Effects of Long-Term Reduce/Zero Tillage and Nitrogen Fertilizer Reducing on Maize Yield and Soil Carbon Emission Under Fully Plastic Mulched Ridge-Furrow Planting System
ZHOU YongJie,1,2, XIE JunHong,1,2, LI LingLing1,2, WANG LinLin1,2, LUO ZhuZhu2,3, WANG JinBin1,21College of Agronomy, Gansu Agricultural University, Lanzhou 730070 2State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou 730070 3College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070
Abstract 【Objective】 The effects of tillage practices on soil respiration, carbon emission and crop yield under nitrogen reduction were clarified, and the relationship between maize growth and soil carbon emission was revealed.【Method】The long-term tillage practices and reduced fertilization experiment initiated in 2012 within two-year (2018-2019) was conducted at the Rainfed Agricultural Experimental Station of the Gansu Agricultural University in the Gansu province of northwestern China. This experiment is based on the technology of full-film double-ridge and furrow sowing maize with good effect of collecting rainfall and inhibiting evaporation and increasing temperature and soil moisture. The experiment adopted the split plot design, and the main plots were four tillage practices (conventional tillage, rotary tillage, subsoiling, and no-tillage) and the subplot were two nitrogen application levels (nitrogen reduction (200 kg·hm-2) and conventional nitrogen application (300 kg·hm-2)). Based on this experiment, the maize growth, soil respiration rate, carbon emission and soil organic carbon content, carbon emission efficiency (CEE) and net ecosystem productivity (NEP) were assessed.【Result】(1) Tillage practice and nitrogen application level significantly affected the growth of maize, and the effect of tillage practice on dry matter accumulation was mainly in the filling stage and maturity stage. No tillage treatment significantly improved the dry matter accumulation, growth rate and net assimilation rate at these stages, which increased grain yield by 2%-15% compared with other tillage practices; nitrogen application level had a greater effect on dry matter during jointing flowering stage, but the same effect was observed, and there was no significant difference in yield between N1 and N2 under the same tillage practice. (2) The soil respiration rate showed a single-peak curve that first increased and then decreased, reaching its peak in the big bell mouth-flowering period. The effects of tillage practices on soil respiration, carbon emissions and carbon emission efficiency were greater than the nitrogen levels. Compared with rotary tillage, tillage and subsoiling, no tillage decreased soil respiration rate by 4.3%, 12.9% and 24.3%, respectively, and total carbon emission decreased by 21.5%, 13.4% and 31.2%, respectively, while carbon emission efficiency increased by 26.5%-55.9%. Compared with other treatments, no tillage combined with nitrogen reduction reduced total nitrogen and carbon emission by 489-1917.5 kg·hm-2, while the carbon emission efficiency increased by 20.1%-56.2%. (3) All treatments showed a “sink” of atmospheric CO2, but no-tillage and reduced nitrogen fertilizer showed a stronger carbon sink effect. The organic carbon