删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同降雨年型黑膜垄作对土壤水肥环境及马铃薯产量和效益的影响

本站小编 Free考研考试/2021-12-26

杨封科,1,2, 何宝林1, 董博1,2, 王立明11甘肃省农业科学院旱地农业研究所,兰州 730070
2甘肃省旱作区水资源高效利用重点实验室,兰州 730070

Effects of Black Film Mulched Ridge-Furrow Tillage on Soil Water- Fertilizer Environment and Potato Yield and Benefit Under Different Rainfall Year in Semiarid Region

YANG FengKe,1,2, HE BaoLin1, DONG Bo1,2, WANG LiMing11Dryland Farming Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070
2Key Laboratory of High Water Utilization on Dryland of Gansu Province, Lanzhou 730070

责任编辑: 杨鑫浩
收稿日期:2020-12-30接受日期:2021-09-7
基金资助:国家自然科学基金(31560137)
国家自然科学基金(31860131)
甘肃省科技重点研发计划(18YF1NA095-2)


Received:2020-12-30Accepted:2021-09-7
作者简介 About authors
杨封科,E-mail: yang_fk@163.com






摘要
【目的】探索降水年型与垄型互作对黑膜垄作土壤水肥环境及马铃薯产量和效益的影响,解析水肥互作促进作物增产、高效用水机制,为深挖覆膜垄作技术增产潜力提供理论依据。【方法】2016—2018年布置大田试验,以当地推广应用的白膜覆盖双垄集雨耕作(WRF,垄高16 cm,垄宽60cm,沟宽40 cm)为对照,基于垄上微沟集雨耕作技术,设置由黑膜覆盖低垄(垄高16 cm,垄宽 60cm)、中垄(垄高24 cm,垄宽 60 cm)、高垄(垄高32 cm, 垄宽60 cm)+垄上微集水沟(宽20 cm,深10 cm)+垄间小集水沟(沟宽 40cm)组成的3种黑色地膜覆盖垄上微沟集雨土壤水肥调控耕作处理(BLRF,BMRF 和BHRF),测定了马铃薯播种、出苗、现蕾、开花、结薯、成熟6个生育关键时期0—200 cm土层土壤含水量和研究期末0—30 cm土层土壤有机碳及氮磷钾养分含量,计算土壤贮水量、水分利用效率,分析土壤水、肥与马铃薯产量的相关关系。【结果】不同降水年型,黑、白地膜覆盖垄作都显著增加了马铃薯生长发育期对40—120 cm土层土壤水分的消耗。BHRF,BMRF和BLRF处理马铃薯6个生育关键时期0—200 cm土层土壤含水量和贮水量(SWS)都显著高于WRF处理(P<0.05)。较高的降水量以及黑膜覆盖集蓄增加的土壤水对120—200 cm土层的土壤水具有明显的补充作用。在干旱年(2016)和平水年(2017),BLRF和BMRF处理的集水和保水效应较好,BHRF处理次之,都显著优于WRF处理;在丰水年(2018)三者无显著差异,也都显著优于WRF处理。研究期末(2018)黑膜垄作0—30 cm 土层的全氮全钾(TN 和TK)及速效氮磷钾(AN,AP和AK)含量均显著高于白膜垄作(P<0.05),分别增加了4.5%—5.6%、3.6%—5.9%、8.4%—18.4%、15.3%—22.3% 和7.1%—13.3%。归因于显著增加了大薯结薯个数和结薯重,黑膜垄作马铃薯产量、WUE、纯收益和产投比均显著高于白膜垄作,3年平均分别提高了16.9%—19.0%、15.5%—19.2%、23.3%—27.3% 和12.1%—18.2%。这4个效益参数在干旱年和平水年以BLRF和BMRF处理较好、BHRF处理次之,丰水年三者都优于WRF处理,且无显著差异。相关分析表明,3年马铃薯平均产量与研究期末平均土壤氮磷钾养分含量呈显著正相关关系,与作物平均耗水量(ET)呈显著负相关关系(P<0.05)。通径分析表明,土壤AP、AK、AN含量,马铃薯生育期平均耗水量(ET)和平均降水量(GPR)解释了99.4%的产量变化。【结论】黑膜覆盖垄沟与垄上微沟的叠加集水效应显著改善土壤水分状况;水分条件的改善促进了马铃薯旺盛生长,使更多的根茎(茎叶、根等)类有机物归还土壤,其腐解释放的养分与施肥结合提高了土壤养分含量。良好的土壤水肥条件有效改善了土壤水肥互作关系,增加了作物水肥供应而显著提高马铃薯产量、WUE、纯收入和产投比。BLRF和BMRF处理在干旱年和平水年表现较好,BLRF、BMRF和BHRF处理在丰水年表现较好,BLRF和BMRF处理在各种年型都有良好的表现。因此,黑膜覆盖低、中垄垄上微沟集雨耕作(BLRF和BMRF)是继白膜覆盖双垄集雨耕作(WRF)之后最适用于半干旱区的马铃薯高产高效栽培模式。
关键词: 黑膜垄上微沟耕作;水肥平衡;互作效应;产量;WUE;经济效益

Abstract
【Objective】To explore the effects of annual precipitation regime and ridge shapes interaction on soil water and fertilizer environment and potato yield and efficiency of black film mulched ridge-furrow tillage, to analyze and explain the mechanism of water and fertilizer interaction to promote crop production and efficient water use, so as to provide theoretical basis for deeply exploring the yield increase potential of the film mulched ridge-furrow tillage technique. 【Method】Based on the technology of black plastic film mulched ridge-furrow tillage with micro-rainwater catchment ditches on the ridges, we developed three types of soil water-fertilizer regulating tillage systems that consists of low ridge (high 16 cm)-furrow (wide 40 cm), middle ridge (high 24 cm)- furrow (wide 40 cm) and high ridge (high 32 cm)-furrow (wide 40 cm) tillage, all with a 10 cm high and 20 cm wide rainwater catchment ditch on ridges, named as BLRF, BMRF and BHRF, respectively, and used as main treatments. Then, using the local custom white film mulched ridge(high 16 cm, wide 60 cm)-furrow (wide 40 cm) tillage (WRF) as control, a 3-year consecutive field experiments of four treatments had been conducted from 2016 to 2018. Soil water content of 0-200 cm soil layer in the potato key growth period of sowing, seedling, budding, flowering, tuberization and maturing as well as the content of soil organic carbon (SOC), nitrogen, phosphorus and potassium and their available component (TN, TP, TK and AN, AP, AK) of 0-30 cm soil layer at the end of the experiment period were determined, soil water storage and water utilization efficiency were calculated, the correlation between soil water, fertilizer and potato yield were analyzed. 【Result】Regardless of the precipitation years, both BLRF, BMRF, BHRF and WRF tillage had caused crop increase consumption of soil water in 40-120 cm soil layer. The soil water content and water storage (SWS) in 0-200 cm soil layers in the potato six key growth stages for BHRF, BMRF and BLRF were significantly (P<0.05) higher than those for WRF. Sufficient precipitation and the increased soil water harvested via black film mulched ridge-furrow tillage with micro-rainwater catchment ditches on ridges significantly complement the soil water in 120-200cm soil layer and effectively maintained soil water balance interseason. Take rainfall patterns into account, the effects of soil water conservation for BLRF and BMRF are better than that for BHRF in dry and normal year, and that for the three tillage models were significant efficient in wet year, all were significantly better than that of WRF. Meanwhile, the content of examined soil nutrient parameters in 0-30 cm soil layer under BHRF, BMRF and BLRF at the end of the experiment period were uniformly significantly higher than that of WRF (P<0.05),with the average content of TN,TK,AN, AP and AK were increased by 4.5%-5.6%, 3.6%-5.9%, 8.4%-18.4%, 15.3%-22.3% and 7.1%-13.3% except that of SOC and TP, respectively. In addition, the potato yield, water use efficiency (WUE), net income and output/input ratio for BLRF, BMRF and BHRF were all significantly higher than those for WRF, mainly contributed to the increased the number and weight of large potatoes caused by the improved soil water and nutrient condition. On 3 year average, the yield, WUE, net income and output/input ration of potato were increased by 16.9%-19.0%、15.5%-19.2%、23.3%-27.3% and 12.1%-18.2%, respectively. The four benefit parameters were more sounded under BLRF and BMRF in dry and normal year and highly significant under all the three tillage patterns in wet year. We observed that the 3-year average potato yield positively significant correlation to the contents of TN, TP, TK AN, AP, AK and highly negative correlation to the 3-year average water consumption (ET). Path analysis indicated that AP, ET, potato growth period precipitation (GPR), TK and TN had explained 99.4% of the yield variation. 【Conclusion】The superimposed water collection effect of black film mulched ridge furrow tillage with micro-rainwater catchment ditches on the ridges significantly improves the soil moisture condition, which, in turn, great promoting the vigorous growth of potato and led more organic matter (stems, roots, etc.) return to the soil,then the nutrients from the decomposition of the organic matter and the applied fertilizer improves the soil nutrient content. Good soil water and fertilizer conditions effectively improve the mutual relationship between soil water and fertilizer, increased the supply of water and fertilizer, and significantly improved the potato yield, WUE, net income and input/output ratio. BLRF and BMRF performed well in dry and normal years, BLRF, BMRF and BHRF performed well in wet years, while BLRF and BMRF performed well in all precipitation years. Therefore, BLRF and BMRF are the two most efficient cultivation model after WRF for dry potato high yield production in semi-arid regions of China.
Keywords:black film mulched ridge-furrow tillage with micro-rainwater catchment ditched on ridges;water-fertilizer balance;interaction effect;yield;WUE;net income


