删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

miR-31-5p对山羊毛囊干细胞增殖和凋亡的影响

本站小编 Free考研考试/2021-12-26

冯云奎,, 王健, 马金亮, 张柳明, 李拥军,扬州大学动物科学与技术学院,江苏扬州 225009

Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat

FENG YunKui,, WANG Jian, MA JinLiang, ZHANG LiuMing, LI YongJun,College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu

通讯作者: 李拥军,E-mail: yzliyongjun@163.com

责任编辑: 林鉴非
收稿日期:2020-11-2接受日期:2021-03-11
基金资助:国家自然科学基金项目(31572355)


Received:2020-11-2Accepted:2021-03-11
作者简介 About authors
冯云奎,E-mail: feng1105387084@163.com







摘要
【目的】长江三角洲白山羊是我国及世界上唯一能生产优质笔料毛的山羊品种,课题组前期转录组测序结果表明:在优质笔料毛与非优质笔料毛个体皮肤组织中,MAP3K1的表达水平存在显著差异。探究优质笔料毛性状形成过程中与MAP3K1相互作用的关键miRNAs及其对山羊毛囊干细胞增殖和凋亡的影响,为长江三角洲白山羊的分子选育提供理论依据。【方法】通过生物信息学网站(StrBase、miRDB、TargetScan、miRWalk、DAVID、KEGG、RNAhybrid)预测、筛选与MAP3K1具有靶向关系的miRNAs,利用在线网站Venny 2.1绘制韦恩图。通过构建miR-31-5p过表达载体,MAP3K1RASA1野生型和突变型双荧光素酶报告基因载体,验证miR-31-5p与MAP3K1RASA1之间的靶向关系,并结合qPCR和Western Blot技术检测过表达后miR-31-5p对MAP3K1、RASA1 mRNA和蛋白表达水平的影响。为探究过表达miR-31-5p后对细胞增殖、凋亡的影响,分析了转染miR-31-5p后毛囊干细胞内增殖相关基因(PCNA, CDK1, CCND2)、抗凋亡基因(Bcl-2)和促凋亡基因(Bax)的mRNA和蛋白表达水平;同时结合CCK-8,EdU,流式细胞术等方法验证过表达miR-31-5p对毛囊干细胞活力、细胞周期以及凋亡的影响。【结果】通过数据库共同预测到3个可能与MAP3K1相作用的miRNAs,结合现有miRNAs在皮肤和毛囊细胞上研究,最终选用评分相对较高的miR-31-5p作为研究对象。转染miR-31-5p后检测细胞内的miR-31-5p的相对表达量,发现miR-31-5p表达含量极显著高于对照组及空白载体组(P<0.01);双荧光素酶报告基因结果显示过表达miR-31-5p可促使MAP3K1活性升高(P<0.01),结合TargetScan、KEGG数据库预测发现miR-31-5p可靶向MAPK信号通路中位于MAP3K1的上游抑制因子RASA1。过表达miR-31-5p抑制了RASA1的活性(P<0.01);同时,qPCR及Western Blot表明:过表达miR-31-5p后显著抑制RASA1的mRNA和蛋白表达,促进了MAP3K1的表达(P<0.01)。CCK-8结果显示过表达miR-31-5p后提高了细胞增殖能力(P<0.01),通过EdU染色发现过表达miR-31-5p后,EdU阳性细胞率显著高于空白组(P<0.01),促进细胞增殖;细胞周期数据说明过表达miR-31-5p后, G1/G0期细胞所占比例为52.23%,显著低于Control组(56.81%,P<0.01),减缓了G1/G0期细胞阻滞,而S期和G2/M期差异不显著,但仍有上升趋势。通过细胞凋亡试验发现过表达miR-31-5p组活细胞率为93.8%,总凋亡率为4.9%,而空白组活细胞率仅为90.1%,总凋亡率为8.41%,说明在过表达miR-31-5p后细胞凋亡率明显下降(P<0.05);最后检测miR-31-5p对增殖和凋亡相关基因的影响,发现过表达miR-31-5p后显著提高了增殖相关基因、抗凋亡基因(Bcl-2)的mRNA和蛋白表达水平(P<0.05),降低了促凋亡基因(Bax)的mRNA和蛋白表达水平。最终根据所研究出的结果绘制miR-31-5p在毛囊干细胞中的分子作用机制图。【结论】 miR-31-5p通过靶向抑制MAPK信号通路中的RASA1,上调MAP3K1表达水平,进而促进毛囊干细胞增殖并抑制其凋亡,为进一步阐明调控长江三角洲白山羊优质笔料毛性状的分子形成机制提供理论依据。
关键词: 长江三角洲白山羊;优质笔料毛性状;毛囊干细胞;MAP3K1;miR-31-5p;RASA1;增殖;凋亡

Abstract
【Objective】 The Yangtze River Delta White Goat is the only goat breed that can produce superior-quality brush hair in China and the world. The transcriptome sequencing results of the research team showed that there were significant differences in the expression level of MAP3K1 in the individual skin tissues of superior-quality brush hair and normal-quality brush hair. This study aimed to explore the key miRNAs that interacted with MAP3K1 during the formation of superior-quality brush hair and their effects on the proliferation and apoptosis of goat hair follicle stem cells. 【Method】 The bioinformatics websites (StrBase, miRDB, TargetScan, miRWalk, DAVID, KEGG, and RNAhybrid) were used to predict and select the miRNAs, with targeted relationship with MAP3K1, and use the online website Venny 2.1 to draw a Venn diagram. Through the construction of miR-31-5p overexpression vector, wild-MAP3K1, wild/Mut-RASA1 Luciferase Reporter assay vector, the relationship between miR-31-5p and MAP3K1, RASA1 was verified, and the effects of miR31-5p on MAP3K1, RASA1 mRNA and protein expression were detected by qPCR and Western Blot. In order to explore the effect of overexpression of miR-31-5p on cell proliferation and apoptosis, the mRNA and protein expression levels of proliferation marker gene (PCNA,CDK1,CCND2), anti-apoptotic gene (Bcl-2) and pro-apoptotic gene (Bax) in hair follicle stem cells transfected with miR-31-5p were detected, and the effects of overexpression of miR-31-5p on the viability, cell cycle and apoptosis of hair follicle stem cells were verified by CCK-8, EdU, flow cytometry. 【Result】 Through the database, the final score of the three miRNAs were predicted, which might relatively highly interact with MAP3K1. Then, combined with the known miRNAs studies in skin and hair follicle cells, miR-31-5p with highest score was selected as research object. After transfection of miR-31-5p, the relative expression of miR-31-5p in cells was detected, and it was found that the expression of miR-31-5p was significantly higher than that in the control group and blank vector group (P<0.01). The results of double luciferase reporter genes showed that overexpression of miR-31-5p could increase the activity of MAP3K1. Combined with Target Scan and KEGG database, it was predicted that miR-31-5p could target RASA1, the upstream inhibitor of MAP3K1 in MAPK signal pathway. In order to verify the relationship between miR-31-5p and RASA1, it was found that overexpression of miR31-5p inhibited the activity of RASA1 (P<0.01); qPCR and Western Blot assays showed that overexpression of miR-31-5p significantly inhibited the expression of mRNA and protein of RASA1 and promoted the expression of MAP3K1 (P<0.01). CCK-8 assays showed that overexpression of miR-31-5p increased the ability of cell proliferation. EdU staining showed that the rate of positive cells overexpressing miR-31-5p was significantly higher than that in the blank group (P<0.01), and promoted cell proliferation. Cell cycle data showed that after overexpression of miR-31-5p, the proportion of cells in G1/G0 phase was 52.23%, which was significantly lower than that in Control group (56.81% P<0.01). It slowed down the cell arrest in G1/G0 phase, but there was no significant difference between S phase and G2/M phase, however there was still an upward trend. Through apoptosis experiment, it was found that the survival rate of miR-31-5p group was 93.8%, and the total apoptosis rate was 4.9%; while that of control group was only 90.1%, and the total apoptosis rate was 8.41%, which indicated that the apoptosis rate decreased significantly after overexpression of miR-31-5p. Finally, the effects of miR-31-5p on proliferation and apoptosis-related genes were detected. It was found that overexpression of miR-31-5p significantly increased the mRNA and protein expression levels of proliferation marker genes and anti-apoptosis genes (Bcl-2), and decreased the mRNA and protein expression levels of pro-apoptosis gene (Bax). According to the results of the research, the molecular mechanism of miR-31-5p in hair follicle stem cells was revealed. 【Conclusion】 miR-31-5p targeted RASA1 and up-regulated the expression level of MAP3K1, thereby promoting the proliferation of hair follicle stem cells and inhibiting their apoptosis. It provided a theoretical basis for further investigating the molecular mechanism that regulates the characteristics of superior-quality brush hair of the Yangtze River Delta White Goats.
Keywords:Yangtze River Delta White Goat;superior-quality brush hair trait;hair follicle stem cells;MAP3K1;miR-31-5p;RASA1;proliferation;apoptosis


