树干液流的测定.尾叶桉林位于中国广西桂林黄冕林场(24.78° N, 109.87° E), 所在地坡向朝南(坡度28°), 为南亚热带和中亚热带过渡地带, 降水丰沛(1 750-2 000 mm), 年平均气温19 ℃.土壤以红砂岩和红壤为主, pH值为3.5, 有机质含量为2.8%, 总氮含量为0.1%.雨季是3月至8月, 其余月份为旱季.从2012年6月至2013年5月对15株树木进行了树干液流测定.两个林分中均建有一座观测塔(木荷林塔高18 m, 尾叶桉林塔高23.5 m), 用于冠层结构和生理参数及气象参数的测定.木荷林年平均叶面积指数(LAI)为4.33, 尾叶桉林为1.53 (表1). ...

... 冠层叶片蒸腾速率(El, g H2O·m-2·s-1)可以通过树液通量密度Fd、叶面积和AS的计算获得.前人研究发现, 木荷40-60 mm深度的树液通量密度显著低于外部20 mm处的树液通量密度, 而0-20和20-40 mm处的树液通量密度没有显著差异(梅婷婷等, 2010; Zhu et al., 2012).因此, 可以通过使用Zhu等(2012)得出的等式来计算木荷的El, 其中包括了液流的径向分布(式4).但由于尾叶桉边材深度(d)为(2.13 ± 0.40) cm, 接近TDP探针的长度, 即探针实际已经基本覆盖了整个边材部分, 因此不需要考虑液流在边材中的径向变化, 所以使用式5估计El的数值. ...

... ).因此, 可以通过使用Zhu等(2012)得出的等式来计算木荷的El, 其中包括了液流的径向分布(式4).但由于尾叶桉边材深度(d)为(2.13 ± 0.40) cm, 接近TDP探针的长度, 即探针实际已经基本覆盖了整个边材部分, 因此不需要考虑液流在边材中的径向变化, 所以使用式5估计El的数值. ...

... El = (Fd × 0.85As40 + Fd × As0-40)/Al (Zhu et al., 2012) ...




相关话题/计算 环境 植物 大气 生理

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴椤㈡洟鏁愰崱娆樻К缂傚倷鑳舵慨閿嬬箾閳ь剟鏌″畝鈧崰鏍х暦濠婂棭妲鹃柣銏╁灡閻╊垶寮诲☉姘e亾閿濆啫濡奸柍褜鍓氱换鍫濐嚕婵犳艾鍗抽柣鏃囨椤旀洟姊虹紒妯哄Е闁告挻宀搁幃鐢稿籍閸屾粎锛濇繛杈剧稻瑜板啯绂嶉悙顒傜瘈闁靛骏绲介悡鎰版煕閺冣偓閻楃娀骞冮垾鏂ユ瀻闁规儳顕崢浠嬫⒑閻熼偊鍤熼柛濠冪墵楠炲鏁冮埀顒勬偂閺囥垺鐓欓柟娈垮枛椤eジ鏌涙繝鍌滀粵闁逛究鍔岄~婊堝幢濡も偓閳锋帡姊虹紒妯诲碍闁靛牊鎮傚濠氬灳瀹曞洦娈曢柣搴秵閸撴稖鈪甸梺璇插椤旀牠宕抽鈧畷鎶芥晲閸涱垱娈鹃梺鍦劋閸╁牆岣块埡鍌樹簻闁瑰搫妫楁禍鎯ь渻閵堝骸澧俊顐g箓椤繘鎼圭憴鍕彴闂佸湱绮敮鈺呭礉婢跺瞼纾奸柣鎰靛墯缁惰尙绱掓径瀣唉闁诡喗鍎抽埞鎴犫偓锝庝簽椤旀劖绻涙潏鍓хɑ闁烩剝娲熼獮妤呭即閻愨晜鏂€闂佺粯鍔栧ḿ娆撴倶閿曞倹鍤曢柕鍫濐槹閻撴盯鎮楅敐搴濈凹闁圭櫢缍侀弻宥堫檨闁告挻鐟х划璇差吋婢跺﹦锛熼梻渚囧墮缁夊绮婚悩璇茬婵烇綆鍓欓悘顏堟煕濞嗗繒绠绘鐐寸墪鑿愭い鎺嗗亾濠碘€茬矙閺屽秹鏌ㄧ€n亞浼岄悗娈垮枛閻栧ジ骞冨▎鎾崇骇闁规惌鍘搁崑鎾斥堪閸曗晙绨婚梺鍝勫€归娆徫熼埀顒勬⒑閸濆嫮鐒跨紒缁樼箓閻g兘濡搁埡濠冩櫖濠殿喗锕徊楣冩倵閻楀牅绻嗛柕鍫濇搐鍟搁梺绋款儐閻╊垰鐣烽娑橆嚤闁哄鍨归澶愭⒑閸涘﹥澶勯柛妯圭矙瀹曟垵顫滈埀顒勫蓟瀹ュ鐓涘ù锝呮啞閻忔挸鈹戦悙鎻掓倯婵☆偄鍟~蹇撁洪鍕炊闂佸憡娲栭悘姘辩懅闂傚倷鑳剁划顖炪€冮崨鏉戠柈闁哄鍩堥崵鏇㈡煙缂佹ê鍧婃俊鎻掔墛閹便劌顫滈崱妤€绠哄┑鐐茬墔閸楀啿顫忓ú顏咁棃婵炴番鍊栭惄顖氱暦閵娾晩鏁嶉柕鍫濇喘濡嘲鈹戦悩鍨毄闁稿濞€楠炴捇顢旈崱妤冪瓘闂佸吋绁撮弲娑㈠垂濠靛洨绠鹃柛鈩兩戠亸顓灻归懖鈺佲枅闁哄睙鍡欑杸闁瑰墽顥愮涵鈧紓浣哄亾閸庢娊濡堕幖浣哥畺鐟滅増甯掗悙濠冦亜韫囨挸顏慨锝冨灪缁绘繈鍩涢埀顒勫礋椤掑偆妲归梻浣告惈閻绱炴笟鈧顐﹀箛閺夊灝绐涘銈嗘尵閸熸﹢鍩℃笟鍥ㄥ瘜闂侀潧鐗嗘鍛婄濠靛牏纾奸悹鍥ㄥ絻椤忣厽顨ラ悙鏉戠伌鐎规洜鍠栭、娑橆潩椤愩倗鍊為梻鍌欑閹测€趁洪敃鍌氱獥闁圭儤顨呯壕濠氭煙閹规劦鍤欓梺瑁ゅ€栨穱濠囧Χ閸曨噮鍞归梺褰掓敱濡炶棄顫忓ú顏勫窛濠电姴瀚悾鐢告煟鎼淬垹鍤柛娆忓暙閻g兘骞掑Δ鈧儫闂佸啿鎼崐濠氬储闁秵鈷戦梻鍫熻儐瑜版帒纾挎繛宸簼閸嬪倿鏌ゅù瀣澒闁稿鎸鹃幉鎾礋椤掑倵鏁嶇紓鍌氬€哥粔宕囨濮樿埖鍋樻い鏇楀亾鐎规洖鐖奸、妤佹媴闂€鎰秿闂傚倷绀佹竟濠囧磻娓氣偓瀹曠銇愰幒鏂跨ウ濠德板€曢幊蹇涘煕閹烘嚚褰掓晲閸噥浠╅柣銏╁灡閻╊垶寮婚妸銉僵闁瑰吀绀佹禍鐐箾閸繄浠㈤柡瀣洴閺岋綁寮借閸嬨垽鏌e☉鍗炴珝鐎殿喕绮欓、姗€鎮欓悽鍨緫濠碉紕鍋戦崐鏍暜閹烘鍥焼瀹ュ懓鍩為梺姹囧灩閹诧繝宕戦埄鍐瘈濠电姴鍊搁弳鐔兼煟韫囨稐鎲鹃柡灞剧洴楠炴帡骞樺畷鍥╂噯闂備礁鐤囬褔鏌婇敐澶屽祦婵せ鍋撻柟鐓庣秺椤㈡洟鏁嶉悧鍫濆摵婵﹦绮粭鐔煎焵椤掆偓宀h儻顦撮柟骞垮灲瀹曞ジ濡烽妷褝绱梻浣告惈缁嬩線宕㈡總绋胯Е鐟滅増甯楅悡鏇㈡煙娴煎瓨娑ч柡瀣枛閺岋綁骞橀崘鍙夋闂佸搫鏈粙鎴﹀煘閹达箑骞㈡俊銈咃梗閹綁姊绘笟鈧埀顒傚仜閼活垱鏅堕鐐寸厵妞ゆ梻鍘ч埀顒€娼¢悰顕€宕卞☉妯碱槰濡炪倖娲栭幊蹇涘疾濠靛鈷戦柟绋垮椤ュ棛鎮▎鎾寸厵闂佸灝顑嗛妵婵囨叏婵犲啯銇濈€规洏鍔嶇换婵嬪礋閵婏富娼旈梻鍌欑劍鐎笛兠鸿箛娑樼?