Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation
GAO YongBo,1, WANG ShiXian1, WEI Min1, LI Jing1, GAO ZhongQiang4, MENG Lun5, YANG FengJuan,1,2,3,*1College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai’an 271018, Shandong; 2Huanghuai Region Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Tai’an 271018, Shandong; 3Shandong Province Collaborative Innovation Center of Fruit and Vegetable, Tai’an 271018, Shandong; 4Shandong Agricultural Technology Extending Station, Ji’nan 250100; 5Shandong Shike Modern Agricultural Investment Co., Ltd., Heze 274051, Shandong
Abstract 【Objective】The effects of different levels of NPK on eggplant yield and roots growth as well as rhizosphere microbial numbers and enzyme activities were studied, so as to provide the theoretical basis for the scientific management of NPK (nitrogen, phosphorus and potassium) for the eggplant cultivation by using substrate in solar greenhouse. 【Method】 Substrate trough with sand, slag and mushroom residue (6:3:1, V:V:V) obtained from the previous experiment and drip irrigation integrated with water and fertilizer were used. There were six treatments with fertilization dosage and 100% fertilization dosage (F4) was considered as required by the target yield (fertilization dosage of the target yield = (fertilizer required by target yield - available nutrient content in substrate ) / fertilizer utilization rate), based on the 100% fertilization dosage of F4, the fertilization dosage was reduced by 60% (F1), 40% (F2), 20% (F3) and increased by 20% (F5) and 40% (F6), respectively, and no fertilization treatment was control (CK). The effects of NPK dosage on the yield and roots growth of eggplant as well as rhizosphere microbial numbers and enzyme activity were studied. 【Result】 The eggplant yield was increased firstly and then decreased with the increasing of NPK dosage. Compared with CK, the yield per plant under all treatments increased by 101.1%-212.9%. The eggplant under F3 treatment showed the highest yield per plant and was increased by 212.9% compared with CK. Bacteria were the main microbial in the rhizosphere substrate of eggplants, followed by actinomycetes and fungi. After 90 days of transplanting, with the increasing of NPK dosage, the contents of available NPK in the substrate were increased, the numbers of bacteria, actinomycetes and fungi, the activities of sucrase, catalase and alkaline phosphatase in rhizosphere substrate were increased firstly and then decreased, the values of which were higher under F3 treatment and the urease activity was higher under F4, F5 and F6 than that under other treatments. The root activity, total root length and root surface area of eggplant were increased first and then decreased with the increasing of NPK dosage. Notably, the root activity, total root length and root surface area of