PDF (1249KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
杨封科, 何宝林, 董博, 王立明. 不同降雨年型黑膜垄作对土壤水肥环境及马铃薯产量和效益的影响. 中国农业科学, 2021, 54(20): 4312-4325 doi:10.3864/j.issn.0578-1752.2021.20.006
YANG FengKe, HE BaoLin, DONG Bo, WANG LiMing. Effects of Black Film Mulched Ridge-Furrow Tillage on Soil Water- Fertilizer Environment and Potato Yield and Benefit Under Different Rainfall Year in Semiarid Region. Scientia Acricultura Sinica, 2021, 54(20): 4312-4325 doi:10.3864/j.issn.0578-1752.2021.20.006


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】水肥俱缺是我国半干旱区农业生产的两大桎枯[1,2,3,4]。集蓄和高效利用自然降水与中低产田改良、地力培肥有机结合是旱地农业发展的重大科学命题[5]。归因于高效的水土保持作用,覆盖栽培技术在欧洲、非洲、亚洲、中美洲、北美洲等地已广泛应用于旱地农业生产[1,3,6]。其中,白色聚乙烯膜覆盖垄沟集雨耕作技术(full film mulched ridge-furrow tillage)在中国半干旱地区作物可持续高产栽培中发挥了显著地增产增效作用[7,8]。然而,有报道表明白色地膜覆盖沟垄种植是以高耗水、高养分吸收量为代价,会导致作物后期生长阶段因脱水、脱肥、早衰而减产 [9,10],甚至绝收[11,12,13,14]。因而,选择和应用替代覆盖材料,克服或消除白色地膜覆盖的负面效应是生产上亟待解决的关键问题。【前人研究进展】黑色地膜具有较低的透光性和热辐射通透性,与白色地膜比,可降低土壤温度和土壤养分的矿化速率,减少土壤水分无效蒸发和土壤养分矿化损失,水、肥保持效果好[15],其与沟垄种植有机结合初步显现出比白色膜覆盖较强的节水、节肥和增产效应[16,17],可使玉米[6, 18]、马铃薯[19,20,21,22,23]获得更高的产量。但也有相反和无差异的报道[6,14]。以往的研究多集中于该技术应用于玉米、小麦等作物[1-3,6,9,24]的增产及提高水分利用效率等方面的研究,缺乏针对土壤水肥环境及其互作、促进作物可持续增产增效的量化研究,而相对于白膜覆盖垄作优劣性的研究也少见报道[25],对在多变亏水环境下如何进一步挖掘黑膜覆盖垄作增产机理还缺乏深入研究。【本研究切入点】探索黑膜覆盖与垄沟集雨耕作有机整合后集成并放大的调温、集水、保水、保肥的综合效应,及其促进水肥资源高效利用、马铃薯可持续增产增效的机制。【拟解决的关键问题】本研究以3年大田定位试验为基础,设置黑膜覆盖低、中、高垄耕作水肥环境调控处理,探索黑膜覆盖不同垄型垄作对土壤水肥环境及马铃薯产量和效益影响机制,解析其水肥互作、促进作物增产、高效用水机制,为进一步挖掘黑膜覆盖垄作增产潜力提供理论依据。

1 材料与方法

1.1 试验地概况

试验于2016—2018年在甘肃省农业科学院庄浪试验站南坪试验基地(106°05′28″ E,35°10′30″ N)进行。该区海拔1 765 m,属黄土丘陵沟壑地貌。多年平均气温7.9℃,无霜期145 d,≥0℃的积温3 280.6℃,≥10℃的活动积温2 640.4℃,年均降雨量510.4 mm,平均蒸发量为1 289.1 mm,平均干燥度1.55,是典型的干旱半干旱气候类型。试区土壤为典型的黄绵土,土层深厚,土壤质地较均匀,0—200 cm土层平均容重为 1.30g·cm-3

试验区2000—2018年平均降水量为423.9 mm,平均气温8.7℃。其中马铃薯生育期4月下旬至10月上旬平均降水量为397.9 mm,平均气温为16.4℃(图1)。2016—2018年总降水和马铃薯生育期降水量分别为391.1、455.7、654.6 mm和341.3、405.0、560.8 mm,分别代表干旱、平水和丰水年(图2)。试验起始试验地0—200 cm 土层,步长为20 cm的基础土壤含水量为:15.1%(0—20 cm),15.5%(20—40 cm),14.9%(40—60 cm),14.0%(60—80 cm),13.7%(80—100 cm),13.5 %(100—120 cm),12.9%(120—140 cm),13.8%(140—160 cm),14.2%(160—180 cm)和14.6%(180—200 cm)。试验地0—20 cm土层基础理化性状为:pH 8.5,土壤有机碳(soil organic carbon,SOC)9.33 g·kg-1,全氮(total nitrogen,TN)0.86 g·kg-1,全磷(total phosphorus,TP)0.70 g·kg-1,全钾(total potassium,TP)19.5g·kg-1,碱解氮(alkali-hydrolyzable nitrogen,AN)96.5 mg·kg-1,速效磷(available phosphorus,AP)15.0 mg·kg-1,速效钾(available potassium,AK)176.6 mg·kg-1,容重(soil bulk density,BD )1.30 g·cm-3

图1

新窗口打开|下载原图ZIP|生成PPT
图1马铃薯生育期多年(2000—2018)平均降水量和气温

横坐标中数字表示月份,E、M、L 分别表示上旬、中旬和下旬
Fig. 1Average precipitation and air temperature at potato growth season during 2000-2018

The number in x-axis represents the month, with E, M and L represent the early, middle and late ten-days of the month, respectively