PDF (1939KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
冯云奎, 王健, 马金亮, 张柳明, 李拥军. miR-31-5p对山羊毛囊干细胞增殖和凋亡的影响. 中国农业科学, 2021, 54(23): 5132-5143 doi:10.3864/j.issn.0578-1752.2021.23.017
FENG YunKui, WANG Jian, MA JinLiang, ZHANG LiuMing, LI YongJun. Effects of miR-31-5p on the Proliferation and Apoptosis of Hair Follicle Stem Cells in Goat. Scientia Acricultura Sinica, 2021, 54(23): 5132-5143 doi:10.3864/j.issn.0578-1752.2021.23.017


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】长江三角洲白山羊,是国内外唯一能生产优质笔料毛的山羊品种,其颈脊部产出的毛发具有“毛色洁白、挺直有峰、弹性好”等优良性状,为制作高档毛笔的独特原料[1,2]。【前人研究进展】毛发生长与毛囊发育之间存在着密切联系,毛囊生长发育不仅仅影响着绒毛的生长,而且也影响着绒毛的质量[3]。毛囊发育为一个循环的生物系统,包括生长期,退行期和休止期三个阶段,并涉及基因调控的动态变化[4]。课题组前期转录组测序筛选出促分裂原活化蛋白激酶的激酶1(mitogen-activated protein kinase kinase kinase 1, MAP3K1),它是与优质笔料毛性状相关的候选基因之一,在优质笔料毛中RPKM(reads per kilobase per million reads)值为8.7731,在非优质笔料毛个体中RPKM值仅为0.0345,log2Fold Change值为7.49[5]MAP3K1,又称MEKK1,是MAPK信号通路中的重要调控因子。已有的研究发现,MAP3K1除了参与免疫机制,损伤修复,肿瘤进展和骨骼肌生长发育的调控外,还在毛发形成方面起着至关重要的作用[6]。microRNA是一种短链(20—24 nt)非编码RNA,通过与靶基因的mRNA 3′UTR结合[7,8]进而降解或抑制靶基因表达[9]。miRNAs参与多种生理进程,包括组织发育、器官形成、细胞生长和凋亡等过程[10,11,12]。迄今为止,在毛囊发育过程中鉴定出许多miRNAs,如miR-203[13]、miR-let-7a[14]和miR-196a[15]等对于调节毛囊的发育和再生至关重要。已有的研究指出,miR- 31-5p是与肿瘤相关的miRNA,miR-31-5p在大肠癌、口腔癌、结肠腺癌中通过抑制靶基因的转录或翻译,促进癌细胞的生长、迁移和侵袭等过程[7, 16-17],也有相关文献证实miR-31参与皮肤组织修复,如系统性红斑狼疮、伤口愈合等[18]。最近研究表明,miR-31-5p可与RAS p21蛋白激活剂1(RAS p21 protein activator 1, RASA1)的3′UTR结合,RASA1是RAS / MAPK信号通路的负调节因子,然后激活RAS / MAPK(小鼠皮肤组织中的ERK1 / 2)通路,促进细胞存活[19]。【本研究切入点】关于miR-31-5p在长江三角洲白山羊优质笔料毛形成过程中的作用和调控机制以及在毛囊干细胞中的功能知之甚少。【拟解决的关键问题】本研究通过验证miR-31-5p是否直接靶向RASA1影响MAP3K1,进而激活MAPK信号通路,然后调节长江三角白山羊优质笔料毛的形成,为长江三角洲白山羊的分子选育提供理论依据。

1 材料与方法

本研究于2019年6月至2020年9月在江苏省扬州大学动物遗传繁育与分子设计重点实验室完成。

1.1 试验材料

1.1.1 细胞 本实验所用毛囊干细胞分离自江苏海门种羊场120日胎龄的胎羊颈脊部皮肤组织样,经生理盐水冲洗3次,75%酒精冲洗3次后,置于DMEM培养液中带回实验室进行下一步分离操作。

分离试验操作简要如下:

1)用手术刀片将组织分割成2×2 mm2的组织块,加入0.25%胰酶没过组织块,37℃ 5% CO2培养箱90 min。加入含10%胎牛血清培养液替换胰酶消化液,在体视显微镜下使用外科神经镊从组织块中挑出毛囊,并置于培养液中。

2)当收集到肉眼可见的米粒大小时,1 200 r/min离心5 min弃上清,加入0.25%胰酶,37℃消化30 min,1 200 r/min 离心5 min弃上清,加入含10%胎牛血清的DMEM培养液,匀浆器匀浆后,过200目细胞筛,置于37℃ CO2培养箱中培养,3天后换液并观察[20]

1.1.2 主要仪器与试剂 主要仪器:CO2培养箱(美国Thermo Scientific公司);实时荧光定量PCR仪(美国ABI 7500/7500 FAST);倒置荧光显微镜(德国Leica公司);凝胶成像系统(美国BIO-RAD 公司);台式高速离心机(德国Eppendorf公司);微量紫外可见光度计(美国Thermo Scientific公司)多模式微孔板检测系统(美国Perkinelmer公司);流式细胞仪(中国贝克曼公司,细胞凋亡用);FACSAria SORP流式细胞仪(美国BD公司,细胞周期用)。

