删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

超高效液相色谱-四级杆飞行时间质谱结合Progenesis QI分析不同品种橙的指纹图谱及其差异性代谢物

本站小编 Free考研考试/2021-12-26

赵希娟, 赵无疾, 许华超. 超高效液相色谱-四级杆飞行时间质谱结合Progenesis QI分析不同品种橙的指纹图谱及其差异性代谢物[J]. 中国农业科学, 2018, 51(13): 2551-2560 https://doi.org/10.3864/j.issn.0578-1752.2018.13.010
ZHAO XiJuan, ZHAO WuJi, XU HuaChao. Analysis of the Fingerprints of Different Orange Varieties and Their Differential Metabolites Based on Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry and Progenesis QI[J]. Scientia Acricultura Sinica, 2018, 51(13): 2551-2560 https://doi.org/10.3864/j.issn.0578-1752.2018.13.010

0 引言

【研究意义】橙属于代表性的柑橘,富含多种代谢活性物质[1],如类黄酮、香豆素和类胡萝卜素等,具有抗氧化、抗炎等生物活性[2]。因其集药、食两用于一身,成为大众喜爱的水果之一,通常以鲜食或者果汁形式摄入。橙品种众多,每种橙的品质不同,含有的代谢成分也不同。研究表明,橙果实的营养功能成分受品种、产地、成熟度、气候和土壤等多种因素影响[3]。市场上橙的销售容易弄虚作假,将不同品种的橙果实混合一起出售,或者将不同产地品质差异大的同一品种混合,包括用非地理标志产品代替地理标志产品,因外观非常接近,消费者不容易区分而花高价钱买到品质差的橙子;同样,橙汁的掺假也涉及不同品种或者不同产地相同品种但品质差异大的果汁混合,比如在橙汁中添加橘子汁或者其他品种的橙汁[4]。橙果实和橙汁的产地溯源与真实性验证是一项非常复杂的工作,因此,开发一种新的有效的方法来分析判别各品种橙代谢组分的差异以此找到其代谢标志物,对于橙果实和橙汁的真伪鉴别具有重要意义。【前人研究进展】常见的果品真伪鉴别、品质分析和品种区分方法通常是基于其次生代谢产物的代谢轮廓或者定量分析,如有机酸、多酚化合物等[5,6,7]。实际上,定性定量分析果品中的活性成分不仅对真伪鉴别具有重要作用,而且能够评估果品的品质,对人们的消费提供指导。多种技术可以用于果品次生代谢产物的分析检测,如高效液相色谱(HPLC)[8,9]、液质联用(LC-MS)[10,11,12,13]和气质联用(GC-MS)[14]等。随着技术的不断发展,超高效液相色谱(UPLC)和高分辨质谱如四级杆飞行时间质谱(QTof-MS)由于其分离速度快、进样体积小、准确度高等优点得到广泛应用[15,16],尤其在指纹图谱构建和差异性代谢产物的分析鉴定方面得到研究者的关注[17]。其中,基于LC-MS指纹图谱的非靶标代谢组学可以同时分析不同产地或者不同品种的样品中上百种代谢物,并比较其相似点以及差异之处[18,19,20]。Progenesis QI是新一代的代谢组学数据处理软件,用于代谢物鉴定和生物标志物发现,可以同时分析大样本量的多组分,从色谱数据的对齐到鉴定出具有明显差异的代谢物,处理速度快[21,22]。【本研究切入点】目前Progenesis QI在动物和药物的代谢组学领域应用较多,而国内未见应用于水果代谢组学的研究;此外,与UPLC-QToF-MS结合分析鉴定不同品种橙的差异性代谢物尚未见报道。【拟解决的关键问题】基于UPLC-QTof-MS和Progenesis QI建立不同品种橙果实的指纹图谱并同时分析不同品种间的差异性代谢物,筛选出各品种对应的代谢标志物,并对差异性代谢物进行鉴定。

1 材料与方法

柑橘材料于2015年采自于中国农业科学院柑橘研究所国家果树种质资源(重庆)柑橘圃,试验在西南大学园艺园林学院进行。

1.1 样品信息

为了减少环境因素对试验结果的影响,所有样品(表1)保持产地相同,选取我国特有柑橘资源地方品种以及引进种植的特色品种8个,每个品种均采摘于果实成熟期,从3株长势一致、健康的果树上,于树冠中部外围随机均匀采样混匀。
Table 1
表1
表1试验材料具体信息
Table 1Specific information of the experimental materials
序号
Number
品种名称
Variety name
资源圃编号
Repository number
简称
Abbreviation
1鹅蛋柑 EdanganLS0429EG
2S26锦橙 S26 JinchengLS0040S26
3北碚447 Beibei 447LS0306BB
4长叶橙 ChangyechengLS0091CY
58045甜橙 8045 TianchengLS05508045
6血橙 XuechengLS0111XUEC
7先锋橙 XianfengchengLS0041XF
8夏橙 XiachengLS0085XIAC


新窗口打开

1.2 试剂

乙腈(色谱纯,美国sigma公司),甲酸(质谱级,美国sigma公司),试验用水为Millipore超纯水,甲醇(分析纯,成都市科龙化工试剂厂)。标准品地奥司明(纯度≥98.0%),橙皮苷(纯度≥98.0%)和5,6,7,8,3′,4′-六甲氧基黄酮(纯度≥98.0%)购买自成都克洛玛生物科技有限公司(成都,中国)。5,6,7,4′-四甲氧基黄酮(纯度≥98.0%),5,7,8,3′,4′-无甲氧基黄酮(纯度≥98.0%)和橘皮素(纯度≥98.0%)购自成都思天德生物科技有限公司(成都,中国)。

1.3 仪器

超声波清洗仪KQ5200DE(昆山市超声仪器有限公司);超纯水系统Milli-Q AdvantageA10(美国Millipore公司);离心机TDL-5A(上海菲恰尔分析仪器有限公司);UPLC-QTof-MS/MS Xevo G2-S超高效液相色谱-四级杆串联飞行时间高分辨质谱仪(美国Waters公司),配备电喷雾离子源,二元溶剂管理器,自动进样系统,柱温箱,PDA紫外检测器;ACQUITY UPLC BEH C18色谱柱(美国Waters公司)。

1.4 样品准备

样品采摘后,果实表面用去离子水洗净、晾干,并分为果皮和果肉两个部分,弃去果肉部分。果皮置于40℃鼓风干燥箱中,待果皮烘干,约48 h后取出,经粉碎机粉碎,过60目筛,粉末密封于密封袋中,储存于玻璃干燥器中备用。
精确称量样品粉末0.5 g,置于10 mL离心管中,加入7 mL甲醇,涡旋摇匀后,室温条件下300 W超声30 min,5 000 r/min下离心15 min,取上清液于25 mL容量瓶中。残渣再加7 mL甲醇重复提取两次,合并上清液,最后用甲醇溶液定容至刻度线。提取液用初始流动相稀释10倍,摇匀后过0.22 µm PTFE针式滤器,前3滴弃去,续滤液置于进样小瓶中以待上机检测。

1.5 液相条件

色谱柱:ACQUITY UPLC BEH C18分析柱(2.1 mm×100 mm,1.7 μm);柱温:40℃;进样量2.0 μL;流速设置为0.4 mL·min-1;流动相的组成包括A相和B相,分别试验了含0.01%甲酸的水和含0.01%甲酸的乙腈、含0.01%甲酸的水和含0.01%甲酸的甲醇、含0.1%甲酸的水和含0.1%甲酸的乙腈、含0.1%甲酸的水和含0.1%甲酸的甲醇,最终优化为A相:0.01%甲酸的水,B相:含0.01%甲酸的乙腈。采用梯度洗脱,保持A相和B相配比总和为10%:0—3.0 min,5%—15% B;1.0—8.0 min,15%—25% B;8.0—9.0 min,25%—35% B;9.0—13.0 min,35%—45% B;13.0—15.0 min,45%—60% B;15.0—16.0 min,60%—90% B;16.0—18.0 min,90%—90% B;18.0—20.0 min,90%—5% B。检测波长为283 nm和330 nm,波长扫描范围200—400 nm。