图2

新窗口打开|下载原图ZIP|生成PPT
图2马铃薯试验年(2016—2018)逐月降水量

Fig. 2Monthly rainfall in the potato experimental years



1.2 试验设计

试验共4个处理,即以垄上微沟集雨耕作技术为基础,设黑膜低垄垄上微沟(black plastic film mulched low ridge-furrow tillage with micro-rainwater catchment ditches on ridges,BLRF)、黑膜中垄垄上微沟(black plastic film mulched middle ridge-furrow tillage with micro-rainwater catchment ditches on ridges,BMRF)和黑膜高垄垄上微沟(black plastic film mulched high ridge-furrow tillage with micro-rainwater catchment ditches on ridges,BHRF)3种垄型土壤水肥调控耕作处理(简称黑膜垄作),以当地大面积推广的白膜双垄集雨耕作(local custom white plastic film mulched ridge-furrow tillage,WRF)为对照。

BLRF,BMRF和BHRF模式下,每年3月上旬土壤解冻始,于土壤旋耕后,采用图3-e所示的机械进行起垄作业,用厚度为0.013 mm,120 cm×80 cm的黑色地膜全地面覆盖,接缝在小垄沟中间。然后在小垄沟内每隔33 cm打一个直径0.5 cm的渗水孔。马铃薯播于大垄微集水沟侧面上(图 3)。

图3

新窗口打开|下载原图ZIP|生成PPT
图3黑膜覆盖垄作不同垄型马铃薯种植示意图

Fig. 3Sketch of black film mulched ridge-furrow tillage with different ridge shapes for potato planting



试验以陇薯7号为材料,各处理马铃薯种植密度、施肥量相同。采用宽(60 cm)窄(40 cm)行播种,穴距33 cm,密度50 000穴/hm2。施农家肥4.5 t·hm-2,施纯N 180 kg·hm-2、P2O5 90 kg·hm-2、K2O 90 kg·hm-2。氮肥为尿素(含N 46%),磷肥为普钙(含P 14%),钾肥为硫酸钾(含K2O 33%)。农家肥、磷钾肥一次性底施。氮肥50%做基肥,50%于马铃薯现蕾期用简易施肥器在两株之间打孔施入,深度15 cm。采用随机区组设计排列,重复3次,小区面积35 m2。试验于4月中下旬采用简易马铃薯穴播器播种,播深15 cm,当年9月底或10月初收获。

1.3 测定项目与方法

1.3.1 土壤水分测定 于马铃薯播种期、出苗期、现蕾期、开花期、结薯期和成熟期,分别在马铃薯种植垄上和小垄沟内,按步长20 cm用直径5.5 cm的土钻取样,用烘干法测定0—200 cm土壤水分。取其平均计算土壤含水量、土壤贮水量、作物耗水量、水分利用效率等。

土壤含水量(ω)=(土壤鲜质量-土壤干质量)/土壤干质量×100%;

土壤贮水量(W)=h×ρ×ω×10。

式中,W为土壤贮水量(mm);h为土层深度(cm);

ρ为土壤容重(g·cm-3),本试验各土层ρ平均为1.30 g·cm-3,ω为土壤含水量。

农田耗水量(ET)=ΔW + P;

ΔW= W1-W2。

式中,ET为马铃薯生育期农田总耗水量(mm),ΔW为生育期土壤贮水量变化量(mm);P为作物生育期有效降雨量(mm);W1、W2分别为播前和收获时的土壤贮水量(mm)。

水分利用效率(WUE)=Y/ET。

式中,WUE为水分利用效率(kg·hm-2·mm-1),Y为块茎产量(kg·hm-2),ET为马铃薯生育期总耗水量(mm)。

1.3.2 土壤养分含量测定 2016年马铃薯播种前和2018年研究期末,按“S”形取样法测定0—30 cm 土层的土壤有机碳(SOC)和氮磷钾(NPK)养分含量。播前整个地块取20个样点,研究期末每小区取5个样点,分别取马铃薯种植行和小垄沟表层30 cm土样,然后分别混合成一个1 kg土样,测定土壤养分含量,分别代表基础肥力值和肥力变化值。土壤有机质用重络酸钾—硫酸氧化法测定,碱解氮用碱解扩散法测定,速效磷用碳酸氢钠浸提—钼锑抗比色法测定(Olsen法),速效钾用中性乙酸氨浸提、原子吸收光度计法测定。

1.3.3 收获与计产 每年试验收获前,每个小区随机取20株计算株高、结薯数量和结薯鲜重,并统计大薯(>150 g)、中薯(75—150 g)、小薯(<75g)个数及重量。按小区单独收获计鲜重,单位面积鲜薯产量(kg·hm-2)=小区鲜薯产量(kg)/小区面积(m2)×10000。

1.3.4 经济效益计算

总收入(元/hm2)=块茎产量×市场价格;

产量纯收益(元/hm2)=总收入-总投入;

产投比=总收入/总投入。

式中,总投入包括肥料、种子、农药、地膜、人工和机械作业投入。

1.4 数据处理

采用Microsoft Excel 2013对数据进行处理,用SPSS19(IBM Institute Inc.,USA)统计分析软件对数据进行T检验、单因素方差分析(ANOVA)、相关分析、通径分析和差异显著性检验(LSD法,a =0.05)。用SigmaPlot 14.0(Systat Software Inc.)作图。

2 结果

2.1 土壤含水量和贮水量变化特征

黑、白地膜覆盖垄作对0—200 cm土层土壤含水量的影响趋势相同。不论覆盖材质和垄型,地膜覆盖垄作0—200 cm土层土壤含水量都随年降水量的增加而增加。不论降水年型、覆盖材料和垄型,覆盖垄作土壤含水量在0—40 cm土层呈增加趋势,40—60 cm 土层呈急剧下降趋势,60—100 cm土层出现低值槽、100—140 cm土层(干旱年和平水年)和100—160 cm土层(丰水年)呈缓慢增加趋势,160 cm以后则呈波动缓增下降趋势,总体上都保持了季节末土壤水分的平衡或略有增加(图4)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4马铃薯生育期0—200 cm土层土壤含水量垂直变化(2016—2018)

Fig. 4Vertical distribution of soil water in 0-200 cm soil profile at potato growth season during 2016-2018



黑、白膜覆盖垄作对0—200 cm土层土壤含水量的影响不同。不论降水年型与垄型,黑膜覆盖垄作0—200 cm土层土壤含水量均高于白膜覆盖垄作。T检验表明,在不同降水年型,黑膜高、中、低垄耕作(BHRF,BMRF和BLRF)都比白膜双垄耕作(WRF)显著提高0—200 cm各土层土壤含水量(P<0.05),三者之间无显著差异。从图4可以看出,黑白膜垄作对0—200 cm各土层土壤含水量的影响,干旱年和丰水年比平水年剧烈。马铃薯种植增加了对40—120 cm 土层土壤水分的消耗。但与白膜覆盖垄作相比,黑膜覆盖垄作对120 cm以上深层的土壤水具有明显补充作用。这种作用在平水年和丰水年更强,以黑膜中、高垄较好。这对于120—200 cm土层土壤水分在作物种植季节末的恢复与提高具有积极作用,表明覆盖垄作是旱地集水保墒的有效耕作措施之一。

不同降水年型,黑膜覆盖垄作对土壤含水量的影响表现不同。在干旱年一致表现为BLRF和 BMRF处理优于BHRF处理;在平水年播种至开花期表现为BLRF 和BMRF处理优于BHRF处理,开花期以后三者间无显著差异;在丰水年开花期前表现较复杂,开花期三者间无显著差异,但全生育期均以BHRF处理较好,BMRF和BLRF处理次之(图5)。总体上,干旱年和平水年以BLRF和BMRF处理集水效果较好,丰水年三者集水效果都好且无显著差异。从图5可以看出,不论降水年型和耕作方式,现蕾至结薯期都是土壤含水量的低值峰期(即马铃薯需水关键期)。尽管马铃薯生长发育在干旱年和平水年比丰水年明显增加了对马铃薯需水关键期0—200 cm土层土壤水的耗散,但黑膜覆盖各垄作模式都比白膜垄作显著提高了全生育期土壤供水能力。

