删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Adsorption and migration of Li-ion in layered SnSe2: a first principle study

本站小编 Free考研考试/2021-12-25

方林灿1, 郝宽荣1, 闫清波1, 郑庆荣2
1. 中国科学院大学材料科学与光电技术学院, 北京 100049;
2. 中国科学院大学物理科学学院, 北京 100049
摘要: 使用第一性原理方法系统地计算研究层状SnSe2材料中锂离子吸附和迁移。发现锂原子在SnSe2表面被强烈吸附,结合能(>3eV)显著大于石墨烯、磷烯、MoS2等二维层状材料。Bader电荷分析表明锂原子的几乎整个2s电子电荷都转移给了SnSe2,锂原子以正离子的形式存在。单层SnSe2表面锂离子的迁移势垒为0.197eV,低于石墨烯、MoS2等二维层状材料。基于单层SnSe2的锂离子电池理论,平均开路电压为3.05V。此外,锂离子的插入也带来了从半导体态向金属态的转变,从而具有较好的电导率。这些发现增进了对层状过渡金属二硫化物材料中锂离子吸附性质和迁移机制的理解。
关键词: 二硒化锡锂离子吸附锂离子迁移第一性原理计算
The development of rechargeable batteries, particularly rechargeable lithium-ion battery (LIB), greatly promotes the application of mobile electronic devices and environmentally friendly vehicles[1-5], which is subverting the human's life style and the way of energy application, initiating a new chapter of the new energy area. In order to further improve the performance of LIB, it is urgent to develop advanced electrode materials that provide rapid charging/ discharging rate, cyclic stability, satisfactory capacity, and safety[6-12].
In the past several decades, graphite has been used as traditional anode material, but its energy capacity (372mAh·g-1) and rate of Li are still far away from what are expected to meet the requirements of many applications[13-14]. Recent years, more and more attentions were focused on two-dimensional (2D) layered materials with the characteristics of high specific surface area, large interlayer spacing, and other peculiar properties[15-17]. For example, the well-studied graphene exhibits the unique capacity (774mAh·g-1) because of its high charge carrier mobility, large surface area, and a broad electrochemical window[18-22]. Up to date, graphene has been utilized as both cathode and anode materials with great success[23-27]. MoS2 has been explored to exhibit a high reversible lithium storage capacity and superior rate capability[28-33]. Black phosphorus was shown to have a series of good characteristics as Li-battery electrode[34-36]. With the decreasing of dimensionality, the 2D phosphorene has been validated as ideal anode material with a low energy barrier (0.08eV) of Li and higher average charging voltage (2.9V) than other 2D materials[37-39]. In addition, the group Ⅳ-Ⅵ compounds MX (M=Ge, Sn; X=S or Se), which display puckered structures similar to black phosphorus and form buckled honeycomb lattices, has received much attention as electrode materials of LIB[40-44]. Based on the interlayer spacing from 3.1 ? to 3.26 ?, their structural anisotropy directly leads to anisotropy of the migration direction of lithium ion. Sn-based materials, like SnS2 and SnO2 composites, provide ideal space for Li atom intercalation and exhibit high reversible capability and good cycling performances when they are used as anode materials[45-48]. However, as far as we know, the properties and performance of SnSe2 as electrode material have not been studied, while SnSe2 presents prominent characteristic of large interlayer spacing up to 4.175 and hence provides more possibility for the adsorption and diffusion of the Li ions. In this work, the Li-ion adsorption properties and migration mechanism in monolayer/bilayer/bulk SnSe2 materials have been systematically investigated.
Our study shows that the binding energy is significantly higher than that on graphene, phosphorene, MoS2, and some other two-dimensional (2D) layered materials, indicating a strong interaction between the Li atom and SnSe2 substrate. Bader charge analysis reveals that Li exists in cationic state with its 2s electron being completely transferred to SnSe2. The extremely low energy barrier (0.197eV) on the monolayer SnSe2 guarantees rapid diffusion of the Li atom. Due to the unique anionic framework structure of bulk SnSe2 and formation of the Oh-Th-Oh migration channel for the Li ion, the energy barrier arises to 0.483eV. Moreover, a remarkably large average voltage of 3.05V is predicted, which is even lerger than on phosphorene (2.9V). The intercalation of Li leads to a transition from semiconductor to metallic state, which gives rise to a good electrical conductivity. These findings provide insights into the Li-ion adsorption properties and migration mechanism in layered transition-metal dichalcogenides (TMDS).
1 Computational methodsAll the calculations were performed using Vienna ab initio simulation package (VASP) based on density functional theory[49]. The interactions between ion cores and valence electrons were described using the projector augmented wave (PAW) potentials[50]. The Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) was carried out for the electron exchange-correlation interactions[51-52]. The cutoff of plane-wave kinetic energy was set to be 550eV for all the calculations. Atomic relaxation was performed with the convergence of total energy less than 10-5eV and all the forces on each atom smaller than 0.0 1eV/ ?. The climbing image nudged elastic band method (CI-NEB) was used to search the minimum energy path (MEP) of Li migration[53]. For the Li adsorption and diffusion studies, we selected supercell containing 4×4 primitive cells for eliminating the interaction between Li atoms. For the monolayer/bilayer SnSe2, we set a vacuum space of 20 ? between adjacent layers to avoid mirror interaction. K-point meshes of 5×5×1 for monolayer/bilayer SnSe2 and 5×5×5 for bulk SnSe2 were employed in all calculations, and denser K-point meshes of 12×12×1 and 12×12×10 were adopted for monolayer and bulk band structures. Bader charge analysis[54] method was used to estimate the charge transfer between Li and substrate SnSe2. In addition, van der Waals correction was taken into account using the D2 method of Grimme[55] in the bilayer and bulk calculations.
2 Results and discussion2.1 Adsorption of Li on monolayer SnSe2 surface and in bilayer/bulk SnSe2Bulk SnSe2 possesses the typical layered TMDS structure, in which per SnSe2 layer has the sandwich-like structure with the Sn layer sandwiched between two Se layers, as shown in Fig. 1.
Fig. 1
Download: JPG
larger image