主要试剂:Cell counting Kit-8(CCK-8)细胞增殖-毒性检测试剂盒(日本同仁公司);EdU细胞增殖检测试剂盒(广东锐博生物科技有限公司);Trizol试剂盒、DNA限制性内切酶(Hind Ⅲ、Xba、Xho Ⅰ和NotⅠ)、DNA连接酶(日本TaKaRa公司);反转录和PCR荧光定量试剂盒、BCA蛋白浓度测定试剂盒、ECL发光液(南京诺唯赞生物科技股份有限公司);Opti-MEM培养液(美国Gibco公司);Lipofectamine 3000(美国Invitrogen公司);Annexin V-FITC细胞凋亡检测试剂盒,细胞周期与细胞凋亡检测试剂盒(上海碧云天生物技术有限公司);试验所用抗体如下,英国Abcam公司:PCNA(29 kDa,稀释比例1﹕1000),CDK1(34 kDa,稀释比例1﹕1000),CCND2(33 kDa,稀释比例1﹕1000), Bax(21 kDa,稀释比例1﹕5000),β-actin(42 kDa,稀释比例1﹕500);Bcl-2(26 kDa,稀释比例1﹕1000,美国Proteintech公司);MAP3K1(164 kDa,稀释比例1﹕1000,北京Bioss公司);RASA1(110 kDa,稀释比例1﹕2000,美国Affbiotech公司);二抗兔抗羊与羊抗兔抗体(稀释比例1﹕5000,南京Bioworld公司);脱脂奶粉(上海生工生物工程公司);蛋白Maker(美国Thermo Fisher Scientific公司);1×TBST缓冲液的配制:取50 mL 20×TBS(北京索莱宝公司),1 mL Tween-20(美国Diamond公司)加入1 L容量瓶中,超纯水定容至1 L;8%分离胶配制(5 mL体系):2.3 mL超纯水,1.3 mL 30% Arc-Bis,1.3 mL 1.5 mol·L-1 Tris-HCl,50 μL 10% SDS,50 μL 10% APS,3 μL四甲基乙二胺;5%浓缩胶配制(5 mL体系):3.4 mL超纯水,0.83 mL 30%Arc-Bis,0.63 mL 1.0 mol·L-1 Tris-HCl,50 μL 10% SDS,50 μL 10% APS,5 μL 四甲基乙二胺。

1.2 方法

1.2.1 与MAP3K1相作用的microRNAs的预测 利用生物信息学软件StrBase(http://starbase.sysu.edu.cn/index.php)、miRDB(http://mirdb.org/index.html)、TargetScan(http://www.targetscan.org/vert_72)和miR-Walk[21]http://mirwalk.umm. uni-heidelberg.de/)、DAVID(https://david.ncifcrf.gov/home.jsp)、KEGG(https://www.genome.jp/kegg/pathway.html)、RNA hybrid(https://bibiserv.cebitec.uni- bielefeld.de/rnahybrid/)预测与MAP3K1具有靶向关系的miRNAs,利用在线网站Venny 2.1绘制韦恩图(https://bioinfogp.cnb.csic.es/tools/venny/index.html),进一步筛选与MAP3K1相关的miRNA。

1.2.2 引物设计与合成 根据NCBI核酸数据库(https://www.ncbi.nlm.nih.gov/nuccore/)中公布的山羊MAP3K1(登录号:XM_018065623.1)和RASA1(登录号:XM_013965775.2)的mRNA序列,通过Primer 5.0 设计山羊MAP3K1-CDS区、RASA1- CDS区定量引物和MAP3K1-3′UTR、RASA1-3′UTR引物。miR-31-5p引物采用茎环法设计,以18S rRNA为miRNA内参基因,GAPDH为基因内参。引物及Mut-MAP3K1由上海生物工程股份有限公司合成。定量引物序列见表1

Table 1
表1
表1荧光定量PCR引物序列
Table 1Primer sequence for qPCR
名称
Name
引物名称
Primer name
引物序列(5′-3′)
Primer sequence (5′-3′)
miR-31-5p
Stem-loop RT-miR-31-5pGTCGTATCCAGTGCAGGGTCCGAGGT
ATTCGCACTGGATACGACAGCTATGC
miR-31-5p-FAGGCAAGATGCTGGCAT
miR-31-5p-RGTGCAGGGTCCGAGGT
18S-rRNA
ID:493779
18S-FGTGGTGTTGAGGAAAGCAGACA
18S-RTGATCACACGTTCCACCTCATC
PCNA
ID:102172276
PCNA-FATCAGCTCAAGTGGCGTGAA
PCNA-RTGCCAAGGTGTCCGCATTAT
CDK1
ID:10086361
CDK1-FAGATTTTGGCCTTGCCAGAG
CDK1-RAGCTGACCCCAGCAATACTT
CCND2
ID:102180657
CCND2-FGGGCAAGTTGAAATGGAA
CCND2-RTCATCGACGGCGGGTAC
Bax
ID:100846984
Bax-FTTTCCGACGGCAACTTCAA
Bax-RTGAGCACTCCAGCCACAAA
Bcl-2
ID:100861254
Bcl-2-FATGTGTGTGGAGAGCGTCAA
Bcl-2-RCCTTCAGAGACAGCCAGGAG
MAP3K1
ID:102187530
MAP3K1-FGAGAGTTGGCAGTTGGCAGAG
MAP3K1-RCAGTTGTTTGATTCAGTTTGGTTTCC
RASA1
ID:102170782
RASA1-F
RASA1-R
TGCCAGAGGAAGAGTACAGC
TTCCATCAAGGTGCTCGCAA
GAPDH
ID:100860872
GAPDH-FAGGTCGGAGTGAACGGATTC
GAPDH-RCCAGCATCACCCCACTTGAT
F. 正向引物;R. 反向引物
F. Forward primer; R. Reverse primer

新窗口打开|下载CSV

1.2.3 质粒构建及转染 按照DNA提取试剂盒说明书提取毛囊干细胞DNA,通过微量紫外可见光度计测定DNA的质量和浓度。以DNA为模板,对miR-31-5p前体、MAP3K1-3′UTR和RASA1-3′UTR序列进行扩增,构建载体引物序列见表2MAP3K1 3′UTR突变型位点序列由TCTTGCCA 突变为 AGAACGGT,RASA1 3′UTR突变型位点序列由TCTTGCCA突变为GAGGTATA。将扩增后的PCR产物分别通过Hind Ⅲ 和Xba I、Xho I和Not I进行双酶切,之后通过T4连接酶连接到pcDNA 3.1(+)或psiCHECK2.0载体上,形成重组质粒,将成功连接的重组质粒转至Trans 5ɑ感受态细胞中,均匀涂布在含氨苄的LB固体培养基上,37℃恒温培养箱12—16 h。挑选酶连成功菌液,送往生工生物工程(上海)股份有限公司测序。测序鉴定成功的重组质粒分别命名为Wild-MAP3K1、Wild- RASA1、Mut-RASA1、pre-miR-31-5p,其中Mut-MAP3K1由生工生物工程合成。