闁圭粯甯╅崵妤呮煕閺囥劌鐏犵紒鈧€n偁浜滈柡宥冨妿閵嗘帡鏌涘鈧禍璺侯潖濞差亜鎹舵い鎾跺仒婢规洖鈹戦悙鎻掓倯闁荤啿鏅涢悾鐑筋敃閳锋碍妞介、鏃堝川椤栨艾绠ュ┑锛勫亼閸婃牕顫忚ぐ鎺戝嚑濠电姵纰嶉崵鈧梺鍦圭€垫帒鈻撴禒瀣厽闁归偊鍓欑痪褔鏌涢悩绛硅€块柡宀€鍠栭、娆撳Ω閵夛附鎮欓梻浣稿船濞诧箓骞堥妸銉建闁糕剝顨呯粻鐟邦渻閵堝懐绠扮紓宥咃工椤繑绻濆顒傦紲濠电偛妫欓崺鍫澪i鈧铏规兜閸滀礁娈濈紓浣虹帛缁诲牓鎮伴鈧獮鍥级閸喛鈧灝鈹戦悙鏉戠仸瀹€锝呮健钘濋柕濞炬櫆閸嬧剝绻濇繝鍌氭殶閺佸牓鏌﹀Ο鐓庢瀾闁逛究鍔岃灒闁割煈鍠氶崢顐︽⒑閹惰姤鏁遍柛銊ョ埣楠炲牓濡搁埡鍌氫画闂佺粯顨呴悧濠囧箖濞嗘挻鈷戠紓浣姑粭姘繆閻愭壆鐭欑€殿喛顕ч埥澶愬閻樻牑鏅犻弻鏇㈠醇濠靛洤娅g紓浣风贰閸犳牠鈥旈崘顔嘉ч柛鎰╁妿娴犻箖鎮楅崗澶婁壕闂佸綊妫块梽宥夊焵椤戣法顦︽い顐g矒閸┾偓妞ゆ帒瀚粻鏍煏韫囥儳纾块柣鐔活潐閵囧嫰寮介妸褎鍒涢梺杞扮劍缁挸顫忔繝姘<婵炲棙鍩堝Σ顕€姊虹涵鍜佸殝缂佽鲸娲滈崚鎺戔枎閹惧磭顓洪梺鎸庢婵倕鈻嶉崶顒佲拺闂傚牊鍐荤槐锟犳煕濞戝崬鐏辨俊鍙夋倐濮婄粯鎷呯憴鍕哗闂佺ǹ瀵掗崹璺虹暦濠靛洨绡€闁告劦浜跺ú绋库攽閻樿宸ラ柣妤€锕幃鈥斥枎閹惧鍘垫繛杈剧到閸燁垶鎮甸鍛闁告侗鍘介崵鍥煛瀹€瀣К缂佺姵绋掔换婵嬪礃閳哄啫绲惧┑锛勫亼閸婃垿宕濇繝鍥х?闁汇垻枪缁犳牗绻涢崱妤佺闁哥喎鎳忛妵鍕籍閸屾艾浠樻繝銏㈡嚀鐎涒晝鎹㈠┑鍡忔灁闁割煈鍠楅悘鍫ユ⒑閹稿孩纾搁柛搴ㄤ憾閳ユ棃宕橀钘夌檮婵犮垼娉涢張顒€鈻撻幆褉鏀介幒鎶藉磹閺囥垹绠犻煫鍥ㄧ☉绾惧鏌涘畝鈧崑娑氱不閸︻厾纾兼い鏃傚帶鐢劑鏌涚€n偅宕屾鐐茬Ч楠炴劖鎯旈敍鍕礉婵犳鍠栭敃锔惧垝椤栫偛绠柛娑卞灡閸犲棝鏌涢弴銊ヤ簵闁告繃顨婂缁樻媴鐟欏嫬浠╅梺鍛婃煥缁绘ê鐣烽幋锕€绠涙い鎾跺濞叉悂姊鸿ぐ鎺擄紵缂佽绻濆顐﹀磼閻愬鍘卞銈嗗姧缁查箖宕曢弴銏$叆闁哄洨鍋涢埀顒€缍婇幃鈥斥枎閹惧鍘靛┑鐐茬墕閻忔繈寮稿☉娆嶄簻闁挎繂鎳岄崑銏ゆ煛瀹€瀣瘈鐎规洏鍔戦、娆撴寠婢跺棗浜鹃柟鎵閻撴盯鎮橀悙棰濆殭濠殿喖鍊块弻鐔碱敊閸濆嫧鍋撳┑鍡欐殾闁圭儤鍨熷Σ鍫熸叏濡も偓濡梻妲愰敓锟�40%闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闂囧鏌ㄥ┑鍡╂Ч濞存嚎鍊濋弻銈夊级閹稿骸浠撮悗娈垮枛閻栫厧鐣烽悡搴僵妞ゆ挾鍠撹ぐ鍛存⒒娴h鍋犻柛鏂跨Ф閹广垽宕橀鍢夛箓鏌涢弴銊ョ仩闁告劏鍋撴俊鐐€栭崝锕€顭块埀顒傜磼椤旂厧顣崇紒杈ㄦ尰閹峰懘骞撻幒宥咁棜婵犵數濮伴崹濂稿春閺嶎厼绀夐柡宥庡幗閸嬪倹绻涢幋鐐茬劰闁稿鎹囬悰顕€宕归鐓庮潛濠德板€楁慨鐢稿箖閸岀偞鍋樻い鏇楀亾鐎殿喕绮欓、姗€鎮㈤崫鍕疄闂傚倷绶氬ḿ褎鐏欓梺绋块叄娴滃爼宕洪埀顒併亜閹哄棗浜剧紓鍌氱Т閿曨亪鎮伴鈧畷濂稿Ψ閵夊簶鏅犻弻鏇熷緞婵犲啯宕抽梺鍝ュУ閻楁洟鎮炬搴g煓閻犲洨鍋撳Λ鍐春閳ь剚銇勯幒鎴濐仼缂佺姵妞介弻锝夊閻樺啿鏆堥梺缁樻尵閸犳牠鎮¢锕€鐐婇柕濠忕畱閺嗘绱撴担鍝勑¢柛妤佸▕楠炲啫螖閳ь剟鍩ユ径鎰闁规儳顕ぐ瀣繆閵堝洤啸闁稿鐩幃褔骞樼紙鐘电畾闂佸綊妫跨粈浣告暜闂佺澹堥幓顏嗗緤娴犲鍑犳繛鎴炲焹閸嬫挾鎲撮崟顒傤槬缂傚倸绉撮敃顏堝Υ娴g硶鏋庨柟鎯х-閻i箖鎮峰⿰鍐ょ紒杈ㄦ尭椤繈鎳滅喊妯诲濠电偠鎻徊鍧楁偤閺冨牆鍚规繛鍡樺灩绾捐偐绱撴担濮戭亝鎱ㄩ崶顒侇梿濠㈣泛顑嗛崣蹇旀叏濡も偓濡鐛Ο姹囦簻闁宠桨绀佺痪褔鏌曢崶褍顏紒鐘崇洴楠炴ḿ鎹勬笟顖涙瘒闂傚倷娴囧Λ鍕疮娴兼潙绐楅柡宥庡幖閽冪喖鏌¢崶鈺佹灁缂佺娀绠栭弻娑⑩€﹂幋婵囩亪婵犳鍠栭ˇ顖炲煘閹达箑鐒洪柛鎰╁妿缁佺兘姊虹紒姗嗘畷闁圭懓娲ら锝夊及韫囷絾鈻夌紓鍌欒兌婵敻鎯勯鐐叉瀬闁圭増婢樺婵囥亜閹烘垵鈧鈻旈崹顔规斀闁挎稑瀚禍濂告煕婵犲啯绀冩い銊e劥缁犳稑鈽夊Ο纰卞數闂備浇娉曢崳锕傚箯閿燂拷
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳婀遍埀顒傛嚀鐎氼參宕崇壕瀣ㄤ汗闁圭儤鍨归崐鐐差渻閵堝棗绗掗柨鏇缁瑨绠涢弮鍌滅槇闂侀潧楠忕徊鍓ф兜閻愵兙浜滈柟瀛樼箖閸犳﹢鏌曢崱妤佸殗妤犵偞鎹囬獮鎴澪旈埀顒傜礊婵犲洤绠栭柍杞扮贰閸熷懏銇勯弮鍌氬付濠㈢懓鐗忕槐鎾诲磼濞嗘帩鍞归梺绋款儐閹告悂鈥︾捄銊﹀磯闁告繂瀚峰Σ鐢告⒑缁嬫鍎愰柟鐟版搐閻e嘲螖娴e摜绐炴繝鐢靛С缁€渚€藟濮樿埖鈷掗柛灞剧懅缁愭棃鏌嶈閸撴盯宕戝☉銏″殣妞ゆ牗绋掑▍鐘裁归悡搴f憼闁绘挻娲熼弻鐔兼倻濡纰嶇紓浣广亞閸ャ劎鍘垫俊鐐差儏妤犵ǹ鐡俊鐐€栭弻銊ф崲濮椻偓閵嗕礁鈻庨幘宕囶槯闂佺粯鎸哥花鍫曞磻閹炬椿鏁嶉柣鎰ˉ閹风粯绻涙潏鍓хК妞ゎ偄顦靛畷鎴︽偐缂佹ḿ鍘遍柟鍏兼儗閸犳牠鎮橀敂閿亾鐟欏嫭绀冪紒璇插€块幃鎯р攽鐎n亞顦板銈嗗坊閸嬫捇鏌涢幙鍐ㄥ箹妞ゎ亜鍟存俊鍫曞幢濡も偓椤懘姊洪悷鏉挎毐婵炲樊鍘奸锝夊Ω閳哄倸娈熼梺闈涱檧缁茶偐鑺辨繝姘拺闁告繂瀚弳娆愮箾閺夋垵鈧ǹ鐜婚崸妤佹櫖闁告洦鍓欓弸鎴︽⒑缂佹﹩娈旈柣妤€妫涚划顓㈠箳濡や胶鍘搁梺鍛婃磵閺呮盯宕濋敃鍌涚厸閻忕偟纭堕崑鎾诲箛娴e憡鍊梺纭呭亹鐞涖儵鍩€椤掑啫鐨洪柡鍡橆殜濮婄粯鎷呴搹鐟扮闁汇埄鍨辩敮锟犲极閸愵喖唯闁宠桨绲奸敃鍌涚厱闁哄洢鍔岄弸銈夋煟閵堝倸浜鹃梻鍌欐祰椤鐣峰Ο琛℃灃婵炴垟鎸嬮悜钘夌劦妞ゆ帒瀚埛鎺懨归敐鍫燁仩閻㈩垱鐩弻鐔奉潰鐏炶棄鎯炵紓渚囧枟閻熲晠鐛€n喗鏅滈柛蹇擃槸娴滈箖鏌ㄩ弮鍌氫壕鐎规洖顦甸弻鏇熺節韫囨洜鏆犵紒鍓ц檸閸ㄨ泛顫忛搹鍦<婵☆垳鈷堥弳鈥斥攽閻愭彃鎮戦柣鐕傚閳ь剟娼ч妶鎼佺嵁閸ヮ剚鍋嬮柛顐g鐎氬ジ姊绘担鍛婂暈缂佽鍊婚埀顒佸嚬閸欏啳妫㈤梺缁樶缚缁垶鎮¢弴銏$厽婵☆垰鎼弳鍗炩攽椤旂⒈妯€闁哄瞼鍠栭悰顕€宕归鍙ユ偅闂備礁鐤囧Λ鍕囬鐐茬厺閹兼番鍊楅悿鈧梺鍝勬川婵嘲鐣垫担绯曟斀闁绘ɑ顔栭弳顖涗繆閹绘帗鍤囩€规洝顫夌€靛ジ寮堕幋鐙€鍟囨俊鐐€栭崝鎴﹀磹濡ゅ啩鐒婇柣銏㈩暯閸嬫捇鐛崹顔煎濠碘槅鍋呯粙鎾愁嚕瑜旈崺鈧い鎺戝€荤壕濂告煕閹炬鍠氶弳顓㈡⒑閹稿氦澹樻い顓″劵椤︽娊鏌i幙鍕瘈鐎殿喖顭烽幃銏ゆ惞閸︻厾鍘梻浣稿閻撳牓宕板Δ鈧闁规壆澧楅埛鎴澝归崗鑲╂噮闁诡喖銈搁弻娑滅疀閺冩捁鈧潡鏌e☉鍗炴珝妤犵偞甯掕灃闁逞屽墰缁鏁