1.6 质谱条件

UPLC-QTof-MS系统使用ESI离子源,在正负两种离子模式下全扫描采集数据。质谱扫描范围m/z 100—1 000,扫描时间0.2 s,参数设置与文献一致[15]

1.7 数据分析

使用Unifi软件采集数据并对潜在标志物进行分子式匹配。使用Progenesis QI软件对采集的数据进行代谢组学部分的分析,包括峰对齐、峰提取、去卷积化、归一化、多元统计分析等过程。本研究采用LC-MS技术建立8种橙果实代谢轮廓指纹图谱,并结合主成分分析(PCA)、偏最小二乘法判别分析(PLS-DA)、变量重要性投影(VIP)等化学计量学方法寻找8个品种橙果实之间的代谢差异物,即橙类的潜在分类标志物。

2 结果

2.1 橙的指纹图谱

使用UPLC-QTof-MS/MS系统对8个品种橙果皮的甲醇提取物进行分析,优化了流动相的组成和洗脱梯度。在最优的条件下,得到了8种橙果皮的代谢轮廓指纹图谱。如图1-A所示,负离子模式下,8种橙的代谢成分存在差异,如血橙2—3 min出现的峰对应的物质种类和相对含量与其他橙明显不同;长叶橙可见两个峰分别在12.36 min和11.80 min处,而另外7种橙则没有。同样的,正离子模式下(图1-B),8种橙的代谢指纹图谱差异明显,尤其是北碚447锦橙和血橙。北碚447锦橙在保留时间2—10 min的差异性峰最明显,血橙在5—6 min和8—9 min之间有非常明显区别于其他橙的峰出现。从图1的指纹图谱肉眼可见8种橙的代谢组分存在明显差异,为接下来QI软件分析差异性代谢物奠定了基础。
显示原图|下载原图ZIP|生成PPT
图18种橙果皮甲醇提取物基峰离子流图
A:负离子模式;B:正离子模式。a:XUEC,血橙;b:XIAC,夏橙;c:XF,先锋橙;d:S26,S26锦橙;e:EG,鹅蛋柑;f:CY,长叶橙;g:BB,北碚447锦橙;h:8045,8045甜橙。*代表已鉴定的差异代谢物。下同

-->Fig. 1Base peak ion (BPI) chromatograms of the methanol extracts of 8 orange cultivars
A: in the negative ion mode; B: in the positive ion mode. a: XUEC, Xuecheng; b: XIAC, Xiacheng; c: XF, Xianfengcheng; d: S26, S26Jincheng; e: EG, Edangan; f: CY, Changyecheng; g: BB, Beibei 447 Jincheng; h: 8045, 8045 Tiancheng. * indicate the identified differential metabolites. The same as below

-->

2.2 Progenesis QI分析

在进行QI组学分析之前首先要考察试验数据的可靠性。试验样品一共分为9组,包括一组QC(quality control)样品和8组橙果实样品(分别对应8种橙),每组6个样品。正离子模式下所得数据使用QI软件处理得分析变量为13 926,即所得数据矩阵为54×13926。从图2-A和图2-C可见,QC样本分布集中,且RSD<15%的变量占56.36%,RSD<30%的变量占81.32%。负离子模式下数据矩阵为54× 12015,QC样品聚集程度相对良好,且RSD<15%的化合物占64.80%,RSD<30%的化合物占88.42%(图2-B、2-D)。总体来说,本方法在整个过程中稳定,重复性良好,适合用于橙类的代谢组学分析,所得数据稳定可靠[23,24]
显示原图|下载原图ZIP|生成PPT
图2数据可靠性分析
A:正离子模式下的PCA图;B:负离子模式下的PCA图;C:正离子模式下RSD值分布;D:负离子模式下RSD值分布

-->Fig. 2Reliability analysis of the data
A: PCA score plot in the positive mode; B: PCA score plot in the negative mode; C: RSD distribution in the positive mode; D: RSD distribution in the negative mode

-->

图3-A可以看出,正离子模式下各品种各自聚集在一起,其中血橙、长叶橙和8045甜橙距离较远,说明3种橙果实的代谢差异较大,而鹅蛋柑、先锋橙与8045甜橙距离较近,说明这3种橙果实代谢相似。同样,北碚447锦橙与夏橙两种距离相近,说明二者代谢相似。从图3-B可以看出,各品种在负离子模式下更为集中,并且得出的聚类结果与正离子模式下相似:血橙、长叶橙和8045甜橙距离较远,鹅蛋柑、先锋橙与8045甜橙距离较近,北碚447锦橙与夏橙距离相近。
显示原图|下载原图ZIP|生成PPT
图38种橙的PCA分析图
A:正离子模式下PCA得分图,其中第一主成分占46.83%,第二主成分占19.39%;B:负离子模式下PCA得分图,其中第一主成分占45.83%,第二主成分占20.31%

-->Fig. 3PCA scores of the 8 orange cultivars
A: The PCA score plot in the positive ion mode, the first principal component accounts for 46.83%, and the second principal component accounts for 19.39%; B: The PCA score plot in the negative ion mode, the first principal component accounts for 45.83%, and the second principal component accounts for 20.31%

-->

2.3 差异性代谢物的筛选

以鹅蛋柑为例分析其区别于其他7种橙的代谢物。先将UPLC-MS/MS数据导入Progenesis QI软件中,以离子强度图进行图形对齐数据,再进行峰提取,保证数据的零丢失,自动归属同一化合物产生的不同加合信号,再提取MSE数据,软件自动辨别和浏览离子淌度分离结果,提取所有满足条件的组分信号,得到相应的变量信息,数据归一化;再将鹅蛋柑与其他品种分为两组得OPLS-DA散点图(图4-A),鹅蛋柑在第一主成分轴上明显分开,说明鹅蛋柑有明显区别于其他7种橙的代谢成分。模型验证参数R2Y=99%,R2Q=98%,说明该模型的可靠性及预测性均良好。得到对应的Loadings图,如图4-B所示,正轴表示鹅蛋柑,负轴表示其他品种,一个点代表一个变量,离原点越远表示该变量在该组含量越高。图4-C为S-Plot图,与Loadings图类似,越是在图的两端代表该化合物在该组的含量越高,重复性越好。VIP图,是重要变量性图,通常认为VIP值大于1的变量具有统计学意义。再参照变量变化趋势图来筛选潜在代谢标志物,选择在鹅蛋柑中含量高,在其他品种中含量低或者为零的变量。如图4-D所示,该物质只在鹅蛋柑中存在,在其他橙果实中的含量为零。最后将筛选出的变量借助高分辨质谱的优势用Unifi软件匹配可得较为准确的分子式。使用同样的流程筛选找到其他橙正负离子模式下各自的代谢标志物(附表1-16)。
显示原图|下载原图ZIP|生成PPT
图4以鹅蛋柑(EG)正离子模式的数据为例筛选品种间差异性代谢物
A:EG VS Group的偏最小二乘法判别分析图,R2Y=99%,R2Q=98%;B:载荷图;C:S-Plot图;D:变量变化趋势图

-->Fig. 4Taking EG in the positive ion mode as the example to screen the differential metabolites among varieties
A: OPLS-DA of EG VS Group, R2Y=99%, R2Q=98%; B: Loadings plot; C: S-Plot; D: Variable trend diagram

