删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

微喷补灌对冬小麦旗叶衰老和光合特性及产量 和水分利用效率的影响

本站小编 Free考研考试/2021-12-26

徐学欣, 王东. 微喷补灌对冬小麦旗叶衰老和光合特性及产量 和水分利用效率的影响[J]. , 2016, 49(14): 2675-2686 https://doi.org/10.3864/j.issn.0578-1752.2016.14.003
XU Xue-xin, WANG Dong. Effects of Supplemental Irrigation with Micro-Sprinkling Hoses on Flag Leaves Senescence and Photosynthetic Characteristics, Grain Yield and Water Use Efficiency in Winter Wheat[J]. Scientia Acricultura Sinica, 2016, 49(14): 2675-2686 https://doi.org/10.3864/j.issn.0578-1752.2016.14.003

0 引言

【研究意义】截至2010年,中国人均水资源占有量与20世纪五六十年代相比减少了50%左右,降水量减少2.8%,地表水资源和水资源总量分别减少5.2%和3.6%,其中,以海河和黄河流域最为突出[1],而该地区农业用水占总用水量的70.4%[2],水资源短缺威胁粮食安全。如何节水灌溉、提高水分利用效率是该地区小麦生产亟需解决的技术难题。【前人研究进展】小麦开花后遭遇水分胁迫,叶片超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性均降低[3]。细胞代谢失调,产生过剩的活性氧自由基,特别是引发或加剧膜脂质过氧化产生丙二醛(malondialdehyde,MDA),造成细胞膜系统损伤,使其膜透性增高,叶绿素遭到破坏,植株早衰[4]。进而导致籽粒灌浆时间缩短,粒重降低[5]。拔节期和开花期适时按需补灌,能显著提高小麦开花后0—24 d期间的旗叶SOD和过氧化氢酶(catalase,CAT)活性,降低MDA含量,增强旗叶光合同化能力[6]。然而,当前黄淮海地区小麦灌溉多采用畦灌,灌水量无法控制,难以实施按需精量补灌,制约水分利用效率的提高[7-8]。与传统畦灌相比,喷灌和滴灌能有效控制每次灌水定额,成为当前节水灌溉的重要设施[9-10]。微喷带灌溉是在喷灌和滴灌的基础上发展起来的一种新型灌溉方式,它利用微喷带[11]将水均匀地喷洒在田间,所用设施相对简单、廉价,易于收放[12-13]。然而,目前生产上常用的微喷带带型和喷孔等设计仅适于在低秆或大行距作物上应用[14-15]。小麦生育中后期采用传统的微喷带灌溉,喷出的水流会被密集的小麦茎秆阻挡,射程和喷洒宽度大幅下降,喷水均匀度严重降低,难以实现节水灌溉。山东农业大学前期发明的小麦专用微喷带(ZL201220356553.7)[16],解决了小麦生育中后期由于行距窄、茎秆和叶片密集阻挡微喷带喷射水流,降低喷洒幅度和均匀度的问题,显著提高灌溉水分布均匀系数[17-18],适于麦田实施按需精量补灌,有较好的推广应用前景[19]。【本研究切入点】前期的研究多是对不同微喷带带型的比较,关于微喷补灌与传统畦灌的比较鲜有报道。在这两种灌溉方式下,小麦产量和水分利用效率的差异亟待探讨。【拟解决的关键问题】本文拟研究小麦开花后旗叶衰老、光合及叶绿素荧光特性对微喷补灌和传统畦灌2种灌溉方式的反应,探索2种灌溉方式对小麦产量和水分利用效率调节的生理基础,为小麦节水高产栽培提供理论依据和技术支持。

1 材料与方法

1.1 研究区概况

试验于2011—2013年冬小麦生长季,在山东省兖州市小孟镇史家王子村(35.41°N,116.41°E)大田进行,该区属半湿润暖温带气候,年均温13.6℃。播种前试验地0—20 cm土层土壤养分状况和小麦生长季降水量见表1,播前0—200 cm土层土壤水分状况见表2。试验田田间纵向坡度为2.18‰。
Table 1
表1
表1试验地 0—20 cm土层土壤养分状况及冬小麦生长季降水量
Table 1Soil nutrient condition in 0-20 cm soil layer of the experimental field and precipitation during the growth season of winter wheat
年度
Year
有机质
Organic matter
(g·kg-1)
全氮
Total N
(g·kg-1)
碱解氮 Hydrolysable N
(mg·kg-1)
速效磷 Available P
(mg·kg-1)
速效钾 Available K
(mg·kg-1)
降水量 Precipitation (mm)
播种期-拔节期
Sowing- jointing
拔节期-开花期
Jointing-anthesis
开花期-成熟期
Anthesis-maturity
总量
Total
2011—201215.11.1110.432.7116.1149.034.00.0183.0
2012—201315.31.2108.634.5118.592.054.591.5238.0