愭径瀣幐闂佸憡鍔х徊鑺ョ妤e啯鈷戦柛婵嗗閳ь剛鏁诲畷鎴﹀箻缂佹ǚ鎷婚梺绋挎湰閻熝囁囬敂鍓х=鐎广儱鎷戦煬顒傗偓瑙勬礃閸ㄥ墎鎹㈠┑瀣倞鐟滃繘藝椤撶偐鏀芥い鏃€鏋婚懓鎸庛亜閵堝懎鈧灝顕i锝囩瘈闁搞儯鍔庨崢鎼佹⒑閹肩偛鍔楅柡鍛⊕缁傚秷銇愰幒鎾跺幐闂侀€炲苯澧紒鍌涘笧閳ь剨缍嗛崑鍡涘储娴犲鈷戠憸鐗堝笒娴滀即鏌涢幘鏉戝摵闁糕斂鍨藉鎾閿涘嫬骞堥梻渚€娼ч悧鍡椕洪妶澶婂嚑閹兼番鍔嶉悡鍐偡濞嗗繐顏╅柣蹇撶摠閵囧嫰濮€閿涘嫧妲堝銈庡亝缁诲牓骞冮埄鍐╁劅闁靛繆鏅涢弲娆戠磽閸屾艾鈧悂宕愬畡鎳婂綊宕堕妸褜娲稿銈嗗笒鐎氼剛澹曟繝姘厪闁割偅绻嶅Σ鎼佹煛閸曗晛鍔﹂柡灞界Х椤т線鏌涢幘鏉戝摵濠碉紕鏁诲畷鐔碱敍濮橀硸鍞洪梻浣烘嚀閻°劎鎹㈠鍡欘浄濡わ絽鍟埛鎴犵磽娴h偂鎴犱焊椤撶姷纾肩紓浣癸公閼拌法鈧鍠涢褔鍩ユ径鎰潊闁绘﹢娼ф慨鍫曟⒒娴e憡鍟為柛鏃€顨婂畷鎴﹀箻缂佹ê浠奸梺鍓插亝濞叉﹢鍩涢幋锔界厱婵犻潧妫楅顏堟煥濞戞瑦鈷掔紒杈ㄥ浮楠炴捇骞掗幘鍏呮樊闂備胶纭堕弬渚€宕戦幘鎰佹富闁靛牆妫楃粭鎺楁煕閻樺疇澹樺畝锝呮健楠炲洭顢橀悩娈垮晭婵犵數鍋炲ḿ娆擃敄閸℃せ鏋嶉柛銉㈡櫇绾惧ジ寮堕崼姘珔濞寸媴濡囩槐鎺懳旈崘銊︾亪闂佺硶鏂侀崑鎾愁渻閵堝棗绗掗悗姘煎墲缁绘艾鈹戦悙鑸靛涧缂佽尪娉曞☉鐢垫崉娴f洩缍佸畷濂稿Ψ閿旀儳甯鹃梻濠庡亜濞层倛澧濋梺绋款儐閹瑰洤顕i鍕ㄩ柕澶堝€曢ˉ姘舵⒒娴h櫣甯涢柛銊ュ悑閹便劑濡舵径瀣簵闂佸憡鍔﹂崰鏍棯瑜旈弻锝夊箛閻楀牊閿銈忕到閸氬濡甸崟顖涙櫇闁逞屽墴瀹曟煡寮婚妷鈶╁亾閿旂偓宕夐柕濠忕畱閺嬪倿姊洪崨濠冨闁告挻鐩棟闁靛鏅滈埛鎴︽倵閸︻厼顎屾繛鍏煎姍閺屾盯濡搁妷锕€浠撮梺闈涙缁€渚€鍩㈡惔銊ョ闁哄鍨垫竟鎺撲繆閻愵亜鈧牠宕濋敃鍌氱;闁稿本绮忔慨鎶芥煢濡警妯堥柣鏂挎閹嘲鈻庤箛鎿冧痪缂備讲鍋撻悗锝庡亖娴滄粓鏌曡箛濠冾潐闁兼澘娼¢弻鐔碱敊鐟欏嫭鐝氶悗瑙勬礃椤ㄥ﹤鐣烽锕€唯鐟滃酣宕伴幒妤佲拻闁稿本鑹鹃埀顒勵棑缁牊绗熼埀顒勭嵁閺嶎収鏁冮柕鍫濇川閻撴挻绻涢幘鏉戠劰闁稿鎹囬弻鐔碱敊閺傘倛鈧寧顨ラ悙鍙夊枠闁诡啫鍥ч唶婵犻潧鎳愰弫楣冩⒒閸屾瑧顦︾紓宥咃工宀h儻顦圭€规洦鍨跺畷绋课旀担闀愮綍婵犳鍠楁灙闁糕晜鐗犻崺娑㈠箣閿旂晫鍘卞┑鐐村灦閿曨偊寮ㄧ拠宸唵閻犲搫鎼顓㈡煛鐏炲墽銆掗柍褜鍓ㄧ紞鍡樼濠靛瑤澶愬鎺虫禍婊堟煏韫囥儳纾垮褏鏁搁埀顒冾潐濞叉粓宕伴弽顓溾偓浣肝旈崨顓狅紲濠电姴锕ゆ鎼佸疾椤撱垺鈷掑ù锝囩摂閸ゆ瑦绻涚€电ǹ鍘寸€殿噮鍋婂畷銊︾節閸曨亞娉婇梻浣筋嚙鐎涒晝绮欓幒鏃€宕查柛顐g箥濞兼牠鏌ц箛鎾磋础缁炬儳鍚嬮幈銊ノ旈埀顒€螞濞嗘挻鍋╅柛鎾茶兌绾捐棄霉閿濆牊顏犻悽顖涚洴閹粙顢涘☉妯肩懆閻庤鎸哥€氭澘顫忓ú顏勬嵍妞ゆ挾鍎愰弳顓炩攽閻橆喖鐏畝锝呮健閹噣骞嗚閸氬顭跨捄渚剳闁告ê宕—鍐Χ閸℃衼缂備浇灏▔鏇犲垝鐠囧弬鐔沸ч崶锔剧泿闂備浇顫夐崕鎶芥偤閵娾晛桅婵犻潧娲﹂崣蹇撯攽閻樺弶鍣烘い蹇曞Х缁辨帗娼忛妸銉х懆闁句紮缍侀悡顐﹀炊妞嬪骸顕遍梻渚囧弾閸ㄥ爼寮婚悢纰辨晩闁活収鍋掓禍顏堟晲閻愭祴鏀介柛顐ゅ枎绾绢垶姊洪幆褏绠版繝鈧柆宥呮辈濞寸厧鐡ㄩ埛鎺懨归敐鍥ㄥ殌妞ゆ洘绮庣槐鎺旀嫚閹绘巻鍋撻懗顖涱棨濠电偞娼欓崥瀣缚濞嗘挻鍋傞柡鍥ュ灪閻撴瑩鏌i幋鐏活亪鎮橀悢鍏肩厓鐟滄粓宕滃杈ㄦ殰闁圭儤顨愮紞鏍ㄧ節闂堟侗鍎涢柡浣告闇夐柨婵嗙墱濞兼劙鏌涙繝鍌氭Щ闁宠鍨块幃娆撴嚑椤掍焦鍠栫紓鍌欑贰閸犳牜绮旈崼鏇炵闁靛繈鍊曢柋鍥煏婢跺牆鍔ラ柟鑺ユ礋濮婃椽骞愭惔锝傛闁诲孩鍑规禍婊堝煝娴犲鏁傞柛顐ゅ枎娴狀垶姊洪幖鐐插姌闁告柨鐬煎濠勭磼濡晲绨诲銈嗗坊閸嬫挻銇勯幋婵囧殗闁糕晝鍋ら獮瀣晜閽樺鍋撻悜鑺ョ厱婵炲棗娴氬Ο鍫熶繆椤愶絽鐏存慨濠冩そ楠炴牠鎮欓幓鎺濈€辩紓鍌欑贰閸犳鎮烽埡鍛仒妞ゆ洍鍋撶€规洘锕㈡俊鎼佸閿涘嫧鍋撴繝姘拺闁荤喐澹嗛幗鐘绘煛鐏炶濡界紒鍌氱У閵堬綁宕橀埡鍐ㄥ箺闂備線娼х换鍫ュ垂濞差亜姹查柍鍝勬噺閻撳繘鏌涢埄鍐炬闂婎剦鍓熼弻鈥崇暆鐎n剛锛熼梺閫炲苯澧剧紓宥呮瀹曟垿宕卞Ο缁樼彿闂佸壊鐓堥崑鍛村矗韫囨挴鏀介柣妯哄级閸g儤銇勮箛鏇炐ョ紒杈ㄥ笚濞煎繘濡搁妷褏鎳嗛梺鍙ョ串缂嶄線寮昏缁犳稑鈽夐幒鎴滃濠电偞鍨堕悷顖炲极閸ヮ剚鈷掗柛灞剧懄缁佺増淇婇銏狀伃鐎规洦鍨抽埀顒佺⊕宀e潡銆呴弻銉︾厱妞ゆ劧绲剧粈鈧梺钘夊暟閸犳牠寮婚敐澶婃闁割煈鍠楅崐顖炴⒑缁嬫鍎涘ù婊勭箞婵$敻宕熼姘敤闂侀潧臎閸曨偅鐝i梻鍌欐祰椤曟牠宕规导瀛樺亱闊洦娲橀~鏇㈡煙閹呮憼濠殿垱娼欓湁闁绘ê妯婇崕蹇涙煙閻e本鏆柡宀嬬秮婵偓闁宠桨鑳舵禒姘舵⒑闁偛鑻晶顖炴煕閹炬潙鍝虹€规洜鏁诲鎾偄缂堢姷鐩庨梻浣告惈濞诧箓銆冮崨顔绢洸濡わ絽鍟埛鎴犵磼椤栨稒绀冮柡澶婄秺閺屾稓鈧綆鍋呯亸顓熴亜椤忓嫬鏆e┑鈥崇埣瀹曞崬螖閸愵亝鍣梻浣筋嚙鐎涒晠宕欒ぐ鎺戠煑闁告劑鍔庨弳锕傛煙鏉堥箖妾柡鍛倐閺岋絽螣閾忕櫢绱為梺鍛婄懃濡繂顫忓ú顏勪紶闁告洦鍋呭▓顓㈡⒑缁嬪尅宸ラ柟璇х磿缁顓奸崱鎰簼闂佸憡鍔忛弲婵嬪储閹间焦鈷戠紒顖涙礀婢ф彃鐣濋敐鍛仴闁诡垰鑻悾婵嬪礋椤掑倸骞嶉梻浣告啞閻熴儵藝娴兼潙纾归柟鎵閻撴瑦銇勯弬璇插婵炲眰鍊濋弻瀣炊閵娧呯槇闂傚倸鐗婄粙鎾存櫠闁秵鐓曢幖杈剧磿閻掓悂鏌″畝瀣ɑ闁诡垱妫冩俊鑸垫償閵忋垻啸闂傚倷娴囬~澶愬箖閸岀倛澶愬箻閺傘儲鐎婚梺闈涚箳婵厼岣块埡鍛仯婵炲樊浜炵槐浼存煙閼恒儲绀€闁宠鍨块幃娆撳级閹寸姳鎲鹃梻浣烘嚀閸熷灝煤椤撱垹鏄ラ柍褜鍓氶妵鍕箳閹搭垰濮涢梺浼欑到閻忔岸銆冮妷鈺傚€风€瑰壊鍠栭崜浼存⒑鐎圭媭娼愰柛銊ョ仢閻g兘宕奸弴鐐靛幐婵炶揪缍€婵倗鈧凹鍓熷濠氬磼濮橆兘鍋撻幖浣哥9濡炲娴烽惌鍡椼€掑锝呬壕濡ょ姷鍋涢ˇ鐢稿极閹剧粯鍋愰柛鎰级閻ゅ嫬鈹戞幊閸娧呭緤娴犲鐤い鎰╁€楁稉宥夋煟濡鍤欑紒鐘侯潐缁绘盯鏁愭惔鈥愁潻婵犵绱曢弲顐ゆ閹烘鍋愰柛鎰级鐠囩偛鈹戦纭峰姛缂侇噮鍨堕獮蹇涘川椤栨粎鐓撻梺鍦规鎼佸焵椤掑鐏g紒杈ㄦ尰閹峰懏顦版惔鈥愁瀴闂備礁婀辨灙闁哥喎娼¢、姘舵晲婢跺﹦顔岄