content in 0-5 cm soil layer was significantly increased by 11.3% (P<0.05) compared with conventional tillage; the organic carbon content in 0-10 cm soil layer was increased by 5.8% (P<0.05) compared with conventional tillage. (4) There was a significant positive correlation between the efficiency of carbon emissions and the accumulation of dry matter, the rate of growth and net assimilation rate, and a significant negative correlation between the efficiency of carbon emissions and the organic carbon of the soil. This was mainly because the cultivation practices and application of nitrogen promoted maize’s photosynthetic ability, obtained more CO2, and enhanced maize’s capacity for carbon fixation. 【Conclusion】 Under the condition of 472-491 mm annual precipitation, no tillage combined with nitrogen reduction (200 kg·hm-2) could improve maize yield, improve soil organic carbon content, reduce total carbon emission, and improve carbon emission efficiency. A green yield-increasing technology of full-film double-ridge and furrow sowing maize in the Loess Plateau of Longzhong was recommended to be used in production. Keywords:maize;no-tillage;nitrogen fertilizer reducing;soil respiration;carbon balance;yield
PDF (1157KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 周永杰, 谢军红, 李玲玲, 王林林, 罗珠珠, 王进斌. 长期少免耕与氮肥减量对全膜双垄沟播玉米产量及碳排放的调控作用. 中国农业科学, 2021, 54(23): 5054-5067 doi:10.3864/j.issn.0578-1752.2021.23.011 ZHOU YongJie, XIE JunHong, LI LingLing, WANG LinLin, LUO ZhuZhu, WANG JinBin. Effects of Long-Term Reduce/Zero Tillage and Nitrogen Fertilizer Reducing on Maize Yield and Soil Carbon Emission Under Fully Plastic Mulched Ridge-Furrow Planting System. Scientia Acricultura Sinica, 2021, 54(23): 5054-5067 doi:10.3864/j.issn.0578-1752.2021.23.011
Table 1 表1 表1耕作方式及施氮水平对玉米干物质积累的影响 Table 1Effects of different tillage practices and nitrogen levels on dry matter accumulation of maize (g/plant)
处理 Treatment
拔节期 Jointing stage
开花期 Flowering stage
灌浆期 Filling stage
成熟期 Maturity
T1
38.79a
194.43a
288.7ab
437.96ab
T2
36.08a
190.57a
281.02b
427.97b
T3
39.39a
187.36a
284.00ab
443.89ab
T4
35.85a
196.18a
307.33a
478.05a
N1
37.92a
182.67b
295.18a
445.64a
N2
37.75a
201.61a
285.33a
448.29a
T1N1
37.17ab
192.99ab
302.35a
439.61ab
T1N2
40.41ab
195.87ab
275.05a
436.31ab
T2N1
38.49ab
175.48b
284.33a
420.28b
T2N2
33.67b
205.66a
277.71a
435.65ab
T3N1
37.67ab
174.91b
289.00a
457.58ab
T3N2
41.10a
199.81ab
279.00a
430.20ab
T4N1
35.86ab
187.28ab
305.33a
465.09ab
T4N2
35.84ab
205.08a
309.33a
491.02a
T
ns
ns
*
*
N
ns
*
ns
ns
N×T
*
*
ns
*
ns、*、**分别表示无差异、在 0.05 水平、0.01 水平 上差异显著,同一列数字后不同小写字母表示在0.05水平上差异显著。下同 ns, *, **: Non-significant or significant at P<0.05 or P<0.01, respectively. Means followed by different letters within a column are significantly different at P<0.05. The same as below
Table 2 表2 表2耕作方式及施氮水平对玉米生长率和净同化率的影响 Table 2Effects of different tillage practices and nitrogen levels on growth rate ( g·plant-1·d-1) and net assimilation rate ( g·m-2·d-1)
处理 Treatment
出苗期—拔节期 Sowing to jointing stage
拔节期—开花期 Jointing to flowering stage
开花期—灌浆期 Flowering to filling stage
灌浆期—成熟期 Filling to maturity
CGR
CGR
NAR
CGR
NAR
CGR
NAR
T1
0.76a
4.45a
7.78a
4.28a
5.34a
3.18a
4.85a
T2
0.71a
4.41a
8.48a
4.11a
5.85a
3.13a
5.19a
T3
0.77a
4.23a
7.59a
4.39a
