中国科学院大学数学科学学院, 北京 100049
2016年01月29日 收稿; 2016年03月14日 收修改稿
基金项目: 国家自然科学基金面上项目(11471308)资助
通信作者: 国金宇,E-mail:guojinyu14@163.com
摘要: Riemann面上带有奇点的度量是复几何中重要的研究对象.对Riemann面上带有cusp奇点且满足面积和Calabi能量有限的共形度量进行研究,得到HCMU度量在cusp奇点附近精确的表达式.
关键词: cusp奇点extremal Hermitian度量HCMU度量
Conformal metrics on Riemann surfaces with cusp singularities
GUO Jinyu, WU Yingyi, WEI Zhiqiang
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: The metric on Riemann surface with singularities is one of important objects in complex geometry. We study conformal metrics on Riemann surfaces with only cusp singularities,whose area and Calabi energy are both finite, and obtain the exact expression of HCMU metrics near cusp singularities.
Key words: cusp singularityextremal Hermitian metricHCMU metric
本文主要对Riemann面上带cusp奇点的共形度量进行研究.
1 背景和主要定理1.1 背景Calabi在1982年引入extremal K?hler度量[1],目的是在一个紧K?hler流形的固定K?hler类中找到“最佳”的度量.具体地,设M为一个紧K?hler流形,在一个固定的K?hler 类中,extremal K?hler度量是下述Calabi能量的临界点
$C\left( g \right)={{\int }_{M}}{{K}^{2}}dg,$ |
${{K}_{,\alpha \beta }}=0,1\le \alpha ,\beta \le di{{m}_{C}}M,$ | (1) |
Extremal K?hler度量具有较好的性质,比如紧extremal K?hler 流形比一般的K?hler流形具有更好的对称性,而且在光滑的紧Riemann面上,extremal K?hler 度量就是常曲率度量[1].
经典的单值化定理认为,在紧致无边的Riemann面上,对任意的Riemann度量,都会有常曲率度量与之共形等价.单值化定理无疑是经典复分析中非常漂亮和重要的定理.
过去很多人尝试将经典的单值化定理推广到一般的帯边曲面.而过去主要集中在带有奇点的曲面上常曲率度量的存在性问题.
为了推广经典的单值化定理,Chen等[2-3]继承Calabi的思想,研究Calabi能量泛函的变分问题.在这个问题框架内,他们主要研究以下2个方面的问题:
1) 任意由有限面积和有限Calabi能量所组成的度量子集的弱紧性问题,引进了cusp奇点,得到有趣的“bubbles on bubbles”现象,并且得到这类度量序列的弱极限如果不为零,则该度量一定有cusp奇点.进而给出cusp奇点的基本性质[2-3].
2) Calabi能量泛函的变分问题.令M为紧Riemann面,g0为M\{p1,p2…,pn} 上的Hermitian度量,其中p1,p2…,pn 为g0的奇点.如果存在一个光滑函数e2φ,使得在M\{p1,p2…,pn}上满足g=e2φg0,此时称g与g0共形等价.记P:={p1,p2…,pn},定义Calabi能量泛函E(g)与面积泛函A(g)分别为:
$E\left( g \right)={{\int }_{M\backslash P}}{{K}^{2}}dg,\text{ }A\left( g \right)={{\int }_{M\backslash P}}dg.$ | (2) |
$\begin{align} & G({{g}_{0}})=\left\{ g|g={{e}^{2\varphi }}{{g}_{0}},\varphi \in {{H}^{2,2}}\left( M \right) \right., \\ & \left. {{\int }_{M\backslash P}}dg={{\int }_{M\backslash P}}d{{g}_{0}} \right\}. \\ \end{align}$ |
我们称Calabi 能量泛函的临界点为extremal Hermitian 度量,它的Euler-Lagrange方程为
${{\Delta }_{g}}K+{{K}^{2}}=C,$ | (3) |
$\frac{\partial {{K}_{,zz}}}{\partial \bar{z}}=0.$ | (4) |
1) K=const,即度量g为常Gauss曲率度量.