梺鐟版惈濡瑩锝炲鍛斀闁绘ɑ鐟ョ€氼剟宕濋妶鍥ㄥ枑闁绘鐗婇妵婵囨叏婵犲偆鐓肩€规洘甯掗~婵嬵敄閽樺澹曟俊鐐差儏鐎涒晠顢曢懞銉﹀弿婵☆垱瀵х涵楣冩煟閹烘垹浠涢柕鍥у楠炴帡骞嬪┑鍐ㄤ壕闁告稑锕﹂々閿嬬節婵犲倻澧涢柣鎾跺У缁绘盯鎳犳0婵嗘闂佽楠忕换婵嬪蓟閿熺姴宸濇い鎾跺Т閻撶喎顪冮妶鍐ㄧ仾闁烩晩鍨堕獮鍐ㄢ枎閹存繂鐏婇柣鐔哥懃鐎氼剟顢旇ぐ鎺撯拻闁稿本鐟чˇ锕傛煕濮橆剦鍎愮紒鍌氱У缁傛帞鈧綆浜為敍鐔兼⒒娓氬洤澧紒澶嬫尦閹繝寮撮悙鈺傛杸闂佺ǹ鏈粙鎾剁不閹剧粯鐓冮悷娆忓閻忔挳鏌熼瑙勬珚鐎规洖缍婇、鏇㈡晲閸℃瑦顫栭梻鍌氬€烽懗鑸电仚濡炪倖鍨靛ú顓炵暦閹存績妲堟俊顖滃帶缁犵敻姊洪崜鑼帥闁哥姵甯″鍛婃償閵婏妇鍘甸梺璇″瀻閸涱喚鈧噣鎮跺顓犵疄婵﹨娅i幏鐘诲箵閹烘垶鐦g紓鍌氬€哥粔鏉懳涘┑鍡欐殾闁哄顕抽弮鍫濆窛妞ゆ挾鍋為崕顏堟⒑鐠囪尙绠抽柛瀣У缁绘盯宕堕鈧猾宥夋煕椤愩倕鏋戞繛鍛矒濮婃椽宕ㄦ繝浣虹箒闂佸憡枪濡嫰鍩㈤幘娲绘晣闁绘ḿ鏁搁敍婵囩箾鏉堝墽鍒伴柟纰卞亜閺嗏晠姊绘担鍛婃喐濠殿喚鏁婚幃褔鎮╁顔兼婵犵數濮电喊宥夊磻閸曨垱鐓熼柟鎹愭珪閹癸綁鏌i敐澶岀暫婵﹨娅g槐鎺戭潨閸℃ḿ鏆ラ梻浣虹帛椤ㄥ棛鍒掑畝鍐罕闂備礁鎲″ú锕傚垂闁秴鐓曢柟杈鹃檮閸嬶綁鏌涢妷顔荤盎闁汇劏娅g槐鎺楁偐闂堟稑濡虹紓浣虹帛閻╊垰鐣烽妸鈺婃晩闁伙絽鐭堝Σ鍫曟⒒娴g儤鍤€缂佺姴绉瑰畷纭呫亹閹烘垹鍘撮梺鐟邦嚟婵參宕戦幘缁樻櫜閹煎瓨绻勯惄搴ㄦ⒑鐠囨彃鐦ㄩ柛妯恒偢閳ユ棃宕橀鍢壯囨煕閳╁喚娈旂悰鑲╃磽閸屾瑦绁扮€殿喗鎸鹃崚鎺戔枎韫囷絽娈ㄩ梺鍛婂姇瀵剟寮崼婵堫槰濡炪倕绻愬Λ瀵告閸愭祴鏀介柣鎰煐瑜把呯磼閸欏绀冮柕鍥ㄥ姍瀹曟﹢鍩¢崘鐐敜闂備胶绮崝锕傚礈濞戞艾濮柍褜鍓熷娲濞戙垻宕紓浣藉紦缁瑩骞冮敓鐘茬疀闁绘鐗忛崢閬嶆⒑閸濆嫬鏆婇柛瀣崌閺岋絽螖閸愩劉鏋呭Δ鐘靛仜閸熸挳寮幘缁樺亹闁告劘寮撶花濠氭⒒娴e懙鍦崲濡ゅ懎纾婚柟鐗堟緲閸屻劑鏌熼崜褏甯涢柛瀣у墲缁绘繃绻濋崒姘间紑闂佹椿鍘界敮鐐哄焵椤掑喚娼愭繛鍙夅缚閸掓帒鐣濋崟顐ゅ幒闁瑰吋鐣崝宀€绮诲☉娆嶄簻闊洦鎸婚ˉ鐘绘煟閿濆棗鍔ら柍瑙勫灴閹瑥顔忛鍏碱啀濠电姵顔栭崰妤呭箰閹跺鈧線寮介鐐茶€垮┑鐐村灦閻熴儲绂嶅Δ鍛拺闁告繂瀚崒銊╂煕閵婏附銇濋柟顕嗙節瀹曟﹢顢欓悾灞藉箞婵犵數濞€濞佳兾涘Δ鍜佹晜闁冲搫鎳忛悡鍐喐濠婂牆绀堟繝闈涱儛閺佸鎲歌箛娑樼煑闁告稑鐡ㄩ埛鎴︽煕閿旇寮ㄦ俊鐐倐閺屾盯鎮╅幇浣圭杹闂佽鍠掗埀顒佹灱濡插牓鏌曡箛濞惧亾閺傘儱浜鹃柛顐f礃閻撶喖鏌熼柇锕€鐏$痪顓炲⒔閹喖顫濋懜纰樻嫼闂傚倸鐗冮弲婵堢矓椤掍降浜滄い鎰╁焺濡偓婵犵绱曢弫璇茬暦閻旂⒈鏁嶉柨婵嗘濞呭洭姊绘担鐟邦嚋缂佽鍊哥叅闁靛ň鏅滈崑鈺呮煟閵忕姵鍟為柍閿嬪灥闇夐柛蹇氬亹閹冲懘鏌熼绗哄仮闁哄本绋栫粻娑㈠棘閸♀晙閭柟顕€绠栭幃婊堟寠婢舵劕鏁归梻浣告惈濞层劑宕戦悢鐓庡偍闁归棿鐒﹂埛鎴︽煕濞戞﹫宸ュ┑顔瑰亾闂備礁鎼幊蹇曞垝閹捐绠氬〒姘e亾妤犵偞甯掕灃濞达絽寮剁€氫粙姊绘担鍛靛綊寮甸鍕仭闁挎柨澧介惌鍫ユ煙濞堝灝鏋撻柛瀣尵閹叉挳宕熼鍌ゆК闂備浇顕х换鎴濈暆閹间胶宓侀柛顐犲劚鎯熼梺瀹犳〃閼宠埖顨ラ崶顒佲拺闁革富鍘兼禒娲煕閺傝法孝妞ゎ亜鍟撮幊鐐哄Ψ閵堝洨鐣鹃梻浣稿閸嬪懎煤閺嶎厽鐓侀柛銉e妿缁犻箖鏌熺€电ǹ鍓辨繛鍫熸礋閺岋綁顢曢姀銏㈩啋濠殿喖锕︾划顖炲箯閸涘瓨鎯為柣鐔稿椤愬ジ姊绘担鍛婂暈婵﹦鎳撶叅闁绘棁鍋愬畵渚€鏌″搴″季闁轰礁鍟撮弻銊╁籍閸ヮ煈妫勫┑鐐茬墛缁诲牓寮婚敐澶嬪亜闁告縿鍎查崳褔鏌f惔銏犳惛闁告柨绉剁划瀣吋閸涱亜鐗氶梺鍓插亞閸犳捇宕㈤悽鍛娾拺缂備焦锚閻忥箓鏌ㄥ鑸电厽闊洤顑呴崝锕傛煛鐏炵晫啸妞ぱ傜窔閺屾盯骞樼€靛憡鍣紓浣戒含閸嬬偟鎹㈠┑瀣<婵犲﹤瀚鏇㈡⒒娴g儤鍤€闁宦板妿閹广垹顓奸崨鈺冪窗闂侀潧艌閺呮粓鎮¢崘顏呭枑婵犲﹤鐗嗙粈鍫ユ煟閺傛娈犻柛銈嗘礀閳规垿鎮╃€圭姴顥濋梺鍛婎殕婵炲﹪寮婚敐澶婄睄闁搞儺鐓堟禒鈺侇渻閵堝棙鈷愭繛鑼枛楠炲啫鐣¢幍鍐茬墯闂佸憡鍔﹂埀顒夊灛閸婃繈寮诲鍫闂佸憡鎸诲畝绋跨暦濞嗘帇浜归柟鐑樺灴濡兘姊洪幐搴g畵闁瑰嘲顑夊畷鐢稿即閵忥紕鍘甸梺璇″灡濠㈡ǹ顣块梻浣呵归鍡涘礉濡ゅ啯顫曢柟鎯х摠婵潙螖閻橆喖濡界€光偓閹间胶宓侀煫鍥ㄦ媼濞差亶鏁傞柛娑变簼鐎氬ジ姊绘担鍛婂暈缂佸鍨块弫鍐晝閸屾氨鍙€婵犮垼鍩栭崝鏍偂閵夆晜鐓涢柛銉厑椤忓牆鐒垫い鎺嶇贰濞堟﹢鏌涢幒鎾虫诞妞ゃ垺锕㈡慨鈧柣妯活問閸炴椽姊绘担绛嬫綈鐎规洘岣挎禍绋库枎閹寸姳绗夊┑顔斤供閸擄箑銆掓繝姘厪闁割偅绻冮ˉ婊冣攽椤斻劌鎳愮壕濂告煛鐏炶鍔ら柣锝嗘そ閹稿﹪鎮㈤崗鑲╁幈濡炪倖鍔戦崐鏇㈠几瀹ュ洨纾奸悹鍥у级椤ョ偤鏌曢崶褍顏鐐叉喘閸┾剝鎷呮潪鎵/闂傚倷鐒﹂幃鍫曞磹閺囩伝娲敇閵忕姾鎽曞┑鐐村灟閸ㄥ綊鎮″☉銏″€甸柨婵嗛婢т即鏌i敃鈧悧鎾诲箖濡ゅ啯鍠嗛柛鏇ㄥ墰閿涙﹢姊洪崨濠冣拹闁搞劌娼℃俊瀛樻媴缁洘鐎婚梺瑙勫劤绾绢參鎮炬ィ鍐╁仭婵犲﹤鍟版晥閻庤娲╃徊鍓ф崲濠靛鐐婇柕濞垮灪鐎氫粙姊绘担鍛靛綊寮甸鍕仭闁靛ň鏅涚粈鍌溾偓鍏夊亾闁逞屽墰濡叉劙骞掑Δ濠冩櫔闂佸憡渚楅崢鐐閹间焦鍊甸悷娆忓缁€鍐磼鐠囪尙澧︾€殿噮鍋婂畷姗€顢欓懖鈺嬬床婵犳鍠楅敃銏㈡兜缁嬭锝夋嚋閻㈢數鐦堥梺姹囧灲濞佳勭濠婂嫪绻嗘い鎰剁悼閹冲洨鈧娲樼换鍫濐嚕閹绢喗鍋愰柟棰佺娴犳椽姊绘担铏瑰笡闁告梹顨婇妴鍌涚鐎n亞锛涢梺瑙勫礃瀹曢潧鐣垫笟鈧弻娑⑩€﹂幋婵囩亪婵犳鍠栨鎼佲€旈崘顔嘉ч煫鍥ㄦ礈缁愭姊洪崨濠庢畷濠电偛锕悰顕€宕橀鑲╀紜闂佸搫鍊堕崕鏌ユ倵婵犳碍鈷戦柛锔诲幖娴滅偓绻涢崗鑲╂噰闁糕斁鍋撳銈嗗坊閸嬫捇鏌h箛鏃€鐨戦柟骞垮灩閳藉濮€閻樻鍚呴梻浣虹帛閸旀洟鎮樺璺虹獥婵°倕鍟扮壕浠嬫煕鐏炴崘澹橀柍褜鍓欑紞濠囧箠濠靛洢鍋呴柛鎰剁岛閸嬫捇鏁冮崒娑樻畱濡炪倖鐗徊楣冾敁閸ヮ剚鈷掑ù锝呮啞閸熺偤鏌熼幖浣虹暫鐎规洑鍗冲鍊燁檨闁搞倖娲栭埞鎴︽偐瀹曞浂鏆¢梺绋款儏鐎氫即寮诲☉婊呯杸闁哄洨鍋涙禒姗€姊洪崨濠冩儎