Fig. 1 Top (a) and side (b) views for Li adsorbed on monolayer, and Li in bulk (c)

We investigated the adsorption of one Li atom on the surface of monolayer SnSe2 and in the bilayer/bulk SnSe2. In Fig. 1(a) and 1(b) shown are the two possible adsorption sites T1 and T2 on SnSe2 monolayer. The T1 site is directly above the Sn atom that is located in the second atomic layer and the T2 site is directly above the Se atom that is located in the third atomic layer. As for bilayer/bulk SnSe2, there are also two possible adsorption sites: the tetrahedral (Th) site formed by three Se atoms from lower triple layers and one Se atom from upper layer and the octahedral (Oh) site at which Li binds three Se atoms from the triple layers as shown in Fig. 1(c). The binding energy (Eb) was defined
${E_{\rm{b}}} = {E_{{\rm{Li - SnSe}}}}_{_2} - {E_{{\rm{SnSe}}}}_{_2} - {E_{{\rm{Li}}}},$ (1)
where ELi-SnSe2, ESnSe2, and ELi are the total energies of Li-adsorbed SnSe2, SnSe2, and a Li atom, respectively. A negative value of Eb suggests an exothermic reaction, and a more absolute value of Eb indicates a stronger interaction between Li and SnSe2. The values of Eb for Li are -3.01eV (T1) and -2.98eV (T2) on monolayer SnSe2, -3.52eV (Th) and -3.56eV (Oh) in bilayer SnSe2, and -3.70eV (Th) and -3.91eV (Oh) in bulk SnSe2, which are significantly higher than those on graphene, phosphorene, MoS2, and some other two-dimensional (2D) layered materials.
The spatial distributions of the charge difference between Li and SnSe2 for monolayer/bulk SnSe2 are illustrated in Fig. 2. The large charge deciency at Li and the charge excess around nearby the Se atom indicate strong electron transfer from Li to SnSe2. Bader charge analysis reveals that Li transferred almost the whole charge of 2s electron to SnSe2 (see Table 1) and thus exists in the cationic state, which gives an explanation for the strong interaction between Li and SnSe2.
Fig. 2
Download: JPG
larger image