2) 如果g在局部复坐标系(U,z)下满足
${{K}_{,zz}}=0,$ | (5) |
$A\left( g \right)={{\int }_{M\backslash P}}dg<+\infty ,E\left( g \right)={{\int }_{M\backslash P}}{{K}^{2}}dg<+\infty .$ | (6) |
接着Wang和Zhu[5]将Chen的关于cusp奇点的情况推广到锥奇点情况,他们证明了如果g=e2φ(z)|dz|2为D\{0}上面积和Calabi能量都有限的extremal Hermitian度量,则z=0不是cusp奇点就是锥奇点. 进而得到关于锥奇点的分类定理.
Chen在文献[4]中断言这样一个命题: 设M为紧Riemann面,g为M\{p1,p2…,pn}上的共形度量,其中p1,p2…,pn为g的cusp奇点,并且有有限的面积和Calabi 能量,则在cusp奇点附近共形参数一定可以表示为 -ln|z|-βln(-ln|z|)-lnρ(z),其中12<β<32,ρ(z)为z=0附近正的光滑函数,但他并没有给出证明.
本文将就他所提出的问题进行研究,进一步给出当g为HCMU度量时,共形参数在cusp奇点的局部表示.
1.2 本文主要定理定理1.1 ?如果g=e2φ(z)|dz|2为D\{0}上的共形度量,z=0为g的cusp奇点,如果共形参数φ(z)在cusp点附近有形式: φ(z)=-ln|z|-βln(-ln|z|)+o(ln(-ln|z|)),且余项o(ln(-ln|z|))在z=0附近(包括0点)光滑.
(a) 则g在D\{0}上面积和Calabi能量有限的充要条件为
(b) 若g为extremal Hermitian度量,则g在D\{0}上面积和Calabi能量有限的充要条件为β=1.
定理1.2? S2上存在只带有一个cusp奇点的共形度量
$\tilde{g}=\frac{1}{{{\left| z \right|}^{2}}{{\left( \ln \left| z \right| \right)}^{2\beta }}{{\left( \ln \left( \ln \left| z \right| \right) \right)}^{2\alpha }}}{{\left| dz \right|}^{2}},$ |
$\left\{ \begin{align} & \beta =\frac{1}{2},\alpha >\frac{1}{2}; \\ & \frac{1}{2}<\beta <\frac{3}{2},\alpha 任意; \\ & \beta =\frac{3}{2},\alpha <-\frac{1}{2}. \\ \end{align} \right.$ |
$\varphi \left( z \right)=-ln\left| z \right|-ln(-ln\left| z \right|)+lnh\left( z \right),$ |
2 预备知识2.1 弱cusp奇点、cusp奇点、锥奇点定义2.1 ?设M是Riemann面,p∈M.(U,z)为p附近的复坐标系且z(p)=0,g为U\{p}上的光滑度量.如果g=e2φ|dz|2,满足
定义2.2? 设M是Riemann面,p∈M.(U,z)为p附近的复坐标系且z(p)=0,g为U\{p}上的光滑度量.如果g=e2φ|dz|2,满足
定义2.3? 设M是Riemann面,p∈M.(U,z)为p附近的复坐标系且z(p)=0,g为U\{p}上的光滑度量.如果g=e2φ|dz|2,并且φ-(α-1)ln|z|(α>0)在p处连续,则称p为g的锥奇点并且g在p处有锥角度2πα.
注记:如果在弱cusp奇点附近满足面积和Calabi能量有限,那么弱cusp奇点就是cusp奇点,见文献[5].
2.2 cusp奇点,extremal Hermitian 度量及HCMU度量的基本性质设M是一个紧Riemann面,p1,…,pn是M上的n个点,记P:={p1,…,pn}. 设g是M\P上的光滑保角度量.设(U,z)为M\P上的局部复坐标系,则g在U上可以写成
$g={{e}^{2\varphi }}|dz{{|}^{2}}.$ |
在文献[4]中,Chen研究了面积和Calabi能量都有限且只带有cusp奇点的extremal Hermitian度量.一方面,他证明如果该Riemann面为紧致无边的,则extremal Hermitian 度量就是HCMU 度量.另一方面,给出Gauss曲率K在cusp奇点的精确估计,证明了Gauss曲率K在cusp奇点的极限为负常数.