-->

Table S1
附表1
附表1鹅蛋柑正离子模式下区别于其他橙的代谢物
Table S1The metabolites in Edangan different from those in the other oranges in the positive ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1273.07665.79C15H12O53.236.50.0496
2440.107912.81C21H17N3O8-2.236.4-0.0491
3433.14899.13C22H24O9-0.956.30.0476
4614.17659.13C32H27N3O10-0.736.20.0478
5611.15943.01C27H30O16-2.036.1-0.0466
6796.14873.86C36H25N7O150.746.10.0467
7827.660512.15C16H70N38O2-1.386.0-0.0464
8433.450512.81C29H56N2-2.585.9-0.0459
9367.15071.88C17H22N2O71.925.80.0458
11316.28514.6C18H37NO31.35.7-0.0433
12473.21746.24C26H32O80.845.7-0.0435
13419.133513.17C21H22O9-0.45.7-0.0435
14403.377612.16C24H50O4-1.435.6-0.0432
15419.133614.67C21H22O9-0.125.5-0.0418
16600.16135.79C19H29N5O17-3.065.40.0418
17668.28974.57C29H37N11O8-0.325.3-0.0407
18470.10830.85C23H19NO100.345.20.042
19906.207212.15C39H35N7O191.225.2-0.0398
20449.14396.55C22H24O10-0.725.20.0394
21388.114912.15C19H13N7O3-0.895.0-0.0382
22623.17912.16C19H18N20O6-0.225.0-0.0382
23889.219912.14C30H32N16O17-0.564.9-0.038
24864.494210.95C10H53N39O9-2.264.90.0372
25671.22938.18C29H38N2O16-0.124.8-0.0365
26859.238912.14C39H42N2O20-1.664.8-0.0367

p[1]*小于0.05代表两组之间有统计学差异。下同p[1]*<0.05 indicated that there are statistical differences between the two groups. The same as below
新窗口打开
Table S2
附表2
附表2鹅蛋柑负离子模式下区别于其他橙的代谢物
Table S2The metabolites in Edangan different from those in the other oranges in the negative ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1609.14464.67C27H30O16-2.425.82019-0.0494
2959.24999.66C62H40O110.15.76277-0.0494
3717.23274.49C42H38O11-2.055.69717-0.0484
4977.28137.33C59H46O14-0.145.6897-0.0489
5777.1943.86C28H42O25-0.365.593910.0477
6629.16199.13C41H26O72.125.546220.0475
7579.13414.17C26H28O15-2.565.52214-0.0475
8840.12963.86C55H23NO9-0.495.37510.0462
9678.08415.78C43H13N5O5-0.425.364870.0461
10735.21440.67C34H40O180.295.35637-0.0453
11461.10955.42C22H22O111.225.23974-0.0446
12642.16455.79C36H21N9O40.24.995880.0428
13960.32850.65C49H55NO19-1.144.940280.0411
14461.10995.18C22H22O1124.744-0.0405
15641.13463.01C27H30O18-2.084.68674-0.0399
16633.25258.09C32H42O13-4.414.611540.0393
17719.24596.2C24H48O24-0.524.5986-0.0393
18592.2070.61C21H39NO18-4.194.548760.0382
19649.24469.56C39H38O90.374.49205-0.0384
20839.21324.6C51H36O12-0.264.438050.0379
21737.22970.67C34H42O18-0.214.43357-0.0371
22749.16824.5C44H30O122.294.42497-0.039
23656.17919.13C36H27N5O80.574.403890.0378
24813.23565.31C50H38O111.824.360650.0374


新窗口打开
Table S3
附表3
附表3血橙正离子模式下区别于其他橙的代谢物
Table S3The metabolites in Xuecheng different from those in the other oranges in the positive ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1595.20149.13C28H34O14-1.256.379690.0495
2745.208712.19C40H40O14-2.136.28810.0493
3465.1396.55C22H24O11-1.26.21340.0477
4757.25246.55C34H44O19-3.386.205840.0479
5343.12380.62C12H22O110.916.103570.0467
6609.18036.17C28H32O15-1.796.082790.0474
7348.05082.64C19H9NO61.555.99046-0.0458
8343.081411.23C18H14O70.415.913470.047
9359.112712.92C19H18O70.485.887920.0466
10494.25912.75C22H39NO11-0.955.83723-0.0446
11276.14520.94C12H21NO63.665.811750.0431
12596.28994.97C23H37N11O80.015.74448-0.044
13434.23885.14C20H35NO90.75.70059-0.0437
14389.122912.31C20H20O8-0.455.571510.0451
15302.305814.99C18H39NO21.615.533490.0424
16434.23834.99C20H35NO9-0.485.46848-0.0419
17325.07656.59C11H16O110.015.452350.0414
18348.0512.45C20H5N5O2-1.675.30489-0.0402
19359.11279.82C19H18O70.425.269850.0426
20595.16494.9C27H30O15-1.445.235210.0407
21706.13886.59C34H27NO162.135.181720.0396
22642.18062.64C31H31NO14-1.735.15193-0.04
23208.11920.59C9H13N5O-0.425.07335-0.039
24434.23855.43C20H35NO90.035.05729-0.0386
25437.193914.6C26H28O6-4.444.974250.0377
26738.14940.65C31H31NO20-2.434.949210.0374
27580.29584.39C26H45NO13-0.984.92815-0.0379
28628.17523.68C28H32O16-1.864.908440.0383
29750.2556.52C33H45NO17-4.054.908440.0376
30434.23875.26C20H35NO90.654.90625-0.0375


新窗口打开
Table S4
附表4
附表4血橙负离子模式下区别于其他橙的代谢物
Table S4The metabolites in Xuecheng different from those in the other oranges in the negative ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1563.14014.54C26H28O14-0.995.772880.0477
2533.17170.66C19H34O17-1.155.770190.0483
3677.16546.51C38H30O12-1.625.764430.0494
4647.15625.79C37H28O110.425.686880.0495
5503.16220.61C18H32O160.955.546560.0465
6251.11791.03C16H16N2O-4.315.45523-0.0467
7615.16629.13C37H28O90.35.303450.0464
8845.26910.62C44H46O173.435.285540.0447
9609.23632.43C33H38O113.555.03086-0.043
10563.144.68C26H28O14-1.084.941390.0409
11593.14946.58C27H30O15-3.044.893650.0424
12377.08930.66C18H18O93.984.835280.0426
13629.20445.23C35H34O112.554.811370.0414
14465.19927.37C21H30N4O80.224.78248-0.0409
15577.1555.86C27H30O14-2.254.759290.0417
16507.20857.97C22H36O130.44.52032-0.0385
17633.337613.44C33H50N2O10-2.624.51162-0.0386
18785.2229.87C45H38O13-2.514.49310.0378
19529.21354.42C21H38O15-0.484.48159-0.0381
20707.14536.6C31H32O19-1.774.475770.0385


