删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同牡丹品种开花期间花瓣花青素和类黄酮组成的动态变化

本站小编 Free考研考试/2021-12-26

崔虎亮,1, 贺霞2, 张前21太原理工大学建筑学院,太原 030024
2山西农业大学园艺学院,山西太谷 030801

Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages

CUI HuLiang,1, HE Xia2, ZHANG Qian21College of Architecture, Taiyuan University of Technology, Taiyuan 030024
2College of Horticulture, Shanxi Agricultural University, Taigu 030801, Shanxi

通讯作者: 崔虎亮,E-mail: cuihuliang2005@126.com

责任编辑: 赵伶俐
收稿日期:2020-08-28修回日期:2020-11-8网络出版日期:2021-07-01
基金资助:山西省博士后专项经费.K461701006
太原理工大学引进人才基础研究开放课题.TUK2020105


Received:2020-08-28Revised:2020-11-8Online:2021-07-01
作者简介 About authors
崔虎亮,E-mail: cuihuliang2005@126.com





摘要
【目的】牡丹(Paeonia suffruticosa)是中国传统名花之一,花色丰富,品种多样,通过测定不同花色品种在花朵开放期间花瓣花青素苷、类黄酮苷的种类和含量,并分析其动态变化规律,为牡丹花色的呈色机理及不同花色育种提供参考。【方法】选择5种不同花色的牡丹品种为试验材料,采集蕾期(S1)、露色期(S2)、盛开期(S3)和衰败期(S4)等4个不同时期的花瓣,利用高效液相色谱(HPLC)和质谱联用(LC-MS)技术对其花青素苷和类黄酮苷进行定性定量分析,比较不同花色品种之间的差异。【结果】检测到6种花青素苷和12种类黄酮苷。其中,紫色品种‘洛阳红’检测到的花青素苷种类最多,花瓣中共检测到4种花青素苷,而白色品种‘白雪塔’中未检测到花青素苷;在检测出的12种类黄酮苷中,芹菜素5-葡萄糖苷(7.18%—58.46%)、芹菜素己糖葡萄糖苷(1.44%—43.72%)和山奈酚3,7-葡萄糖苷(2.83%—43.44%)的相对含量明显高于其他物质。6种花青素苷在花朵开放期间不断积累,从蕾期(S1)至衰败期(S4),花青素总含量不断增加,其中在盛开期(S3)总含量显著增加,在S4时期达到最高值。类黄酮物质总含量在花朵开放与衰老期间呈现先增加后降低的趋势,但不同品种的变化趋势差异明显。‘洛阳红’的类黄酮总含量在衰败期(S4)达到最大值(752.93±48.10)μg∙g-1 FW,‘赵粉’在盛开期(S3)达到最大值(603.81±6.30)μg∙g-1 FW,‘白雪塔’在露色期(S2)达到最大值(673.45±9.96)μg∙g-1 FW,‘迎日红’和‘粉荷’均在蕾期(S1)达到最大值,其含量分别为(525.88±22.38)μg∙g-1 FW和(740.56±16.08)μg∙g-1 FW。【结论】不同颜色的牡丹品种中花青素苷和类黄酮苷差异较为显著,紫色品种花青素苷含量较高,白色品种几乎不含有花青素苷。花青素苷在花朵开放过程中不断积累,而类黄酮苷存在先积累后降解的变化趋势。
关键词: 牡丹;花青素;类黄酮;花色