图5

新窗口打开|下载原图ZIP|生成PPT
图5马铃薯生育时期0—200 cm土层土壤平均含水量

SW:播种期;SD:出苗期; BD:现蕾期;FL:开花期;TB:结薯期;MT成熟期。同列不同字母表示差异显著(P<0.05)。下同
Fig. 5Average soil water content in 0-200 cm soil profile at the key growth stages of potato during 2016-2018

SW: Sowing; SD:Seedling; BD: Budding; FL: Flowering; TB: Tuberization; MT: Maturing. Different letters in the same column mean significant difference at 0.05 level. The same as below


不同材质覆盖垄作马铃薯全生育期0—200 cm土层土壤贮水量也呈现出与土壤含水量相似的变化趋势,主要受降雨年型和垄型的共同影响,总体上都随降雨量的增加而增加,黑膜覆盖垄作大于白膜覆盖垄作,干旱年和丰水年变化较为剧烈,平水年较温和。黑膜覆盖垄作较白膜覆盖垄作显著提高了马铃薯播种、出苗、现蕾、开花、结薯、成熟6个生育关键期(即全生育期)0—200 cm土层土壤贮水量(P<0.05),但在不同降水年型马铃薯生育关键期表现不同。干旱年BLRF和BMRF处理比BHRF处理更能有效增加马铃薯生长发育需水关键期(现蕾至结薯期)的土壤贮水量;平水年马铃薯6个生育关键时期土壤贮水量都高于干旱年,除播种、出苗和成熟期外,BLRF、BMRF和BHRF处理都较为均衡地提高了土壤贮水量;丰水年马铃薯6个生育关键时期土壤贮水量波动较大,播种至现蕾呈下降趋势,之后至成熟期呈增加趋势,BHRF和BMRF处理较BLRF处理都显著增加了各生育关键时期土壤贮水量,尤其显著提高了结薯至成熟期的土壤贮水量(图6)。

图6

新窗口打开|下载原图ZIP|生成PPT
图6马铃薯生育时期 0—200 cm 土层土壤贮水量变化

Fig. 6Changes of soil water storages in 0-200 cm soil profile at different potato growth stages during 2016-2018



2.2 土壤养分变化趋势

黑膜垄作明显改善了土壤养分状况。研究期末2018年测定的土壤养分指标,除土壤有机碳(SOC)和全磷(TP)含量增加不显著外,土壤全氮、全钾和速效氮磷钾(TN,TK,AN,AP,AK)含量均显著高于白膜垄作(P<0.05),分别增加了0.04—0.05 g·kg-1、0.8—1.3 g·kg-1、8.5—18.7 mg·kg-1,4.2—6.1 mg·kg-1和16.7—31.4 mg·kg-1,相当于提高了4.5%—5.6%、3.6%—5.9%、8.4%—18.4%、15.3%—22.3%和7.1%—13.3%(表1)。与试验地基础养分含量比,黑、白覆盖垄作都明显地提高了土壤养分的含量,也表现为黑膜垄作优于白膜垄作。

Table 1
表1
表1黑膜垄作马铃薯0—30 cm 土层土壤养分含量(2018)
Table 1Soil nutrients content in 0-30 cm soil profile under black film mulched ridge-furrow tillage in 2018
处理 TreatmentsSOC (g·kg-1)TN (g·kg-1)TP (g·kg-1)TK (g·kg-1)AN (mg·kg-1)AP (mg·kg-1)AK (mg·kg-1)
BHRF9.5±0.1a0.94±0.02a0.84±0.02a23.5±0.5a119.5±4.5a33.5±1.2a266.7±10.1a
BMRF9.5±0.1a0.94±0.01a0.84±0.01a23.3±0.2a120.3±5.9a32.6±1.7a256.7±9.9a
BLRF9.4±0.1a0.93±0.03a0.83±0.03a23.0±0.2ab110.1±2.7b31.6±2.6a253.0±8.7a
WRF9.4±0.1a0.89±0.01b0.81±0.01a22.2±0.6b101.6±2.9c27.4±0.8b235.3±6.8b
同列不同字母表示差异显著(P<0.05)。下同
Different letters in the same column mean significant difference at 0.05 level. The same as below

新窗口打开|下载CSV

2.3 马铃薯结薯特性、产量、耗水量及水分利用效率与效益

与WRF处理相比,黑膜垄作显著增加了马铃薯大、中薯(>150 g和75—150 g)结薯个数和大薯单薯重,因而显著提高了产量(P<0.05)。其中,对大薯结薯个数及其重量的影响最大,对中薯相关性状的影响次之。统计分析表明,与WRF处理比,黑膜垄作大、中薯3年平均分别增加了0.1—0.3个和0.1—0.2个,增加了5.3%—15.8%、10.0%—20.0%;大、中薯重分别增加了0.12—0.16 kg和0.1—0.2 kg,增加了25.0%—33.3%和4.5%—9.0%(表2)。

Table 2
表2
表2黑膜垄作对马铃薯结薯特性的影响(2016—2018)
Table 2Tuberization characteristics of potato under black film mulched ridge-furrow tillage (2016-2018)
处理
Treatments
薯型 Potato sizes薯重 Potato weight
大薯
Large potato
(>150 g)
中薯
Medium potato
(75-150 g)
小薯
Small potato
(<75g)
大薯重
Large potato
weight (kg)
中薯重
Medium potato
weight (kg)
小薯重
Small potato
weight (kg)
BHRF2.2±0.05a1.2±0.06a2.3±0.1ab0.64±0.02a0.24±0.01a0.19±0.01a
BMRF2.1±0.10b1.2±0.10a2.1±0.10c0.62±0.01ab0.24±0.01a0.19±0.01a
BLRF2.0±0.04c1.1±0.06ab2.2±0.1bc0.6±0.02b0.23±0.01a0.20±0.01a
WRF1.9±0.04c1.0±0.06b2.5±0.08a0.48±0.01c0.22±0.01b0.19±0.01a

新窗口打开|下载CSV

黑膜垄作马铃薯3年平均单产较白膜垄作提高了6 504.7.4—7 310.9 kg·hm-2,增产16.9%—19.0%;耗水量(ET)减少了2.5—4.3 mm;水分利用效率(WUE)提高了15.1—18.7 kg·mm-1·hm-2,增加了15.5%—19.2%(表3)。但黑膜垄作的增产增效作用因降雨年型而不同。马铃薯产量、WUE均随降雨量的增加而增加,但相对增长率却是丰水年(2018)>干旱年(2016)>平水年(2017)。对应的ET则表现干旱年和丰水年降低,平水年略微增加,可能与降水年际间变化有关。与WRF处理相比,不同降水年型下,BHRF,BMRF和BLRF处理的产量和WUE都显著增加(P<0.05),但三者之间无显著差异。对提高产量和WUE的相对增效效率而言,干旱年和平水年BLRF和BMRF处理比较高效,BHRF处理次之,都优于WRF处理;丰水年三者都高效并显著优于WRF处理。同时,单位面积产出效益和产投比也表现出与产量和WUE一样的变化趋势。黑膜垄作单位面积收益和产投比3年平均分别达到36 290.3—37 477.0元/hm2 和3.7—3.9,比WRF处理提高了6 855.2—8 042.0元/hm2和0.4—0.6,增加了23.3%—27.3%、12.1%—18.2%。