闁告挾鍠庨~蹇撁洪鍕獩婵犵數濮寸€氼喚妲愭导瀛樷拺缂佸娼¢妤呮煟閵堝懏鍠橀柛鈺佹嚇濡啫鈽夐幒鎾存澑闂佸湱鍎ゆ繛濠傜暦閹邦儵鏃€鎷呴悷鏉夸紟闂備胶绮崹鐓幬涢崟顓烆棜缂備焦岣跨粻楣冩煙鐎涙ḿ鎳冮柣蹇d邯閺岋綁骞橀姘闂傚倸鍊烽悞锔锯偓绗涘懏宕查柛灞绢嚤濞戙垹绫嶉柛灞剧☉鎼村﹪姊虹化鏇炲⒉缂佸甯¢幃锟犳偄閸忚偐鍘甸柡澶婄墕婢х晫绮欑紒妯镐簻闁靛鍎哄Ο鈧Δ鐘靛仜濡繈骞冮姀銈呯閻忓繑鐗楃€氬ジ姊婚崒姘偓鎼佹偋婵犲啰鐟规俊銈傚亾妞ゎ剙锕ㄩˇ鏌ユ煃鐟欏嫬鐏撮柛銊╃畺閹煎綊顢曢姀鈺傂熺紓鍌氬€风粈渚€宕愰崫銉х煋闁圭虎鍠楅崑鈺呮煥閻斿搫孝缂佺姰鍎甸弻褑绠涢敐鍛凹闂佸搫顦伴幃鍌氼潖缂佹ɑ濯撮柧蹇曟嚀缁楋繝姊洪崨濠冣拹闁绘娲栭悳濠氬垂椤旇鐎婚梺鍦亾濞兼瑩鍩€椤掆偓閻栧ジ寮婚妸鈺佺睄闁搞儺鐏濋幘缁樼厱婵炲棗绻掔粻浼存煃鐟欏嫬鐏撮柟顔规櫊楠炴捇骞掑┑鍛/闂傚倷鐒﹂幃鍫曞磹閹版澘纾婚柟鍓х節缁诲棝鏌i幇鍏哥盎闁逞屽厵閸婃繂鐣烽姀锛勯檮闁告稑锕ら埀顒冨煐缁绘繈妫冨☉鍗炲妧缂傚倸绉甸悧妤冩崲濠靛洨绡€闁稿本绮岄。娲⒑缂佹ê绗掗柣蹇斿哺婵$敻宕熼姘鳖唺闂佺懓鐡ㄧ换宥嗗閳ь剟鏌f惔銈庢綈闁规悂顥撳▎銏狀潩鐠洪缚鎽曞┑鐐村灟閸ㄥ湱绮诲☉銏$厓閺夌偞澹嗛ˇ锔姐亜閵夈儺鍎旀慨濠冩そ瀹曨偊宕熼锝嗩唲闂備胶绮〃鍛涘Δ鍜佹晩闊洦鎸撮弨浠嬫煕閵夛絽鍔欑紒銊ヮ煼濮婃椽宕崟顐f濠电偛鐪伴崐娑€€傞崸妤佲拻濞达綀娅g敮娑氱磼鐠囪尙效鐎规洘鍨剁换婵嬪炊瑜戦幗鏇㈡⒑閹稿海绠撴俊顐g懇瀹曟洟鎮㈤崗鑲╁帗闂侀潧顦崕閬嶅汲闁秴绾ч柛顐g箖閸ゅ洦鎱ㄦ繝鍛仩缂侇喗鐟ラ埢搴ㄥ箚瑜嶆竟澶愭⒒娴e憡璐¢柟铏尭鐓ゆい鎾跺剱閸ゆ洟鎮归崶銊с偞婵℃彃鐗撻弻鏇$疀閺囩倫銉╂煟閵堝倸浜炬繝纰夌磿閸嬫垿宕愰弽顓炵濡わ絽鍟壕缁樼箾閹寸偟鎳勯柛娆忕箻閺屾洝绠涢弴鐐愭盯鏌¢埀顒佺鐎n偆鍘介梺褰掑亰閸ㄤ即鎯冮崫鍕电唵鐟滃宕规禒瀣摕婵炴垶鍩冮崑鎾绘晲鎼粹€茬凹闁诲繐绻掗弫濠氬蓟閻旇偐宓侀柛顭戝枤娴犲ジ姊虹€圭姵顥夋い锔诲灦閿濈偛鈹戠€n偅娅滈梺鍛婁緱閸撴瑩藟濮樿埖鈷掑ù锝呮贡濠€浠嬫煕閵婎煈鍤欓柍璇茬Ч婵$兘濡搁敐鍕潖闂備礁婀遍崕銈囨崲閸愵喖鐤炬繛鎴欏灪閳锋垿鎮峰▎蹇擃仼闁告柣鍊曢…鑳槻婵炴挳鏀辩粩鐔煎即閵忊€充患闁诲繒鍋熸灙濞存粎鍋撻〃銉╂倷閼碱兛铏庨梺鍛婃⒐閻熝呮閹烘鐒垫い鎺嶇劍婵挳鏌涢敂璇插季婵炴彃鎲℃穱濠囧Χ韫囨洖鍩岄梺鍝ュ櫏閸ㄥ爼宕哄☉銏犵闁瑰瓨鐟㈤崑鎾诲箳閹搭厽鍍甸梺鎸庣箓閹冲秵绔熼弴鐔虹瘈闁汇垽娼ф禒鎺楁煕閺嶎偄鈻堢€规洘顨婇幃娆擃敆閸屾顫嶉梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋涚粻濠氭⒑閸濆嫯瀚伴柣妤佹尭椤繐煤椤忓嫭宓嶅銈嗘尨閸撴繈顢撳Δ鍛拺闁告縿鍎辨牎闂佺粯顨嗙划搴ㄥ礆閹烘挾绡€婵﹩鍘兼禍鍦磽閸屾瑧鍔嶅畝锝呮健瀹曘垽顢旈崼鐕佹濡炪倖鍔戦崹鐑樺緞閸曨剛绠鹃柛娆忣槺婢ь亪鏌¢崱蹇旀珚婵﹦绮幏鍛村川婵犲啫鍓垫繝纰樻閸嬪懘銆冩繝鍥モ偓渚€寮介妸銉х獮闂佸綊鍋婇崜婵嬪箺閺囥垺鈷戦柡鍌樺劜濞呭懘鏌涢悤浣镐簽婵炲棎鍨介幃娆撳传閸曨収鍟囨繝鐢靛剳缂嶅棝宕滃▎鎾村€舵い鏇楀亾闁哄本娲熷畷鍗炍旂€n厼鎯堟繝娈垮枛閿曘劌鈻嶉敐澶婄闁绘ǹ顕ч悘鎶芥煣韫囷絽浜炵憸鐗堢叀濮婄粯鎷呴悜妯烘畬闂佹悶鍊栭悧鐘荤嵁韫囨稒鏅搁柨鐕傛嫹40%闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闂囧鏌ㄥ┑鍡╂Ч濞存嚎鍊濋弻銈夊级閹稿骸浠撮悗娈垮枛閻栫厧鐣烽悡搴僵妞ゆ挾鍠撹ぐ鍛存⒒娴h鍋犻柛鏂跨Ф閹广垽宕橀鍢夛箓鏌涢弴銊ョ仩闁告劏鍋撴俊鐐€栭崝锕€顭块埀顒傜磼椤旂厧顣崇紒杈ㄦ尰閹峰懘骞撻幒宥咁棜婵犵數濮伴崹濂稿春閺嶎厼绀夐柡宥庡幗閸嬪倹绻涢幋鐐茬劰闁稿鎹囬悰顕€宕归鐓庮潛濠德板€楁慨鐢稿箖閸岀偞鍋樻い鏇楀亾鐎殿喕绮欓、姗€鎮㈤崫鍕疄闂傚倷绶氬ḿ褎鐏欓梺绋块叄娴滃爼宕洪埀顒併亜閹哄棗浜剧紓鍌氱Т閿曨亪鎮伴鈧畷濂稿Ψ閵夊簶鏅犻弻鏇熷緞婵犲啯宕抽梺鍝ュУ閻楃娀鎮伴鈧獮鍥敇閻斿嘲濡抽梻浣瑰缁诲倿宕悩璇茬;闁规崘顕х粻娑㈡煛婢跺孩纭跺Δ鐘叉喘濮婃椽宕橀崣澶嬪創闂佺ǹ锕ㄥ畷鐢靛垝婵犳碍鍊烽悗娑櫭鎸庣節閻㈤潧孝闁瑰啿绻橀、鏃堟偐閻㈢數锛滃銈嗘⒒閺咁偊骞婇崶顭戞闁绘劖娼欐慨鍫ユ煙椤栨稒顥堝┑顔瑰亾闂佺偨鍎查崜姘閸℃瑧纾介柛灞捐壘閳ь剚鎮傚畷鎰暋閹冲﹤缍婂畷鍫曨敆婢跺娅旈柣鐔哥矊缁绘帡宕氶幒妤€绫嶉柛顐ゅ枎娴狀參姊虹憴鍕靛晱闁哥姵顨呴埢鎾淬偅閸愨斁鎷哄┑顔炬嚀濞层倝鎮橀埡鍛厵閻犲泧鍛槇閻庢鍠楄ぐ鍐煘閹寸姭鍋撻敐搴′簽闁告ɑ鎹囬幃宄扳堪閸曨厾鐓夐悗瑙勬礃缁捇骞冮姀銈呯闁靛牆鐗冮崑鎾诲垂椤旇 鍋撻幒鎴僵闁挎繂鎳嶆竟鏇熺節濞堝灝鏋涢柨鏇樺妼閳诲秹鏁愰崶顭戞綗闂佸湱鍎ら崵锕傛偄閻撳海顦ч梺缁樻尭鐎涒晠鎮甸敐澶嬧拻闁稿本鐟ㄩ崗灞俱亜閵忕媴宸ラ柍璇茬Ч瀵挳濮€閻樻妲锋繝寰锋澘鈧洟宕锕€鍨傛繝闈涱儐閻撴盯鏌涢幇鈺佸濠⒀囦憾閺屸剝鎷呴崨濠庢&闂佸搫鏈惄顖氼嚕閹绢喖惟闁靛鍎哄ḿ楣冩⒒娴e憡鍟為柨鏇楁櫆缁傚秹顢旈崟鍨稁闂佹儳绻掗幊鎾垛偓鍨叀閺岋繝宕堕埡浣风捕闂佸啿鍢查ˇ顖炩€旈崘顔嘉ч柛鎰╁妼椤牓姊虹涵鍛彧闁挎碍銇勯弴顏嗙М妤犵偛閰i幊鐐哄Ψ閵夈倗鐩庨梻鍌欒兌鏋紒缁橆殜瀹曟垿骞囬弶鍨亶闂佹眹鍨归幉锟犲磹閻㈠憡鐓熼柣鏂挎啞缁跺弶銇勮箛锝勭盎妞ゎ厼娼¢幃鐑芥偋閸偅锟ョ紓鍌欑贰閸犳螞閸愵喖绠栨繝濠傚悩閻斿吋鈷愰柟閭﹀枤濞夊潡姊婚崒娆戠獢婵炰匠鍛床闁糕剝绋戦弰銉︿繆閵堝懏濯奸柡浣稿€块弻娑㈩敃閿濆洨鐣奸梺鍛娚戦幐鍐差潖閾忚鍏滈柛娑卞枛濞懷呯磽娴e搫校闁搞劌娼¢獮鍐ㄢ枎閹邦喚鐦堥梺鍛婃处閸撴瑩寮搁幋婵冩斀闁绘ǹ顕滃銉╂倵濮樼厧澧存い銏″哺閺屽棗顓奸崱娆忓箞闂備焦鏋奸弲娑㈠疮娴兼潙鐓€闁哄洢鍨洪悡鍐⒑閸噮鍎忕紒妤佸浮濡焦寰勯幇顓犲