Table 2
表2
表2构建载体的引物序列
Table 2Primer sequences used in plasmid construction
名称 Name引物名称 Primer name引物序列(5′-3′) Primer sequence (5′-3′)
miR-31-5pmiR-31-5p FCCCAAGCTTGCCACAACCTTCCTATGCTTGA
miR-31-5p RGCTCTAGAGGCCAGCAAGGCTAAAATGAA
MAP3K1Wild-MAP3K1-FCCGCTCGAGTTTCCAGGTCTCTCGTGTGC
Wild-MAP3K1-RATAAGAATGCGGCCGCGTGGGCATGGTGGTCTACAA
RASA1Wild-RASA1-FCCGCTCGAGTAACGATGTCAGGTAGCAGCC
Wild-RASA1-RATAAGAATGCGGCCGCTCACTGGAATGTGGAAAGGTGT
Mut-RASA1-FCCGCTCGAGGTGCACAACAGCATGTACTGA
Mut-RASA1-FATAAGAATGCGGCCGCATACCTCGCAAAGGAGACATTAT
斜体表示Hind Ⅲ 和 Xba I 酶切位点;下划线表示Xho I和Not I 酶切位点
Hind Ⅲ and Xba I restriction sites are italic; Xho I and Not I restriction sites are underlined

新窗口打开|下载CSV

将毛囊干细胞接种于6孔培养板中,待细胞生长密度达到60%—70%时,更换Opti-MEM培养液,使用Lipofectamine 3000进行细胞转染试验,每次试验至少设置3个重复。转染48 h后收集细胞总RNA或蛋白。

1.2.4 qPCR 与Western blot检测相关基因表达水平 将1 μg总RNA反转录成cDNA,反应体系为:2×ChamQ Universal SYBR qPCR Master Mix 10 μL,上、下游引物各0.6 μL,ddH2O 3.2 μL,cDNA 0.6 μL。反应程序为:第一步预变性95℃ 30 s;第二步循环反应95℃ 10 s,60℃ 30 s,共40个循环;第三步融解曲线 95℃ 15 s,60℃ 1 min,95℃ 15 s。利用2-ΔΔCt方法[22]计算相关基因的表达水平。

毛囊干细胞转染24 h后更换细胞生长液,培养48 h后参照高效RIPA组织/细胞裂解液(索莱宝)说明书提取细胞总蛋白,BCA蛋白浓度测定试剂盒测定不同组间蛋白浓度,将上述蛋白样品与6× loading Buffer以5﹕1比例混合,98℃变性10 min,每孔上样量20 μg,经割胶,转膜(电流设置为300 mA,PCNA、CDK1、CCND2、Bax、Bcl-2、β-actin,转膜时40 min;MAP3K1转膜时长180 min;RASA1转膜时长120 min)等步骤后,用含5%的脱脂奶粉的1×TBST封闭1 h,随后一抗孵育过夜,1×TBST缓冲液润洗3次,每次10 min;二抗孵育1 h,1×TBST缓冲液润洗3次,每次10 min。用BIO-RAD显影,Image Lab 分析蛋白灰度值。

1.2.5 CCK-8 与EdU法检测山羊毛囊干细胞增殖水平 将1×104个细胞接种于96孔培养板中,每孔添加100 μL培养基,每组9个重复。37℃ 5% CO2 培养,24 h后转染,48 h后更换细胞培养液,每孔添加10 μL CCK-8试剂,继续培养4 h用多模式微孔板检测系统检测450 nm处OD值。

取1×105个对数生长期细胞接种于24孔培养板中,每组3个独立重复。根据EdU细胞增殖检测试剂盒说明书,转染6 h后,换成含有10 μmol·L-1 EdU细胞完全培养基继续在37℃ 5% CO2培养箱中培养,24 h后换细胞生长液,48 h之后进行细胞固定、Apollo染色和DNA染色。染色完成后立即使用荧光显微镜进行观测,Image J软件分析荧光图片。

1.2.6 流式细胞仪检测细胞周期与凋亡 细胞周期检测:取1×106个对数生长期细胞接种于6孔培养板中,24 h进行细胞转染,48 h后去除细胞培养液,经胰酶消化后收集到离心管中,室温1 500 r/min,离心5 min,去上清,加入1 mL提前4℃预冷的PBS重悬细胞,再次离心去上清;在样品管中加入1 mL预冷的70%乙醇,轻吹混匀,4℃固定24 h;4℃ 1 500 r/min 离心5 min去上清,加入1 mL预冷的PBS重悬细胞,再次离心去上清;根据样品数量配制碘化丙啶染色液,每管细胞样品加入500 μL碘化丙啶染色液,缓慢并充分重悬细胞,37℃避光孵育30 min,随后使用流式细胞仪检测,结果使用Flowjo软件分析。

细胞凋亡检测:取1×106个对数生长期细胞接种于6孔培养板中,同期培养3个中皿用做流式细胞仪调节电压(空白组,单染FITC,单染PI),24 h后进行细胞转染,待细胞生长至48 h,把细胞培养液吸出至一合适离心管中,使用37℃预热的PBS润洗细胞一次,加入适量胰酶消化细胞3 min,加入上步吸出的细胞培养液,将细胞轻轻吹打下来,转移至离心管内,1 500 r/min 离心5 min弃上清,用PBS重悬细胞并计数;取5—10万重悬细胞,1 500 r/min离心5 min弃上清,加入195 μL Annexin V-FITC 结合液重悬细胞;加入5 μL Annexin V-FITC,轻吹混匀;加入10 μL 碘化丙啶染色液,轻吹混匀;室温避光孵育10—20 min,随后使用流式细胞仪检测,结果使用CytExpert软件分析。

1.2.7 双荧光素酶报告试验 将HEK293T细胞接种在24孔板中,待细胞生长密度至60%—70%时,对细胞进行转染。试验分为2组,每组3个重复。共转染Wild-MAP3K1 3′UTR载体与pre-miR-31-5p,Wild-RASA1 3′UTR载体与pre-miR-31-5p为过表达组;共转染Wild-MAP3K1 3′UTR载体与pcDNA 3.1 (+),Wild-RASA1 3′UTR载体与pcDNA 3.1 (+)为Control组。转染48 h后,使用试剂盒检测荧光素酶的相对活性。

1.2.8 数据统计分析 本试验数据均显示为平均值±标准误(Mean ± SEM),使用Origin 7.5(美国Origin Lab公司)软件进行独立样本t检验。图形均用GraphPad Prism 7.0(美国GraphPad Software公司)绘制。试验结果以*表示P<0.05,差异显著;**表示P<0.01,差异极显著。