Fig. 2 Charge density difference between Li and substrate SnSe2


Table 1
Table 1 Transferred charges of Li at T1 (q1) and T2 (q2) sites on monolayer and at Th (q1) and Oh (q2) sites in bulk SnSe2
q monolayer bilayer bulk
q1/e 0.872 0.857 0.854
q2/e 0.871 0.880 0.879

Table 1 Transferred charges of Li at T1 (q1) and T2 (q2) sites on monolayer and at Th (q1) and Oh (q2) sites in bulk SnSe2

2.2 Diffusion processes of the Li-ion on monolayer and bulk SnSe2The performances on charging/discharging and circuit rate in Li ion battery are highly dependent on the diffusivity of Li atom in the electrode material. As shown in Fig. 1(a), three possible diffusion pathways (P1: Sn-Sn; P2: Se-Se; P3: Se-Sn) are considered to explore the optimistic migration path on monolayer SnSe2 surface. As shown in Fig. 3(a), the Li ion migrates with a remarkably low barrier of only 0.197eV along path P1 from one T1 site to another T1 site, passing through a T2 site (Fig. 3(c) and (d)). Compared with the other 2D materials, such as MoS2, VS2, and graphene, the Li diffusion is essentially isotropic in the plane, and the migration barriers are 0.25eV on MoS2[28], 0.22eV on VS2[56], and 0.327eV on graphene[23], showing that the monolayer SnSe2 is more favorite for Li ion migration. For bulk SnSe2, it is found that Li ions prefer the Oh-Th-Oh migration path[57], which connects two neighboring Oh sites by passing through a face-sharing Th site, as shown in Fig. 3(b), 3(e), and 3(f). The corresponding energy barrier arises to 0.483eV, implying that the diffusion of the Li ions on surface of SnSe2 are much faster than in bulk SnSe2.
Fig. 3
Download: JPG
larger image


Fig. 3 Energy profiles and schematic representations for Li diffusion in monolayer (a, c, d) and bulk SnSe (b, e, f)

2.3 Average open circuit voltage for monolayer/bulk SnSe2-based LIBThe open-circuit-voltage (OCV) is widely used to characterize the charging/discharging performance of Li ion battery. Thus, to further understand the performance of SnSe2-based Li ion battery, the open-circuit-voltage has been derived. In theory, the open circuit voltage curve can be obtained by calculating the average voltages over different Li concentrations. The charging/discharging process of SnSe2-based anode can be assumed as
${\rm{L}}{{\rm{i}}_{x1}}A + ({x_2} - {x_1}){\rm{L}}{{\rm{i}}^ + } + ({x_2} - {x_1}){{\rm{e}}^ - } \leftrightarrow {\rm{L}}{{\rm{i}}_{x2}}A.$ (2)
Therefore, the average voltage of LixSnSe2 in the x1xx2 range can be evaluated using equation
$V \approx \frac{{{E_{{\rm{Li}}}}{{_{_{x1}}}_{{\rm{SnSe}}}}_{_2} - {E_{{\rm{Li}}}}{{_{_{x2}}}_{{\rm{SnSe}}}}_{_2} + ({x_2} - {x_1}){E_{{\rm{Li}}}}}}{{({x_2} - {x_1}){\rm{e}}}},$ (3)
whereELix1SnSe2, ELix2SnSe2, and ELi are the energies of Lix1SnSe2, Lix2SnSe2, and metallic Li, respectively. In this work, a series of LixSnSe2 (x=0.04, 0.083, 0.125, 0.25, 0.5) are considered by adopting the 1×1, 2×2, 2×4, 3×4, and 5×5 supercells with one Li atom absorbed on monolayer SnSe2 surface. The voltage profile and geometrical configuration are shown in Fig. 4, and there is a slight drop from 3.2V to 2.84V. The calculated average voltage by averaging numerically the voltage profile is 3.05V in the 0≤x≤ 0.25 range, which is obviously higher than the values of 2.9V for phosphorene[38], 1.5V for graphite and TiO2[25], and 0.93V for VS2[56], indicating that the monolayer SnSe2 provides a higher charging voltage. Furthermore, for the intercalation of Li in bulk-SnSe2, a series of Li concentrations were considered by using 1×1, 2×2, 2×4, 3×4, and 5×5 supercells with one Li atom intercalated in bulk-SnSe2. The obtained average OCV is about 3.7V, which is even higher than the value for monolayer SnSe2. Besides, the OCV does not drop a lot when the Li concentration increases from 0.04 to 0.25.
Fig. 4
Download: JPG
larger image