Table 3
表3
表3黑膜垄作对马铃薯产量、水分利用效率、耗水量、效益和产投比的影响
Table 3Effects of black film mulched ridge-furrow tillage on the yield, water use efficiency (WUE), water consumption (ET), economic benefits and input/output ratio of potato
年份
Year
处理
Treatments
产量
Yield (kg·hm-2)
水分利用效率
WUE (kg·hm-2·mm-1)
耗水量
ET (mm)
效益
Economic benefits (yuan)
产投比
Input-output ratio
2016BHRF31021±1517ab90.8±4.5ab341.0±0.0a20924±1668ab2.6±0.1b
BMRF32953±1611a97.5±4.8a338.0±0.1b23349±1772a2.8±0.1a
BLRF33147±1621a98.7±4.9a335.7±0.2b23562±1783a2.8±0.1a
WRF29335±906b86.1±3.5b340.7±o.1a19368±996b2.5±0.08b
2017BHRF39408±1832a102.3±4.6a385.2±0.6a30149±2015a3.3±0.2ab
BMRF40279±1872a105.1±4.7a383.6±0.6b31407±2060a3.4±0.2a
BLRF40376±1877a105.3±4.7a383.6±0.6b31514±2065a3.4±0.2a
WRF35170±1139b95.2±4.3b383.3±0.8b26887±1253b3.1±0.1b
2018BHRF64544±2304a144.9±6.3a445.4±3.5b57799±2535a5.4±0.2a
BMRF64159±2290a144.8±6.3a443.2±3.5b57675±2519a5.5±0.2a
BLRF63774±2277a144.9±6.3a440.2±3.6c57252±2504a5.4±0.2a
WRF48288±1724b107.8±4.4b450.5±2.2a40217±1896b4.1±0.2b
平均
Average
BHRF44991±823a112.7±2.4a390.5±1.4b36290±905a3.7±0.1b
BMRF45797±840a115.8±2.5a388.3±1.4b37477±924a3.9±0.1a
BLRF45766±838a116.3±2.5a386.5±1.5c37442±922a3.9±0.1a
WRF38486±653b97.6±2.1b390.8±2.1a29435±718b3.3±0.1c

新窗口打开|下载CSV

总体上,不同材质覆盖垄作马铃薯单产、WUE、纯收益和产投比都随降水量增加而增加。干旱年和平水年一致表现为BLRF>BMRF>BHRF>WRF,丰水年BLRF、BMRF和BHRF三者之间无显著差异。相对增量表现为干旱年和平水年BLRF和BMRF处理高度接近,都高于BHRF处理,丰水年三者之间无显著差异,总趋势是丰水年>干旱年≈平水年(表3)。

2.4 马铃薯产量与土壤水肥供给的关系

利用研究期末测定的土壤养分指标值,3年马铃薯平均耗水量、平均生育期降水量和平均产量进行相关分析表明,马铃薯产量与TN,TP,TK,AN,AP和AK呈显著正相关关系(P<0.01)。R2分别为0.623**、0.723**、0.748**、0.807**、0.828**和0.804**;与ET呈显著负相关关系,R2为-0.606*(P<0.05)。通径分析表明,AP、ET、马铃薯生育期降水量(GPR)、AK和AN解释了99.4%的产量变化(表4),提高土壤有效养分含量,特别是磷素含量为主的水肥高效管理是马铃薯增产的主要措施。

Table 4
表4
表4马铃薯产量与土壤有效磷、钾、氮(AP,AK,AN)、蒸散值(ET)和生育期降水量(GPR)之间的相关关系
Table 4Relationship of potato yield and the available phosphorus, potassium nitrogen (AP, AK, AN), the evapotranspiration (ET) and the precipitation in growing season (PGS)
变量
Variable
与产量相关关系
(r)
直接效应Direct effect间接效应Indirect effect总效应
Total effect
→x1→x2→x3→x4→x5
AP (x1)0.828**0.4730.1057-0.10750.21710.13940.3547
ET (x2)-0.606*-0.548-0.09140.1697-0.0879-0.0487-0.0583
PGR (x3)0.204-0.3750.13590.24810.13420.06000.5781
AK (x4)0.804**0.2580.39770.1862-0.19440.15620.5457
AN (x5)0.807**0.1750.37640.1523-0.12810.23030.6308
R2=0.994,P=0.0000,模型显著性;r,各参数与产量的相关系数;AP(x1),速效磷;ET(x2),马铃薯蒸散值;PGR(x3),马铃薯生育期降水量;AK(x4),速效钾;AN(x5),速效氮。*,**分别表示在a=0.5和a=0.01水平上相关性显著
R2=0.994, P=0.0000, model significance; r, correlation coefficient (r) of each selected parameters to potato yield; AP (x1), available phosphorus; ET(x2), evapotranspiration; PGR (x3), precipitation in potato growing season; AK (x4), available potassium; AN (x5), available nitrogen. *,**mean significance at a=0.05 and a=0.001 levels, respectively

新窗口打开|下载CSV

3 讨论

黑膜垄作(BHRF,BMRF和BLRF)虽然增加了马铃薯生长发育对40—120 cm土层土壤水的耗散,但马铃薯全生育期0—200 cm土层土壤含水量和贮水量均高于白膜垄作(WRF)(图3),且土壤120—200 cm土层土壤含水量不同降雨年型都呈增长趋势,并随着降雨增加而增加,表明黑膜垄作集蓄的雨水有效地补充了作物耗散的土壤水分,保持了土壤水分的平衡,因而不会出现如文献[9,10]所述的脱水现象。同时,黑膜垄作集成了地膜覆盖与沟垄耕作的优点,一方面覆膜大小垄及垄上微沟增加集雨面积而有效提高了水分的入渗率,形成了集雨的叠加效益[26,27,28,29,30];另一方面黑膜降、调温作用有效降低了白色地膜覆盖导致的土壤升温快、持久,造成的土壤水分过度无效蒸发损失,提高了降水保蓄率,增加土壤贮水量[31]。因而,黑膜垄作比白膜垄作具有较强的土壤水补益作用,特别是有效提高了季节末土壤120—200 cm土层土壤水分含量(图4),这对于保蓄土壤水分为年际间均衡利用具有重要意义。

覆盖材质、垄型和降水年型很大程度上决定着土壤水的保蓄效率。本研究表明,黑膜覆盖垄上微沟耕作集水效率优于白膜覆盖双垄耕作,干旱年和平水年BLRF和BMRF处理优于BHRF处理,丰水年BHRF、BMRF和BLRF处理都具有较好的集水效率且无显著差异(图5—6)。可能的原因有:一是降雨的多寡与季节分布决定了可集雨量和集蓄的雨量,是首要因子(图2);二是黑色地膜较好的调温性能,避免了白膜覆盖维持长久高温导致的土壤水分过度蒸发损失[15];三是不同垄高所形成的集水面大小及其集水效率差异所致[32,33,34]

黑膜覆盖垄作明显提高了土壤养分含量和有效性。本研究结果表明,与土壤基础养分含量相比,黑、白膜垄作都有效地提高了测定的土壤养分含量,且黑膜垄作要优于白膜垄作(表1)。土壤养分含量的增加主要归因于:一是黑膜垄作由于较好地改善了土壤水环境,促进马铃薯旺盛生长,增加了归还土壤的有机质(如散落茎叶、根茎和根系分泌物)(表3),增加的有机物腐解释放的养分抵消了土壤养分因矿化和作物吸收利用造成的损失,而增加了土壤有机碳及氮磷钾养分的含量[6,35-37];二是土壤水环境改善加速养分矿化,增加了土壤有效养分含量[38];三是与马铃薯喜钾及养分吸收特性密切相关[38];四是覆膜起垄增加并改变了土壤水分梯度,水分向上层移动驱动养分表层聚集,起垄本身也促使养分表层聚集,即层化现象[39]。另外,田间取样深度和测定误差也会造成土壤养分含量的差异。