5.87a
3.4a
5.48a
T4
0.70a
4.58a
8.37a
5.05a
6.69a
3.63a
5.52a
N1
0.73a
4.15a
7.50b
5.11a
6.70a
3.20a
5.08a
N2
0.74a
4.68a
8.61a
3.81b
5.17b
3.47a
5.45a
T1N1
0.73ab
4.45ab
7.35b
4.97a
5.94a
2.92a
4.54a
T1N2
0.79ab
4.44ab
8.20ab
3.60a
4.74a
3.43a
5.16a
T2N1
0.75ab
3.91b
7.43b
4.95a
7.01a
2.89a
4.71a
T2N2
0.66b
4.91a
9.53a
3.28a
4.68a
3.37a
5.67a
T3N1
0.74ab
3.92b
7.24b
5.19a
6.85a
3.59a
5.64a
T3N2
0.81a
4.53ab
7.94ab
3.60a
4.90a
3.22a
5.33a
T4N1
0.70ab
4.32ab
7.97ab
5.36a
7.01a
3.40a
5.43a
T4N2
0.70ab
4.84a
8.77ab
4.74a
6.36a
3.86a
5.62a
T
ns
ns
ns
ns
ns
ns
ns
N
ns
*
*
*
*
ns
ns
N×T
*
*
*
ns
ns
ns
ns
CGR:玉米生产率 Crop growth rate;NAR:净同化率 Net assimilation rate
Table 5 表5 表5耕作方式及施氮水平下玉米农田碳平衡的变化 Table 5Changes in carbon budget under different tillage practices and nitrogen levels
处理 Treatment
总生物量 Total biomass (kg·hm-2)
NPP (kg·hm-2)
Rm (kg·hm-2)
NEP (kg·hm-2)
2018
2019
2018
2019
2018
2019
2018
2019
T1
40301a
37511a
18136a
16880a
5361b
4279ab
12775a
12601b
T2
38691a
39487a
17411a
17769a
5030bc
3803bc
12381a
13967ab
T3
38855a
40643a
17485a
18289a
6152a
4833a
11333a
13456ab
T4
38922a
41337a
17515a
18601a
4319c
3244c
13196a
15358a
N1
39090a
39940a
17591a
17973a
5122a
4007a
12469a
13966a
N2
39295a
39549a
17683a
17797a
5309a
4073a
12307a
13724a
T1N1
40298a
38183a
18134a
17182a
5165abc
4070abcd
12969a
13112b
T1N2
40305a
36839a
18137a
16578a
5556ab
4488abc
12581a
12089b
T2N1
38207a
39801a
17193a
17911a
4906bc
3718cde
12288a
14192ab
T2N2
39175a
39173a
17629a
17628a
5154abc
3887bcde
12475a
13741ab
T3N1
38692a
41353a
17412a
18609a
6075ab
4801ab
11336a
13807ab
T3N2
39018a
39934a
17558a
17970a
6229a
4866a
11329a
13105ab
T4N1
39164a
40422a
17624a
18190a
4341c
3437de
13283a
14753ab
T4N2
38680a
42252a
17406a
19013a
4297c
3052e
13109a
15962a
T
ns
ns
ns
ns
**
**
ns
*
N
ns
ns
ns
ns
ns
ns
ns
ns
N×T
ns
ns
ns
ns
*
*
ns
*
NPP:表示玉米地上、地下部分所固定的碳。Rm:异养呼吸碳排放量。NEP:生态系统碳平衡 NPP: Represents the carbon fixed by the aboveground and underground parts of maize. Rm: Carbon emissions from heterotrophic respiration. NEP: Ecosystem carbon balance
LIU CG, LI FR, ZHOU LM, FENGQ, LIX, PAN CC, WANGL, CHEN JL, LI XG, JIAY, SIDDIQUEK H M, LIF M. Effects of water management with plastic film in a semi-arid agricultural system on available soil carbon fractions , 2013, 57:9-12. doi: 10.1016/j.ejsobi.2013.03.007. URL [本文引用: 1]
WANG YP, LI XG, FU TT, WANGL, TURNER NC, SIDDIQUE K HM, LIF M. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China , 2016, 228/229:42-51. doi: 10.1016/j.agrformet.2016.06.016. URL [本文引用: 1]
XIE JH, WANG LL, LI LL, COULTER JA, CHAIQ, ZHANG RZ, LUO ZZ, CARBERRYP, RAOK P C. Subsoiling increases grain yield, water use efficiency, and economic return of maize under a fully mulched ridge-furrow system in a semiarid environment in China , 2020, 199:104584. doi: 10.1016/j.still.2020.104584. URL [本文引用: 1]
LI FM, LI XG, JAVAID MM, ASHRAFM, ZHANGF. Ridge-furrow plastic film mulching farming for sustainable dryland agriculture on the Chinese loess plateau , 2020, 112(5):3284-3294. doi: 10.1002/agj2.20310. URL [本文引用: 1]
YU AZ, CHAIQ, YINW, HU FL, FAN ZL, ZHAOC. Responses of soil carbon emission and carbon balance of maize field to plastic film mulching pattern and row space Scientia Agricultura Sinica, 2018, 51(19):3726-3735. doi: 10.3864/j.issn.0578-1752.2018.19.010. (in Chinese) [本文引用: 1]