2 结果

2.1 与MAP3K1具有靶向关系的miRNAs的预测

使用StrBase、miRDB、TargetScan和miRWalk分别预测出与MAP3K1具有靶向关系的miRNAs,经在线网站对4个数据库中预测得到的miRNAs进行交互绘制韦恩图[23],如图1所示。4个数据库中,StrBase中共预测到33个miRNAs,其中只有1个在StrBase被预测到,1个与TargetScan共同被预测到,9个与miRDB共同被预测到。miRDB中共预测到262个miRNAs与MAP3K1具有靶向关系,其中有89个在miRDB中单独被预测到,4个与TargetScan共同被预测到,137个与miRWalk共同被预测到。TargetScan中共预测到79个miRNAs,其中有67个在TargetScan被预测到,1个与miRWalk共同被预测到。miRWalk中共预测到1 641个miRNAs,其中有1 482个在miRWalk中单独被预测到。3个miRNAs在4个数据库中同时被预测到,分别是miR-31-5p、miR-21-5p和miR-9-5p。从数据库中的评分以及结合现有miRNAs在皮肤和毛囊上的研究,最终确定并选用miR-31-5p作为本试验的研究对象。

图1

新窗口打开|下载原图ZIP|生成PPT
图1预测的与MAP3K1具有靶向关系的miRNAs

Fig. 1Predicted miRNAs targeting MAP3K1



2.2 miR-31-5p直接靶向RASA1的3′UTR,进而上调MAP3K1

将毛囊干细胞接种于6孔培养板中,分别转染空白组(Control组)、 pcDNA 3.1 (+)、pre-miR-31-5p,48 h后提取细胞总RNA,qPCR检测过表达效率。由图2-A可知,与Control组相比,转染pcDNA-3.1(+)组无差异(P>0.05),转染pre-miR-31-5p组显著提高miR-31-5p表达量(P<0.01),因此后续试验选用Control组和pre-miR-31-5p组进一步研究。

图2

新窗口打开|下载原图ZIP|生成PPT
图2过表达miR-31-5p对MAP3K1RASA1的影响

A:miR-31-5p过表达效率;B:MAP3K1双荧光结果;C:RASA1双荧光结果;D:过表达miR-31-5p对MAP3K1RASA1基因mRNA的影响;E、F:过表达miR-31-5p对MAP3K1RASA1基因蛋白的影响
Fig. 2The effects of overexpression of miR-31-5p on MAP3K1 and RASA1

A: Overexpression efficiency of miR-31-5p; B: The result of Double-Luciferase Reporter of MAP3K1; C: The result of Double-Luciferase Reporter of RASA1; D: Effects of MAP3K1 and RASA1 mRNA after overexpression of miR-31-5p; E, F: Effects of MAP3K1 and RASA1 protein after overexpression of miR-31-5p


由双荧光素酶报告基因结果(图2-B)可知,过表达miR-31-5p后MAP3K1的荧光活性高于Control组(P<0.01)。为了进一步验证miR-31-5p与MAP3K1之间的联系,结合生物信息学分析(TargetScan, DAVID, KEGG),发现在MAPK信号通路的上游存在一个与miR-31-5p具有靶向关系的抑制因子RASA1,在山羊RASA1 mRNA的 3′UTR区也有一个保守的miR-31-5p结合位点。与Wild-RASA1 3′UTR载体与pcDNA 3.1 (+)组相比,RASA1 3′UTR载体与pre-miR-31-5p共转染组的双荧光素酶活性极显著降低(P<0.01,图2-C)。

这些初步结果表明,miR-31-5p可以直接靶向RASA1的3′UTR,而不是MAP3K1的3′UTR。在毛囊干细胞中进一步探究发现过表达miR-31-5p抑制了RASA1 mRNA和蛋白的表达,升高了MAP3K1 mRNA和蛋白的表达(P<0.01,图2-D,E,F)。这些试验结果证实RASA1是 miR-31-5p的直接靶基因,抑制RASA1可上调MAP3K1的表达水平。

2.3 过表达miR-31-5p促进毛囊干细胞增殖

通过CCK-8、EdU、细胞周期等试验来进一步探讨过表达miR-31-5p对毛囊干细胞增殖功能的影响,结果如图3所示。CCK-8试验结果显示,过表达miR-31-5p后,细胞活力达到1.1,显著高于对照组(0.8);另外通过EdU法检测细胞增殖能力,发现过表达miR-31-5p后,细胞增殖能力显著提高(P<0.05)(图3-A, B, C)。利用流式细胞仪检测细胞周期,结果发现Control组G1/G0、S、G2/M期细胞率分别为56.81%、12.29% 和23.88%(图3-D);pre-miR-31-5p组G1/G0、S、G2/M期细胞数量分别为52.23%、14.38%和24.87%(图3-E)。与Control组相比,G1/G0期细胞数量极显著下降(P<0.01),S和G2/M期细胞数量上升,但不存在显著差异(P>0.05,图3-F),表明过表达miR-31-5p减缓毛囊干细胞在G1期的阻滞。以上结果表明,过表达miR-31-5p能促进毛囊干细胞增殖。

图3

新窗口打开|下载原图ZIP|生成PPT
图3过表达miR-31-5p对毛囊干细胞增殖和细胞周期的影响

A:CCK-8结果;B:EdU试验染色结果;C:EdU阳性细胞率;D:Control组周期分布图;E:pre-miR-31-5p组周期分布图;F:Control组和pre-miR-31-5p组 G0/G1、S、G2/M期细胞数量对比图
Fig. 3The effects of overexpression of miR-31-5p on the proliferation and cell cycle of hair follicle stem cells

A: Result of CCK-8结果; B: Result of EdU assay; C: Percentage of EdU-positive Cells; D: Periodic distribution diagram of Control; E: Periodic distribution diagram of pre-miR-31-5p; F: Comparison of cell number in G0/G1, S and G2/M phase between the Control and the pre-miR-31-5p


2.4 过表达miR-31-5p抑制毛囊干细胞凋亡

利用流式细胞仪检测细胞凋亡率,pre-miR-31-5p组活细胞数量(93.8%,图4-B)相比于Control组(90.1%,图4-A)显著上升,而细胞总凋亡率pre-miR-31-5p组(4.9%)相较于对照组(8.41%)差异极显著降低(P<0.01,图4-C),表明过表达miR-31-5p能显著抑制毛囊干细胞凋亡。

图4

新窗口打开|下载原图ZIP|生成PPT
图4过表达miR-31-5p对毛囊干细胞凋亡的影响

A:Control组细胞凋亡分布图;B:pre-miR-31-5p组细胞凋亡分布图;C:Control组和pre-miR-31-5p组细胞凋亡率对比图
Fig. 4The effect of overexpression of miR-31-5p on the apoptosis of hair follicle stem cells

A: Apoptosis profile of Control; B: Apoptosis profile of pre-miR-31-5p; C: Comparison of apoptosis rate between the Control and the pre-miR-31-5p