Fig. 4 Calculated voltage profile with respect to Li content from 0 to 0.5

2.4 The electronic properties of Li-intercalated monolayer/bulk SnSe2As we know, the Li ion battery has been one of promising battery systems, used to power a great deal of devices in many applications, such as low-current cells applied in portable electronics and memory backup and high-current cells used in military applications. Thus, it is essential for us to investigate the electronic properties of electrode materials.
As revealed by Bader charge analysis, the Li atoms transfer almost the whole charge of 2s electron to substrate SnSe2, which affects the electronic structure of the whole system distinctly, such as shift of Fermi energy level compared to the original band structures. The electronic band structures of SnSe2 with different Li concentrations have been calculated, and the results are shown in Fig. 5. Obviously, Fermi energy levels shift up with increasing of Li concentration, and the whole system transits from original semiconducting state to metallic state during the process of Li intercalation, giving rise to a good electrical conductivity.
Fig. 5
Download: JPG
larger image

Dashed lines denote the Fermi level.
Fig. 5 Electronic band structures of the LixSnSe2 monolayer (a, b, c, d) and bulk (e, f, g, h)

3 ConclusionIn conclusion, based on first-principle calculations, we performed a systematically study on the adsorption properties and migration mechanism of the Li atoms in monolayer/bilayer/bulk SnSe2 systems. Our study shows that the Li atom is able to form stable adsorption with SnSe2 with a higher binding energy than with some common 2D layered materials. Upon adsorption, the Li atom transfers its 2s electron to substrate SnSe2 and exists in the cationic state. The adsorption complex becomes metallic with Li interaction, giving rise to a good electrical conductivity, which is essential for an electrode. The energy barrier is only 0.197eV for Li in monolayer SnSe2, significantly lower than those on other 2D materials, such as MoS2, graphene, SnS2, VS2, etc. Due to the unique anionic framework of bulk SnSe2, the Oh-Th-Oh migration channel turns out to be preferred. Furthermore, the average voltage for monolayer SnSe2 has been estimated to be 3.05V, which is obviously suitable for high charging voltage applications. On the basis of our present findings, monolayer SnSe2 is expected to be one of candidates for electrode materials. These findings provide insights into the Li-ion adsorption properties and migration mechanism in layered TMDS.
AppendixFig. S1
Download: JPG
larger image

The dashed lines denote the Fermi levels.
Fig. S1 Electronic band structures of the bulk LixSnSe2 without vdW corrections (a, b, c) and with vdW corrections (d, e, f)