HEM, WANG YC, WANG LG, LI CQ, WANG LM. Effect of different tillage managements on carbon dioxide emission and content of activated carbon in black soil Chinese Journal of Soil Science, 2016, 47(5):1195-1202. doi: 10.19336/j.cnki.trtb.2016.05.27. (in Chinese) [本文引用: 2]
ZHANG QB, YANGL, ZHANG WF, LUO HH, ZHANG YL, WANGJ. Effects of agronomic measures on soil organic carbon and microbial carbon content in cotton in arid region Scientia Agricultura Sinica, 2014, 47(22):4463-4474. doi: 10.3864/j.issn.0578-1752.2014.22.012. (in Chinese) [本文引用: 1]
STRUCK I JA, TAUBEF, HOFFMANNM, KLUßC, HERRMANNA, LOGESR, REINSCHT. Full greenhouse gas balance of silage maize cultivation following grassland: Are no-tillage practices favourable under highly productive soil conditions? , 2020, 200:104615. doi: 10.1016/j.still.2020.104615. URL [本文引用: 1]
LALR. Soil carbon sequestration impacts on global climate change and food security , 2004, 304(5677):1623-1627. doi: 10.1126/science.1097396. URL [本文引用: 1]
WILSON HM, AL-KAISIM M. Crop rotation and nitrogen fertilization effect on soil CO2 emissions in central Iowa , 2008, 39(3):264-270. doi: 10.1016/j.apsoil.2007.12.013. URL [本文引用: 1]
XIAO HB, SHI ZH, LI ZW, WANGL, CHENJ, WANGJ. Responses of soil respiration and its temperature sensitivity to nitrogen addition: A meta-analysis in China , 2020, 150:103484. doi: 10.1016/j.apsoil.2019.103484. URL [本文引用: 1]
YONGP, SONG SY, LI ZY, LIS, CHEN GT, HU HL, XIE JL, CHENG, LIUL, TU LH. Influences of nitrogen addition and aboveground litter-input manipulations on soil respiration and biochemical properties in a subtropical forest , 2020, 142:107694. Doi: 10.1016/j.soilbio.2019.107694. URL [本文引用: 2]
FAN ZL, ZHAOC, LIUC, YU AZ, YINW, HU FL, CHAIQ. Enhanced effect of two years plastic film mulching with reduced tillage on grain yield formation of wheat rotation under reduced irrigation and N application Scientia Agricultura Sinica, 2018, 51(19):3651-3662. doi: 10.3864/j.issn.0578-1752.2018.19.003. (in Chinese) [本文引用: 1]
ZHANG QZ, WU WL, WANG MX, ZHOU ZR, CHEN SF. The effects of crop residue amendment and N rate on soil respiration Acta Ecologica Sinica, 2005, 25(11):2883-2887. doi: 10.3321/j.issn:1000-0933.2005.11.013. (in Chinese) [本文引用: 1]
NAN WG, YUE SC, HUANG HZ, LI SQ, SHEN YF. Effects of plastic film mulching on soil greenhouse gases (CO2, CH4 and N2O) concentration within soil profiles in maize fields on the Loess Plateau, China , 2016, 15(2):451-464. doi: 10.1016/S2095-3119(15)61106-6. URL [本文引用: 1]
HU FL, CHAIQ, GAN YT, YINW, ZHAOC, FENG FX. Characteristics of soil carbon emission and water utilization in wheat/maize intercropping with minimal/zero tillage and straw retention Scientia Agricultura Sinica, 2016, 49(1):120-131. doi: 10.3864/j.issn.0578-1752.2016.01.011. (in Chinese) [本文引用: 3]
WOODWELL GM, WHITTAKER RH, REINERS WA, LIKENS GE, DELWICHE CC, BOTKIN DB. The biota and the world carbon budget , 1978, 199(4325):141-146. doi: 10.1126/science.199.4325.141. URL [本文引用: 1]
KUZYAKOVY. Separating microbial respiration of exudates from root respiration in non-sterile soils: A comparison of four methods , 2002, 34(11):1621-1631. doi: 10.1016/S0038-0717(02)00146-3. URL [本文引用: 1]