Chen和Wu[6]继续Chen的工作,研究了带有锥奇点的非常曲率HCMU度量的存在性问题,主要方法是定义Gauss梯度场▽K=
Chen等[7]将文献[6]中的结果推广到既有cusp奇点又有锥奇点的非常曲率HCMU度量上.
3 主要定理与证明现在返回到我们要研究的问题,在只带有cusp奇点的Riemann面上,共形度量g=e2φ|dz|2满足面积和Calabi能量都有限,则共形参数φ在cusp 点附近有什么样的性质?进一步要问如果度量g为HCMU 度量,那么共形参数在cusp奇点附近又该如何表示?共形参数的余项是否一定光滑?
定理1.1的证明
证明(a)? 因为o(ln(-ln|z|))光滑,不妨设:lnh(z)=o(ln(-ln|z|)),r=|z|,其中h(z)为z=0附近正的光滑函数.则h(z)在充分小闭圆盘
于是φ(z)变为
$\varphi \left( z \right)=-lnr-\beta ln(-lnr)+lnh\left( z \right).$ | (7) |
$\begin{align} & A\left( g \right)\left| _{_{{{D}_{R}}\left( 0 \right)\backslash \left\{ 0 \right\}}} \right.=\int\limits_{{{D}_{R}}\left( 0 \right)\backslash \left\{ 0 \right\}}{{}}dg= \\ & \int\limits_{{{D}_{R}}\left( 0 \right)\backslash \left\{ 0 \right\}}{{}}{{e}^{2\varphi }}dxdy<+\infty , \\ \end{align}$ | (8) |
$\begin{align} & E\left( g \right)\left| _{{{D}_{R}}\left( 0 \right)\backslash \left\{ 0 \right\}} \right.=\int\limits_{{{D}_{R}}\left( 0 \right)\backslash \left\{ 0 \right\}}{{}}{{K}^{2}}dg \\ & =\int\limits_{{{D}_{R}}\left( 0 \right)\backslash \left\{ 0 \right\}}{{}}\frac{{{(\Delta \varphi )}^{2}}}{{{e}^{2\varphi }}}dxdy<+\infty . \\ \end{align}$ | (9) |
$\begin{align} & A\left( g \right)\left| _{{{D}_{R}}\left( 0 \right)\backslash \left\{ 0 \right\}} \right.=\int_{0}^{2\pi }{{}}\int_{0}^{R}{{}}{{e}^{2\varphi }}rdrd\theta \\ & =\int_{0}^{2\pi }{{}}\int_{0}^{R}{{}}{{e}^{2(-lnr-\beta ln\left( -lnr \right)+lnh)}}rdrd\theta \\ & =\int_{0}^{2\pi }{{}}\int_{0}^{R}{{}}{{(-lnr)}^{-2\beta }}{{h}^{2}}\frac{1}{r}drd\theta . \\ \end{align}$ |
$A\left( g \right)\left| _{{{D}_{R}}\left( 0 \right)\backslash \left\{ 0 \right\}} \right.<+\infty $ |
$\int_{0}^{2\pi }{{}}\int_{0}^{R}{{}}{{(-lnr)}^{-2\beta }}\frac{1}{r}drd\theta <+\infty .$ | (10) |
另一方面由(7)式得
$\begin{align} & \Delta \varphi =-\beta \Delta ln\left( -lnr \right)+\Delta lnh\left( z \right)= \\ & \beta \frac{1}{{{(ln~r)}^{2}}{{r}^{2}}}+\Delta lnh\left( z \right). \\ \end{align}$ | (11) |