eggplant under F2 treatment were increased significantly by 109.2%, 49.2% and 46.5% compared with CK, respectively. There was a significant positive correlation between bacteria number and the enzyme activities in rhizosphere substrate. The urease activity showed extremely significant positive correlation with the contents of available NPK. The activities of catalase and alkaline phosphatase showed significant positive correlation with the contents of available phosphorus and potassium. The number of bacteria, catalase activities showed significant positive correlation with root activity and yield per plant, while urease activity, available phosphorus and potassium content showed significant positive correlation with root activity and yield. The root activity showed extremely significant positive correlation with yield. 【Conclusion】 In summary, the optimal fertilizer dosage for the eggplant cultivation using the mixture of sand, slag and mushroom residue in winter-spring crop in solar greenhouse was N 180.6 kg·hm-2, P2O5 212.1 kg·hm-2and K2O 434.9 kg·hm-2, which was important to increase the yield of eggplants, root activity, rhizosphere microbial numbers and enzyme activity, and could provide a good micro ecological environment for eggplant growth. Keywords:eggplant;substrate cultivation;nitrogen;phosphorus and potassium fertilizer;yield;root morphology;microbial number;enzyme activity
PDF (1158KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 郜永博, 王世显, 魏珉, 李静, 高中强, 孟伦, 杨凤娟. 氮磷钾用量对基质培茄子产量、根系形态和根际微生物数量与酶活性的影响. 中国农业科学, 2021, 54(21): 4623-4634 doi:10.3864/j.issn.0578-1752.2021.21.012 GAO YongBo, WANG ShiXian, WEI Min, LI Jing, GAO ZhongQiang, MENG Lun, YANG FengJuan. Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634 doi:10.3864/j.issn.0578-1752.2021.21.012
Table 2 表2 表2不同氮磷钾用量对茄子根系形态指标和根系活力的影响 Table 2Effects of different nitrogen, phosphorus and potassium dosage on the root morphological indexes and root activity of eggplants
处理 Treatment
根系活力 Root activity (μg·g-1 FW·h-1)
根系总长度 Root total length (cm)
根系表面积 Root surface area (cm2)
根系体积 Root volume (cm3)
CK
72.30±4.10e
4222.2±191.9d
1614.9±75.0d
73.7±7.0d
F1
92.64±3.24d
5164.2±186.1bc
1880.9±76.9c
87.3±5.4cd
F2
151.28±10.25a
6300.5±269.9a
2366.4±91.6a
105.3±2.8ab
F3
147.53±2.39a
5660.4±309.2ab
2096.5±51.9b
110.4±3.1a
F4
143.04±8.06ab
5469.1±66.1 b
1938.3±135.6bc
112.7±2.0a
F5
131.56±5.56bc
5567.6±203.5b
1883.7±55.9c
98.5±3.8abc
F6
125.54±6.17c
4589.0±262.0cd
1654.4±53.4d
92.3±6.4bc
Different lowercase letters indicate significant differences among treatments (P<0.05). The same as below 不同小写字母表示处理间差异显著(P<0.05)。下同
Table 3 表3 表3不同氮磷钾用量对茄子根际基质速效氮、磷、钾含量和pH的影响 Table 3Effects of different nitrogen, phosphorus and potassium dosage on the contents of available nutrients and pH in rhizosphere substrate of eggplant