新窗口打开
Table S5
附表5
附表5夏橙正离子模式下区别于其他橙的代谢物
Table S5The metabolites in Xiacheng different from those in the other oranges in the positive ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1274.274812.72C16H35NO22.616.969310.0458
2318.300512.91C18H39NO30.66.606570.0443
3757.25156.55C34H44O19-4.576.507680.0419
4465.13846.55C22H24O11-1.536.403190.0428
5488.19143.82C25H29NO9-0.36.37004-0.0494
6349.0221.43C16H4N4O64.716.35074-0.0492
7533.08252.7C38H12O43.056.18916-0.0472
8371.15310.84C14H26O11-4.676.16312-0.0472
9936.20071.43C18H25N29O180.26.14902-0.0484
10409.19732.39C20H28N2O70.926.09424-0.0486
11581.18655.79C27H32O14-0.026.087350.0381
12228.0770.85C12H9N3O21.096.07341-0.048
13470.1080.82C23H19NO10-0.375.92974-0.0466
14630.17056.52C14H15N25O6-0.785.923980.0408
15675.26036.24C29H42N2O16-0.565.91328-0.0432
16449.17895.38C20H20N10O3-0.855.786680.0468
17344.13450.82C15H21NO81.365.706310.0432
18414.04540.6C19H11NO10-0.465.685990.0408
19332.12410.85C16H17N3O50.15.68472-0.0454
20574.19822.24C21H35NO170.795.67981-0.0443
21268.10330.61C10H13N5O4-2.925.67642-0.0451
22741.2213.78C33H40O19-3.595.59691-0.043
23393.10322.7C15H20O121.145.59395-0.0427
24378.03882.42C23H7NO5-2.415.5455-0.0431
25473.20234.69C22H32O111.235.464730.0433
26373.128413.25C20H20O70.545.4455-0.0294
27490.20785.98C25H31NO91.275.43257-0.0426
28298.06320.61C6H11N5O90.665.386350.0393
29375.09232.7C15H18O110.255.34517-0.0407


新窗口打开
Table S6
附表6
附表6夏橙负离子模式下区别于其他橙的代谢物
Table S6The metabolites in Xiacheng different from those in the other oranges in the negative ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1593.15014.91C27H30O15-1.846.685020.0499
2563.14044.54C26H28O14-0.495.917070.047
3798.27960.64C36H49NO19-3.775.861950.0489
4443.19422.47C21H32O104.325.860480.0498
5754.25470.6C31H37N11O12-0.445.77027-0.0488
6983.31313.83C55H52O17-0.065.73028-0.0478
7339.203515.04C15H32O83.085.724710.0473
8627.17493.36C24H36O19-4.685.70632-0.0481
9521.17220.62C18H34O17-0.225.67730.0461
10607.16576.41C28H32O15-1.955.652370.0392
11915.26775.66C42H48N2O2105.637510.0489
12536.04662.67C38H7N3O20.045.62954-0.0475
13791.25424.62C41H44O16-1.85.62789-0.048
14669.27255.23C27H46N2O170.255.6263-0.0479
15907.31139.15C57H48O11-1.155.42851-0.046
16770.24950.6C47H37N3O8-1.675.40896-0.0448
17917.26127.48C57H42O120.975.40768-0.0444
18831.32044.45C40H52N2O171.35.32064-0.0464
19779.19576.89C49H32O104.335.31993-0.046
20565.19215.04C27H34O13-1.035.16505-0.044
21993.3694.59C42H58N8O20-0.455.14148-0.0436
22672.17476.59C37H23N9O5-0.435.114580.0425
23597.18085.2C27H34O15-2.835.091980.0415
24885.25559.54C53H42O130.225.0656-0.0456
25623.15993.68C28H32O16-2.955.064310.0334
26563.13994.68C26H28O14-1.315.032430.0395


新窗口打开
Table S7
附表7
附表7先锋橙正离子模式下区别于其他橙的代谢物
Table S7The metabolites in Xianfengcheng different from those in the other oranges in the positive ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1310.12931.37C15H19NO62.586.47085-0.0494
2815.22236C36H38N4O18-3.796.3635-0.0494
3316.285214.6C18H37NO31.846.21688-0.0476
4412.14632.55C16H21N5O8-0.076.189-0.0481
5417.17555.17C19H28O100.046.11487-0.0471
6359.112912.92C19H18O71.016.02298-0.0467
7515.22757.2C28H34O9-0.15.923410.0474
8668.28954.57C29H37N11O8-0.725.869810.0461
9630.1716.52C16H27N11O1605.74865-0.0449
10302.30614.99C18H39NO22.145.73061-0.0451
11475.17630.62C28H26O72.515.6603-0.0429
12565.15514.69C26H28O14-0.185.58823-0.0422
13280.13980.68C11H21NO72.625.52591-0.0428
14704.17474.57C39H29NO12-2.245.401940.0427
15419.133714.67C21H22O90.035.33505-0.0408
16797.21014.32C31H36N6O19-0.895.32334-0.0408
17423.16292.9C21H26O9-4.835.31733-0.0411
18473.20174.69C22H32O11-0.15.31567-0.0417
19845.23386.13C37H40N4O19-2.555.25196-0.0404
20377.19241.21C16H28N2O81.355.24788-0.0404
21258.13460.94C12H19NO53.975.15397-0.0397
22625.17573.68C28H32O16-0.955.10405-0.0384
23307.17723.19C15H22N4O32.494.951130.0379
24419.13365.78C21H22O9-0.164.947990.0371
25388.114912.15C19H13N7O3-1.044.94553-0.0376
26313.071212.22C17H12O61.684.91494-0.0387
27314.09280.88C19H11N3O21.24.8526-0.0371


新窗口打开
Table S8
附表8
附表8先锋橙负离子模式下区别于其他橙的代谢物
Table S8The metabolites in Xianfengcheng different from those in the other oranges in the negative ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1563.14034.68C26H28O14-0.675.74521-0.0482
2461.09870.83C24H18N2O8-0.715.68999-0.0484
3765.1814.19C41H34O15-1.945.57051-0.0485
4651.26326.2C32H44O14-3.995.443480.041
5947.27047.69C58H44O13-0.555.24041-0.0457
6863.23050.82C57H36O92.135.151010.0464
7761.25677.18C26H50O25-0.175.044080.0436
8282.08890.88C15H13N3O31.644.93064-0.0411
9471.1884.65C22H32O111.754.81185-0.039
10605.25754.51C31H42O12-0.724.800820.0412
11739.276210.48C42H44O120.224.726660.0417
12615.14615.79C40H24O71.974.696260.0437
13604.17190.66C34H27N3O8-1.14.66582-0.0402
14843.21015.73C50H36O132.14.58595-0.0408
15843.21065.83C50H36O132.754.57123-0.0396
16737.23020.67C34H42O180.534.5415-0.0369
17609.14393.01C27H30O16-3.554.52018-0.0376
18815.26860.62C47H44O13-2.794.46388-0.0368
19631.16156.51C37H28O100.874.45593-0.0399
20607.16546.41C28H32O15-2.344.44172-0.0363
21997.34295.78C60H54O14-1.234.43110.0404
22513.12553.77C22H26O140.974.36806-0.0383
23498.0822.9C33H13N3O31.774.35709-0.0364
24647.15615.79C37H28O110.334.350060.038


新窗口打开
Table S9
附表9
附表9S26锦橙正离子模式下区别于其他橙的代谢物
Table S9The metabolites in S26 Jincheng different from those in the other oranges in the positive ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1449.10415.33C16H20N2O13-1.046.58198-0.0489
2575.26490.51C34H38O81.686.4651-0.0494
3644.32663.63C31H49NO13-1.646.27628-0.0479
4316.284914.6C18H37NO30.766.273780.0472
5504.20761.21C22H33NO120.146.16917-0.0461
6570.21782.16C26H35NO13-0.576.13673-0.0466
7581.18523.86C27H32O14-2.236.11955-0.0448
8345.09686.56C18H16O7-0.326.04895-0.0461
9728.39659.72C35H57N3O130.126.03694-0.0443
10413.12236.55C22H20O8-2.056.01068-0.0458
11310.12941.37C15H19NO62.745.952710.0463
12917.28845.65C33H40N16O160.335.94233-0.0436
13290.07670.61C13H11N3O5-1.515.84237-0.0449
14883.25620.63C30H38N14O180.125.8321-0.0457
15518.324915.63C28H43N3O64.655.79944-0.0449
16474.358415.26C29H47NO41.385.73263-0.0439
17790.27384.6C30H43N7O180.065.72193-0.0426
18330.15530.67C15H23NO71.865.71534-0.0432
19611.55096.55C25H66N14O3-0.965.57709-0.0425
20262.12940.68C11H19NO63.365.541040.0435
21470.10870.85C24H15N5O6-1.75.513420.0434
22298.06340.61C6H11N5O91.645.48281-0.0427
23611.19646.54C28H34O15-0.985.43932-0.0422
24406.10364.6C6H11N15O7-0.555.36619-0.0394
25396.0350.66C19H9NO9-0.045.31618-0.041
26342.140.58C12H23NO101.665.29799-0.0405