弳濠电娀娼уΛ娆撳闯濞差亝鐓曢柣鏂挎惈娴犻亶鏌″畝鈧崰鏍€佸☉姗嗘僵闁告鍋愰崣娲⒒娴e憡鎯堥柣顓烆槺瀵板﹪宕愰悢杞扮胺婵犵數鍋犻幓顏嗙礊閳ь剚绻涢崪鍐М闁诡喒鍓濆鍕箛椤撶偐鍋撻悽鍛婂仭婵炲棗绻愰顏嗙磼閳ь剟宕橀鍡欙紲濡炪倖妫侀崑鎰版倿閹间焦鐓曢柍鐟扮仢閸旀粎鈧灚婢樼€氫即鐛崶顒夋晢濠㈣泛顑囩粔閬嶆⒒閸屾瑨鍏岄柛瀣ㄥ姂瀹曟洟鏌嗗鍛亶闂佸搫绋侀崢鑲╃不閿濆鈷戦柛顭戝櫘閸庡海绱掔拠鍙夘棦闁哄矉缍侀獮鍥礂閸濄儳娉块梻渚€鈧偛鑻晶顖炴煟濡ゅ啫鈻堟鐐插暢椤︽煡鎽堕弽顓熺厱闁规澘鍚€缁ㄤ粙鏌i幘瀛樺磳婵﹥妞藉畷鐑筋敇閻愭澘顥氶梻浣规た娴滄粎绱炴繝鍥ф槬闁逞屽墯閵囧嫰骞掗崱妞惧闂備胶顢婂▍鏇㈡晝閵忋倗宓侀柛鎰╁妷閸亪鏌涢銈呮瀻婵炲牏鍠栧娲濞戣鲸肖闂佺ǹ绨奸崡鍐茬暦閻樿鍐€鐟滃寮ㄦ禒瀣厽闁归偊鍨伴悡鎰喐閹跺﹤鎳愮壕濂告椤愵偄骞橀柣顓熺懄椤ㄣ儵鎮欓幖顓熺暥濡ゆ浜欓崡鍐茬暦婵傚憡鍋勯柛娑橈功瑜般劑姊虹拠鏌ヮ€楃紒鐘茬Ч瀹曟洟宕¢悘缁樻そ婵℃瓕顦叉い銉﹀哺閺岋綁骞橀崘鑼О闂佺粯鏌ㄥΛ婵嬪箖瑜版帗鎯為柣鐔稿濞堛倝姊洪崨濠冣拻闁哥姴閰e﹢渚€姊虹紒姗堜緵闁哥姵鐗犻幃姗€宕f径澶岀畾濡炪倖鍔х槐鏇㈠礉瀹ュ洠鍋撻崹顐g凡閻庢凹鍣i崺鈧い鎺戯功缁夌敻鏌涢幘瀵告创闁诡垯绶氬畷濂稿Ψ閿曗偓娴狀厼鈹戦悩璇у伐闁哥喐澹嗙划濠氬蓟閵夛妇鍘垫繛鎾磋壘閻忔繃鎱ㄩ崒娑辨闁绘劘鎻懓鎸庛亜閵忥紕鎳囬柟铏墵閸╋繝宕掑⿰鍐ㄐ┑鐘殿暜缁辨洟宕戦幋锕€纾归柡宥庡幗閸嬪绻濇繝鍌滃缁惧墽绮换娑㈠箣閻愬娈ゆ繛鎴炴尭缁夌敻骞堥妸銉庣喖宕归鎯у缚闂備胶绮幐璇裁哄⿰鍫濈劦妞ゆ巻鍋撻柛妯荤矒瀹曟垿骞樼紒妯煎帗閻熸粍绮撳畷婊堟偄妞嬪孩娈鹃梺纭呮彧闂勫嫰宕愰悜鑺ョ厽闁瑰浼濋鍛洸婵°倕鎳忛埛鎴︽⒒閸喍绶辨俊鐙欏啠鏀介柍銉ㄦ珪瀹告繄绱掗鍓у笡闁靛牞缍佸畷姗€鍩¢崘銊ョ闂備浇顕уù鐑藉极閸涘﹦浠氶梻渚€鈧偛鑻晶顖炴煕閵娿儳浠㈤柣锝囧厴閹粎绮电€n偅娅嶆繝鐢靛仦閸ㄥ墎婀佹繝銏n潐濞叉牠鍩為幋锔绘晩闁活収鍋掓禍婊堟偩閻戠瓔鏁嗛柛鏇楁杹閸嬫捇宕掗悙鏉戞異闂佸啿鎼崯浼存晬濠婂懐纾介柛灞剧懅閸斿秴鐣濋敐鍛虎閻撱倝鏌熺紒銏犳灍闁绘挻鐟﹂妵鍕籍閸屾稑娈屾繝鈷€鍕弨闁哄瞼鍠栭、娑樷槈濞嗘ɑ顥堥梻浣虹《閺傚倿宕曢棃娑氭殾闁告鍊i弮鍫濈劦妞ゆ巻鍋撻柡渚囧枤缁辨捇宕掑顑藉亾閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛闁诲氦顫夊ú姗€宕濆▎蹇曟殾妞ゆ劧绠戝敮閻熸粌绻橀幃锛勨偓锝庡枟閸嬧剝绻濇繝鍌涘櫣妞わ絽銈搁幃浠嬵敍濮橆厼鏋犻梺绯曟杹閸嬫挸顪冮妶鍡楃伇婵炲娲滅划锝夊籍閸屾浜炬繛鍫濈仢閺嬬喖鏌熷灞剧彧闁逛究鍔戦崺鈧い鎺戝閻撶喐绻涢崱妤勫濞存粍鍎抽埞鎴︽倷闂堟稑浠橀梺鎸庢处娴滄粓锝炶箛娑欐優闁革富鍘鹃敍婊冣攽閳藉棗鐏犲褍娴峰Σ鎰鐎涙ǚ鎷洪柡澶屽仦婢瑰棝宕濆澶嬬厽闁斥晛鍟粈瀣煕閳轰焦鍤囬柡浣规崌閺佹捇鏁撻敓锟�9闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞剧洴椤㈡洟鏁愰崱娆欑喘闂備線鈧偛鑻崢鎼佹煟閹虹偛顩柟骞垮灩閳规垹鈧綆浜為崐鐐烘偡濠婂啴顎楅崡杈ㄣ亜閹烘垵顏柍閿嬪灴閺屾稑鈹戦崱妤婁紑闂佸疇顕чˇ鐢稿蓟濞戙垹绠婚悗闈涙啞閸n喚绱撴担鎴掑惈闁稿鐩敐鐐测堪閸繄鍔﹀銈嗗坊閸嬫挻銇勯銏㈢缂佽鲸甯掕灒闁兼祴鏅滈崵宀勬⒒娓氣偓閳ь剛鍋涢懟顖涙櫠閹绢喗鐓曢柍瑙勫劤娴滅偓淇婇悙顏勨偓鏍暜閹烘纾归柛娑橈功椤╅攱绻濇繝鍌滃闁绘挾濮电换娑㈡嚑妫版繂娈梺璇查獜缁绘繈寮婚敓鐘插窛妞ゆ挾濮撮悡鐔奉渻閵堝啫鐏€光偓閹间礁鏄ラ柍褜鍓氶妵鍕箳閹存繍浠奸梺钘夊暟閸犳劗鎹㈠☉銏犵闁绘劕鐏氶崳顔剧磽娴e弶顎嗛柛瀣崌濮婄粯鎷呴崨濠傛殘闂佸憡鏌ㄧ换妯侯嚕閹绘巻妲堥柕蹇曞Х閸旓箑顪冮妶鍡楃瑐缂佲偓娴h鍙忕€广儱顦伴悡娑氣偓鍏夊亾闁逞屽墴瀹曚即寮介婧惧亾娴g硶妲堟慨妤€妫欓崓闈涱渻閵堝棗绗傞柣鎺炵畵椤㈡瑩骞掗幋鏃€鏂€闂佺粯蓱閸撴岸宕箛娑欑厱闁绘ê鍟垮ù顔锯偓瑙勬礃閸ㄥ潡鐛Ο鑲╃<婵☆垶鏀辩€氬ジ姊婚崒姘偓鎼佹偋婵犲嫮鐭欓柟鎯х摠濞呯娀鏌¢崶銉ョ仾闁绘挻鐟╅弻褑绠涢敐鍛盎婵犳鍠栫粔褰掑箰婵犲倵鏀介柛銉e劙缁ㄥ姊虹憴鍕凡闁绘牜鍘ч‖濠囶敋閳ь剟寮诲澶嬬叆閻庯綆浜炴禒鑲╃磽娴d粙鍝洪悽顖ょ節閵嗕礁鈽夊Ο閿嬵潔濠电偛妫欓崺鍫澪i鈧埞鎴︽偐椤愶絽顎忛梺鍛婂姂閸斿孩顨ラ崶鈺冪=濞达綀娅g敮娑㈡煟閳哄﹤鐏︽鐐诧躬閹晛煤缂佹ɑ娅岄梻渚€鈧偛鑻晶瀵糕偓娈垮枤鏋柍钘夘樀婵偓闁挎稑瀚獮宥嗕繆閻愵亜鈧牕煤閺嶎灛娑樷槈濮橆剙袣闂侀€炲苯澧存慨濠呮閸栨牠寮撮悢鍝ュ剑缂傚倷鑳剁划顖滄崲閸岀偞鍋╅柣鎴f鎯熼梺鍐叉惈閿曘儵寮查埡鍛厽闁绘柨鎽滈幊鍐倵濮樼厧澧存い銏℃閵囨劙骞掗幘顖涘闂備胶枪閺堫剟鎮疯钘濋柨鏇炲€归悡娆撴偣閸ュ洤鎳愰惁鍫澪旈悩闈涗沪闁告梹鐟ラ悾鐑藉础閻愨晜顫嶅┑鈽嗗灣閳峰牆危娴煎瓨鐓熼柣鏂挎憸閻﹦绱掓径宀婃敯婵☆偁鍨归埞鎴︻敊鐟欐帒缍婂畷娲冀椤撶偟鍘遍梺鐟邦嚟閸嬬偤宕h箛娑欑厽闁绘柨鎼。