2.5 过表达miR-31-5p对增殖和凋亡相关基因表达水平的影响

以GAPDH为内参,运用qPCR技术研究过表达miR-31-5p对毛囊干细胞增殖和凋亡相关基因mRNA表达量的影响。由图5-A可知,与Control组相比,pre-miR-31-5p组的增殖相关基因PCNA、CDK1、CCND2的mRNA表达量极显著升高(P<0.01),促凋亡基因(Bax)的表达量差异不显著(P>0.05),抗凋亡基因(Bcl-2)的表达量极显著升高(P<0.01)。

图5

新窗口打开|下载原图ZIP|生成PPT
图5过表达miR-31-5p对增殖和凋亡相关基因的影响

A:过表达miR-31-5p对增殖和凋亡相关基因mRNA的影响;B:过表达miR-31-5p对增殖和凋亡相关基因蛋白的影响
Fig. 5The effect of overexpression of miR-31-5p on proliferation and apoptosis related genes

A: Effect of overexpression of miR-31-5p on the mRNA of proliferation and apoptosis related genes; B: Effect of overexpression of miR-31-5p on the proteins of proliferation and apoptosis related genes


结合Western blot试验,以β-actin为内参探究过表达miR-31-5p对增殖和凋亡相关基因蛋白表达量的影响。由图5-B可知,与Control组相比,pre-miR-31-5p组的增殖相关基因(PCNA、CDK1、CCND2)的蛋白相对表达量显著升高(P<0.05),促凋亡基因(Bax)的相对表达量极显著降低(P<0.01),抗凋亡基因(Bcl-2)的相对表达量极显著升高(P<0.01)。由此可推测,过表达miR-31-5p能促进毛囊干细胞增殖,抑制毛囊干细胞凋亡。

3 讨论

已有研究表明毛发的生长、脱落及修复依赖于毛囊干细胞增殖、分化和迁移,且皮肤组织的结构状态和毛囊性状对羊毛品质与产量有较大的影响[24]。因此,关于毛囊干细胞的生物学研究逐年增多。

MAP3K1是MAPK信号通路中的核心调控因子,在细胞生理过程中(如细胞增殖、分化,迁移和凋亡)起着重要作用[25]MAP3K1可编码磷酸化或激活丝氨酸/苏氨酸激酶表达的MAPK激酶,活化的MAPK激酶刺激MAPK信号通路中下游因子,如ERK,MEK,JNK等促进细胞存活[26]。此外,MAP3K1可用作潜在的乳腺癌易感基因座,并参与乳腺癌的发展进程[27]。在课题组前期研究中发现MAP3K1在优质笔料毛的形成中起着重要作用,并且在优质笔料毛山羊个体颈脊部皮肤组织中表达水平更高[28]。因此,本研究深入研究了与MAP3K1相关的miRNA分子作用机制,首先通过生物信息学预测和有关皮肤及毛囊文献分析,发现miR-31-5p可能通过靶向MAP3K1参与优质笔料毛的形成。双荧光素酶报告基因试验,qPCR和Western Blot结果显示,与miRNA 靶向mRNA调节机制相比[29],过表达miR-31-5p后MAP3K1荧光素酶活性和MAP3K1表达量都显著增加。综合上述结果初步考虑MAP3K1并不是miR-31-5p的直接靶基因。miRNA在机体内的表达在时间和空间上会有差别,其原因可能是种属不一,或是环境影响。为了精确识别miR-31-5p的靶基因及其与MAP3K1之间的关系,使用在线数据库(TargetScan, KEGG, RNA hybrid),发现miR-31-5p可以直接靶向RASA1 mRNA的3′UTR区,该基因参与MAPK信号传导通路,且位于MAP3K1的上游[30]。基于这些发现,推测miR-31-5p可能会靶向RASA1,然后在优质笔料毛形成过程中上调MAP3K1的表达。qPCR和Western blot结果表明,过表达miR-31-5p后RASA1的 mRNA和蛋白表达水平降低,而MAP3K1表达水平显著升高。此外,过表达miR-31-5p时,RASA1的荧光素酶活性明显下降,而MAP3K1的荧光素酶活性则显著高于对照组。这些结果表明,miR-31-5p可能通过靶向抑制RASA1然后上调MAP3K1表达来调节优质笔料毛性状的形成。

有文献指出miR-31参与细胞的增殖、凋亡、分化、迁移等多种生理过程,具体如促进胚胎着床;在成年脊椎动物中维持骨稳态,并调节无脊椎动物胚胎的骨骼发育;在结肠癌、卵巢癌、肝癌、肺癌等一些癌症中促进癌症进程;还促进经辐射诱导的细胞凋亡[31]。研究还发现miR-31在表皮干细胞存在的基底层有一定水平的表达[18],在细胞损伤状态下miR-31的表达量明显提高,通过靶向抑制RASA1表达,激活RAS/MAPK信号通路,促进非小细胞肺癌[32]、肝内胆管癌细胞[33]的癌变,炎症反应的发生[34]及皮肤组织的修复[18]。在本试验中发现在长江三角洲白山羊毛囊干细胞中过表达miR-31-5p后,CCK-8与EdU结果显示在过表达miR-31-5p组提升了细胞活力,促进了细胞增殖。细胞周期结果发现过表达miR-31-5p后,减少了G1期细胞数量,明显减缓了细胞G1期阻滞,S期和G2/M期虽无统计学差异,但仍有高于对照组的趋势。通过细胞凋亡试验结果发现过表达miR-31-5p后,活细胞数量显著高于对照组,总凋亡细胞数明显低于对照组。另外本试验还通过验证过表达miR-31-5p后增殖与凋亡基因相关表达量,发现在转染miR-31-5p后促进了增殖相关基因、抗凋亡基因的mRNA和蛋白表达,抑制了凋亡基因的mRNA和蛋白表达。这与现有研究结果一致,马金亮等发现在毛囊干细胞中干扰MAP3K1后,促进了细胞凋亡[35]。近期也有文献证实了在毛囊干细胞中干扰miR-31-5p后,促进了细胞凋亡,抑制细胞增殖[36]。另有相关文献指出在卵泡生长的过程中,miR-31的过表达通过靶向卵泡刺激素受体促进颗粒细胞凋亡[37],说明相同的miRNA在不同细胞中可能发挥不一样的调节作用。

在本研究中过表达miR-31-5p通过靶向RASA1影响MAP3K1表达,提高增殖相关基因(PCNA,CDK1,CCND2)和抗凋亡基因(Bcl-2),降低促凋亡基因(Bax)的表达来促进毛囊干细胞增殖。CCK-8,EdU、细胞周期和凋亡分析等结果进一步证实了过表达miR-31-5p可提高毛囊干细胞增殖能力并抑制其凋亡。结合上述结果绘制miR-31-5p在毛囊干细胞中的分子作用机制图(图6)。

图6

新窗口打开|下载原图ZIP|生成PPT
图6miR-31-5p分子作用机制

Fig. 6The molecular mechanism of miR-31-5p



4 结论

研究发现miR-31-5p直接靶向RASA1,上调MAPK信号通路中MAP3K1的表达,进而促进长江三角洲白山羊毛囊干细胞增殖,并抑制其凋亡。研究阐明了miR-31-5p参与山羊毛囊干细胞的增殖和凋亡,为探索调控长江三角洲白山羊优质笔料毛性状的分子形成机制提供新的见解。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

李拥军, 黄永宏. 我国的笔料毛山羊和笔料毛生产
中国草食动物, 2005, 25(1):44-45. doi: 10.3969/j.issn.2095-3887.2005.01.026.