新窗口打开
Table S10
附表10
附表10S26锦橙负离子模式下区别于其他橙的代谢物
Table S10The metabolites in S26 Jincheng different from those in the other oranges in the negative ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1807.20374.6C29H44O26-1.385.90536-0.05
2879.20695.31C53H36O13-1.575.89934-0.0488
3777.19423.86C28H42O25-0.125.87804-0.0488
4661.17139.13C38H30O11-0.425.65283-0.0471
5840.1293.86C56H19N5O5-2.765.61629-0.0465
6821.2634.32C49H42O123.255.6064-0.0467
7565.19195.04C27H34O13-1.35.4034-0.0443
8647.15595.79C37H28O110.045.3153-0.0439
9871.17273.86C43H36O200.014.9828-0.0412
10429.17854.66C20H30O104.464.91269-0.0422
11443.1942.47C21H32O103.924.875-0.042
12855.17784.61C43H36O1904.84272-0.0408
13521.17290.62C18H34O171.094.79995-0.0411
14593.14996.58C27H30O15-2.144.79147-0.041
15975.25013.85C55H44O17-0.444.77005-0.0436
16871.24188.81C45H44O18-4.254.73234-0.0421
17613.21084.27C28H38O15-4.874.70006-0.0385
18739.20255.34C40H36O14-0.934.69833-0.0399
19708.09266.61C44H15N5O6-3.274.69533-0.0415
20960.33010.65C49H55NO190.574.68043-0.044
21683.28726.48C40H44O101.494.62997-0.0394
22908.475710.02C45H71N3O16-0.464.60686-0.0384
23432.00150.82C27H3N3O4-8.384.56015-0.0389
24862.28710.66C51H45NO120.234.54462-0.0426
25505.1355.31C24H26O12-0.364.42791-0.0365


新窗口打开
Table S11
附表11
附表11长叶橙正离子模式下区别于其他橙的代谢物
Table S11The metabolites in Changyecheng different from those in the other oranges in the positive ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1600.16195.79C16H21N15O110.286.60931-0.0498
2676.13055.78C34H21N5O11-0.766.55517-0.0497
3325.07686.59C11H16O110.656.35936-0.0494
4343.12240.62C12H22O11-3.246.26185-0.0486
5787.24219.87C38H42O18-2.96.16386-0.0466
6218.21237.18C12H27NO23.666.12303-0.048
7415.211814.6C24H30O60.696.08933-0.0476
8246.243910.35C14H31NO24.676.03608-0.0473
9728.39579.72C33H45N17O3-1.016.0136-0.0464
10262.12890.68C11H19NO61.336.00632-0.0461
11367.15041.88C17H22N2O71.215.99204-0.0465
12433.14939.13C22H24O9-0.145.94617-0.0447
13486.19661.25C22H31NO11-0.825.88105-0.0456
14359.112712.92C19H18O70.595.866140.0454
15343.118612.22C19H18O635.825560.0477
16230.248812.81C14H31NO4.15.82435-0.0456
17330.15480.67C15H23NO70.165.80685-0.0453
18455.20637.21C26H30O7-0.375.76497-0.0437
19345.09676.56C18H16O7-0.465.63918-0.0439
20413.12246.55C22H20O8-1.615.62896-0.0439
21766.21227.43C39H23N15O4-1.025.61459-0.0426
22706.13926.59C31H19N11O100.395.51103-0.0432
23640.345215.98C32H45N7O7-0.185.48047-0.043
24403.139512.15C21H22O81.95.40725-0.0442
25714.26417.19C19H31N21O100.85.40457-0.0409
26730.32737.44C34H51NO16-1.035.34035-0.0405
27518.32415.63C29H39N7O20.295.31737-0.0417
28614.17729.13C17H23N15O11-0.455.30624-0.0397
29367.12377.2C14H22O110.635.30548-0.0403
30533.23797.19C28H36O10-0.445.28208-0.0402
31879.322810.24C38H50N6O18-3.065.27022-0.0402
32376.12977.43C9H21N5O11-3.635.24585-0.0399


新窗口打开
Table S12
附表12
附表12长叶橙负离子模式下区别于其他橙的代谢物
Table S12The metabolites in Changyecheng different from those in the other oranges in the negative ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1901.32510.23C39H50N8O173.155.8668-0.05
2453.193712.36C26H30O74.065.85911-0.05
3671.22724.49C36H36N2O113.765.72727-0.0499
4311.172315.93C13H28O83.615.67179-0.0493
5631.16166.61C37H28O100.935.65196-0.0488
6645.15626.59C24H30N4O174.45.49901-0.0477
7663.12065.79C29H28O180.475.20666-0.045
8632.08135.78C30H15N7O100.865.18437-0.0447
9630.20050.82C36H25N9O3-0.385.06974-0.0432
10912.39286.09C36H67NO25-0.155.00598-0.0427
11623.19537.95C29H36O15-4.494.94388-0.0424
12607.27387.4C31H44O12-3.634.90629-0.0418
13977.28077.33C59H46O14-0.764.856110.0415
14672.17426.59C23H35N3O200.14.81385-0.0419
15638.328315.97C31H49N3O11-1.714.80725-0.0413
16839.2154.6C51H36O121.884.798830.0409
17807.20244.6C54H32O8-0.14.788790.0406
18645.18480.84C31H34O153.554.71028-0.0402
19711.28117.17C41H44O11-0.044.68576-0.0399
20798.28090.64C31H49N3O212.884.65335-0.0397
21693.270310.59C41H42O10-0.394.56582-0.0389
22791.23677.18C44H40O142.714.51481-0.0385
23629.1629.13C41H26O72.184.49283-0.0389
24642.16485.79C23H29N7O15-0.174.47681-0.0387
25632.20130.68C36H31N3O8-4.014.39239-0.0374
26749.24277.41C39H42O15-3.244.31848-0.0367
27937.31989.24C40H58O250.364.254370.0366
28891.21047.19C54H36O132.294.20534-0.0358


新窗口打开
Table S13
附表13
附表13北碚447正离子模式下区别于其他橙的代谢物
Table S13The metabolites in Beibei 447 different from those in the other oranges in the positive ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1295.11390.61C10H18N2O81.016.691560.0481
2397.19722.57C19H28N2O70.596.49125-0.0494
3376.038514.47C11H5N9O70.036.39979-0.0486
4344.13410.82C15H21NO80.46.379440.0481
5467.17575.23C19H30O13-0.516.24184-0.0472
6314.160.67C15H23NO60.666.082650.0449
7630.17046.52C16H27N11O16-0.915.957910.0442
8259.0930.61C10H14N2O62.085.904460.0418
9280.13960.68C11H21NO71.735.865630.046
10250.09260.61C9H15NO71.975.673160.0436
11343.118111.37C19H18O61.425.657190.049
12343.12350.62C12H22O110.045.633470.0412
13625.17563.68C28H32O16-1.145.562010.0442
14277.10320.61C10H16N2O70.525.527670.0393
15246.243910.35C14H31NO24.635.507680.0437
16467.18882.33C19H26N6O80.735.4848-0.0412
17415.211614.6C24H30O60.115.476730.0388
18511.20184.22C21H34O14-0.615.44497-0.041
19326.12360.82C15H19NO70.445.432130.0406
20503.21019.35C17H18N201.045.42297-0.0412
21395.20386.69C18H34O90.145.34499-0.0405
22247.13365.39C15H18O33.125.34028-0.0413
23511.20123.97C21H34O14-1.855.22583-0.0391
24362.327213.07C20H43NO42.065.223640.0415
25698.17093.72C33H31NO16-0.995.20769-0.0396
26359.18181.5C16H26N2O71.515.179750.0388
27419.13385.8C21H22O90.395.12756-0.0389
28481.22928.09C21H36O122.495.06653-0.0385
29368.19197.8C15H29NO91.185.03442-0.0381