$\begin{align} & E\left( g \right)\left| _{{{D}_{R}}\left( 0 \right)\backslash \left\{ 0 \right\}} \right.=\int_{0}^{2\pi }{{}}\int_{0}^{R}{{}}\frac{{{(\Delta \varphi )}^{2}}}{{{e}^{2\varphi }}}rdrd\theta \\ & =\int_{0}^{2\pi }{{}}\int_{0}^{R}{{}}\left[ {{\beta }^{2}}{{(-lnr)}^{2\beta -4}}{{r}^{-1}}{{h}^{-2}}+ \right. \\ & 2\beta r{{(-lnr)}^{2\beta -2}}{{h}^{-2}}\Delta lnh+ \\ & \left. {{(\Delta lnh)}^{2}}{{r}^{3}}{{(-lnr)}^{2\beta }}{{h}^{-2}} \right]drd\theta \\ & =\int_{0}^{2\pi }{{}}\int_{0}^{R}{{}}{{\beta }^{2}}{{(-lnr)}^{2\beta -4}}{{r}^{-1}}{{h}^{-2}}drd\theta + \\ & 2\beta \int_{0}^{2\pi }{{}}\int_{0}^{R}{{}}r{{(-lnr)}^{2\beta -2}}{{h}^{-2}}\Delta lnhdrd\theta + \\ & \int_{0}^{2\pi }{{}}\int_{0}^{R}{{}}{{(\Delta lnh)}^{2}}{{r}^{3}}{{(-lnr)}^{2\beta }}{{h}^{-2}}drd\theta , \\ \end{align}$ |
$E\left( g \right)\left| _{{{D}_{R}}\left( 0 \right)\backslash \left\{ 0 \right\}} \right.<+\infty $ |
$\int_{0}^{2\pi }{{}}\int_{0}^{R}{{}}{{\beta }^{2}}{{(-lnr)}^{2\beta -4}}{{r}^{-1}}{{h}^{-2}}drd\theta <+\infty .$ | (12) |
综上得到,若余项o(ln(-ln|z|))光滑则面积和Calabi能量有限的充要条件为
证明(b)? 由(7)式和(11)式可知共形度量g的Gauss曲率K为
$\begin{align} & K=-\frac{\Delta \varphi }{{{e}^{2\varphi }}}=-\beta {{(-lnr)}^{2\beta -2}}{{h}^{-2}} \\ & -\Delta lnh\cdot {{h}^{-2}}{{r}^{2}}{{(-lnr)}^{2\beta }}, \\ \end{align}$ | (13) |
若共形度量g为extremal Hermitian度量,则由文献[4](定理B(3))可知,存在负常数-c3,满足
$\underset{r\to 0}{\mathop{\lim }}\,-\Delta lnh\cdot {{h}^{-2}}{{r}^{2}}{{(-lnr)}^{2\beta }}=0,$ |
接下来我们将在局部上构造仅带一个cusp奇点的度量,再利用单位分解在S2上构造一个带cusp奇点的度量.
设g=e2φ|dz|2为D2R(0)\{0}上的共形度量,其中0<R<
$\begin{align} & \varphi \left( z \right)=-ln\left| z \right|-\beta ln(-ln\left| z \right|) \\ & -\alpha ln(ln(-ln\left| z \right|)). \\ \end{align}$ | (14) |
$\left\{ \begin{align} & \beta =\frac{1}{2},\alpha >\frac{1}{2}; \\ & \frac{1}{2}<\beta <\frac{3}{2},\alpha 任意; \\ & \beta =\frac{3}{2},\alpha <-\frac{1}{2}. \\ \end{align} \right.$ |
定理1.2的证明
证明? 令
$\begin{align} & \varphi \left( z \right)=-lnr+\frac{1}{2}ln\rho \left( z \right),\text{ }u=-lnr,\text{ }r=\left| z \right|, \\ & \rho \left( z \right)=\rho ({{e}^{-u}}cos\theta ,{{e}^{-u}}sin\theta )=\frac{1}{{{(ln~u)}^{2\alpha }}{{u}^{2\beta }}}\left( 其中\beta >0 \right) \\ \end{align}$ |
$\begin{align} & \psi \left( u,\theta \right)=\varphi ({{e}^{-u}}cos\theta ,{{e}^{-u}}sin\theta )-u \\ & =\frac{1}{2}ln\rho ({{e}^{-u}}cos\theta ,{{e}^{-u}}sin\theta ), \\ \end{align}$ | (15) |