新窗口打开
Table 2
表2
表2试验地 0—200 cm土层土壤含水量
Table 2Soil water content in 0-200 cm soil layers of the experimental field (%)
年度
Year
土层 Soil layer (cm)
0-2020-4040-6060-8080-100100-120120-140140-160160-180180-200
2011—201218.5719.8020.6321.2122.2223.1022.0122.3621.7421.70
2012—201315.1513.7315.9617.5819.0319.6020.0821.5121.3121.02


新窗口打开

1.2 试验设计

设置全生育期不灌水(W0)、微喷补灌(W1)和传统畦灌(W2)3个处理。W1与W2处理的灌水时期一致,均于小麦拔节期和开花期各灌水1次。W1处理采用小麦专用微喷带(ZL201220356553.7)补充灌溉,灌水前测定土壤含水量。两年度小麦拔节期均设定0—140 cm土层土壤目标相对含水量为70%,第一年和第二年小麦开花期设定0—140 cm土层土壤目标相对含水量分别为70%和65%。根据灌水定额公式计算所需补灌水量(CIR,mm)。
CIR=100Dhγbd(θt-θn) [6,20-21]
式中:Dh(cm)为补灌的拟湿润土层深度,即140 cm,γbd(g·cm-3)为该拟湿润土层土壤容重,θt(mg·g-1)为目标土壤含水量,即田间持水量乘以目标土壤相对含水量,θn(mg·g-1)为灌水前拟湿润土层土壤平均含水量。
W2处理采用传统畦灌方式灌溉,改口成数设为90%,即当水流前锋到达畦长长度的90%位置时停止灌水。采用水表计量实际灌水量。
每处理3次重复,试验小区畦宽(左侧畦梗中心线至右侧畦梗中心线的垂直距离)2 m,畦面宽1.6 m,畦梗宽0.4 m,畦长60 m,面积120 m2,小区间设1.0 m保护行。每小区等行距种植8行小麦,实际行距22.9 cm。W1处理的每个试验小区在自边行向内数第4行与第5行小麦之间沿小麦种植行向(畦长方向)铺设一条专用微喷带。微喷带进水端装有压力表、水表和闸阀,进水端水压设为0.02 MPa。灌溉水水源为井水,从水源至微喷带和畦田进水端采用PVC水龙带输水。畦灌的单宽流量为4.6—5.2 L·m-1·s-1
两年度供试品种均为济麦22,小麦播种前,将前茬玉米秸秆全部粉碎翻压还田,底施纯N 105 kg·hm-2、P2O5 150 kg·hm-2和K2O 150 kg·hm-2,拔节期追施N 135 kg·hm-2。用尿素作氮肥,磷酸二铵作氮肥和磷肥,氯化钾作钾肥。分别于2011年10月10日和2012年10月9日播种,3叶1心期定苗,基本苗为180 株/m2,其他管理措施同一般高产田。

1.3 测定项目与方法

1.3.1 灌溉水在土壤中水平分布均匀性的计算 灌溉水在土壤中的水平分布均匀性采用克里斯琴森均匀系数表示[22],计算公式为:

式中:hi为第i取土点灌水后第3天与灌水前1 d 0—40 cm或0—200 cm土层土壤平均贮水量之差(mm); n个取土点hi的平均值(mm);n为取土点数,本试验各小区均设有60个取样点,故n=60。
1.3.2 旗叶水势的测定 于开花后0、10、20和30 d早上6:00前,每处理摘取旗叶12片,采用Psypro型露点水势测量系统(Wescor,美国)进行旗叶水势测定。
1.3.3 旗叶SOD、CAT活性和MDA含量的测定 样品采集和处理:在开花后第0、7、14、21和28天,采集旗叶,每个处理3次重复,每重复取15个旗叶,用锡箔纸包裹后立即放入液氮冷冻,随后置-40℃冰柜保存待用。
酶液的制备:快速称取0.5 g剪碎的旗叶放入研钵中,加5 mL pH=7.8的磷酸缓冲液(0.2 mol·L-1 KH2PO4和0.2 mol·L-1 K2HPO4),冰浴研磨,匀浆倒入离心管中,冷冻离心20 min(9 800 r/min),上清液(酶液)倒入试管中,置于0—4℃保存待用。
参照BEAUCHAMP等[23]方法测定SOD活性:取型号相同的试管,吸取20 μL的酶液,加入3 mL反应液;同时取四支试管,三支作对照,一支作为空白对照(不加酶液,以缓冲液代替);空白置暗处,对照(CK)与酶液同置于4 000 lx环形日光灯的光照培养箱照光30 min,遮光保存,以空白调零,560 nm比色。SOD反应液为0.05 mol·L-1 磷酸缓冲液(pH=7.8)、130 mmol·L-1 Met(甲硫氨酸)、750 μmol·L-1四氮唑蓝(NBT)、100 μmol·L-1 EDTA-Na2、20 μmol·L-1 FD(核黄素)、H2O按照15﹕3﹕3﹕3﹕3﹕2.5比例混匀。
参照TAN等[24]方法测定CAT活性:50 μL酶液+2.5 mL反应液,240 nm比色,每隔1 min读数1次,共读数3次。反应液为0.1 mol·L-1的H2O2 5 mL+0.1 mol·L-1的pH 7.0的磷酸缓冲液20 mL(即按1﹕4的比例)混匀。
参照QUAN等[25]方法测定MDA含量:1 mL酶液+2 mL 0.6%的TBA,封口沸水浴15 min,迅速冷却后再离心,取上清液,在600、532和450 nm 3个波长下比色。
1.3.4 旗叶荧光参数的测定 于开花后7、14、21和28 d上午9:00—11:00,在田间自然光照下选取生长一致且受光方向相同的旗叶12片,分别夹上金属片打开的暗适应夹,采用FMS-2型荧光仪测定旗叶实际光化学效率(actual photochemical efficiency of PSⅡ,ΦPSⅡ),迅速关闭金属片进行暗适应 30 min后,测定旗叶暗适应下的初始荧光值(minimal fluorescence,F0)和最大荧光值(maximal fluorescence,Fm),重复测定10次。PSⅡ潜在最大光化学量子效率(Fv/Fm)用以下公式[26]计算:

1.3.5 群体光合速率测定 参照董树亭等[27]的方法略有改进。采用GXH-3051型红外CO2分析仪,分别于小麦开花后0、10、20和30 d晴天上午9:30—12:00在自然光照下测定群体光合速率。同化箱长、宽、高分别为100、100和120 cm。框架外罩以透光性良好的投影膜,透光率95%以上。同化箱内装有一个80 W的风扇,用于搅匀箱内气体。测定时每隔20 s读1次数,同步测定土壤呼吸。计算公式为:
CAPC/10-6×V×360/ΔM×273/(273+T)×44/22.4× 1000/L
式中:CAP为群体表观净光合速率(μmolCO2 m-2·h-1),ΔC为作物群体净光合实际同化CO2浓度差(10-6);V为同化箱体积(m3);ΔM为测定时间(s);T为同化箱温度(℃);L为测定群体所占的土地面积(m2)。
1.3.6 籽粒灌浆速率和产量的测定 在小麦初花期,每小区选择同日开花且长相、长势、穗子大小基本一致、无病虫害的单茎80个挂牌标记,从开花后7 d开始取样,以后每7天取样1次,直至完全成熟。每小区每次取样10穗,带回室内,每穗人工剥出所有籽粒,立即在105℃烘箱内杀青20 min, 然后恒温75℃烘至恒重,称重,计算粒重及灌浆速率。
成熟期沿畦长方向,将各试验小区距畦首1—2 m、14.5—15.5 m、29.5—30.5 m、44.5—45.5 m、58—59 m(宽度均为2 m)范围内的小麦全部收获脱粒,每小区总收获面积为10 m2,待籽粒自然风干至含水率为12.5%时分别称重,计算平均产量。
1.3.7 农田耗水量和水分利用效率的测定计算
计算公式[28]为:
ETl-2=Si+M+P0+K
式中:ET1-2为阶段耗水量(mm);M为阶段内的灌水量(mm);P0为阶段内有效降水量(mm);K为阶段内的地下水补给量(mm),当地下水埋深大于4 m时,K值可以忽略不计,本试验的地下水埋深在5 m以下,故地下水补给量可视为0;Si为阶段土壤贮水消耗量,其计算公式为:

式中:i为土层编号;n为总土层数;ri为第i层土壤容重(g·cm-3);Hi为第i层土壤厚度(cm);θi1θi2分别为阶段初和阶段末第i层的土壤含水量(%)。
参照SEPASKHAH等[29]方法计算水分利用效率:
水分利用效率(kg·hm-2·mm-1)=籽粒产量(kg·hm-2)/农田耗水量(mm)

1.4 数据处理

采用Microsoft Excel 2003对数据进行绘图,采用DPS 7.05统计分析软件对各处理数据进行单因素方差分析,用LSD法进行差异显著性检验(α=0.05)。

2 结果

2.1 不同灌溉方式对灌水量的影响

微喷补灌(W1)和传统畦灌(W2)处理的灌水量如表3所示。W1处理的灌水量在2011—2012年度拔节期和两年度开花期均显著低于W2处理。两年度,W1处理在拔节期和开花期的灌水量比W2处理分别减少了4.2—52.5 mm和18.3—29.0 mm,全生育期总灌水量减少了33.2—70.8 mm,节水21.0 %—54.2%。
Table 3
表3
表3各处理拔节期、开花期和全生育期灌水量
Table 3Amount of irrigation in different treatments at jointing, anthesis and during whole growth season (mm)
处理
Treatments
2011—20122012—2013
拔节期
Jointing
开花期
Anthesis
总灌水量
Total irrigation amount
拔节期
Jointing
开花期
Anthesis
总灌水量
Total irrigation amount
W121.3b38.5b59.8b96.0a29.0b125.0b
W273.8a56.8a130.6a100.2a58.0a158.2a

Values in a column followed by different letters are significantly different at P<0.05. The same as below同列数字后不同字母表示处理间差异显著(P<0.05)。下同
新窗口打开

2.2 不同灌溉方式对灌溉水分布均匀系数的影响

表4所示,两年度拔节期灌水后,W1处理0—40和0—200 cm土层灌溉水分布均匀系数分别在93.2%—96.4%和89.2%—94.3%范围内,与W2处理的无显著差异。两年度开花期灌水后,W1处理0—40 cm土层灌溉水分布均匀系数在95.9%—97.0%范围内,与W2处理的无显著差异;但2012—2013年度开花期灌水后,W1处理0—200 cm土层灌溉水分布均匀系数为87.9%,显著高于W2处理的。说明采用微喷补灌,尽管灌水量较少,并没有降低灌溉水在田间分布的均匀度。
Table 4
表4
表4不同处理的灌溉水分布均匀系数
Table 4Irrigation water distribution uniformity in different treatments (%)
处理
Treatments
0—40 cm土层深度Soil layer depth0—200 cm土层深度Soil layer depth
拔节期 Jointing开花期 Anthesis拔节期 Jointing开花期 Anthesis
2011-20122012-20132011-20122012-20132011-20122012-20132011-20122012-2013
W193.2a96.4a95.9a97.0a89.2a94.3a87.9a93.5a
W296.9a96.9a92.4a95.2a92.8a94.4a82.7b90.6a


新窗口打开

2.3 不同灌溉方式对花后旗叶水势的影响

开花后旗叶水势变化如图1所示,两年度规律一
致。随着开花后天数的增加,各处理旗叶水势呈下降趋势。全生育期不灌水处理(W0)在开花后0、10、20和30 d的旗叶水势均显著低于W1和W2处理,W1处理的旗叶水势与W2处理的无显著差异。

2.4 不同灌溉方式对旗叶SOD、CAT活性和MDA含量的影响

开花后旗叶SOD、CAT活性和MDA含量变化如图2所示,两年度规律一致。旗叶SOD活性在开花后0—7 d期间相对稳定,开花7 d后呈逐渐下降趋势;旗叶CAT活性在开花后呈先升后降趋势,以开花后7 d最高;旗叶MDA含量在开花后0—7 d期间相对稳定,开花7 d后呈逐渐升高趋势。W1和W2处理开花后旗叶SOD和CAT活性显著高于W0处理的,MDA含量显著低于W0处理的;W1处理与W2处理之间则无显著差异。说明在灌水次数和时期相同的条件下,微喷补灌对小麦旗叶衰老的调节效果与传统畦灌无显著差异。
显示原图|下载原图ZIP|生成PPT
图1不同处理开花后的旗叶水势
-->Fig.1Flag leaves water potential after anthesis in different treatments
-->