新窗口打开
Table S14
附表14
附表14北碚447负离子模式下区别于其他橙的代谢物
Table S14The metabolites in Beibei 447 different from those in the other oranges in the negative ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1515.193511.37C27H32O102.325.971780.0423
2403.16224.25C18H28O103.045.80393-0.0493
3672.17426.59C21H23N17O100.115.76580.05
4369.15627.57C18H26O81.785.4549-0.0465
5635.21220.61C34H36O12-1.935.302970.0486
6439.226.69C19H36O113.515.29236-0.0446
7805.34077.72C39H54N2O160.765.28646-0.045
8423.18943.38C18H32O111.215.24883-0.0435
9777.2240.84C36H42O19-0.975.22820.038
10677.16546.51C38H30O12-1.525.189540.0454
11447.15213.41C19H28O122.795.179-0.0441
12461.09860.83C24H18N2O8-0.865.132050.0446
13592.20760.61C21H39NO18-3.085.121330.045
14423.18673.16C18H32O11-1.145.1065-0.0423
15411.18824.83C17H32O112.465.09322-0.0432
16726.3789.72C30H57N5O150.225.089570.0445
17293.1030.6C15H18O6-0.285.080030.046
18912.39326.09C38H59N9O17-2.615.009130.0435
19435.18846.93C19H32O112.674.96371-0.0419
20707.14476.6C31H32O19-2.594.915340.0432
21439.21997.02C20H32N4O70.134.84335-0.0409
22737.23040.67C34H42O180.714.695190.0386
23721.28417.74C39H46O13-3.444.59857-0.0391
24607.16526.17C28H32O15-2.654.542790.0356
25591.19133.63C25H36O16-3.024.49702-0.0388
26604.17160.66C34H27N3O8-1.624.460730.0384


新窗口打开
Table S15
附表15
附表158045甜橙正离子模式下区别于其他橙的代谢物
Table S15The metabolites in 8045 Tiancheng different from those in the other oranges in the positive ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影VIP[1]p[1]*
1403.13911.01C21H22O80.616.73686-0.0492
2373.306911.23C20H40N2O42.166.30116-0.048
3274.27512.72C16H35NO23.356.28815-0.0487
4303.08656.55C16H14O60.556.27881-0.0469
5767.228812.19C37H38N2O16-0.786.25069-0.0487
6470.10790.85C23H19NO10-0.676.101870.0474
7230.13960.94C11H19NO43.866.04968-0.0466
8675.26066.24C29H42N2O16-0.226.009490.0455
9316.285214.6C18H37NO31.685.93551-0.0453
10379.20761.26C16H30N2O80.345.92258-0.0456
11389.123612.31C20H20O81.235.65466-0.0416
12413.21290.5C16H32N2O10-0.255.647760.0452
13409.18190.92C16H28N2O100.615.56839-0.0429
14478.337214.18C24H47NO8-0.495.41434-0.0414
15318.300912.91C18H39NO31.865.40105-0.0414
16393.22332.33C17H32N2O80.335.27559-0.0404
17409.19663.28C20H28N2O7-0.885.253640.0409
18925.25728.07C38H40N10O18-2.475.24354-0.0406
19412.14642.55C16H21N5O80.295.19921-0.0411
20351.17641.21C14H26N2O80.455.18822-0.0401
21328.15479.05C19H21NO41.095.1572-0.0395
22373.128410.54C20H20O70.595.11595-0.0389
23212.02099.63C9HN5O22.895.03473-0.0389
24339.086511.23C19H14O60.614.99968-0.0384
25704.17534.57C39H29NO12-1.314.99680.0399
26381.18660.82C15H28N2O9-0.394.96277-0.0382
27373.092511.83C19H16O81.924.95627-0.0371
28704.395310.59C33H57N3O13-1.614.929360.0363
29668.29044.57C32H45NO14-1.384.922440.0392
30609.18096.17C28H32O15-0.854.80608-0.0368


新窗口打开
Table S16
附表16
附表168045甜橙负离子模式下区别于其他橙的代谢物
Table S16The metabolites in 8045 Tiancheng different from those in the other oranges in the negative ion mode
编号
Num
质荷比
m/z
保留时间
Retention time (min)
分子式
Formula
质量误差
Mass error(ppm)
变量重要性投影
VIP[1]
p[1]*
1741.21863.86C40H38O14-0.326.29005-0.0473
2633.25258.09C32H42O13-4.365.714530.0465
3719.24646.2C24H48O240.125.687420.0488
4845.26850.62C44H46O170.025.62835-0.0495
5403.16254.25C18H28O103.765.433790.0489
6638.19610.93C25H37NO183.675.33017-0.0473
7813.2375.31C39H38N6O14-0.425.29398-0.0407
8585.2860.93C36H42O70.415.26986-0.0465
9485.15260.85C18H30O152.855.23309-0.0481
10429.17745.85C20H30O101.95.008690.0435
11631.22035.41C35H36O112.94.95879-0.0426
12807.20414.6C54H32O83.444.93239-0.0402
13839.21414.6C36H32N12O130.234.87234-0.0396
14205.040.68C13H6N2O44.84622-0.0419
15733.19854.52C34H38O18-0.054.842430.0432
16795.19098.58C42H36O16-2.674.77309-0.0408
17425.18375.39C21H30O94.684.754460.0431
18563.17658.94C27H32O13-0.914.7076-0.0393
19311.172115.93C13H28O83.074.68871-0.0408
20645.15666.59C29H30N2O15-1.154.55511-0.039
21777.22297.18C36H42O19-2.334.477170.0373