濂告煙閸忕厧濮嶉柡宀嬬秮楠炴帡骞樺ǎ顑胯檸闂備礁鎼張顒勬儎椤栨稐绻嗛柟闂寸閻撴盯鏌嶈閸撶喖鐛径鎰€锋い鎺戭槹椤旀棃姊虹紒妯哄婵炲吋鐟﹂幈銊ヮ吋婢跺鍘甸梺缁樻尭濞撮绮旈悜妯镐簻闁靛繆鍓濈粈瀣煛娴e摜效鐎规洜鍠栭、姗€鎮╅搹顐ゆД闂傚倸鍊搁崐宄懊归崶顒夋晪鐟滃繘鍩€椤掍胶鈻撻柡鍛箘閸掓帒鈻庨幘宕囶唺闂佸搫娲ㄩ崰鎰板闯闁垮绡€闁汇垽娼ф牎濡炪倖姊归悧鐘茬暦瑜版帗鐒肩€广儱鎳愰鍥⒑鐟欏嫬鍔舵俊顐㈠缁寮介鐔蜂壕闁荤喐婢橀顏勵熆閻熼偊鍎旂€殿喖鎲¢幆鏃堝Ω瑜嶈ぐ鍕⒑閹肩偛鍔橀柛鏂跨Ч楠炲棝宕熼鈧ぐ鎺撳亹閻忕偛鍊告禒顔尖攽椤旂》宸ユい顓炲槻閻g兘骞掗幋顓熷兊濡炪倖鍨煎▔鏇㈠极閺嶎厽鈷掑ù锝堫潐閸嬬娀鏌涢弬璺ㄧ闁崇粯鏌ㄩ埥澶愶綖椤斿墽鈼ら梻濠庡亜濞诧妇绮欓幒妤€绠氶柣鎰劋閸嬧剝绻涢崱妤冪妞ゅ繆鏅犻弻娑樜熼搹鍦ㄥ┑顔硷攻濡炶棄鐣烽妸锔剧瘈濞达綀娅g粻鎺楁⒒娴h鍋犻柛鏂款儔瀹曪繝骞庨挊澶岀暫閻熸粌绉归敐鐐测攽鐎n偄娈濈紒鍓у钃遍悗姘冲亹缁辨捇宕掑▎鎴М濡炪倖鍨甸幊搴$幓閸ф鏅搁柣娆屽亾闁轰椒鐒︽穱濠囧Χ閸涱厽娈滈梺绋款儐閹搁箖骞夐幘顔肩妞ゆ巻鍋撴い锔规櫊濮婃椽宕ㄦ繝鍐ㄦ殫闂佸摜濮撮柊锝夊极閸愵喖顫呴柍鈺佸暙椤庢挾绱撴笟鍥х仭婵炲弶锕㈠顒勫焵椤掍椒绻嗛柣鎰典簻閳ь剚鐗犲濠氬Ω閳哄绋忛梺鍝勬川閸犳捇銆呴柨瀣瘈濠电姴鍊绘晶娑㈡煟閹惧瓨绀嬮柟顔筋殜閺佹劖鎯旈垾鑼嚬闁诲氦顫夊ú鏍儗閸岀偛钃熼柍銉ョ-閺嗗棝鏌嶈閸撶喎鐣锋导鏉戝唨妞ゆ挻澹曢崑鎾存媴缁洘鐎婚梺鍦亾缁剁偤鍩¢崨顔惧帾婵犮垼鍩栭惄顖氼瀶椤曗偓閺岀喖顢欓悾灞惧櫚濠殿喖锕ㄥ▍锝囨閹烘嚦鐔煎传閸曞灚缍嬮梻鍌欑劍鐎笛兠洪敂鐣岊洸妞ゅ繐瀚烽崵鏇㈡偣閸パ勨枙闁告艾顑呴…璺ㄦ崉閻氬瓨顣肩紓浣稿船閻栫厧顫忓ú顏勫窛濠电姴鍟ˇ鈺呮⒑缁嬫鍎忛柟鍐查叄閸┿垽骞樼拠鑼舵憰闂侀潧顧€閼靛綊骞忓ú顏呯厽闁绘ê寮剁粈宀勬煃瑜滈崜娆戝椤撶喎顕遍柛顐犲灮绾句粙鏌涚仦鐐殤鐏忓繒绱撴担鎻掍壕婵炴挻鍩冮崑鎾绘煥濠靛牆浠╃紒鐘崇洴楠炴ɑ鎷呯憴鍕╀虎濡炪們鍨哄Λ鍐ㄧ暦閻旂⒈鏁囩憸宥夊极瑜版帗鈷掑ù锝勮閺€鏉款熆閻熸壆澧︽鐐存崌椤㈡棃宕卞Δ鍐摌闂備礁鎲$换鍌溾偓姘e亾闂佹寧绻傞ˇ顖炴煁閸ヮ剚鐓忓鑸电閸氬倿鏌熼柨瀣仢婵﹨娅g划娆戞崉閵娧屽敹闂備礁鎲¢懝楣冾敄婢跺绻嗛柣銏犳啞閸嬪嫰鏌涜箛姘汗闁告﹢浜跺娲濞淬倖鐩畷鐔碱敆娴g儤顫滃┑鐘垫暩婵兘銆傞鐐潟闁哄洢鍨归弸浣糕攽閻樿櫕鐨戠€规挷绶氶弻娑㈠Ψ椤旂厧顫╃紓浣哄珡閸ャ劌浠繛鎾村嚬閸ㄦ娊宕㈠⿰鍛<閺夊牄鍔庨崣鈧┑顔硷功缁垶骞忛崨瀛樻優闁荤喐澹嗛濂告⒒娴e憡鍟炴慨濠勬嚀閻滃骞愭惔锝庢锤缂備礁顑呯花閬嶅几鎼淬劍鐓欓柟顖嗗憛銏$箾瀹割喖寮柕鍡曠窔瀵挳濮€閳╁啯鐝曢梺鑽ゅ枑閻熻京寰婇崜褉鍋撳顑惧仮婵﹦绮幏鍛村川婵犲倹娈樼紓鍌欐祰椤曆囧磹婵犳艾鐒垫い鎺嶆祰婢规﹢鏌涢姀鈥崇祷鐎规挸瀚伴弻锝夋偄閸濄儲鍣ч柣搴㈠搸閸斿秶绮嬪鍛牚闁割偆鍠撻崢鐢告煟鎼达絾鏆╅弸顏劽归悩娆忔处閻撴瑩鏌涢幇顒€绾х€瑰憡绻堥弻宥堫檨闁告挻绻堥敐鐐村緞婵炴帒鎼灒闁稿繒鍘ф惔濠囨⒑閸撴彃浜濈紒璇插瀵娊鏁冮崒娑氬帾婵犵數鍊埀顒勫磻閹剧粯鐓曢悗锝庡亝鐏忣參鏌嶉挊澶樻Ц闁宠娴烽埀顒婄秵閸撴稓绮eΔ鍛拻濞达絽鎲¢崯鐐烘嫅闁秵鐓欐い鏃傚帶閳ь剙娼¢悰顕€宕橀妸搴㈡瀹曟﹢鍩℃担鍦偓顓㈡⒒娴e憡鍟炴繛璇х畵瀹曟粌鈻庨幘鎼閻庡箍鍎遍ˇ浼村煕閹达附鐓曟繛鎴烇公閸旂喓绱掗悩铏磳婵﹨娅i弫顕€顢欓幆褍鐓傞梻浣风串缁插潡宕楀鈧悰顕€宕堕鈧痪褔鎮归崶鈺佺彙闁告劕澧介崬鐢告煟閻樼儤顏犻悘蹇嬪姂瀹曟繈鎮㈤崗鑲╁幐闁诲繒鍋熼弲顐f櫠閿旇姤鍙忓┑鐘插暞閵囨繄鈧娲樼划鎾荤嵁閹捐绠崇€广儱娲︾€垫粓姊婚崒娆掑厡閺嬵亪鎮楀☉鎺撴珚闁诡噯绻濋弫鎾绘偐閼碱剛鏆梻浣芥硶閸犳挻鎱ㄩ幘顔肩闁规儼濮ら悡鐔镐繆椤栨碍鎯堥柡鍡涗憾閺岋紕鈧綆鍋勯悘鎾煛瀹€鈧崰鏍箠濠靛鍋嬮柛顐g箖闁款厾绱撻崒娆戝妽鐟滄澘鍟玻鍧楁晸閻樿尙鐣鹃柣蹇曞仩琚欓柡瀣叄閺岀喖骞戦幇顓犮€愰悷婊勬緲鐎氭澘顫忓ú顏勭闁绘劖褰冩慨宀勬⒑閸涘﹥鐓ラ梺甯秮瀹曟椽濡烽敃鈧欢鐐烘煙闁箑骞橀柛妯圭矙濮婃椽宕烽鐐插闂佹悶鍔忛~澶岀矉閹烘垟妲堥柕蹇ョ磿閸橆亪姊洪幖鐐插妧闁告劕褰炵槐鏃€淇婇妶鍥ラ柛瀣洴椤㈡牗寰勯幇顒佺€梺鍦濠㈡ê顔忓┑鍥ヤ簻闁规崘娉涢埀顒夊亰婵$兘鍩¢崒妤佸濠电偠鎻徊浠嬪箠濞嗘挸鎹舵い鎾跺枎鎼村﹪姊洪崷顓烆暭婵犮垺岣块埀顒佽壘椤︿即濡甸崟顖氱闁瑰瓨绺鹃崑鎾绘偡閹殿喗娈鹃梺鍛婄懃椤﹁京绮绘ィ鍐╃厵閻庢稒岣块幊鍐煟韫囧﹥娅囬柍褜鍓涢幊鎾诲箟閿涘嫭宕查柛鎰靛枛妗呴梺鍛婃处閸ㄦ壆绮诲☉銏$厓閺夌偞濯介崗灞矫归悩闈涘付妞ゎ亜鍟存俊鑸垫償閳ユ剚娼绘俊鐐€х粻鎾翅缚瑜旈敐鐐剁疀濞戞瑦鍎柣鐔哥懃鐎氼剟鎮垫导瀛樷拺闁绘劘妫勯崝姘辩棯缂併垹骞楃紒鍌涘浮椤㈡﹢鎮欓埡鍌涙澑闂備礁鐤囧Λ鍕涘Δ浣侯洸婵犲﹤鐗婇悡鏇㈡煟閺傛寧鍟炵紓宥嗗灦閵囧嫰寮撮鍡櫺滃銈冨灪濞茬喖寮崘顔肩劦妞ゆ帒鍊婚惌鍡涙煕閹伴潧鏋熼柣鎾冲暣閺屾稑鈹戦崱妤婁患闂侀€炲苯澧柟顔煎€块妴渚€骞樼拠鑼啋闂佸憡鎸烽懗鍫曟晬濠靛洨绠鹃弶鍫濆⒔閸掓澘顭块悷甯含鐎规洘娲熼獮妯尖偓闈涙憸椤旀洘绻濋姀锝嗙【妞ゆ垵妫涚划鍫ュ礃椤忓棛锛滈梺绋挎湰缁嬫垵霉椤斿浜滈柕蹇婃閼板灝鈹戦鐟颁壕闂備焦濞婇弫顕€宕戦幘缁樼厵濡炲娴风敮娑氱磼缂佹ḿ鈯曟繛鐓庣箻瀹曟粏顦查柛鈺佺焸濮婅櫣娑甸崪浣告疂缂備胶绮换鍌炴偩閻戠瓔鏁嶉柣鎰綑閳ь剛鍏橀弻锝夊箣閻愩劎绱伴梺鍛娒肩划娆忣潖濞差亝顥堟繛鎴炲笒閹秵绻濈喊妯峰亾閾忣偄鏋犻梺璇″灠閻ジ鍩€椤掑﹦绉甸柛鐘愁殜閹€斥枎閹存柨浜鹃柣鐔告緲椤忣偄顭胯椤ㄥ﹤鐣烽悽绋跨倞妞ゎ厽鍨堕鏃堟⒑缂佹ê濮囬柣掳鍔岄悾椋庝沪缂併垺顔旈梺缁樺姈濞兼瑧绮幒鎾变簻闁瑰墽鍋ㄩ崑銏⑩偓瑙勬处娴滄繈骞忛崨顖涘珰闁斥晛鍠涚槐鏍ㄧ節閻㈤潧啸闁轰礁鎲¢幈銊╂倻閽樺鐎梺褰掓?