[本文引用: 1]

LI Y J, HUANG Y H. The status of the goat and its wool production for writing brush in China
China Herbivores, 2005, 25(1):44-45. doi: 10.3969/j.issn.2095-3887.2005.01.026. (in Chinese)

[本文引用: 1]

GUO H, CHENG G, LI Y, ZHANG H, QIN K. A screen for key genes and pathways involved in high-quality brush hair in the Yangtze River Delta white goat
PLoS ONE, 2017, 12(1):e0169820. doi: 10.1371/journal.pone.0169820.

URL [本文引用: 1]

孟杨, 姜怀志. 羔羊期辽宁绒山羊皮肤毛囊发育规律的研究
中国草食动物科学, 2020(5):70-73.

[本文引用: 1]

MENG Y, JIANG H Z. Research on the development of skin and hair follicles of Liaoning cashmere goats at lamb stage
China Herbivore Science, 2020(5):70-73. (in Chinese)

[本文引用: 1]

MARDARYEV A N, AHMED M I, VLAHOV N V, FESSING M Y, GILL J H, SHAROV A A, BOTCHKAREVA N V. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle
BMC Dermatology, 2010, 24(10):3869-3881. doi: 10.1096/fj.10-160663.

[本文引用: 1]

JI D, YANG B, LI Y, CAI M, ZHANG W, CHENG G, GUO H. Transcriptomic inspection revealed a possible pathway regulating the formation of the high-quality brush hair in Chinese Haimen goat (Capra hircus)
Royal Society Open Science, 2018, 5(1):170907. doi: 10.1098/rsos.170907.

URL [本文引用: 1]

ECKERT R L, EFIMOVA T, DASHTI S R, BALASUBRAMANIAN S, DEUCHER A, CRISH J F, STURNIOLO M, BONE F. Keratinocyte survival, differentiation, and death: Many roads lead to mitogen- activated protein kinase
The Journal of Investigative Dermatology Symposium Proceedings, 2002, 7(1):36-40. doi: 10.1046/j.1523-1747.2002.19634.x.

[本文引用: 1]

PENG H, WANG L, SU Q, YI K, DU J, WANG Z. miR-31-5p promotes the cell growth, migration and invasion of colorectal cancer cells by targeting NUMB
Biomedicine & Pharmacotherapy, 2019, 109:208-216. doi: 10.1016/j.biopha.2018.10.048.

URL [本文引用: 2]

MI B, LI Q, LI T, LIU G, SAI J. High miR-31-5p expression promotes colon adenocarcinoma progression by targeting TNS1
Aging, 2020, 12(8):7480-7490. doi: 10.18632/aging.103096.

URL [本文引用: 1]

LEWIS B P, BURGE C B, BARTEL D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
Cell, 2005, 120(1):15-20. doi: 10.1016/j.cell.2004.12.035.

URL [本文引用: 1]

YI R, O'CARROLL D, PASOLLI H A, ZHANG Z, DIETRICH F S, TARAKHOVSKY A, FUCHS E. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs
Nature Genetics, 2006, 38(3):356-362. doi: 10.1038/ng1744.

URL [本文引用: 1]

YI R, POY M N, STOFFEL M, FUCHS E. A skin microRNA promotes differentiation by repressing ‘stemness’
Nature, 2008, 452(7184):225-229.

DOI:10.1038/nature06642URL [本文引用: 1]

PAL A S, KASINSKI A L. Animal models to study microRNA function
Advances in Cancer Research, 2017, 135:53-118. doi: 10.1016/bs.acr.2017.06.006.

[本文引用: 1]

LENA A M, SHALOM-FEUERSTEIN R, RIVETTI DI VAL CERVO P, ABERDAM D, KNIGHT R A, MELINO G, CANDI E. miR-203 represses ‘stemness’ by repressing DeltaNp63
Cell Death and Differentiation, 2008, 15(7):1187-1195. doi: 10.1038/cdd.2008.69.

URL [本文引用: 1]

MA T, LI J P, JIANG Q, WU S F, JIANG H Z, ZHANG Q L. Differential expression of miR-let7a in hair follicle cycle of Liaoning cashmere goats and identification of its targets
Functional & Integrative Genomics, 2018, 18(6):701-707. doi: 10.1007/s10142-018-0616-x.

[本文引用: 1]

WANG Z, JINNIN M, KUDO H, INOUE K, NAKAYAMA W, HONDA N, MAKINO K, KAJIHARA I, FUKUSHIMA S, INOUE Y, IHN H. Detection of hair-microRNAs as the novel potent biomarker: evaluation of the usefulness for the diagnosis of Scleroderma
Journal of Dermatological Science, 2013, 72(2):134-141. doi: 10.1016/j.jdermsci.2013.06.018.

URL [本文引用: 1]

KAO Y Y, CHOU C H, YEH L Y, CHEN Y F, CHANG K W, LIU C J, FAN CHIANG C Y, LIN S C. microRNA miR-31 targets SIRT3 to disrupt mitochondrial activity and increase oxidative stress in oral carcinoma
Cancer Letters, 2019, 456:40-48. doi: 10.1016/j.canlet.2019.04.028.

URL [本文引用: 1]

张翌, 马丹丹, 张兆林, 张杨, 曹钧. miR-31促进结肠癌转移侵袭的作用及机制探讨
临床外科杂志, 2018(10):747-750.

[本文引用: 1]

ZHANG Y, MA D D, ZHANG Z L, ZHANG Y, CAO J. The effect and mechanism of miR-31 on the metastasis and invasion of colon cancer
Journal of Clinical Surgery, 2018(10):747-750. (in Chinese)

[本文引用: 1]

石建云. miR-31在皮肤损伤修复过程中介导炎症阶段向上皮再生阶段转换的功能与作用机制
[D]. 北京: 中国农业大学, 2018.

[本文引用: 3]

SHI J Y. MiR-31 mediates inflammatory signaling to promote re-epithelialization during skin wound healing
[D]. Beijing: China Agricultural University, 2018. (in Chinese)

[本文引用: 3]

SHI J, MA X, SU Y, SONG Y, TIAN Y, YUAN S, ZHANG X, YANG D, ZHANG H, SHUAI J, CUI W, REN F, PLIKUS M V, CHEN Y, LUO J, YU Z. miR-31 mediates inflammatory signaling to promote Re-epithelialization during skin wound healing
The Journal of Investigative Dermatology, 2018, 138(10):2253-2263. doi: 10.1016/j.jid.2018.03.1521.

URL [本文引用: 1]

WANG Q, QU J, LI Y, JI D, ZHANG H, YIN X, WANG J, NIU H. Hair follicle stem cells isolated from newborn Yangtze River Delta White Goats
Gene, 2019, 698:19-26. doi: 10.1016/j.gene.2019.02.052.