新窗口打开

2.4 差异性代谢物的鉴定

根据保留时间、精确分子量、二级碎片、标准品以及数据库和相关文献信息,对上述筛选出的差异性代谢物进行鉴定。表2所示的是已经鉴定出的部分代谢物分别对应于各个橙品种。化合物5(RT=13.25 min),化合物7(RT=6.41 min),化合物11(RT=6.54 min),化合物14(RT=12.15 min),化合物15(RT=11.37 min)和化合物17(RT=10.54 min)的鉴定结果经过标准品比对确认(附图1—6)。其余11种化合物包括了类黄酮-C-糖苷、类黄酮-O-糖苷、多甲氧基黄酮和其他类型的3种化合物(对应的MS和MS/MS信息见附图7—17)。
Table 2
表2
表2部分差异性代谢物的鉴定信息
Table 2Elaboration of chemical formula and identification of some significant marker compounds in both negative and positive ion modes
编号
Num
质荷比
m/z
离子
ion
保留时间
RTa (min)
分子式
Formula
质量误差
Mass error (ppm)
鉴定
Identification
橙品种
Orange
1359.1127[M+H]+9.82C19H18O70.423-羟基-5,7,3',4'-四甲氧基黄酮
3-Hydroxy-5,7,3',4'-tetramethoxyflavone
XUEC
2595.1649[M+H]+4.9C27H30O15-1.44木犀草素-7-O-新橙皮糖苷
Luteolin-7-O-neohesperidoside
XUEC
3465.13843[M+H]+6.55C22H24O11-1.53橙皮素-7-O-葡萄糖苷
Hesperetin-7-O-glucoside
XIAC
4741.221[M+H]+3.78C33H40O19-3.59野漆树苷-4'-O-葡萄糖苷
Rhoifolin 4'-O-glucoside
XIAC
5373.1284[M+H]+13.25C20H20O70.54橘皮素 TangeretinbXIAC
6443.1942[M-H]-2.47C21H32O104.32苯噻胺 PenstemideXIAC
7607.1657[M-H]-6.41C28H32O15-1.95地奥司明 DiosminbXIAC
8359.1129[M+H]+12.92C19H18O71.015-羟基-6,7,3',4'-四甲氧基黄酮
5-Hydroxy-6,7,3',4'-tetramethoxyflavone
XF
9515.22751[M+H]+7.2C28H34O9-0.17α-柠檬苦醇醋酸酯
7α-Limonyl acetate
XF
10625.17572[M+H]+3.68C28H32O16-0.95香叶木素6,8-二-C-葡萄糖苷
Diosmetin 6,8-di-C-glucoside
XF
11611.1964[M+H]+6.54C28H34O15-0.98橙皮苷 HesperidinbS26
12461.10986[M-H]-5.18C22H22O112金雀花素/荭草素-4-甲基醚
Scoparin/Orientin 4-methyl ether
EG
13633.25247[M-H]-8.09C32H42O13-4.41奥巴叩酮17-O-β-D-葡萄糖苷
Obacunone 17-O-β-D-glucoside
EG
14403.1395[M+H]+12.15C21H22O81.9川陈皮素 NobiletinbCY
15343.1181[M+H]+11.37C19H18O61.425,6,7,4'-四甲氧基黄酮
5,6,7,4'-Tetramethoxyflavoneb
BB
16741.21864[M-H]-3.86C40H38O14-0.32芸香柚皮苷-4'-葡萄糖苷
Narirutin-4'-glucoside
8045
17373.1284[M+H]+10.54C20H20O70.59异橙黄酮 Isosinensetinb8045

a 保留时间;b 经过标准品确认a Retention time;b Confirmed by standard
新窗口打开
显示原图|下载原图ZIP|生成PPT
附图1正离子模式下橘皮素标准品的MSE图:(A)MS(B)MS/MS
-->Fig. S1The MSE spectra of tangeretin standard in the postitive ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图2负离子模式下地奥司明标准品的MSE图:(A)MS(B)MS/MS
-->Fig. S2The MSE spectra of diosmin standard in the negative ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图3负离子模式下橙皮苷标准品的MSE图:(A)MS(B)MS/MS
-->Fig. S3The MSE spectra of hesperidin standard in the negative ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图4正离子模式下川陈皮素标准品的MSE图:(A)MS(B)MS/MS
-->Fig. S4The MSE spectra of nobiletin standard in the positive ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图5正离子模式下5,6,7,4'-四甲氧基黄酮标准品的MSE图:(A)MS(B)MS/MS
-->Fig. S5The MSE spectra of 5,6,7,4'-tetramethoxyflavone standard in the positive ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图6正离子模式下异橙黄酮标准品的MSE图:(A)MS(B)MS/MS
-->Fig. S6The MSE spectra of isosinensetin standard in the positive ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图7正离子模式下3-羟基-5,7,3',4'-四甲氧基黄酮的MSE图:(A)MS(B)MS/MS
-->Fig. S7The MSE spectra of 3-hydroxy-5,7,3',4'-tetramethoxyflavone in the positive ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图8负离子模式下木犀草素-7-O-新橙皮糖苷的MSE图:(A)MS(B)MS/MS
-->Fig. S8The MSE spectra of luteolin-7-O-neohesperidoside in the negative ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图9正离子模式下橙皮素-7-O-葡萄糖苷的MSE图:(A)MS(B)MS/MS
-->Fig. S9The MSE spectra of hesperetin-7-O-glucoside in the positive ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图10正离子模式下野漆树苷-4'-O-葡萄糖苷的MSE图:(A)MS(B)MS/MS
-->Fig. S10The MSE spectra of rhoifolin 4'-O-glucoside in the positive ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图11负离子模式下苯噻胺的MSE图:(A)MS(B)MS/MS
-->Fig. S11The MSE spectra of penstemide in the negative ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图12正离子模式下5-羟基-6,7,3',4'-四甲氧基黄酮的MSE图:(A)MS(B)MS/MS
-->Fig. S12The MSE spectra of 5-hydroxy-6,7,3',4'-tetramethoxyflavone in the positive ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图13正离子模式下7α-柠檬苦醇醋酸酯的MSE图:(A)MS(B)MS/MS
-->Fig. S13The MSE spectra of 7α-limonyl acetate in the positive ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图14正离子模式下香叶木素6,8-di二-C-葡萄糖苷的MSE图:(A)MS(B)MS/MS
-->Fig. S14The MSE spectra of diosmetin 6,8-di-C-glucosiden the positive ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图15正离子模式下金雀花素的MSE图:(A)MS(B)MS/MS
-->Fig. S15The MSE spectra of scoparin in the positive ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图16负离子模式下奥巴叩酮17-O-β-D-葡萄糖苷的MSE图:(A)MS(B)MS/MS
-->Fig. S16The MSE spectra of obacunone 17-O-β-D-glucoside in the negative ion mode: (A) MS, (B) MS/MS
-->

显示原图|下载原图ZIP|生成PPT
附图17负离子模式下芸香柚皮苷-4'-葡萄糖苷的MSE图:(A)MS(B)MS/MS
-->Fig. S17The MSE spectra of narirutin-4'-glucoside in the negative ion mode: (A) MS, (B) MS/MS
-->