$\begin{align} & A\left( g \right)\left| _{{{D}_{2R}}\left( 0 \right)\backslash \left\{ 0 \right\}} \right.=\int\limits_{{{D}_{2R}}\left( 0 \right)\backslash \left\{ 0 \right\}}{{}}dg=\int\limits_{{{D}_{2R}}\left( 0 \right)\backslash \left\{ 0 \right\}}{{}}{{e}^{2\varphi }}dxdy \\ & =\int_{0}^{2\pi }{{}}\int_{0}^{R}{{}}{{e}^{2\varphi }}rdrd\theta \\ & =\int_{0}^{2\pi }{{}}\int_{-\ln \left( 2R \right)}^{+\infty }{{}}{{e}^{2\varphi }}dud\theta \\ & =\int_{0}^{2\pi }{{}}\int_{-\ln \left( 2R \right)}^{+\infty }{{}}\rho \left( {{e}^{-u}}\cos \theta ,{{e}^{-u}}\sin \theta \right)dud\theta \\ & =\int_{0}^{2\pi }{{}}\int_{-\ln \left( 2R \right)}^{+\infty }{{}}\frac{1}{{{\left( \ln u \right)}^{2\alpha }}{{u}^{2\beta }}}dud\theta . \\ \end{align}$ |
Calabi能量变为
$\begin{align} & E\left( g \right)\left| {{_{D}}_{_{2R}\left( 0 \right)\backslash \left\{ 0 \right\}}} \right.=\int\limits_{{{D}_{2R}}\left( 0 \right)\backslash \left\{ 0 \right\}}{{}}{{K}^{2}}dg=\int\limits_{{{D}_{2R}}\left( 0 \right)\backslash \left\{ 0 \right\}}{{}}\frac{{{(\Delta \varphi )}^{2}}}{{{e}^{2\varphi }}}dxdy \\ & =\int_{0}^{2\pi }{{}}\int_{0}^{R}{{}}\frac{{{(\Delta \varphi )}^{2}}}{{}}{{e}^{2\varphi }}rdrd\theta \\ & =\int_{0}^{2\pi }{{}}\int_{-\ln \left( 2R \right)}^{+\infty }{{}}\frac{{{({{\Delta }_{u,\theta }}\psi )}^{2}}}{{{e}^{2\psi }}}dud\theta \\ & =\frac{1}{4}\int_{0}^{2\pi }{{}}\int_{-\ln \left( 2R \right)}^{+\infty }{{}}\frac{{{\left[ {{\rho }_{u}}\prime\prime \rho -{{({{\rho }_{u}}\prime )}^{2}}-{{\rho }_{\theta }}\prime\prime \rho +{{({{\rho }_{\theta }}\prime )}^{2}} \right]}^{2}}}{{{\rho }^{5}}}dud\theta \\ & =\frac{1}{4}\int_{0}^{2\pi }{{}}\int_{-\ln \left( 2R \right)}^{+\infty }{{}}\left[ 2\alpha {{(lnu)}^{-4\alpha -2}}+2\alpha {{(lnu)}^{-4\alpha -1}}+ \right. \\ & {{\left. 2\beta {{(lnu)}^{-4\alpha }} \right]}^{2}}{{u}^{2\beta -4}}{{(lnu)}^{10\alpha }}dud\theta , \\ \end{align}$ |
由积分的收敛性可知,
$E\left( g \right)\left| _{{{D}_{2R}}\left( 0 \right)\backslash \left\{ 0 \right\}} \right.<+\infty $ |
$\int_{-\ln \left( 2R \right)}^{+\infty }{{}}{{\left( \ln u \right)}^{2\alpha }}{{u}^{2\beta -4}}du<+\infty .$ | (16) |
因而Calabi能量E(g)|D2R(0)\{0}有限的充要条件为β=
综上若φ有下面形式
$\begin{align} & \varphi \left( z \right)=-ln\left| z \right|-\beta ln(-ln\left| z \right|)- \\ & \alpha ln(ln(-ln\left| z \right|)), \\ \end{align}$ | (17) |
$\left\{ \begin{align} & \beta =\frac{1}{2},\alpha >\frac{1}{2}; \\ & \frac{1}{2}<\beta <\frac{3}{2},\alpha 任意; \\ & \beta =\frac{3}{2},\alpha <-\frac{1}{2}. \\ \end{align} \right.$ | (18) |