高效利用土壤水肥条件,建立水肥之间正向互作机制是旱地作物获得高产的主要途径[8]。提高土壤肥力,改善土壤结构和通透性,将提高水分渗透能力、土壤蓄水能力、土壤持墒能力和土壤供水能力,增加了作物水供应[8,36,39,41];水环境的改善与肥力因素互作又提高了土壤养分有效性,增加了作物土壤养分吸收和利用效率[6,37,40],这是旱地作物高产高效的基础。本研究进一步强化佐证了这一理论。覆膜垄作减少了土壤蒸发,提高了土壤水分有效性[6,41-42];促进了作物前期旺盛生长[24]和后期补偿生长[38],产生了明显的水肥互作叠加效应,显著提高作物产量和水分利用效率的作用[25, 43- 44],增产作用在干旱年份更突出[30, 45-46],这也是本研究马铃薯均衡增产的主要原因。本研究发现,不同降水年型,黑膜垄作都因显著地提高了马铃薯大薯结薯个数及其重量,进而显著提高马铃薯产量和水分利用效率(表2)。这主要归因于覆盖沟垄耕作改善了水肥条件,形成了水肥互作正效应,降低了土壤蒸发,提高了作物蒸腾,增加了单位面积产出和水分利用效率(表 3)。

4 结论

马铃薯黑覆盖垄作显著提高了0—200 cm土层土壤含水量和贮水量,增加的土壤水分对120—200 cm土层土壤深层水具有明显的补充作用,雨季集蓄的水分旱季用,当年集蓄的水分来年用,减轻或解决了当季季节干旱和年际连旱问题。同时,黑膜垄作显著提高了0—30 cm耕层土壤全氮、全钾和速效氮磷钾养分含量,有效提高或保持了土壤肥力。

黑膜垄作集成并放大了地膜覆盖、垄沟耕作的集保水、保肥效应,显著增加了马铃薯大、中薯结薯个数和结薯重,进而显著提高马铃薯产量、水分利用效率、单位面积收益和产投比。尽管黑膜低、中、高垄耕作增产增效效益不同年型表现略有差异,总体上认为黑膜中、低垄(BMRF和BLRF)耕作是干旱区马铃薯高产高效栽培的普遍适用土壤水肥关系高效调节耕作模式。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

ZHANG P, WEI T, CAI T, ALI S, HAN Q F, REN X L, JIA Z K. Plastic-film mulching for enhanced water-use efficiency and economic returns from maize fields in semiarid China
Frontiers in Plant Science, 2017, 8:512.

[本文引用: 3]

ZHANG Y L, WANG F X, SHOCK C C, YANG K J, KANG S Z, QIN J T, LI S E. In?uence of different plastic film mulches and wetted soil percentages on potato grown under drip irrigation
Agricultural Water Management, 2017, 180:160-171.

DOI:10.1016/j.agwat.2016.11.018URL [本文引用: 1]

REN X L, ZHANG P, CHEN X L, GUO J J, JIA Z K. Effect of different mulches under rainfall concentration system on corn production in the semi-arid areas of the Loess Plateau
Scientific Reports, 2016, 6(1):1-10.

DOI:10.1038/s41598-016-0001-8URL [本文引用: 3]

姚玉璧, 张秀云, 王润元, 邓振墉, 卢汉威. 西北温凉半湿润区气候变化对马铃薯生长发育的影响--以甘肃眠县为例
生态学报, 2010, 30(1):100-108.

[本文引用: 1]

YAO Y B, ZHANG X Y, WANG R Y, DENG Z Y, LU H W. Impacts of climatic change on potato growth in the semi-humid region over extra-tropical and cool Northwest of China: A case study in Minxian county of Gansu province
Acta Ecologica Sinica, 2010, 30(1):100-108. (in Chinese)

[本文引用: 1]

韩凡香, 常磊, 柴守玺, 杨长刚, 程宏波, 杨德龙, 李辉, 李博文, 李守蕾, 宋亚丽, 兰雪梅. 半干旱雨养区秸秆带状覆盖种植对土壤水分及马铃薯产量的影响
中国生态农业学报, 2016, 24(7):874-882.

[本文引用: 1]

HAN F X, CHANG L, CHAI S X, YANG C G, CHENG H B, YANG D L, LI H, LI B W, LI S L, SONG Y L, LAN X M. Effect of straw strip covering on ridges on soil water content and potato yield under rain-fed semiarid conditions
Chinese Journal of Eco-Agriculture, 2016, 24(7):874-882. (in Chinese)

[本文引用: 1]

MO F, WANG J Y, ZHOU H, LUO C L, ZHANG X F, LI X Y, LI F M, XIONG L B, KAVAGI L, NGULUU S N, XIONG Y C. Ridge-furrow plastic-mulching with balanced fertilization in rainfed maize (Zea mays L.): An adaptive management in east African Plateau
Agricultural and Forest Meteorology, 2017, 236:100-112.

DOI:10.1016/j.agrformet.2017.01.014URL [本文引用: 7]

LI X Y, GONG J D, GAO Q Z, LI F R. Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions
Agricultural Water Management, 2001, 50(3):173-183.

DOI:10.1016/S0378-3774(01)00105-6URL [本文引用: 1]

GANY T, SIDDIQUE K H M, TURNER N C, LI X G, NIU J Y, YANG C, LIU L P, CHAI Q. Ridge-furrow mulching systems-an innovative technique for boosting crop productivity in semiarid rain-fed environments
Advances in Agronomy, 2013, 118:429-476.

[本文引用: 3]

李富翠, 赵护兵, 王朝辉, 李小涵, 刘慧, 李可懿, 周玲. 旱地夏闲期秸秆覆盖和种植绿肥对冬小麦水分利用及养分吸收的影响
干旱地区农业研究, 2012, 30(1):119-125.

[本文引用: 3]

LI F C, ZHAO H B, WANG Z H, LI X H, LIU H, LI K Y, ZHOU L. Effects of straw mulching and planting green manure on water use and nutrients uptake of winter wheat on dryland
Agricultural Research in the Arid Areas, 2012, 30(1):119-125. (in Chinese)

[本文引用: 3]

LIU X H, REN Y J, GAO C, YAN Z X, LI Q Q. Compensation effect of winter wheat grain yield reduction under straw mulching in wide-precision planting in the North China Plain
Scientific Reports, 2017, 7(1):1-9.

DOI:10.1038/s41598-016-0028-xURL [本文引用: 2]

BU L D, ZHU L, LIU J L, LUO S S, CHEN X P, LI S Q. Source-sink capacity responsible for higher maize yield with removal of plastic film
Agronomy Journal, 2013, 105(3):591-598.

DOI:10.2134/agronj2012.0459URL [本文引用: 1]

STEINMETZ Z, WOLLMANN C, SCHAEFER M, BUCHMANN C, DAVID J, TRÖGER J, MUÑOZ K, FRÖR O, SCHAUMANN G E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?
Science of the Total Environment, 2016, 550:690-705.

DOI:10.1016/j.scitotenv.2016.01.153URL [本文引用: 1]

LI F M, GUO A H, WEI H. Effects of clear plastic film mulch on yield of spring wheat
Field Crop Research, 1999, 63(1):79-86.

DOI:10.1016/S0378-4290(99)00027-1URL [本文引用: 1]

ZAONGO C G L, WENDT C W, LASCANO R J, JUO A S R. Interactions of water, mulch and nitrogen on sorghum in Niger
Plant and Soil, 1997, 197(1):119-126.