Fig. 2Effects of different nitrogen, phosphorus and potassium dosages on the numbers of bacteria, fungi, actinomyces in rhizosphere substrate of eggplant
Table 4 表4 表4不同氮磷钾用量对茄子根际基质微生物香农指数的影响 Table 4Effects of different nitrogen, phosphorus and potassium dosages on microbial Shannon index in rhizosphere substrate of eggplant
Fig. 3Effects of different nitrogen, phosphorus and potassium dosages on the activities of urease, invertase, catalase and alkaline phosphatase in rhizosphere substrate of eggplant
Table 5 表5 表5茄子结果盛期根际基质微生物数量、酶活性、速效氮、速效磷、速效钾含量、pH、根系活力及单株产量的相关性关系 Table 5Correlation between microbial quantity, enzyme activity, available N/P/K content, pH, root activity and yield per plant of eggplant rhizosphere substrate
相关系数 Correlation coefficient
细菌 Bacteria
真菌 Fungi
放线菌 Actinomyces
脲酶 Urease
蔗糖酶 Sucrase
过氧化氢酶 Catalase
碱性磷酸酶 Alkaline phosphatase
速效氮Available nitrogen
速效磷Available phosphorus
速效钾Available potassium
pH
根系活力 Root activity
单株产量 Yield/plant
细菌 Bacteria
1
真菌 Fungi
0.278
1
放线菌 Actinomyces
0.627
0.783*
1
脲酶 Urease
0.761*
-0.122
0.300
1
蔗糖酶 Sucrase
0.786*
0.739
0.766*
0.279
1
过氧化氢酶 Catalase
0.928**
0.261
0.624
0.859*
0.636
1
碱性磷酸酶 Alkaline phosphatase
0.866*
0.257
0.710
0.816*
0.552
0.961**
1
速效氮 Available nitrogen
0.619
-0.341
0.075
0.964**
0.071
0.744
0.688
1
速效磷 Available phosphorus
0.723
-0.162
0.226
0.993**
0.242
0.829*
0.763*
0.980**
1
速效钾 Available potassium
0.656
-0.256
0.170
0.982**
0.121
0.797*
0.758*
0.992**
0.987**
1
pH
-0.274
0.733
0.387
-0.738
0.319
-0.369
-0.304
-0.879**
-0.780*
-0.824*
1
根系活力 Root activity
0.927**
0.219
0.570
0.848*
0.685
0.913**
0.830*
0.753
0.840*
0.772*
-0.420
1
单株产量 Yield/plant
0.952**
0.230
0.681
0.849*
0.664
0.954**
0.942**
0.726
0.811*
0.769*
-0.356
0.956**
1
*表示在P<0.05水平显著相关,**表示在P<0.01水平极显著相关 * represents at P<0.05 level significantly correlated, ** represents at P<0.01 level significantly correlated
研究表明,土壤酶活性反映了土壤中各种生物化学过程的强度和方向,与养分供应和植物生长关系密切[34]。其酶活性与微生物数量存在一定关系,尤其与细菌密切相关[35]。本试验结果表明,基质中细菌数量与脲酶、蔗糖酶、过氧化氢酶和碱性磷酸酶活性均显著正相关。陈汝等[28]研究也发现不同苹果砧木的根际细菌与脲酶、蔗糖酶活性呈显著正相关。研究还发现,高钾处理(300 kg K2O·hm-2)下,棉花吐絮期土壤脲酶、磷酸酶和转化酶活性受到抑制[36];随施氮量增加,间作条件下,现蕾期马铃薯的土壤脲酶活性呈上升趋势,而在成熟期均呈先增加后下降的趋势[37]。本研究结果表明,不同氮磷钾处理对基质酶活性影响不同,蔗糖酶、过氧化氢酶和碱性磷酸酶活性随氮磷钾用量增加呈先升高后下降趋势,而高氮磷钾处理下脲酶活性较高。因脲酶活性能够反映土壤中氮素的转化和能量交换过程,与土壤硝态氮含量显著正相关[38]。另外,施入过量氮磷钾会使土壤中无机氮磷钾富集,抑制氧化酶基因表达,降低过氧化氢酶活性[39]。因此,基质培条件下,高氮磷钾下基质的脲酶活性较高,过氧化氢酶活性降低。且有研究表明土壤酶主要来源于植物的根系分泌物、土壤微生物活动和动植物残体腐解过程[40],因此基质培条件下,基质酶活性高低应与根系活力、微生物变化趋势密切相关。
WANG WL, DU JB, XU FL, ZHANG XH. Effect of fertilization levels on soil microorganism amount and soil enzyme activities China Journal of Chinese Materia Medica, 2013, 38(22):3851-3856. (in Chinese) [本文引用: 1]
WU PP, LIU SW, ZHUY, LI DF, LUX, XUL, ZHAO ZX. Effects of different fertilization on soil enzyme activities and microbial community in acid tobacco-planting soil Chinese Agricultural Science Bulletin, 2017, 33(30):103-110. (in Chinese) [本文引用: 1]