References
[1] Goodenough J B, Park K S. The Li-ion rechargeable battery:a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. DOI:10.1021/ja3091438
[2] Manthiram A, Fu Y, Yusheng S. In charge of the world:electrochemical energy storage[J]. Journal of Physical Chemistry Letters, 2013, 4(8): 1295-1297. DOI:10.1021/jz4006652
[3] Song K, Seo D H, Jo M R, et al. Tailored oxygen framework of Li4Ti5O12 nanorods for high-power Li ion battery[J]. Journal of Physical Chemistry Letters, 2014, 5(8): 1368-1373. DOI:10.1021/jz5002924
[4] Takamatsu D, Nakatsutsumi T, Mori S, et al. Nanoscale observation of the electronic and local structures of LiCoO2thin film electrode by depth-resolved X-ray absorption spectroscopy[J]. Journal of Physical Chemistry Letters, 2011, 2(20): 2511-2514. DOI:10.1021/jz2011226
[5] Meini S, Elazari R, Rosenman A, et al. The use of Redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems[J]. Journal of Physical Chemistry Letters, 2014, 5(5): 915-918. DOI:10.1021/jz500222f
[6] Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide:a high-capacity lithium-ion-storage material[J]. Science, 1997, 276(5317): 1395-1397. DOI:10.1126/science.276.5317.1395
[7] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. DOI:10.1038/35104644
[8] Oyama N, Tatsuma T, Sato T, et al. Dimercaptan-polyaniline composite electrodes for lithium batteries with high energy density[J]. Nature, 1995, 373(6515): 598-600. DOI:10.1038/373598a0
[9] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. DOI:10.1038/451652a
[10] Dubal D P, Ayyad O, Ruiz V, et al. Hybrid energy storage:the merging of battery and supercapacitor chemistries[J]. Chemical Society Reviews, 2015, 44: 1777-1790. DOI:10.1039/C4CS00266K
[11] Simon P, Gogotsi Y, Dunn B. Where Do Batteries end and supercapacitors begin[J]. Science Magazine, 2014, 343(6176): 1210-1211.
[12] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4: 366-377. DOI:10.1038/nmat1368
[13] Dahn J R, Zheng T, Liu Y, et al. Mechanisms for lithium insertion in carbonaceous materials[J]. Science, 1995, 270(5236): 590-593. DOI:10.1126/science.270.5236.590
[14] Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advance Materials, 1998, 10(10): 725-763. DOI:10.1002/(ISSN)1521-4095
[15] Fang W Z, Zhang L C, Yan Q B, et al. Effects of strain on mechanical and electronic properties of SnSe and SnS auxetic materials[J]. Journal of University of Chinese Academy of Sciences, 2017, 34(1): 8-14.
[16] Kang Y, Gong Y J, Hu Z J, et al. Plasmonic hot electron enhanced MoS2 photocatalysis in hydrogen evolution[J]. Nanoscale, 2015, 7: 4482-4488. DOI:10.1039/C4NR07303G
[17] Kang Y, Najmaei S, Liu Z, et al. Plasmonic hot electron induced structural phase transition in a MoS2 Monolayer[J]. Advanced Materials, 2014, 26(37): 6467-6471. DOI:10.1002/adma.201401802
[18] Peigney A, Laurent Ch, Flahaut E, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes[J]. Carbon, 2001, 39(4): 507-514. DOI:10.1016/S0008-6223(00)00155-X
[19] Novoselov K S, Geim A K, Jiang D, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. DOI:10.1126/science.1102896
[20] Trushin M, Schliemann J. Minimum Electrical and thermal conductivity of graphene:a quasiclassical approach[J]. Physical Review Letters, 2007, 99(21): 216602. DOI:10.1103/PhysRevLett.99.216602