CAI ZC, QIN SW. Dynamics of crop yields and soil organic carbon in a long-term fertilization experiment in the Huang-Huai-Hai Plain of China , 2006, 136(3/4):708-715. doi: 10.1016/j.geoderma.2006.05.008. URL [本文引用: 1]
李向岭, 赵明, 李从锋, 葛均筑, 侯海鹏, 李琦, 侯立白. 播期和密度对玉米干物质积累动态的影响及其模型的建立 , 2010, 36(12):2143-2153. doi: 10.3724/SP.J.1006.2010.02143. [本文引用: 1] 在大田条件下, 以益农103、先玉335和登海661为材料, 设置3个播种期(5月3日,5月28日,6月22日)和4个密度处理(4.5万株 hm<sup>-2</sup>,6.0万株 hm<sup>-2</sup>,7.5万株 hm<sup>-2</sup>,9.0万株 hm<sup>-2</sup>), 测定其干物质积累动态和产量, 分析播期、密度和玉米群体干物质积累动态特征的关系及其积温模型。结果表明: (1)将3个播期玉米不同处理的最大群体干物质积累和出苗至成熟的积温分别定为1, 建立了相对群体干物质积累和相对积温的Richards模拟模型, 方程式为y = 1.1044/(1+e<sup>2.0253</sup><sup>-</sup><sup>5.1927x</sup>)<sup>1/0.4448</sup>, r=0.9950<sup>**</sup>。(2)方程参数a值(终极生长量参数)基本为1;b值(初值生长量参数)和c值(生长速率参数)在播期、品种间变异较大, 密度间变异较小;d值(形状参数)在播期、品种和密度间变异较小, 可见播期主要通过调节参数b、c值来实现对整个方程的调控。应用2008年本试验和另一试验的数据对模型进行验证,模拟准确度(以k表示)均在1.0486<sup>**</sup>以上;精确度(以R<sup>2</sup>表示)均在0.9534<sup>**</sup>以上。(3)拔节期至蜡熟期是玉米群体干物质积累变化速率对密度的敏感反应期;晚播玉米所需积温在群体干物质积累变化速率的缓慢增加和下降阶段逐渐减少,在快速增加阶段逐渐增加。全生育期的群体干物质积累平均速率表现为先玉335>登海661>益农103;且早播>中播>晚播;密度越高群体干物质积累平均速率越大, 达到显著水平。 LI XL, ZHAOM, LI CF, GE JZ, HOU HP, LIQ, HOU LB. Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize Acta Agronomica Sinica, 2010, 36(12):2143-2153. doi: 10.3724/SP.J.1006.2010.02143. (in Chinese) [本文引用: 1] 在大田条件下, 以益农103、先玉335和登海661为材料, 设置3个播种期(5月3日,5月28日,6月22日)和4个密度处理(4.5万株 hm<sup>-2</sup>,6.0万株 hm<sup>-2</sup>,7.5万株 hm<sup>-2</sup>,9.0万株 hm<sup>-2</sup>), 测定其干物质积累动态和产量, 分析播期、密度和玉米群体干物质积累动态特征的关系及其积温模型。结果表明: (1)将3个播期玉米不同处理的最大群体干物质积累和出苗至成熟的积温分别定为1, 建立了相对群体干物质积累和相对积温的Richards模拟模型, 方程式为y = 1.1044/(1+e<sup>2.0253</sup><sup>-</sup><sup>5.1927x</sup>)<sup>1/0.4448</sup>, r=0.9950<sup>**</sup>。(2)方程参数a值(终极生长量参数)基本为1;b值(初值生长量参数)和c值(生长速率参数)在播期、品种间变异较大, 密度间变异较小;d值(形状参数)在播期、品种和密度间变异较小, 可见播期主要通过调节参数b、c值来实现对整个方程的调控。应用2008年本试验和另一试验的数据对模型进行验证,模拟准确度(以k表示)均在1.0486<sup>**</sup>以上;精确度(以R<sup>2</sup>表示)均在0.9534<sup>**</sup>以上。(3)拔节期至蜡熟期是玉米群体干物质积累变化速率对密度的敏感反应期;晚播玉米所需积温在群体干物质积累变化速率的缓慢增加和下降阶段逐渐减少,在快速增加阶段逐渐增加。全生育期的群体干物质积累平均速率表现为先玉335>登海661>益农103;且早播>中播>晚播;密度越高群体干物质积累平均速率越大, 达到显著水平。
XIE JH, ZHANG RZ, LI LL, LUO ZZ, CAI LQ, CHAIQ. Effect of different tillage practice on rain-fed maize yield and soil water/temperature characteristics in the Loess Plateau Chinese Journal of Eco-Agriculture, 2015, 23(11):1384-1393. doi: 10.13930/j.cnki.cjea.150021. (in Chinese) [本文引用: 1]
UWAMUNGU JY, NARTEY OD, UWIMPAYEF, DONG WX, HU CS. Evaluating biochar impact on topramezone adsorption behavior on soil under no-tillage and rotary tillage treatments: Isotherms and kinetics , 2019, 16(24):5034. doi: 10.3390/ijerph16245034. URL [本文引用: 1]
ZHAO YL, LIU WL, CHENG SX, ZHOU YN, ZHOU JL, WANG XL, ZHANG MB, WANGQ, LI CH. Effects of pattern of deep tillage on topsoil features, yield and water use efficiency in lime concretion black soil Scientia Agricultura Sinica, 2018, 51(13):2489-2503. doi: 10.3864/j.issn.0578-1752.2018.13.005. (in Chinese) [本文引用: 1]
XIE JH, LI LL, XIE JH, PENG ZK, DENG CC, SHEN JC, WANG JB, ESSELE. Effects of nitrogen fertilizer management on yield, carbon sequestration and emission reduction of dryland mulched maize Soils and Fertilizers Sciences in China, 2019(6):134-141. doi: 10.11838/sfsc.1673-6257.19002. (in Chinese) [本文引用: 1]