ZHANG SC, ZHAO ZY, SUN YH, CAIK, WANG WJ, ZHAOM. Effect of nitrogen, phosphorus and potassium fertilizers on tomato cultivation in greenhouse Soils and Fertilizers Sciences in China, 2016(2):65-71. (in Chinese) [本文引用: 1]
HUA GW. Effects of different plastic film mulching and fertilization levels on pepper growth and yield [D]. , 2020. (in Chinese) [本文引用: 1]
SHARMAS, THIND HS, SINGHY, SINGHV, SINGHB. Soil enzyme activities with biomass ashes and phosphorus fertilization to rice-wheat cropping system in the Indo-Gangetic Plains of India , 2015, 101(3):391-400. DOI:10.1007/s10705-015-9684-7URL [本文引用: 1]
JUAN YH, SUN WT, HAN XR, XING YH, WANG LC, XIE JG. Response of soil mineral nitrogen accumulation and enzyme activities to nitrogen application in spring maize Plant Nutrition and Fertilizer Science, 2014, 20(6):1368-1377. (in Chinese) [本文引用: 1]
GUAN SN, WU FZ, JIANGS. Effects of nitrogen fertilizer rate on the growth and enzyme activities in the rhizosphere of cucumber cultivars with different nitrogen use efficiency Crops, 2013(1):68-72. (in Chinese) [本文引用: 1]
ZHANG EP, TAN FL, WANGY, ZHANG SH, DUANY, ZHOUF. Effects of NPK fertilizers and organic manure on nutritional quality, yield of tomato and soil enzyme activities Acta Horticulturae Sinica, 2015, 42(10):2059-2067. (in Chinese) [本文引用: 1]
SADILOVAE, STINTZING FC, CARLER. Anthocyanins, colour and antioxidant properties of eggplant (Solanum melongena L.) and violet pepper (Capsicum annuum L.) peel extracts , 2006, 61(7/8):527-535. [本文引用: 1]
ZHANG YY, TANG MH, MIAO QS, LIU YQ. Effect of fertilization treatment on growth and yield of autumn planting eggplant Soils and Fertilizers Sciences in China, 2015(1):33-37. (in Chinese) [本文引用: 2]
HUANG QY, LU YS, TANG SH, HUANGX, FU HT, JIANG RP, LIP, CHEN JS. The nutrient effect of nitrogen, phosphorus and potassium on eggplant Chinese Agricultural Science Bulletin, 2011, 27(28):279-285. (in Chinese) [本文引用: 1]
GAO YB, MAS, YANG FJ, WANG XF, WEIM, SHI QH, LIY. Effect of different ratios of sand, slag and mushroom residue on yield and quality of eggplants China Vegetables, 2018(10):50-54. (in Chinese) [本文引用: 1]
CHENZ. Study on the optimum fertilization scheme and absorption and distribution of nitrogen, phosphorus and potassium of eggplant [D]. , 2016. (in Chinese) [本文引用: 2]
XIONGJ, CHENQ, WANG JG, LIUW. Effect of culture systems on salt accumulation in substrate and nutrient use efficiency of tomato Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2):224-231. (in Chinese) [本文引用: 2]
PAN TH. Study on the effect of water and fertilizer coupling on tomato long-season cultivated in bag with substrate in greenhouse [D]. , 2015. (in Chinese) [本文引用: 1]
LI JY, GAO JJ, XU SG, SHI XZ, YU XC. Effect of chemical fertilizer dose on nutrient absorption and utilization of tomato cultured in organic substrate Chinese Journal of Eco-Agriculture, 2011, 19(3):602-606. (in Chinese) DOI:10.3724/SP.J.1011.2011.00602URL [本文引用: 2]