显示原图|下载原图ZIP|生成PPT
图2不同处理开花后的旗叶SOD、CAT活性和MDA含量
-->Fig. 2Superoxide dismutase (SOD), catalase (CAT) activities and malondialdehyde (MDA) content of ?ag leaves after anthesis in different treatments
-->

2.5 不同灌溉方式对花后旗叶荧光参数的影响

开花后旗叶荧光参数变化如图3所示,两年度规律一致。W1处理开花后的旗叶最大光化学效率和实际光化学效率均与W2处理的无显著差异,但两处理开花后21和28 d的旗叶最大光化学效率,及开花后7—28 d的旗叶实际光化学效率均显著高于W0处理。
显示原图|下载原图ZIP|生成PPT
图3不同处理开花后的旗叶荧光参数
-->Fig. 3Chlorophyll fluorescence parameters of ?ag leaves after anthesis in different treatments
-->

2.6 不同灌溉方式对小麦群体光合速率的影响

各处理小麦开花后群体光合速率如图4所示,两年度规律一致。全生育期不灌水处理的小麦群体光合速率在开花后呈下降趋势,且显著低于W1和W2处理的。W1和W2处理的群体光合速率在开花后呈先升高后降低的变化趋势,均在开花后10 d达到高峰,W1与W2处理之间无显著差异。说明在灌水次数和时期相同的条件下,微喷补灌虽然减少了灌水量,但小麦开花后的群体光合速率并不比传统畦灌的低。
显示原图|下载原图ZIP|生成PPT
图4不同处理开花后的群体光合速率
-->Fig. 4Canopy apparent photosynthetic rate after anthesis in different treatments
-->

2.7 不同灌溉方式对小麦籽粒灌浆的影响

各处理籽粒灌浆速率如图5所示,两年度规律一致。W0处理在开花后7 d的籽粒灌浆速率显著高于W1和W2处理,但开花14 d后则显著低于W1和W2处理。W1处理在开花后7—35 d的籽粒灌浆速率与W2处理的无显著差异。
显示原图|下载原图ZIP|生成PPT
图5不同处理的籽粒灌浆速率
-->Fig. 5Grain filling rate in different treatments
-->

2.8 不同灌溉方式对籽粒产量、耗水量和水分利用效率的影响

各处理籽粒产量、耗水量和水分利用效率如表5所示。两年度均表现为,W0处理的籽粒产量和耗水量显著低于W1和W2处理;W1处理的籽粒产量与W2处理的无显著差异,但耗水量显著低于W1处理的,差值达47.6—52.2 mm;水分利用效率显著高于W1处理的,差值达2.1—2.9 kg·hm-2·mm-1。说明在灌水次数和时期相同的条件下,微喷补灌以较低的耗水量获得了与传统畦灌相同的产量。
Table 5
表5
表5不同处理的籽粒产量、耗水量和水分利用效率
Table 5Grain yield, evapotranspiration and water use efficiency in different treatments
年份
Year
处理
Treatments
籽粒产量
Grain yield (kg·hm-2)
耗水量
Evapotranspiration (mm)
水分利用效率
Water use efficiency (kg·hm-2·mm-1)
2011—2012W07818.8b396.1c19.7b
W19127.4a422.4b21.6a
W29230.0a474.6a19.5b
2012—2013W06967.7b374.6c18.6c
W19533.6a410.7b23.2a
W29314.7a458.3a20.3b