[21] Allen M J, Tung V C, Kaner R B. Honeycomb carbon:a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145. DOI:10.1021/cr900070d
[22] Khantha M, Cordero N A, Molina L M, et al. Interaction of lithium with graphene:an ab initio study[J]. Physical Review B, 2004, 70(12): 125422. DOI:10.1103/PhysRevB.70.125422
[23] Fan X F, Zheng W T, Kuo J L. Adsorption and diffusion of Li on pristine and defective graphene[J]. ACS Applied Materials & Interfaces, 2012, 4(5): 2432-2438.
[24] Liu Y, I V L, Liu M J, et al. Feasibility of lithium storage on graphene and its derivatives[J]. Journal of Physical Chemistry Letters, 2013, 4(10): 1737-1742. DOI:10.1021/jz400491b
[25] Jing Y, Zhou Z, Cabrera C R, et al. Graphene, inorganic graphene analogs and their composites for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2: 12104-12122. DOI:10.1039/C4TA01033G
[26] Wan W, W H D. First-Principles Investigation of adsorption and diffusion of ions on pristine, defective and B-doped Graphene[J]. Materials, 2015, 8(9): 6163-6178. DOI:10.3390/ma8095297
[27] Lee S K, Rana K, Ahn J H. Graphene films for flexible organic and energy storage devices[J]. Journal of Physical Chemistry Letters, 2013, 4(5): 831-841. DOI:10.1021/jz400005k
[28] Li Y F, Wu D H, Zhou Z, et al. Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects:a computational study[J]. Journal of Physical Chemistry Letters, 2012, 3(16): 2221-2227. DOI:10.1021/jz300792n
[29] Ding S, Zhang D, Chen J S, et al. Facile synthesis of hierarchical Mo S2 microspheres composed of few-layered nanosheets and their lithium storage properties[J]. Nanoscale, 2012, 4: 95-98. DOI:10.1039/C1NR11552A
[30] Du G, Guo Z, Wang S, Zeng R, et al. Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries[J]. Chemical Communication, 2010, 46: 1106-1108. DOI:10.1039/B920277C
[31] Hwang H, Kim H, Cho J. MoS2 Nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials[J]. Nano Letters, 2011, 11(11): 4826-4830. DOI:10.1021/nl202675f
[32] Liu H, Su D, Zhou R, et al. Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage[J]. Advanced Energy Materials, 2012, 2(8): 970-975. DOI:10.1002/aenm.v2.8
[33] Julien C, Saikh S I, Nazri G A. Electrochemical studies of disordered MoS2 as cathode material in lithium batteries[J]. Material Science and Engineering B, 1992, 15(1): 73-77. DOI:10.1016/0921-5107(92)90034-7
[34] Gen C G, Wei X L, Wang D, et al. Pristine and defect-containing phosphorene as promising anode materials for rechargeable Li batteries[J]. Journal of Materials Chemistry A, 2015, 3: 11246-11252. DOI:10.1039/C5TA01661D
[35] Yao Q S, Huang C X, Yuan Y B, et al. Theoretical prediction of phosphorene and nanoribbons as fast-charging Li ion battery anode materials[J]. Journal of Physical Chemistry C, 2015, 119(12): 6923-6928. DOI:10.1021/acs.jpcc.5b02130
[36] Li W J, Chou S L, Wang J Z, et al. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage[J]. Nano Letters, 2013, 13(11): 5480-5484. DOI:10.1021/nl403053v
[37] Liu H, Neal A T, Zhu Z, et al. Phosphorene:an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041. DOI:10.1021/nn501226z
[38] Li W F, Yang Y M, Zhang G, et al. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery[J]. Nano Letters, 2015, 15(3): 1691-1697. DOI:10.1021/nl504336h