CHENGF, SUN ZH, ZHAO YG, LI SJ. Analysis of physical and chemical properties of reed residue substrate Journal of Nanjing Agricultural University, 2001, 24(3):19-22. (in Chinese) [本文引用: 1]
LI GL. Study on balanced fertilization of nitrogen, phosphorus, potassium in cucumber and tomato cultivated in greenhouse organic substrates in gobi desert regions of Gansu province [D]. , 2014. (in Chinese) [本文引用: 2]
LU JZ, ZHAO GB, JIA JM, HE ZX, ZHAO CX, YANGY. Effects of different nitrogen fertilizer application rates on yield, quality and fertilizer utilization rate of eggplant Journal of North China Agriculture, 2016, 31(3):205-211. (in Chinese) [本文引用: 1]
CHENR, WANG HN, JIANG YM, WEI SC, CHENQ, GE SF. Rhizosphere soil microbial quantity and enzyme activity of different apple rootstocks Scientia Agricultura Sinica, 2012, 45(10):2099-2106. (in Chinese) [本文引用: 2]
LOW AP, STARK JM, DUDLEY LM. Effects of soil osmotic potential on nitrification, ammonification, N-assimilation, and nitrous oxide production , 1997, 162(1):16-27. DOI:10.1097/00010694-199701000-00004URL [本文引用: 1]
QIANG HR, ZHANG GB, YU JH, MA GL, ZHANG BY, JIL, WANG CL, YE JE, DU MX. Effects of different water and nitrogen supply on nitrogen transformational bacteria and enzyme activities in substrate cultivated greenhouse pepper Acta Horticulturae Sinica, 2018, 45(5):943-958. (in Chinese) [本文引用: 1]
GUOP, WEN TC, DONG LL, WEI CX, SHI JX, LIB. Effect of fertilizer to content of soil nutrient, amount of soil microorganism and soil enzyme activities Research of Agricultural Modernization, 2011, 32(3):362-366. (in Chinese) [本文引用: 1]
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望 , 2014, 38(3):298-310. DOI:10.3724/SP.J.1258.2014.00027URL [本文引用: 1] 根系分泌物是植物与土壤进行物质交换和信息传递的重要载体物质, 是植物响应外界胁迫的重要途径, 是构成植物不同根际微生态特征的关键因素, 也是根际对话的主要调控者。根系分泌物对于生物地球化学循环、根际生态过程调控、植物生长发育等均具有重要功能, 尤其是在调控根际微生态系统结构与功能方面发挥着重要作用, 调节着植物-植物、植物-微生物、微生物-微生物间复杂的互作过程。植物化感作用、作物间套作、生物修复、生物入侵等都是现代农业生态学的研究热点, 它们都涉及十分复杂的根际生物学过程。越来越多的研究表明, 不论是同种植物还是不同种植物之间相互作用的正效应或是负效应, 都是由根系分泌物介导下的植物与特异微生物共同作用的结果。近年来, 随着现代生物技术的不断完善, 有关土壤这一“黑箱”的研究方法与技术取得了长足的进步, 尤其是各种宏组学技术(meta-omics technology), 如环境宏基因组学、宏转录组学、宏蛋白组学、宏代谢组学等的问世, 极大地推进了人们对土壤生物世界的认知, 尤其是对植物地下部生物多样性和功能多样性的深层次剖析, 根际生物学特性的研究成果被广泛运用于指导生产实践。深入系统地研究根系分泌物介导下的植物-土壤-微生物的相互作用方式与机理, 对揭示土壤微生态系统功能、定向调控植物根际生物学过程、促进农业生产可持续发展等具有重要的指导意义。该文综述了根系分泌物的概念、组成及功能, 论述了根系分泌物介导下植物与细菌、真菌、土壤动物群之间的密切关系, 总结了探索根际生物学特性的各种研究技术及其优缺点, 并对该领域未来的研究方向进行了展望。 WU LK, LIN XM, LIN WX. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates Chinese Journal of Plant Ecology, 2014, 38(3):298-310. (in Chinese) DOI:10.3724/SP.J.1258.2014.00027URL [本文引用: 1] 根系分泌物是植物与土壤进行物质交换和信息传递的重要载体物质, 是植物响应外界胁迫的重要途径, 是构成植物不同根际微生态特征的关键因素, 也是根际对话的主要调控者。根系分泌物对于生物地球化学循环、根际生态过程调控、植物生长发育等均具有重要功能, 尤其是在调控根际微生态系统结构与功能方面发挥着重要作用, 调节着植物-植物、植物-微生物、微生物-微生物间复杂的互作过程。