URL [本文引用: 1]

DWEEP H, GRETZ N. miRWalk2.0: A comprehensive atlas of microRNA-target interactions
Nature Methods, 2015, 12(8):697. doi: 10.1038/nmeth.3485.

URL [本文引用: 1]

朱芷葳, 侯淑宁, 郝庆玲, 景炅婕, 吕丽华, 李鹏飞. 牛卵泡AGTR2序列结构及表达特性分析
中国农业科学, 2020, 53(7):1482-1490. doi: 10.3864/j.issn.0578-1752.2020.07.016.

[本文引用: 1]

ZHU Z W, HOU S N, HAO Q L, JING J J, LÜ L H, LI P F. Sequence structure and expression characteristics analysis of AGTR2 in bovine follicle
Scientia Agricultura Sinica, 2020, 53(7):1482-1490. doi: 10.3864/j.issn.0578-1752.2020.07.016. (in Chinese)

[本文引用: 1]

张利环, 马悦悦, 刘文艳, 蓝吴涛, 朱芷葳. microRNA-96-5p靶向调控羊驼黑色素细胞中MITF基因的表达
畜牧兽医学报, 2020, 51(6):1229-1237. doi: 10.11843/j.issn.0366-6964.2020.06.007.

[本文引用: 1]

ZHANG L H, MA Y Y, LIU W Y, LAN W T, ZHU Z W. microRNA- 96-5p targets MITF gene in alpaca melanocytes
Acta Veterinaria et Zootechnica Sinica, 2020, 51(6):1229-1237. doi: 10.11843/j.issn.0366-6964.2020.06.007. (in Chinese)

[本文引用: 1]

CHEN C C, WANG L, PLIKUS M V, JIANG T X, MURRAY P J, RAMOS R, GUERRERO-JUAREZ C F, HUGHES M W, LEE O K, SHI S, WIDELITZ R B, LANDER A D, CHUONG C M. Organ-level quorum sensing directs regeneration in hair stem cell populations
Cell, 2015, 161(2):277-290. doi: 10.1016/j.cell.2015.02.016.

URL [本文引用: 1]

SLATTERY M L, LUNDGREEN A, WOLFF R K. MAP kinase genes and colon and rectal cancer
Carcinogenesis, 2012, 33(12):2398-2408.

DOI:10.1093/carcin/bgs305URL [本文引用: 1]

KLINGE C M, BLANKENSHIP K A, RISINGER K E, BHATNAGAR S, NOISIN E L, SUMANASEKERA W K, ZHAO L, BREY D M, KEYNTON R S. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells
The Journal of Biological Chemistry, 2005, 280(9):7460-7468. doi: 10.1074/jbc.m411565200.

URL [本文引用: 1]

REBBECK T R, DEMICHELE A, TRAN T V, PANOSSIAN S, BUNIN G R, TROXEL A B, STROM B L. Hormone-dependent effects of FGFR2 and MAP3K1 in breast cancer susceptibility in a population-based sample of post-menopausal African-American and European-American women
Carcinogenesis, 2009, 30(2):269-274. doi: 10.1093/carcin/bgn247.

URL [本文引用: 1]

杨波. 基于RNA-Seq技术的长江三角洲白山羊优质笔料毛性状研究及皮肤毛囊结构的观察
[D]. 扬州: 扬州大学, 2015.

[本文引用: 1]

YANG B. Study on high quality brush hair gens based on RNA-Seq of Yangtze River Delta White Goat and observation on follicles structures
[D]. Yangzhou: Yangzhou University, 2015. (in Chinese)

[本文引用: 1]

CORREIA DE SOUSA M, GJORGJIEVA M, DOLICKA D, SOBOLEWSKI C, FOTI M. Deciphering miRNAs’ action through miRNA editing
International Journal of Molecular Sciences, 2019, 20(24):6249.

DOI:10.3390/ijms20246249URL [本文引用: 1]

WANG J, WANG W, LI J, WU L, SONG M, MENG Q. miR182 activates the Ras-MEK-ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1
OncoTargets and Therapy, 2017, 10:667-679. doi: 10.2147/ott.s121864.

URL [本文引用: 1]

STEPICHEVA N A, SONG J L. Function and regulation of microRNA-31 in development and disease
Molecular Reproduction and Development, 2016, 83(8):654-674. doi: 10.1002/mrd.22678.

URL [本文引用: 1]

HE J, JIN S, ZHANG W, WU D, LI J, XU J, GAO W. Long non-coding RNA LOC554202 promotes acquired gefitinib resistance in non-small cell lung cancer through upregulating miR-31 expression
Journal of Cancer, 2019, 10(24):6003-6013. doi: 10.7150/jca.35097.

URL [本文引用: 1]

HU C, HUANG F, DENG G, NIE W, HUANG W, ZENG X. miR-31 promotes oncogenesis in intrahepatic cholangiocarcinoma cells via the direct suppression of RASA1
Experimental and Therapeutic Medicine, 2013, 6(5):1265-1270. doi: 10.3892/etm.2013.1311.

URL [本文引用: 1]

朱玥荃, 王皓, 石雪迎, 王俊杰, 王文恭, 薛丽香. miR-31通过激活NF-κB信号通路而促进结肠癌细胞增殖
中国生物化学与分子生物学报, 2017, 33(9):908-916.

[本文引用: 1]

ZHU Y Q, WANG H, SHI X Y, WANG J J, WANG W G, XUE L X. miR-31 promotes the proliferation of colorectal cancer cells through activating NF-B signal pathway
Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(9):908-916.(in Chinese)

[本文引用: 1]

马金亮, 王健, 冯云奎, 王强, 张柳明, 李拥军. 干扰MAP3K1基因对山羊毛囊干细胞增殖和凋亡的影响
东北农业大学学报, 2020(10):56-62.

[本文引用: 1]

MA J L, WANG J, FENG Y K, WANG Q, ZHANG L M, LI Y J. Effect of interference with MAP3K1 gene on proliferation and apoptosis of goat hair follicle stem cells
Journal of Northeast Agricultural University, 2020(10):56-62. (in Chinese)

[本文引用: 1]

FENG Y, WANG J, MA J, ZHANG L, CHU C, HU H, WANG Y, LI Y. miR-31-5p promotes proliferation and inhibits apoptosis of goat hair follicle stem cells by targeting RASA1/MAP3K1 pathway
Experimental Cell Research, 2021, 398(2):112441. doi: 10.1016/j.yexcr.2020.112441.

URL [本文引用: 1]

ZHANG Z, CHEN C Z, XU M Q, ZHANG L Q, LIU J B, GAO Y, JIANG H, YUAN B, ZHANG J B. miR-31 and miR-143 affect steroid hormone synthesis and inhibit cell apoptosis in bovine granulosa cells through FSHR
Theriogenology, 2019, 123:45-53. doi: 10.1016/j.theriogenology.2018.09.020.

URL [本文引用: 1]

相关话题/细胞 基因 公司 组织 培养