新窗口打开

3 讨论

灌溉水分布均匀度是评价灌溉质量的重要指标之一,对作物产量有重要影响,常用灌溉水分布均匀系数表示[30]。前人研究表明,采用畦灌,在畦田坡度低于7.6‰、畦长60 m的条件下,灌溉水分布均匀系数与畦宽呈二次曲线关系,畦宽为2 m时灌溉水分布均匀系数最高,达到84%,畦田过宽或太窄,则导致灌溉水在畦首和畦尾的入渗深度不一,灌溉水分布均匀系数降低[31]。还有研究表明,畦灌的改口成数对灌溉水分布均匀度亦有显著影响,在畦田坡度为2.14‰,畦长和畦宽分别为80和2 m的条件下,小麦拔节期畦
灌,当水流前锋到达畦田长度的90%时停止灌水,灌溉水分布均匀系数可达93.4%—93.8%[32]。采用喷灌,小麦全生育期喷灌4—5次,在供水压力为0.3 MPa,单次灌水量为22.2—56.3 mm的条件下,灌溉水分布均匀系数可达60%—88%[33-34]。前人研究表明[35],微喷带每组喷孔由3个增加到12个,灌溉水分布均匀系数由24.6%增加到78.3%,工作压力由0.03 kPa增加到0.05 kPa,灌溉水分布均匀系数由34.4%增加到73.9%。本研究采用的小麦专用微喷带,直径51 mm,每组6个喷孔,最小喷射角为80°,最大喷射角为88°[16]。在小麦拔节期补灌水量为21.3—96.0 mm,进水端水压为0.02 MPa的条件下,灌水后0—40 cm和0—200 cm土层灌溉水分布均匀系数分别为93.2%—96.4%和89.2%—94.3%;在小麦开花期补灌水量为29.0—38.5 mm的条件下,灌水后0—40 cm和0—200 cm土层灌溉水分布均匀系数分别为95.9%—97.0%和87.9%—93.5%,均不低于本研究中相同畦田规格、改口成数为90%的畦灌处理。
小麦开花后叶片水势与0—60 cm土层土壤含水量呈正相关[36-37]。有研究认为,小麦旗叶水势对土壤相对含水量的响应阈值是60%,高于该值继续增加土壤含水量,旗叶水势无明显提高[38]。土壤相对含水量维持在60%以上亦能显著提高旗叶SOD、CAT和POD活性,延缓叶片衰老[39-40]。本研究在拔节期微喷补灌使0—140 cm土层土壤平均相对含水量达到70%的基础上,再于开花期微喷补灌,使0—140 cm土层土壤平均相对含水量达到65%或70%,小麦旗叶水势、SOD和CAT活性与灌水较多的畦灌处理无显著差异,进一步证明土壤相对含水量在达到一定阈值后,小麦旗叶水势和抗氧化酶活性对土壤含水量的反应不再敏感,这为适量补灌保障作物正常的生理需水实现节水高产提供了理论基础。
前人研究表明,春季不灌水处理的小麦群体光合速率显著低于灌水处理,而春灌两水与春灌四水处理之间无显著差异[41]。总灌溉量在0—150 mm范围内,随灌溉次数增多或灌溉时期后移,小麦群体光合速率增加,但总灌溉量超过150 mm后,群体光合速率反而降低[42]。还有研究表明,小麦开花后旗叶光系统Ⅱ(PSⅡ)原初光能转化效率(Fv/Fm)和潜在活性(Fv/F0)在土壤相对含水量为60%—70%时最高,而当土壤相对含水量低于60%或高于80%时则显著降低[43]。本研究在小麦一生中仅于拔节期和开花期灌溉两水,畦灌灌水量分别为73.8—100.2 mm和56.8—58.0 mm,开花后旗叶最大光化学效率、实际光化学效率、群体光合速率均显著高于不灌水的处理,而微喷补灌处理的灌水量比畦灌处理分别减少了4.2—52.5 mm和18.3—29.0 mm,全生育期总灌水量减少了33.2—70.8 mm,节水21.0%—54.2%,小麦开花后旗叶荧光特性、群体光合速率和籽粒产量与本研究中的畦灌处理相比无显著差异,说明微喷补灌可以在畦灌节水模式的基础上进一步挖掘小麦节水高产的潜力。
本研究结果还发现,2011—2012年度播种至拔节期降水量较多,达149.0 mm,拔节期的微喷补灌水量显著低于传统畦灌处理,而2012—2013年度播种至拔节期降水量较少,仅为92.0 mm,拔节期的微喷补灌水量比传统畦灌处理仅减少了4.2 mm,说明采用补灌的方法可以根据小麦生育期间的降水量和土壤含水量状况及时调节灌溉水量,而小麦专用微喷带可以于小麦生育中后期实施精量灌溉,且具有较高的灌溉水分布均匀度,二者的结合可以为小麦节水高产栽培提供技术支持。

4 结论

采用小麦专用微喷带在拔节期和开花期进行微喷补灌具有根据土壤水分状况按需补给、精确灌溉的优势,灌溉水分布均匀系数可达87.9%—97.0%,比全生育期灌两水的畦灌处理减少33.2—70.8 mm的灌水量,节水21.0%—54.2%,而且能维持小麦开花后较高的旗叶水势、SOD和CAT活性,延缓叶片衰老,保持较高的群体光合速率和籽粒灌浆速率,比畦灌处理提高水分利用效率2.1—2.9 kg·hm-2·mm-1
The authors have declared that no competing interests exist.

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

相关话题/土壤 计算 作物 生育 小麦