[39] Zhang R Q, Wu X J, Yang J L. Blockage of ultrafast and directional diffusion of Li atoms on phosphorene with intrinsic defects[J]. Nanoscale, 2016, 8: 4001-4006. DOI:10.1039/C5NR06856H
[40] Karmakar S, Chowdhury C, Datta A. Two-dimensional group Ⅳ monochalcogenides:anode materials for Li-ion batteries[J]. Journal of Physical Chemistry C, 2016, 120(27): 14522-14530. DOI:10.1021/acs.jpcc.6b04152
[41] Im H S, Lim Y R, Cho Y J, et al. Germanium and Tin Sele nide nanocrystals for high-capacity lithium ion batteries:comparative phase conversion of germanium and tin[J]. Journal of Physical Chemistry C, 2014, 118(38): 21884-21888. DOI:10.1021/jp507337c
[42] Kim Y J, Kim Y L, Park Y, et al. SnSe alloy as a promising anode material for Na-ion batteries[J]. Chemical Communications, 2015, 51: 50-53. DOI:10.1039/C4CC06106C
[43] Zhu Z, Guan J, Liu D, et al. Designing isoelectronic counterparts to layered group V semiconductors[J]. ACS Nano, 2015, 9(8): 8284-8290. DOI:10.1021/acsnano.5b02742
[44] Gomes L C, Carvalho A. Phosphorene analogues:isoelectronic two-dimensional group-Ⅳ monochalcogenides with orthorhombic structure[J]. Physical Review B, 2015, 92(8): 085406. DOI:10.1103/PhysRevB.92.085406
[45] Zhuo L H, Wu Y Q, Wang L Y, et al. One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries[J]. RSC Advances, 2012, 2: 5084. DOI:10.1039/c2ra00002d
[46] Shi J, Shi W, Jin W, et al. Diffusion of lithium in α-Sn and β-Sn as anode materials for lithium ion batteries[J]. International Journal of Electrochemical Science, 2015, 10: 4793-4800.
[47] Gao P, Wang L P, Zhang Y, et al. High-resolution tracking asymmetric lithium insertion and extraction and local structure ordering in SnS2[J]. Nano Letters, 2016, 16(9): 5582-5588. DOI:10.1021/acs.nanolett.6b02136
[48] Huang Y C, Ling H Y, Chen X, et al. SnS2 nanotubes:a promising candidate for theanode material for lithium ion batteries[J]. RSC Advances, 2015, 5: 32505-32510. DOI:10.1039/C5RA01211B
[49] Kresse G, Furthmuller J. Efficienct iterative schemes for initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169. DOI:10.1103/PhysRevB.54.11169
[50] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B:Condensed Matter Mater. Phys, 1999, 59(3): 1758. DOI:10.1103/PhysRevB.59.1758
[51] Vanderbilt D. Soft Self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B:Condensed Matter Mater. Phy, 1990, 41(11): 7892. DOI:10.1103/PhysRevB.41.7892
[52] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865. DOI:10.1103/PhysRevLett.77.3865
[53] Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. Journal of Chemistry Physical, 2000, 113(22): 9978-9985. DOI:10.1063/1.1323224
[54] Sanville E, Kenny S D, Smith R, et al. Improved grid-based algorithm for bader charge allocation[J]. Journal of Computational Chemistry, 2007, 28(5): 899-908. DOI:10.1002/(ISSN)1096-987X
[55] Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Computer& Chemistry, 2006, 27(15): 1787-1799.
[56] Jing Y, Zhou Z, Cabrera C R, et al. Metallic VS2 monolayer:a promising 2D anode material for lithium ion batteries[J]. Journal of Physical Chemistry C, 2013, 117(48): 25409-25413. DOI:10.1021/jp410969u
[57] Yan W, Richards W D, Ong S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nature Materials, 2015, 14: 1026-1031. DOI:10.1038/nmat4369