DOI:10.1023/A:1004244109990URL [本文引用: 2]

MORENO M M, MORENO A. Effect of different biodegradable and polyethylene mulches on soil properties and production in a tomato crop
Scientia Horticulture, 2008, 116(3):256-263.

DOI:10.1016/j.scienta.2008.01.007URL [本文引用: 2]

QIN X L, LI Y Z, HAN Y L, HU Y C, LI Y J, WEN X X, LIAO Y C, SIDDIQUE H M K. Ridge-furrow mulching with black plastic film improves maize yield more than white plastic film in dry areas with adequate accumulated temperature
Agricultural and Forest Meteorology, 2018, 262:206-214.

DOI:10.1016/j.agrformet.2018.07.018URL [本文引用: 1]

王红丽, 张绪成, 于显枫, 马一凡, 侯慧芝. 黑色地膜覆盖的土壤水热效应及其对马铃薯产量的影响
生态学报, 2016, 36(16):5215-5226.

[本文引用: 1]

WANG H L, ZHANG X C, YU X F, MA Y F, HOU H Z. Effects of using black plastic film as mulch on soil temperature and moisture and potato yield
Acta Ecologica Sinica, 2016, 36(16):5215-5226. (in Chinese)

[本文引用: 1]

ELDOMA I M, LI M, ZHANG F, LI F M. Alternate or equal ridge-furrow pattern: Which is better for maize production in the rain-fed semi-arid Loess Plateau of China?
Field Crop Research, 2016, 191:131-138.

DOI:10.1016/j.fcr.2016.02.024URL [本文引用: 1]

范士杰, 王蒂, 张俊莲, 白江平, 宋吉轩, 马智黠. 不同栽培方式对马铃薯土壤水分状况和产量的影响
草业学报, 2012, 21(2):271-279.

[本文引用: 1]

FAN S J, WANG D, ZHANG J L, BAI J P, SUN J X, MA Z X. Effects of tillage strategies on the topsoil water content and the yield of potato.
Acta Prataculturae Sinica, 2012, 21(2):271-279. (in Chinese)

[本文引用: 1]

秦舒浩, 张俊莲, 王蒂, 蒲玉林, 杜全仲. 覆膜与沟垄种植模式对旱作马铃薯产量形成及水分运移的影响
应用生态学报, 2011, 22(2):389-394.

[本文引用: 1]

QIN S H, ZHANG J L, WANG D, PU Y L, DU Q Z. Effects of different film mulch and ridge-furrow cropping patterns on yield formation and water translocation of rainfed potato
Chinese Journal of Applied Ecology, 2011, 22(2):389-394. (in Chinese)

[本文引用: 1]

高世铭, 张绪成, 王亚宏. 旱地不同覆盖沟垄种植方式对马铃薯土壤水分和产量的影响
水土保持学报, 2010, 24(1):249-251.

[本文引用: 1]

GAO S M, ZHANG X C, WANG Y H. Influence of different mulching and furrow-ridge planting methods on soil moisture and yield of potato on dryland
Journal of Soil and Water Conservation, 2010, 24(1):249-251. (in Chinese)

[本文引用: 1]

CHANDRA S, SINGH R D, BHATNAGAR V K, BISHT J K. Effect of mulch and irrigation on tuber size, canopy temperature, water use and yield of potato (Solonum tuberosum)
Indian Journal of Agronomy, 2002, 47(3):443-448.

[本文引用: 1]

侯慧芝, 张绪成, 汤瑛芳, 王红丽, 于显枫, 方彦杰, 马一凡. 半干旱区全膜覆盖垄沟种植马铃薯/蚕豆间作的产量和水分效应
草业学报, 2016, 25(6):71-80.

[本文引用: 1]

HOU H Z, ZHANG X C, TANG Y F, WANG H L, YU X F, FANG Y J, MA Y F. Effects of potato fababean intercropping on crop productivity and soil water under a plastic mulch ridge-furrow planting system in a semiarid area
Acta Pratacultura Sinica, 2016, 25(6):71-80. (in Chinese)

[本文引用: 1]

李凤民, 刘小兰, 王俊. 底墒与磷肥互作对春小麦产量形成的影响
生态学报, 2001, 21(11):1941-1946.

[本文引用: 2]

LI F M, LIU X L, WANG J. Effects of pre-sowing irrigation and P fertilization on spring wheat yield information
Acta Ecologica Sinica, 2001, 21(11):1941-1946. (in Chinese)

[本文引用: 2]

谢军红, 李玲玲, 张仁陟, 柴强. 覆膜、沟垄作对旱作农田玉米产量和水分利用的叠加效应
作物学报, 2018, 44(2):268-277.

[本文引用: 2]

XIE J H, LI L L, ZHANG R Z, CHAI Q. Superimposition effect of film-mulching and furrow ridging culture on maize grain yield and WUE in Loess Plateau
Acta Agronomica Sinica, 2018, 44(2):268-277. (in Chinese)

[本文引用: 2]

CHEN Y L, LIU T, TIAN X H, WANG X F, LI M, WANG S X, WANG Z H. Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau
Field Crops Research, 2015, 172:53-58.

DOI:10.1016/j.fcr.2014.11.016URL [本文引用: 1]

王琦, 张恩和, 李凤民, 王晓凌. 半干旱地区沟垄微型集雨种植马铃薯最优沟垄比确定
农业工程学报, 2005, 21(2):38-41.

[本文引用: 1]

WANG Q, ZHANG E H, LI F M, WANG X L. Optimum ratio of ridge to furrow for planting potato in micro-water harvesting system in semiarid areas
Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(2):38-41. (in Chinese)

[本文引用: 1]

王晓凌, 陈明灿, 易现峰, 付国占. 垄沟覆膜集雨系统垄宽和密度效应对玉米产量的影响
农业工程学报, 2009, 25(8):40-47.

[本文引用: 1]

WANG X L, CHEN M C, YI X F, FU G Z. Effects of ridge width and planting density on corn yields in rainwater-harvesting system with plastic film mulching on ridge
Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(8):40-47. (in Chinese)

[本文引用: 1]

ZHOU L M, LI F M, JIN S L, SUN Y J. How two ridges and the furrow mulched with plastic film affects soil water temperature and yield of maize on the semiarid Loess Plateau of China
Field Crops Research, 2009, 113(1):41-47.

DOI:10.1016/j.fcr.2009.04.005URL [本文引用: 1]

廖允成, 温晓霞, 韩思明. 黄土高原旱地小麦覆盖保水技术效果研究
中国农业科学, 2003, 36(5):548-552.

[本文引用: 2]

LIAO Y C, WEN X X, HAN S M. Effect of mulching of water conservation for dry land winter wheat in the loess tableland
Scientia Agricultura Sinica, 2003, 36(5):548-552. (in Chinese)

[本文引用: 2]

QIN S H, ZHANG J L, DAI H L, WANG D, LI D M. Effect of ridge-furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area
Agricultural Water Management, 2014, 131:87-94.

DOI:10.1016/j.agwat.2013.09.015URL [本文引用: 1]

HU Q, PAN F F, PAN X B, ZHANG D, YANG N, PAN Z H, ZHAO P Y, TUO D B. Effects of a ridge-furrow micro-field rainwater- harvesting system on potato yield in a semi-arid region
Field Crops Research, 2014, 166:92-101.

DOI:10.1016/j.fcr.2014.06.005URL [本文引用: 1]

ZHAO H, WANG R Y, MA B L, XIONG Y C, QIANG S C, WANG C L, LIU C A, LI F M. Ridge-furrow with full plastic film mulching improves water use efficiency and tuber yields of potato in a semiarid rainfed ecosystem
Field Crops Research, 2014, 161:137-148.