令p为单位球面S2上的一点,取p点附近的复坐标图(U1,z),使得 z(p)=0,z(U1)=D2R(0),其中R为上文提到的.又设
$\begin{align} & {{g}_{1}}={{e}^{2\varphi }}|dz{{|}^{2}}= \\ & \frac{1}{{{\left| z \right|}^{2}}{{(-ln~\left| z \right|)}^{2\beta }}{{(ln~(-ln~\left| z \right|))}^{2\alpha }}}|dz{{|}^{2}}, \\ \end{align}$ | (19) |
${{g}_{2}}=\frac{4|dw{{|}^{2}}}{{{(1+{{\left| w \right|}^{2}})}^{2}}},$ | (20) |
$\tilde{g}=\sum\limits_{i=1}^{2}{{}}{{\psi }_{i}}{{g}_{i}},$ | (21) |
由定理1.2的证明并参照定义2.2,可以提出新的cusp奇点的定义,即
定义3.1? 设M为Riemann面,p∈M,(U,z)为p附近的复坐标图,g=e2φ|dz|2为U\{p}上的共形度量,如果φ在z=0附近有下面形式
$\varphi \left( z \right)=-ln\left| z \right|-\beta ln(-ln\left| z \right|)+lnh\left( z \right),$ | (22) |
因此,从定理1.2的证明中可得:即使在面积和Calabi能量都有限的条件下也不能得出cusp奇点与强cusp奇点等价.
下面的定理1.3将要证明:如果度量为HCMU度量并且满足面积和Calabi能量有限,则cusp奇点一定是强cusp奇点,并且此时定义3.1中β=1.
定理1.3的证明
证明 首先由HCMU度量的定义可知,K,zz=0等价于▽K=
令F=4e-2φK
1) 存在C′∈
$-4\sqrt{-1}\nabla K\left( K \right)=-\frac{{{K}^{3}}}{3}+CK+C\prime ,$ | (23) |
${{e}^{2\varphi }}=4\left( -\frac{{{K}^{3}}}{3}+CK+C\prime \right){{\left| \frac{1}{F} \right|}^{2}}.$ | (24) |
$\underset{x\to 0}{\mathop{\lim }}\,K\left( x \right)=\mu $ | (25) |
$-\frac{{{K}^{3}}}{3}+CK+C\prime =-\frac{1}{3}{{\left( K-\mu \right)}^{2}}\left( K+2\mu \right).$ | (26) |
于是可设
$\omega =\frac{dz}{F}=\frac{{{\lambda }_{-1}}}{z}dz+d{{f}_{1}}=\frac{\Phi \left( z \right)}{z}dz,$ | (27) |
$\begin{align} & \frac{-3dK}{{{\left( K-\mu \right)}^{2}}\left( K+2\mu \right)}=\omega +\bar{\omega } \\ & ={{\lambda }_{-1}}dln{{\left| z \right|}^{2}}+2dRe({{f}_{1}}), \\ \end{align}$ | (28) |
${{e}^{2\varphi }}=-\frac{4}{3}{{\left( K-\mu \right)}^{2}}\left( K+2\mu \right){{\left| \frac{\Phi \left( z \right)}{z} \right|}^{2}}.$ | (29) |
$\begin{align} & \frac{-3dK}{{{\left( K-\mu \right)}^{2}}\left( K+2\mu \right)}= \\ & -\left( \frac{1}{K+2\mu }-\frac{1}{K-\mu }+\frac{3\mu }{{{\left( K-\mu \right)}^{2}}} \right)\frac{dK}{3{{\mu }^{2}}}= \\ & -\frac{1}{3{{\mu }^{2}}}d\left( ln\left( -2\mu -K \right)-ln\left| \mu -K \right|-\frac{3\mu }{K-\mu } \right). \\ \end{align}$ | (30) |
$\begin{align} & -\frac{1}{3{{\mu }^{2}}}d\left( ln\left( -2\mu -K \right)-ln\left| \mu -K \right|-\frac{3\mu }{K-\mu } \right)= \\ & d({{\lambda }_{-1}}ln{{\left| z \right|}^{2}}+2Re({{f}_{1}})). \\ \end{align}$ | (31) |