植物化感作用、作物间套作、生物修复、生物入侵等都是现代农业生态学的研究热点, 它们都涉及十分复杂的根际生物学过程。越来越多的研究表明, 不论是同种植物还是不同种植物之间相互作用的正效应或是负效应, 都是由根系分泌物介导下的植物与特异微生物共同作用的结果。近年来, 随着现代生物技术的不断完善, 有关土壤这一“黑箱”的研究方法与技术取得了长足的进步, 尤其是各种宏组学技术(meta-omics technology), 如环境宏基因组学、宏转录组学、宏蛋白组学、宏代谢组学等的问世, 极大地推进了人们对土壤生物世界的认知, 尤其是对植物地下部生物多样性和功能多样性的深层次剖析, 根际生物学特性的研究成果被广泛运用于指导生产实践。深入系统地研究根系分泌物介导下的植物-土壤-微生物的相互作用方式与机理, 对揭示土壤微生态系统功能、定向调控植物根际生物学过程、促进农业生产可持续发展等具有重要的指导意义。该文综述了根系分泌物的概念、组成及功能, 论述了根系分泌物介导下植物与细菌、真菌、土壤动物群之间的密切关系, 总结了探索根际生物学特性的各种研究技术及其优缺点, 并对该领域未来的研究方向进行了展望。
YUAN XM, GENG SN, ZHENG MY, XI XY, SONG DL, HUANG FS. Effects of faba bean(Vicia faba L.) root exudate on soil available nutrients and microbial population in different purple soils Chinese Journal of Eco-Agriculture, 2016, 24(7):910-917. (in Chinese) [本文引用: 1]
QIU LP, LIUJ, WANG YQ, ZHANG XC. Profile distribution of enzyme activity of long-term fertilization soil and its dynamic characteristics Plant Nutrition and Fertilizer Science, 2005, 11(6):737-741, 749. (in Chinese) [本文引用: 1]
WANGJ, LIG, XIU WM, SONG XL, ZHAO JN, YANG DL. Effects of nitrogen and water on soil enzyme activity and soil microbial biomass in stipa baicalensis steppe, Inner Mongolia of North China , 2014, 31(3):237-245. [本文引用: 1]
LIU LP, MENG YL, YANG JS, HUW, ZHOU ZG. Effects of different K fertilizer treatments on soil K forms and soil fertility in cotton Journal of Soil and Water Conservation, 2014, 28(2):138-142. (in Chinese) [本文引用: 1]
QIN XM, ZHENGY, TANGL, LONG GQ. Effects of nitrogen application rates on rhizosphere soil enzyme activity and potential nitrification in maize and potato intercropping Journal of Yunnan Agricultural University (Natural Science Edition), 2015(6):886-894. (in Chinese) [本文引用: 1]
QIU ZJ, LI JS, ZHAO WX. Effects of subsurface drip irrigation on soil urease activity and nitrate during maize growing season while applying treated sewage effluent Water Saving Irrigation, 2016(8):1-6. (in Chinese) [本文引用: 1]
HASSETT JE, ZAK DR, BLACKWOOD CB, PREGITZER KS. Are basidiomycete laccase gene abundance and composition related to reduced lignolytic activity under elevated atmospheric NO3 - deposition in a northern hardwood forest? , 2009, 57(4):728-739. DOI:10.1007/s00248-008-9440-5URL [本文引用: 1]
WAN ZM, WU JG. Study progress on factors affecting soil enzyme activity. Journal of Northwest Sci- Tech University of Agriculture and Forestry (Natural Science Edition), 2005, 33(6):87-92. (in Chinese) [本文引用: 1]
ZHOU DX, LIL, LIJ, NING YC, CAOX, WU XH, RONG GH. Effects of different fertilization treatments on soil microbial biomass and enzyme activities in maize-soybean rotation system Chinese Journal of Ecology, 2018, 37(6):1856-1864. (in Chinese) [本文引用: 1]
LI CY, WANGY, PHILIPB, DANG TH, WANG WZ. Effect of soil pH on soil microbial carbon phosphorus ratio Scientia Agricultura Sinica, 2013, 46(13):2709-2716. (in Chinese) [本文引用: 1]