相关话题/图片 材料 原文 北京 计算

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 气冷涡轮导叶流热耦合计算及机理*
    涡轮内部的流场与温度场是高度耦合的,一方面涡轮内部流场存在着如激波、二次涡系等复杂流动结构,会影响到部件温度场分布及其换热特性,另一方面,固体域的温度分布及冷却射流与主流的相互作用也将反过来影响流场的流动特征[1]。因此,理解和掌握涡轮内部流场温度场相互作用机制,对于提高冷却效率和准确预测热负荷有着 ...
    本站小编 Free考研考试 2021-12-25
  • 厚胶层复合材料黏接结构中超声反射/透射特性的有限元仿真*
    在航空航天、新型汽车、大型风机叶片等应用领域中,具有厚胶层(数毫米厚)特点的复合材料黏接结构屡见不鲜[1-2]。例如,在大型风机叶片中,由玻璃纤维增强复合材料(GFRP)或碳纤维增强复合材料(CFRP)组成的厚胶层黏接结构几乎遍布叶片全身。针对厚胶层复合材料黏接结构,基于声学性能参数(如超声反射/透 ...
    本站小编 Free考研考试 2021-12-25
  • 无人直升机系留气动载荷CFD计算分析*
    无人直升机停放在地面和舰船甲板等环境中时有可能被风吹动或倾覆,因此在地面或舰船甲板等停放时需要进行系留。在选取系留点和设计系留绳索时需先得到大风条件下无人直升机的系留载荷[1-5]。系留载荷的计算需要考虑无人直升机的自身重力、轮胎与地面的摩擦力、系留绳索的预紧力和直升机受到的气动载荷等。其中,系留气 ...
    本站小编 Free考研考试 2021-12-25
  • 环氧树脂基复合材料加筋板结构吸湿行为研究*
    纤维增强聚合物基复合材料具有比强度高、比模量高、质量轻、耐腐蚀性强及一体化成型等特点,被广泛应用到现代飞机结构部件上[1-2]。尽管相比金属材料,复合材料具有良好的耐腐蚀性,但研究发现,在总体或局部环境中由于温度、湿度等影响作用,聚合物基复合材料会发生湿热老化效应导致力学性能退化,进而甚至威胁到飞机 ...
    本站小编 Free考研考试 2021-12-25
  • 基于改进加权响应面的结构可靠度计算方法*
    在现有的结构可靠度分析方法中,一次二阶矩法[1]、二次二阶矩法[2-3]的精度较低,并且在非线性程度较高的情况下还会遇到无法收敛的问题。蒙特卡罗法[4-5]虽然能够得到精确解,但需要大量的抽样和计算时间,限制了其实际应用。响应面法[6]采用多项式函数来近似极限状态函数,原理简单、易于操作且计算效率较 ...
    本站小编 Free考研考试 2021-12-25
  • 载人航天器体装太阳电池阵有效发电面积计算方法*
    传统航天器一般采用太阳电池翼和蓄电池组合电源系统,入轨后太阳电池翼展开,阳照区通过驱动太阳电池翼对日定向为航天器供电、给蓄电池充电,阴影区由蓄电池为航天器供电[1]。航天器发电能力与轨道日照角、飞行姿态、太阳电池翼安装方式、驱动方式等密切相关,发电能力分析是航天器总体设计工作的一项重要内容[2-3] ...
    本站小编 Free考研考试 2021-12-25
  • 纤维增强复合材料疲劳寿命预测及损伤分析模型研究进展*
    纤维增强复合材料在航空航天等领域已经得到了越来越广泛的应用。大多数航空飞行器都有着一定的寿命要求,这意味着其结构需要承受较长时间循环载荷的作用。早期复合材料在飞机上的使用大都为非主承力结构,工作应力不高,复合材料结构的疲劳问题并不突出。随着复合材料逐渐应用到主承力结构,结构减重要求越来越高,使得复合 ...
    本站小编 Free考研考试 2021-12-25
  • 涂覆吸波材料圆柱的RCS预估方法*
    雷达散射截面(RCS)是武器系统隐身性能的重要指标[1],相比于全尺寸测量,缩比模型测量具有成本低廉、测试方便、受外部环境影响较小等优点[2]。但由于经典电磁相似理论的限制,目前RCS缩比测量多见于目标为金属或无耗、低损耗介质的情况[3-6]。而在实际工程当中,在金属表面涂覆吸波材料又是最常使用的一 ...
    本站小编 Free考研考试 2021-12-25
  • 复合材料层压板低速冲击行为及剩余拉伸强度*
    由于复合材料层压板具有比强度高、比模量高、耐腐蚀、耐疲劳和力学性能可设计等优点,其在飞机主要结构中的使用量不断增加[1-3]。然而,复合材料层压板对外来物低速冲击比较敏感,这些冲击可能使层压板产生严重的内部损伤,从而使其强度产生非常明显的下降[4-6]。众所周知,飞机机体结构在装配和运营过程中会难以 ...
    本站小编 Free考研考试 2021-12-25
  • BP神经网络预测复合材料热压罐成型均匀性*
    复合材料具有比强度、比刚度高、材料力学性能可设计性等优点,是轻质高效结构设计的理想材料。由于其优良的特性,复合材料被广泛应用于航空航天和军工等领域。常见的复合材料成型工艺有热压罐成型。热压罐成型指将单层预浸料按预定方向铺叠成的复合材料坯料放在热压罐内,在给定温度和压力下完成固化过程的工艺方法。固化过 ...
    本站小编 Free考研考试 2021-12-25