$\begin{align} & -\frac{1}{3{{\mu }^{2}}}\left( ln\left( -2\mu -K \right)-ln\left| \mu -K \right|-\frac{3\mu }{K-\mu } \right) \\ & ={{\lambda }_{-1}}ln{{\left| z \right|}^{2}}+2Re({{f}_{1}})+C, \\ \end{align}$ | (32) |
由(29)式得
$\begin{align} & \varphi \left( z \right)=\frac{1}{2}ln\left[ {{\left( K-\mu \right)}^{2}}\left( -2\mu -K \right)\cdot \right. \\ & \left. \frac{4}{3}\frac{|\Phi \left( z \right){{|}^{2}}}{{{\left| z \right|}^{2}}} \right], \\ \end{align}$ | (33) |
$\begin{align} & \varphi \left( z \right)=-ln\left| z \right|+ln\left| \mu -K \right|+ \\ & \frac{1}{2}ln\left( -2\mu -K \right)+\frac{1}{2}ln\frac{4}{3}+ln\Phi \left( z \right). \\ \end{align}$ | (34) |
$\underset{z\to 0}{\mathop{\lim }}\,\frac{ln~\left| \mu -K \right|}{ln~\left| z \right|}=0,$ | (35) |
$\underset{z\to 0}{\mathop{\lim }}\,\frac{\frac{1}{2\mu }}{\left( K-\mu \right)ln~\left| z \right|}={{\lambda }_{-1}},$ | (36) |
由于特征1-形式ω在cusp奇点处留数可正可负,所以Gauss曲率K有2种情况.但无论哪种情况都有下面的式子成立:
1) 当K<μ时,
2) 当μ<K<-2μ时,
我们证明第1种情况,第2种情况类似.
当K<μ时,由(36)式得
$\underset{z\to 0}{\mathop{\lim }}\,\left( K-\mu \right)\cdot \ln ~\left| z \right|=\frac{1}{2\mu {{\lambda }_{-1}}}$ | (37) |
$\begin{align} & \left( \frac{1}{2\mu {{\lambda }_{-1}}}-\varepsilon \right)\cdot {{(-ln\left| z \right|)}^{-1}}<\mu -K< \\ & \left( \frac{1}{2\mu {{\lambda }_{-1}}}+\varepsilon \right)\cdot {{(-ln\left| z \right|)}^{-1}}. \\ \end{align}$ | (38) |
$\begin{align} & ln\left( \frac{1}{2\mu {{\lambda }_{-1}}}-\varepsilon \right)-ln(-ln\left| z \right|)<ln\left( \mu -K \right) \\ & <ln\left( \frac{1}{2\mu {{\lambda }_{-1}}}+\varepsilon \right)-ln(-ln\left| z \right|). \\ \end{align}$ | (39) |
$\begin{align} & \frac{ln~\left( \frac{1}{2\mu {{\lambda }_{-1}}}-\varepsilon \right)}{-ln~(-ln~\left| z \right|)}+1>\frac{ln~\left( \mu -K \right)}{-ln~(-ln~\left| z \right|)}> \\ & \frac{ln~(\varepsilon +\frac{1}{2\mu {{\lambda }_{-1}}})}{-ln~(-ln~\left| z \right|)}+1. \\ \end{align}$ | (40) |
$\underset{z\to 0}{\mathop{\lim }}\,\frac{ln~\left( \mu -K \right)}{-\ln \left( -ln~\left| z \right| \right)}=1.$ | (41) |
$\begin{align} & \varphi \left( z \right)=-ln\left| z \right|-ln(-ln\left| z \right|)+ \\ & ln[\left( \mu -K \right)(-ln\left| z \right|)]+ \\ & \frac{1}{2}ln\left( -2\mu -K \right)+\frac{1}{2}ln\frac{4}{3}+ln\Phi \left( z \right). \\ \end{align}$ | (42) |