ZHOU BY, SUN XF, DING ZS, MAW, ZHAOM. Effect of tillage practice and fertilization on dry matter accumulation and grain yield of summer maize (Zea mays L.) Scientia Agricultura Sinica, 2017, 50(11):2129-2140. doi: 10.3864/j.issn.0578-1752.2017.11.018. (in Chinese) [本文引用: 1]
SHAO GQ, LI ZJ, NING TY, ZHANGM, JIANG XD, WANGY, ZHAO JB, (LÜ/LV/LU/LYU)M R, ZHAOJ. Effects of normal urea and release-controlled urea on root and shoot growth and yield of maize in different water conditions Acta Agronomica Sinica, 2009, 35(1):118-123. doi: 10.3724/SP.J.1006.2009.00118. (in Chinese) [本文引用: 1]
HAN GX, ZHOU GS, XU ZZ, YANGY, LIU JL, SHI KQ. Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem , 2007, 291(1):15-26. doi: 10.1007/s11104-006-9170-8. URL [本文引用: 1]
ZHANG JQ, ZHUP, ZHANG FD. Effect of organic manure and chemical fertilizer combined application on the form and distribution of organic nitrogen of black soil Plant Nutrition and Fertilizer Science, 2004, 10(3):245-249. (in Chinese) [本文引用: 1]
ZHENG HB, LIU WR, LUOY, LI RP, LI WT, WANGH, ZHENG JY. Effect of different tillage methods on soil water content and water use efficiency in cropland Journal of Soil and Water Conservation, 2018, 32(3):264-270. doi: 10.13870/j.cnki.stbcxb.2018.03.040. (in Chinese) [本文引用: 1]
OHWAKIA. Ground arthropod communities in paddy fields during the dry period: Comparison between different farming methods. Journal of , 2015, 18(3):413-419. doi: 10.1016/j.aspen.2015.05.001. [本文引用: 1]
PAUSTIANK, SIXJ, ELLIOTT ET, HUNT HW. Management options for reducing CO2 emissions from agricultural soils , 2000, 48(1):147-163. doi: 10.1023/A:1006271331703. URL [本文引用: 1]
LIUY, YANGL, GU DD, WUW, WEN XX, LIAO YC. Influence of tillage practice on soil CO2 emission rate and soil characteristics in a dryland wheat field , 2013, 15(4):680-686. [本文引用: 1]
WANGH, WANG SL, YUQ, ZHANG YJ, WANGR, LIJ, WANG XL. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system , 2020, 261:110261. doi: 10.1016/j.jenvman.2020.110261. URL [本文引用: 1]
WANG LG, QIU JJ, MA YL, WANG YC. Apply DNDC model to analysis long-term effect of soil organic carbon content under different fertilization and plough mode Journal of China Agricultural University, 2004, 9(6):15-19. doi: 10.3321/j.issn:1007-4333.2004.06.004. (in Chinese) [本文引用: 1]
KHAN SA, MULVANEY RL, ELLSWORTH TR, BOAST CW. The myth of nitrogen fertilization for soil carbon sequestration , 2007, 36(6):1821-1832. doi: 10.2134/jeq2007.0099. URL [本文引用: 1]
LUO QP, GONG JR, YANG LL, LI XB, PANY, LIUM, ZHAI ZW, BAOYIN TT. Impacts of nitrogen addition on the carbon balance in a temperate semiarid grassland ecosystem , 2017, 53(8):911-927. doi: 10.1007/s00374-017-1233-x. URL [本文引用: 1]
ZHANG XL, KONG FL, LIU XL, HU LF, LI YY. Effects of different biomass amendments on soil organic carbon characteristics in alpine desertification grassland of Northwest Sichuan Chinese Journal of Eco-Agriculture, 2019, 27(11):1732-1743. doi: 10.13930/j.cnki.cjea.190248. (in Chinese) [本文引用: 1]
LI YK, CHEN MP, XIAX, MEI XR, LI HR, HAO WP. Dynamics of soil respiration and carbon balance of summer-maize field under different nitrogen addition Ecology and Environmental Sciences, 2013, 22(1):18-24. doi: 10.16258/j.cnki.1674-5906.2013.01.013. (in Chinese) [本文引用: 1]