DOI:10.1016/j.fcr.2014.02.013URL [本文引用: 1]

TIAN Y, SU D R, LI F M, LI X L. Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas
Field Crops Research, 2003, 84(3):385-391.

DOI:10.1016/S0378-4290(03)00118-7URL [本文引用: 1]

ZHANG X D, KAMRAN M, LI F J, XUE X K, JIA Z K, HAN Q F. Optimizing fertilization under ridge-furrow rainfall harvesting system to improve foxtail millet yield and water use in a semiarid region, China
Agricultural Water Management, 2020, 227:105852.

DOI:10.1016/j.agwat.2019.105852URL [本文引用: 1]

WANG X B, DAI K, ZHANG D C, ZHANG X M, WANG Y, ZHAO Q S, CAI D X, HOOGMOED W B, OENEMA O. Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China
Field Crop Research, 2011, 120(1):47-57.

DOI:10.1016/j.fcr.2010.08.010URL [本文引用: 1]

QIN S J, JIAO K B, LYU D, SHI L, LIU L Z. Effects of maize residue and cellulose-decomposing bacteria inocula on soil microbial community, functional diversity, organic fractions, and growth of Malus hupehensis Rehd
Archives of Agronomy and Soil Science, 2015, 61(2):173-184.

DOI:10.1080/03650340.2014.928927URL [本文引用: 2]

QIN S H, CAO L, ZHANG J L, WANG D, WANG D. Soil nutrient availability and microbial properties of a potato field under ridge-furrow and plastic mulch
Arid Land Research and Management, 2016, 30(2):181-192

DOI:10.1080/15324982.2015.1033066URL [本文引用: 3]

OBOUR A K, MIKHA M M, HOLMAN J D, STAHLMAN P W. Changes in soil surface chemistry after fifty years of tillage and nitrogen fertilization
Geoderma, 2017, 308:46-53.

DOI:10.1016/j.geoderma.2017.08.020URL [本文引用: 2]

FAN T, STEWART B A, WANG Y, LUO J J, ZHOU G Y. Long-term fertilization effects on grain yield, water-use efficiency and soil fertility in the dryland of Loess Plateau in China
Agriculture, Ecosystems and Environment, 2005, 106(4):313-329.

DOI:10.1016/j.agee.2004.09.003URL [本文引用: 1]

MBAVA N, MUTEMA M, ZENGENI R, SHIMELIS H, CHAPLOT V. Factor affecting crop water use efficiency: A worldwide meta-analysis
Agricultural Water Management, 2020, 228:105878.

DOI:10.1016/j.agwat.2019.105878URL [本文引用: 2]

王红丽, 张绪成, 宋尚有. 半干旱区旱地不同覆盖种植方式玉米田的土壤水分和产量效应
植物生态学报, 2011, 35(8):825-833.

DOI:10.3724/SP.J.1258.2011.00825 [本文引用: 1]
为探讨半干旱区旱地不同种植方式玉米(Zea mays)田的土壤水分动态特征, 测定了全膜双垄沟播(PMF)、全沙覆盖(SM)和裸地(CK) 3种不同处理0&ndash;200 cm土壤水分季节变化、垂直变化及年际变化。结果表明: PMF明显改善玉米拔节前0&ndash;200 cm土壤的水分条件, 有利于玉米前期生长; 随着玉米生育进程的推进, 3种处理的耗水量依次为: PMF﹥SM﹥CK, 而土壤贮水量表现为CK﹥SM﹥PMF; 在相同降雨条件下, PMF处理0&ndash;200 cm土壤水分降雨入渗补给深度最大, SM次之, CK最小。随着种植年限增加, PMF的耗水量和耗水深度增加, 两年种植期间耗水深度从20&ndash;120 cm向120&ndash;200 cm推移; 连续种植两年后, 3种处理40&ndash;120 cm土壤含水量下降至9.0%以下, 其中PMF下降最快(7.9%), 土壤含水量接近萎蔫系数7.2%, 玉米只能靠当年降水生长, 如种植年限继续增加, 土壤极有可能形成干层。3种处理之间耗水量、产量、水分利用效率都存在显著差异, PMF最高, SM次之, CK最低。因此, 在半干旱区采用全膜双垄沟播种植玉米可显著提高产量, 但连续种植可导致土壤贮水量显著降低, 对农田可持续生产能力造成不利影响。
WANG H L, ZHANG X C, SONG S Y. Effects of mulching methods on soil water dynamics and corn yield of rain-fed cropland in the semiarid area of China
Chinese Journal of Plant Ecology, 2011, 35(8):825-833. (in Chinese)

DOI:10.3724/SP.J.1258.2011.00825 [本文引用: 1]
为探讨半干旱区旱地不同种植方式玉米(Zea mays)田的土壤水分动态特征, 测定了全膜双垄沟播(PMF)、全沙覆盖(SM)和裸地(CK) 3种不同处理0&ndash;200 cm土壤水分季节变化、垂直变化及年际变化。结果表明: PMF明显改善玉米拔节前0&ndash;200 cm土壤的水分条件, 有利于玉米前期生长; 随着玉米生育进程的推进, 3种处理的耗水量依次为: PMF﹥SM﹥CK, 而土壤贮水量表现为CK﹥SM﹥PMF; 在相同降雨条件下, PMF处理0&ndash;200 cm土壤水分降雨入渗补给深度最大, SM次之, CK最小。随着种植年限增加, PMF的耗水量和耗水深度增加, 两年种植期间耗水深度从20&ndash;120 cm向120&ndash;200 cm推移; 连续种植两年后, 3种处理40&ndash;120 cm土壤含水量下降至9.0%以下, 其中PMF下降最快(7.9%), 土壤含水量接近萎蔫系数7.2%, 玉米只能靠当年降水生长, 如种植年限继续增加, 土壤极有可能形成干层。3种处理之间耗水量、产量、水分利用效率都存在显著差异, PMF最高, SM次之, CK最低。因此, 在半干旱区采用全膜双垄沟播种植玉米可显著提高产量, 但连续种植可导致土壤贮水量显著降低, 对农田可持续生产能力造成不利影响。

李锋瑞, 赵松岭, 李凤民, 高崇岳. 陇东黄土旱塬作物组合系统农田耗水规律研究
生态学报, 1995, 15(4):420-426.

[本文引用: 1]

LI F R, ZHAO S L, LI F M, GAO C Y. Study on the water consumption law of complex crop system in the tablelands of the eastern Gansu loess plateau
Acta Ecologica Sinica, 1995, 15(4):420-426. (in Chinese)

[本文引用: 1]

WEN X X, ZHANG D Q, LIAO Y C, JIA Z K, JI S Q. Effects of water-collecting and -retaining techniques on photosynthetic rates, yield, and water use efficiency of millet grown in a semiarid region
Journal Integrative Agriculture, 2012, 11(7):1119-1128.

DOI:10.1016/S2095-3119(12)60105-1URL [本文引用: 1]

QIN X L, LI Y Z, HAN Y L, HU Y C, LI Y J, WEN X X, LIAO Y C, SIDDIQUE K H M. Ridge-furrow mulching with black plastic film improves maize yield more than white plastic film in dry areas with adequate accumulated temperature
Agricultural and Forest Meteorology, 2018, 262:206-214.

DOI:10.1016/j.agrformet.2018.07.018URL [本文引用: 1]

ZHANG F, LI M, ZHANG W J, LI F M, QIN J G. Ridge-furrow mulched with plastic film increases little in carbon dioxide efflux but much significant in biomass in a semiarid rainfed farming system
Agricultural and Forest Meteorology, 2017, 244:33-41.

[本文引用: 1]

相关话题/土壤 生育 作物 基础 环境