所以(42)式经整理得到
$\varphi \left( z \right)=-ln\left| z \right|-ln(-ln\left| z \right|)+ln{{h}_{1}}\left( z \right),$ | (43) |
同理可以求出当μ<K<-2μ时,φ(z)在cusp奇点的局部表达式为
$\varphi \left( z \right)=-ln\left| z \right|-ln\left( -ln|z| \right)+ln{{h}_{2}}\left( z \right),$ | (44) |
所以综上得到如果g为HCMU度量,共形参数在cusp奇点附近一定可以写成
$\varphi \left( z \right)=-ln\left| z \right|-ln(-ln\left| z \right|)+lnh\left( z \right)$ | (45) |
推论3.1? 令M为紧致无边的Riemann面,记P:={p1,p2,…,pn},g=e2φ|dz|2为M\P 上的extremal Hermitian度量,其中P为M的cusp奇点,且g在M\P上保持面积和Calabi能量都有限,则共形参数在cusp 奇点附近一定可以写成
$\varphi \left( z \right)=-ln\left| z \right|-ln(-ln\left| z \right|)+lnh\left( z \right)$ | (46) |
证明? 由文献[4](定理A)我们知道:如果M为紧致无边,g是M\{p1,p2,…,pn}上的extremal Hermitian度量,其中p1,p2,…,pn 为g的cusp奇点,并且满足面积和Calabi能量都有限,则共形度量g一定为HCMU 度量,进而由上面的定理1.3得到结果.
4 后续的讨论对于一般Riemann面上的extremal Hermitian度量,其在cusp奇点附近面积和Calabi能量都有限,我们推测共形参数φ在cusp奇点附近也可以表示为
$φ(z)=-ln|z|-ln(-ln|z|)+lnh(z)$ |
因为无论从定理1.3还是最后的推论3.1,都有迹象表明应该会有这样的形式,因此我们会在后续研究中予以讨论.
参考文献
[1] | Calabi E. Extremal K?hler metrics[C]//Seminar on Differential Geometry. Annals of Mathematical Studies 102, Princeton:Princeton Univ Press,1982:259-290. |
[2] | Chen X X. Weak limits of Riemannian metrics in surfaces with integral curvature bound[J].Calc Var, 1998, 6:189–226.DOI:10.1007/s005260050089 |
[3] | Chen Q, Chen X X, He W Y. Singular angles of weak limiting metrics under certain integral curvature bounds[J].Pacific Journal of Mathematics, 2007, 231(1):35–49.DOI:10.2140/pjm |
[4] | Chen X X. Extremal Hermitian metrics on Riemann surfaces[J].Calc Var, 1999, 8:191–232.DOI:10.1007/s005260050123 |
[5] | Wang G F, Zhu X H. Extremal Hermitian metrics on Riemann surfaces with singularities[J].Duke Math Journal, 2000, 104(2):181–210.DOI:10.1215/S0012-7094-00-10421-8 |
[6] | Chen Q, Wu Y Y. Character 1-form and the existence of an HCMU metric[J].Mathematische Annalen, 2011, 351(2):327–345.DOI:10.1007/s00208-010-0598-z |
[7] | Chen Q, Wu Y Y, Xu Bin. On one-dimensional and singular Calabi's extremal metrics whose Gauss curvatures have nonzero umbilical Hessians[J].Isreal Journal of Mathematics, 2015, 208(1):385–412.DOI:10.1007/s11856-015-1204-6 |