据报道,类黄酮-C-糖苷中C-糖基化仅发生在类黄酮骨架中的C-6和C-8位[25],且黄酮-6-C-糖苷比-8-C-糖苷更容易失水产生碎片[M-H-18]-,该碎片通常可作为鉴定糖基化位点的依据。此外,类黄酮-C-糖苷容易优先发生糖基内部的断裂,产生[M+H-nH2O]+和[M+H-CH2O-2H2O]+等常见的碎片。鹅蛋柑在保留时间为5.18 min处的代谢物[M-H]-m/z 461.10986,特征碎片离子m/z 341.0666([(M-H)-C4H8O4]-)说明该化合物为C-糖基-类黄酮,碎片离子m/z 299.0537(Y0-)说明该苷元为含有3个羟基和1个甲氧基的黄酮。C环裂解产生的碎片m/z 209.0423([0,4A--C2H4O2])和167.0332([0,4A--C3H6O3])证明该黄酮的A环上带有两个羟基,而B+C环上带有一个羟基和一个甲氧基。通过搜索数据库SciFinder和ChemSpider查到两个化合物符合上述裂解规律,分别为金雀花素和荭草素-4-甲基醚,因此该化合物暂定为金雀花素或荭草素-4-甲基醚,但目前的信息不能完全确定其结构,这两种化合物在柑橘中都有报道[26]。同理,将先锋橙在3.68 min出峰的化合物鉴定为香叶木素6,8-二-C-葡萄糖苷。
与类黄酮-C-糖苷不同的是,类黄酮-O-糖苷易发生糖基的丢失,据此可判断糖基的类型,如中性丢失308 Da是典型的O-二糖苷,而中性丢失470 Da则说明该化合物是O-三糖苷。以夏橙在6.55 min处出峰的化合物为例介绍类黄酮-O-糖苷的鉴定。该化合物在正离子模式下的准分子离子[M+H]+m/z 465.1384,产生的碎片离子如下:303.0862(Y0+)、153.0186(1,3A0+)、177.0548([0,4B+-H2O])、345.0964(0,2X+)和369.0966([0,4X+-H2O])。其中苷元离子m/z 303.0862是丢失一个己糖162 Da产生的,说明该化合物是O-糖基黄烷酮,带有3个羟基和1个甲氧基。C环裂解产生的碎片153.0186和177.0548证明A环上有两个羟基取代,B环上有1个羟基1个甲氧基。据此,该化合物被鉴定为橙皮素-7-O-葡萄糖苷,在Citrus unshiu Marc.果实染病的果皮中也有检出[27]。同理,化合物2、4、16被鉴定为类黄酮-O-糖苷,如表2所示。
多甲氧基黄酮通常会优先发生中性丢失,如nCH3,然后是C环的断裂,取代基的分布可从C环裂解得到的碎片来判断。正离子模式下,先锋橙中保留时间为12.92 min出现的化合物,准分子离子峰[M+H]+m/z 359.1129,产生一系列的碎片包括326.07742([M+ H-CH3-H2O]+)、344.08696([M+H-CH3]+)、211.05952(1,2A+)和163.07469(1,3B+)。通过UNIFI软件匹配出最接近的分子式为C19H18O7,减去黄酮的基本骨架结构C15H10O2得到差值C4H8O5,说明该化合物为多甲氧基黄酮,其中甲氧基的个数等于差值中C的个数4,而羟基的个数为差值中O的个数减去C的个数,即为1。然后通过C环裂解得到的碎片来判断甲氧基和羟基的取代位点,再通过搜索数据库SciFinder和ChemSpider,将该化合物暂定为5-羟基-6,7,3',4'-四甲氧基黄酮。与之类似,将血橙保留时间为9.82 min处出峰的化合物鉴定为3-羟基-5,7,3',4'-四甲氧基黄酮。
此外,夏橙在2.47 min出峰的化合物被鉴定为苯噻胺,其特征碎片为m/z 101.0250;先锋橙在7.2 min出峰的化合物是诺米林的同分异构体,正离子模式下特征碎片为161.0597、303.0857、487.2322和469.2217,鉴定为7α-柠檬苦醇醋酸酯;鹅蛋柑在8.09 min出峰的化合物也是一种类柠檬苦素,易发生中性丢失葡萄糖和CO2,鉴定为奥巴叩酮17-O-β-D-葡萄糖苷,之前在柑橘种子中有检出[28]

3 讨论

WANG等[29]基于LC-MS的非靶标代谢组学对62份柑橘资源不同组织部位的类黄酮多样性进行了系统的研究,但是该研究只分析检测了类黄酮这一类物质。STANDER等[30]基于一种新的亲水作用液相色谱-质谱联用(LC-MS)方法对南非果汁进行了研究,其中包括了混合果汁和100%橙汁,研究表明柚皮苷和橙皮苷可以作为稳定的标志化合物用于果汁的掺假识别。JANDRIĆ等[3]基于UPLC-QToF-MS和化学计量学对柑橘果实(橙、柚、葡萄柚和宽皮柑橘)、不同来源的橙以及不同类型的果汁进行了区分比较,该研究分析得到的化合物不限于类黄酮,初步鉴定出了对差异性有贡献的8种标志性化合物,例如柠檬苦素-17-β-D-吡喃葡糖苷、诺米林-17-β-D- 吡喃葡糖苷、芸香柚皮苷和橙皮苷等,可以用于柑橘果实/果汁的真伪鉴别;同时,该课题组使用靶向和非靶向代谢组学对印度柑橘(宽皮柑橘、橙、葡萄柚)进行了真伪鉴别,并对特征的标志化合物进行了鉴定,最具影响的标志化合物有香风草甙、野漆树苷、异野漆树苷、新橙皮苷、橙皮苷、柚皮苷、芸香柚皮苷、柠檬苦素葡萄糖苷和维采宁-2[20]。然而目前国内外的文献并没有基于LC-MS的非靶标代谢组学对我国特色橙品种在相同产地条件下进行差异性代谢产物的分析鉴定。橙品种繁多,风味品质和营养价值各不相同。与果肉和种子相比,果皮含有更丰富的次生代谢产物,因此,本文选择了相同产地的8个品种的橙果皮为研究对象。
从本研究结果可以看出,血橙、长叶橙和8045甜橙的代谢物差异性较大,而北碚447锦橙与夏橙的代谢产物接近。利用本文建立的方法筛选出每种橙区别于其他7种橙的特征代谢物共几百种(附表1—16),因柑橘代谢产物数据库尚不完善,差异性代谢物的结构尚不能完全确定。目前,本文已完成了17种差异性代谢物的鉴定。其中通过标准品比对,确定了6种,分别是夏橙在保留时间为6.41 min出峰的地奥司明和13.25 min出峰的橘皮素,S26锦橙在6.54 min出峰的橙皮苷,长叶橙在12.15 min出峰的川陈皮素,北碚447锦橙在11.37 min出峰的5,6,7,4'-四甲氧基黄酮,8045甜橙在10.54 min出峰的异橙黄酮。另外的11种差异性代谢物根据保留时间、精确分子量、二级碎片以及数据库和相关文献信息进行了鉴定。与已有文献对柑橘种间果实/果汁的分析相比,本研究针对橙种内代谢的差异物进行了分析鉴定,对差异性有贡献的特征代谢标志物除了常规的类黄酮、柠檬苦素如橙皮苷、香叶木素6,8-二-C-葡萄糖苷和奥巴叩酮17-O-β-D-葡萄糖苷、7α-柠檬苦醇醋酸酯,还有6种多甲氧基类黄酮,包括3-羟基-5,7,3',4'-四甲氧基黄酮、川陈皮素、异橙黄酮、5-羟基-6,7,3',4'-四甲氧基黄酮、5,6,7,4'-四甲氧基黄酮和橘皮素。本文从代谢水平提供了鉴别橙果实及橙汁的依据。比如,8045甜橙和S26锦橙全果所榨橙汁的鉴别,可通过检测二者的次生代谢产物中有无异橙黄酮和橙皮苷,以及这两种差异性代谢物的相对含量来确定该橙汁是否掺假以及掺假的程度。若检出异橙黄酮,没检出橙皮苷,或者二者相对含量的比值大于1,说明该橙汁是8045甜橙的果汁;反之,则证明该橙汁来自S26锦橙。

4 结论

本文通过超高效液相色谱-四级杆飞行时间质谱(UPLC-QToF-MS)得到8种橙果皮的代谢产物指纹图谱,使用Progenesis QI软件结合主成分分析、偏最小二乘判别分析和变量变化趋势图等手段分析筛选出各品种对应的差异性代谢物,据此得到了区分/鉴别不同品种橙的代谢依据。目前仅鉴定出17种代谢标志物。其中木犀草素-7-O-新橙皮糖苷和3-羟基-5,7,3',4'-四甲氧基黄酮是血橙区别于其他7种橙的特征代谢物,橙皮苷是S26锦橙的代谢标志物,芸香柚皮苷-4'-葡萄糖苷和异橙黄酮可以作为8045甜橙的特征代谢物,而夏橙中鉴定出5种区别于其他橙的化合物,分别为橙皮素-7-O-葡萄糖苷、野漆树苷-4'-O-葡萄糖苷、橘皮素、苯噻胺和地奥司明。该研究方法和技术路线具有通用性,可拓展至不同水果、不同产地、不同成熟度等因素引起的代谢物差异分析,为柑橘及其他水果的代谢组学研究提供一定的借鉴。
The authors have declared that no competing interests exist.

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

相关话题/鉴定 质量 数据 软件 信息