缁€浣哄婵犳碍鐓熸俊顖涱儥閸ゆ瑧绱掗悩鑼粵闁靛洤瀚粻娑㈠箻閹碱厽锟ョ紓鍌欒閸嬫挸鈹戦悩鎻掆偓鍫曞焵椤掍礁绗掓い顐g箞閺佹劙宕ㄩ鈧ˉ姘舵⒑鐠囨彃顒㈡い鏃€鐗犲畷鏉课旈崨顔间簵闂佽法鍠撴慨瀵哥不閻樼粯鐓熸俊顖滅帛閵囩喖鏌℃担鍛婎棦闁哄本鐩獮鍥煛娴e壊妫婇梻浣芥硶閸犳挻鎱ㄩ悽绋跨厱闁硅揪闄勯崑鈩冪箾閸℃绠版い蹇婃櫊閺屾盯寮崶銊с€愰梺瀹狀潐閸ㄥ潡銆佸▎鎾充紶闁告洏鍔屾禍鐐節闂堟侗鍎忕紒鐘崇墵閺屻劑鎮㈤崫鍕戙垽鏌涘Δ浣糕枙闁哄矉缍佸顒勫垂椤曞懏娈虹紓鍌欒兌婵潧鐣濈粙娆炬綎婵炲樊浜濋ˉ鍫熺箾閹寸偠澹樻い锝嗘そ閺岋絾鎯旈姀鐘叉瘓闂侀潻缍囩紞鈧俊顐ゅ枛濮婃椽骞愭惔銏㈩槬闂佺ǹ锕ょ紞濠囧箖閳ユ枼鏋庨柟鎯ь嚟閸橀亶妫呴銏″闁瑰憡鎮傞獮鍐箣閿旂晫鍘辨繝鐢靛Т閸燁偅鎱ㄥ澶嬬厸鐎光偓鐎n剛锛熸繛瀵稿缁犳捇骞冮崜褌娌繝闈涘閸旀粓鏌曢崶褍顏い锕佷含缁辨帡鎳滈棃娑樻懙閻庢鍠涢褔鍩ユ径濞惧牚闁告侗鍨卞鎴︽⒒娴e憡鎯堥柛鐕佸亰瀹曟劙宕奸弴鐐靛姦濡炪倖甯婄粈浣虹箔瑜忕槐鎺撴綇閵娿儲璇炲銈冨灪閻熲晠骞婇弽顓炵厸濞撴艾娲﹀鎴︽⒒閸屾瑨鍏岄柟铏崌瀹曟煡寮婚妷銉х枃濠碘槅鍨靛▍锝夊汲閿曞倹鐓熼柟瀵稿Х閹藉倿鏌℃担鍛婂窛闁规彃鎲¢幆鏃堝Ω閿旀儳寮抽梻渚€娼ч悧鍡浰囨导鏉戠厱闁圭儤鍤氳ぐ鎺撴櫜闁告侗鍠栭弳鍫ユ⒑鐠団€崇仩闁绘锕﹂幑銏犫槈濮橆偅鍕冮梺绋挎湰閼归箖锝為崶顒佸€甸悷娆忓绾惧鏌涘Δ浣糕枙闁绘侗鍠栬灒闁稿繒鍘ч悵浼存⒑閼测斁鎷¢柛鎾寸懇閻涱喚鈧綆鍠楅悡鐔煎箹鏉堝墽纾块柣锝庡弮閺屾稒鎯旈妸銈嗗枤闁芥ɑ绻冮妵鍕冀閵娧呯厒婵炴垶鎸哥粔褰掑蓟閻旂厧绠氶柡澶婃櫇閹剧粯鐓熼柟鎯ь嚟閹冲洭鏌″畝鈧崰鏍€佸☉妯峰牚闁告劗鍋撳В澶嬩繆閻愵亜鈧垿宕曢柆宓ュ洭鎮界粙鑳憰闂佹寧绻傞ˇ顖滅不閹惰姤鐓欓悗鐢登瑰皬缂備緡鍠氶弫璇差潖濞差亝顥堟繛鎴炵懄閹瑩鏌f惔銏㈢叝闁告濞婇幃浼搭敊闁款垰浜鹃柨婵嗙凹缁ㄦ挳鏌¢埀顒佺鐎n偆鍘卞銈嗗姧缁插潡鎯屾惔顫箚闁绘劦鍓氶崐鎰叏婵犲嫮甯涢柟宄版嚇瀹曘劑妫冨☉姘毙ㄩ梺杞扮閸熷瓨淇婇悜钘壩ㄩ幖鎼灣閹ジ鏌嶈閸撱劎绱為崱娑樼婵炴垶鑹鹃ˉ姘归悩宸剱闁绘挻娲熼幃姗€鎮欓弶鎴狀槰婵犮垼顫夐敃銏ゅ蓟瀹ュ牜妾ㄩ梺鍛婃尵閸犳牞妫㈤梺瑙勫礃濞夋盯宕瑰┑瀣厱妞ゆ劑鍊曢弸鏃堟煟閻旈绉洪柡灞界Х椤т線鏌涢幘瀵告噰妞ゃ垺宀搁弫鎰緞鐎n亙缂撻梻浣告啞閹哥ǹ顕i崼鏇炵柧闁靛繈鍊栭埛鎴︽⒑椤愩倕浠滈柤娲诲灡閺呭爼骞橀鐣屽帗闂侀潧顧€闂勫嫰藟閸懇鍋撶憴鍕闁挎洏鍨介妴浣糕枎閹炬潙鐧勬繝銏f硾閺堫剟顢撳鍡欑瘈闁汇垽娼цⅷ闂佹悶鍔岀紞濠傜暦閵忕姭鍫柛顐g箘閺屟冣攽閻樿宸ラ柣妤€锕畷鏇熸償閳ь兛绨婚梺鍝勭Р閸斿秹鎯冮幋锔界厸闁糕槅鍘奸々顒傜磼鏉堛劌绗ч柍褜鍓ㄧ紞鍡涘矗鎼淬劌鍚归柨鏇炲€归悡娑㈡煕閹扳晛濡垮褎娲熼弻锝夊箳閹寸姳绮甸梺闈涙搐鐎氫即鐛幒妤€绠f繝闈涙处椤斿秶绱撻崒娆掑厡濠殿喚鍋撻幈銊╁Χ閸ャ劌搴婂┑鐘绘涧椤戝棝宕戦妸鈺傗拻闁割偆鍠撻埣銉╂煕濠靛浂娈滄慨濠呮閹叉挳宕熼鍙ユ埛濠电偛鐡ㄧ划搴ㄥ磻閻旇偤锝夊箛閻楀牆鈧兘鏌涘┑鍡楊伀闁告棑绠戦—鍐Χ閸℃鐟愰梺鐓庡暱婢у海鍒掔紒妯稿亝闁告劏鏅濋崢鍗炩攽閻樿宸ラ柛鐕佸亰瀵娊鎮㈤搹鍦紲婵犮垼鍩栭敋闁哄鍊濋弻宥堫檨闁告挻绻堥敐鐐村緞婵炴帗妞介崺锟犲礃椤忓棭妲稿┑鐐存尰閸╁啴宕戦幘鍨涘亾鐟欏嫭绀冩俊鐐扮矙瀹曟椽鍩€椤掍降浜滈柟鍝勭Ч濡惧嘲霉濠婂嫮鐭掗柡宀€鍠栧畷顐﹀礋椤撳鍎甸弻娑滅疀閹惧墎浼囩紓浣介哺鐢繝骞冮埡鍛殥闁靛牆娲﹀В鍥⒒娴e憡鎯堥柣顒€銈稿畷浼村箻鐠囪尙鍔﹀銈嗗笒閸婂綊寮抽埡鍛嚑妞ゅ繐濞婅ぐ鎺撳亼闁告侗鍨抽弳銈夋⒑閸濆嫮鐒跨紓宥勭窔閻涱喖顫滈埀顒€鐣烽敓鐘冲€烽柟缁樺醇閹寸姷纾介柛灞剧懄缁佹澘顪冮弶鎴炴喐闁轰緡鍣i崺鍕礃瑜忕粻姘舵⒑瑜版帗锛熼柣鎺炵畵瀵彃饪伴崘锝嗘杸濡炪倖妫佸Λ鍕叏閸愵喗鐓i煫鍥ㄦ崌閸欏嫭鎱ㄦ繝鍕笡闁瑰嘲鎳橀幖褰掔嵁鎼存挸浜惧┑鐘叉处閻撴盯鏌涚仦鍓ф噮缂佹劖姊婚埀顒冾潐濞叉﹢宕归崸妤冨祦婵せ鍋撴鐐叉处閹峰懘鎮烽幍顔叫掗梻鍌氬€风欢姘缚瑜旈幃褔宕卞銏$☉铻栭柛娑卞枛閳ь剙鐖奸弻銊╁即閻愭祴鍋撹ぐ鎺戠9闁汇垻鏁哥壕鍏间繆閵堝嫯鍏岄柍钘夘樀閺岀喖鎼归銏狀潚闂佽鍨伴惌鍌氱暦閻撳寒鐔嗘繝闈涙缁夋椽鏌熼鐟板⒉闁诡垱妫冮弫鎰板幢濡儤鐏堥梻鍌氬€烽懗鍓佸垝椤栫偛绠板Δ锝呭暙缁愭鏌熼悧鍫熺凡濡楀懘姊洪崨濠冨闁哥姵宀搁幃鍧楀焵椤掑嫭鈷戦柛锔诲幖娴滅偓绻涢崗鑲╂噧闁宠绉规俊鑸靛緞鐎n剙骞楅梻濠庡亜濞诧箓骞戦崶顒佸仒婵犲﹤鎳愮壕濂告煟濡寧鐝€规洖鐬奸埀顒侇問閸犳牠鈥﹂悜钘夌畺闁靛繈鍨归弸鍫ュ级閸稑濡芥繛鍛崌濮婄粯鎷呯粙鎸庡€繛瀛樼矆缁瑥鐣烽弴銏╂晬婵炴垶鍑瑰ù鍕⒑闂堟稓绠為柛濠冪墵閸╂盯骞嬮敃鈧痪褔鏌i幇顓熺稇妞ゃ儱顑夐弻娑㈠棘鐠恒剱褔鏌$仦鍓ф创鐎殿噮鍣i崺鈧い鎺戝閸嬶繝鏌曟径鍡樻珕闁稿鏅犻弻锝夊箣閿濆棭妫勯梻浣稿船濞差參寮婚敓鐘茬倞闁宠桨妞掗幋鐑芥⒑閸涘鎴﹀箖閸屾凹娼栭柧蹇撴贡閻瑩鏌熺粙鍨劉闁圭柉浜槐鎾存媴閸撴彃鍓遍梺鎼炲妼閻忔繈鎮惧畡鎵虫斀闁糕檧鏅滃娲⒑闁偛鑻晶顔姐亜椤愩垻绠茬紒缁樼箓椤繈顢楅崒锔惧簥濠电姷鏁搁崑娑樜涘▎鎾虫槬闁割偅鎯婇敐澶樻晪闁逞屽墮椤繘鎼圭憴鍕幑闂佸憡绮堢粈浣糕枔濠靛牏纾藉ù锝堟鐢稓绱掔拠鑼ⅵ闁绘侗鍠楃换婵嬪磼濡や焦鏉搁梺璇插嚱缂嶅棙绂嶉悙鏍稿洭顢橀姀鈥充画濠电姴锕ら崰姘熼埀顒勬倵鐟欏嫭绀冮柛銊ユ健閻涱喖顫滈埀顒勭嵁閸ャ劍濯撮柣鐔告緲閸樼偤姊婚崒娆掑厡缂侇噮鍨堕獮鎰板川婵犲孩顔旈梺褰掓?缁€渚€鎮¢弴銏″€甸柨婵嗛娴滅偟绱掗埦鈧崑鎾剁磽娴e搫浜炬繝銏★耿钘濋弶鍫氭櫅椤ユ岸鏌涜椤ㄥ棝鎮″☉妯忓綊鏁愰崶鈺傛啒闂佹悶鍊栭悷鈺呭蓟閿濆鏅查柛銉戝啫绠i柣搴ゎ潐濞叉牠濡剁粙娆惧殨闁圭虎鍠栨儫闂佹寧妫佹慨銈夋偟濠婂牊鈷掗柛灞剧懆閸忓矂寮搁鍫熺厸闁割偒鍋勬晶顔姐亜椤愶絿绠炲┑鈩冩倐閸┾剝鎷呴崟鎾虫处閻撱儵鏌¢崶鈺佷粶闁逞屽墮缂嶅﹪宕哄☉銏犵闁圭偨鍔岀紞濠囧极閹版澘宸濇い鏂垮悑濞堟﹢姊绘担鍛婃喐闁哥姵鎹囧畷鎴﹀Χ婢跺﹨鎽曞┑鐐村灟閸ㄥ湱鐚惧澶嬬厓鐟滄粓宕滈悢鐓庣畺鐟滄棃骞冨▎鎾充紶闁告洖鍑界粻鎾诲蓟閻斿吋鍋嬮柛顐ゅ枔閸戯紕绱撴担鎻掍壕闂佸憡鍔忛弬鍌涚濠婂牊鐓涢柛鎰╁妼閳ь剛鎳撻埢宥夊即閵忥紕鍘卞┑鈽嗗灥椤曆勬叏瀹ュ棙鍙忓┑鐘插鐢稓绱掑Δ鍐ㄦ灈鐎规洘鍎奸ˇ鍙夈亜椤愮喐娅囩紒杈ㄦ尰閹峰懘宕滈崣澹劑姊烘潪鎵槮妞ゎ厾鍏橀悰顕€宕橀绛嬧偓鎰磽娴e搫校缂佸鍨块崺銉﹀緞婵炵偓鐎婚梺鐟扮摠缁诲倻绮婚悙鐑樷拻闁稿本鐟чˇ锕傛煟閵堝懏鎼愰摶鐐烘煕閺囥劌鈧姴鈽夊Ο婊勬瀹曘劑顢涘渚垮亰濠电姴鐥夐弶搴撳亾閺囥垹绠犻煫鍥ㄧ☉绾惧綊鏌涢…鎴濅簼闁告瑥绻戞穱濠囶敍濠婂啫浠樻繛瀛樼矒缁犳牠骞冨Δ鈧~婵嬫倷椤掆偓椤忥拷