Abstract
【Objective】Tree peony (Paeonia suffruticosa), one of the famous traditional flowers in China, is rich in flower colors and varieties. The composition content and structure of anthocyanins and flavonoids in different color cultivars and these dynamic changes at different blooming stages were studied, in order to lay a foundation for further investigation of the floral pigment mechanism and molecular breeding of tree peony.【Method】 Five different color cultivars of tree peony were chosen as materials. Anthocyanins and flavonoids in those petals of flowers at four different blooming stages, such as bud stage (S1), initial blooming stage (S2), blooming stage (S3) and wither stage (S4), were determined by high-performance liquid chromatography (HPLC) and mass spectrometric (LC-MS) detectors. Then, the difference of anthocyanins and flavonoids among these five cultivars was analyzed, and the regulation of changing density was summarized.【Result】In total, 6 anthocyanins and 12 flavonoids were described. However, the compounds were distributed different among different cultivars. The purple cultivar, Luoyanghong, had four anthocyanins, and the white cultivar of Baixuetai had no anthocyanin. Among the 12 flavonoids, the relative contents of apigenin-5-glucoside (7.18%-58.46%), apigenin hexo-glucoside (1.44%-43.72%) and kaempferol-3,7-glucoside (2.83%-43.44%) were higher than other compounds. In addition, the significant changes were observed among the five cultivars. During the blooming periods, the total anthocyanin content were constantly accumulated and dramatically increased at S3, then reached the highest at S4. However, the total content of flavonoids was increased firstly and then decreased. It should be noted that the variation trend of different varieties was obviously different. The flavonoids contents of Luoyanghong showed the highest value at S4 ((752.93±48.10) μg∙g-1 FW), and Zhaofen showed the highest value at S3 ((603.81±6.30) μg∙g-1 FW). Baixueta reached the highest value ((673.45±9.96) μg∙g-1 FW) at S2. But the other two cultivars, Yingrihong and Fenhe, reached the highest flavonoids content value at S1, with (525.88±22.38) μg∙g-1 FW and (740.56±16.08) μg∙g-1 FW, respectively.【Conclusion】The anthocyanins and flavonoids content were significantly different among different color cultivars. The purple cultivar always showed higher anthocyanins contents than other varieties. And the white cultivar almost did not detect any anthocyanin, relatively. What’s more, the anthocyanins were constantly accumulated during flower blooming stage, meanwhile, the flavonoids were increased first and then gradually degraded after flower opening.
Keywords:Tree peony;anthocyanins;flavonoids;floral color


PDF (1420KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
崔虎亮, 贺霞, 张前. 不同牡丹品种开花期间花瓣花青素和类黄酮组成的动态变化[J]. 中国农业科学, 2021, 54(13): 2858-2869 doi:10.3864/j.issn.0578-1752.2021.13.014
CUI HuLiang, HE Xia, ZHANG Qian. Anthocyanins and Flavonoids Accumulation Forms of Five Different Color Tree Peony Cultivars at Blooming Stages[J]. Scientia Acricultura Sinica, 2021, 54(13): 2858-2869 doi:10.3864/j.issn.0578-1752.2021.13.014


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】牡丹(Paeonia suffruticosa Andr.)是我国十大名花之一,具有极高的观赏价值,且根可入药,种子可榨油,是一种多功能用途植物[1,2,3]。牡丹目前有1 000多个品种[2],花色较为丰富,通常分为9大色系,即白色系、粉色系、红色系、紫色系、蓝色系、黑色系、绿色系、黄色系和复色系[4]。研究牡丹不同花色品种的花青素苷和类黄酮苷的差异及其开花过程中的动态变化,对明确观赏植物花色呈色机理和花色育种具有重要意义。【前人研究进展】经过多年的研究,初步明确了牡丹花瓣中花青素苷和类黄酮苷的组成。WANG等[5]在中原牡丹品种和日本牡丹品种花瓣中鉴定出了6种花青素物质,分别为芍药素-3-葡萄糖苷(peonidin-3-glucoside)、芍药素-3,5-葡萄糖苷(peonidin-3,5-glucoside)、矢车菊素-3-葡萄糖苷(cyaniding-3-glucoside)、矢车菊素-3,5-葡萄糖苷(cyaniding-3,5-glucoside)、天竺葵素-3-葡萄糖苷(pelargonidin-3-glucoside)和天竺葵素-3,5-葡萄糖苷(pelargonidin-3,5-glucoside)。FAN等[6]通过液相色谱(HPLC)对48个中原牡丹品种进行研究,最终鉴定出5种花青素、3种黄酮醇和6种黄酮类化合物,并且首次分离鉴定出芹菜素戊己糖苷(apigenin pento-hexoside)和芹菜素葡萄糖醛苷(apigenin hexo-glucuronide)。BAO等[7]对紫斑牡丹(P. rockii)花瓣进行UHPLC-ESI-HRMSn分析,并分离鉴定了11种类黄酮物质。LI等[8]对黄色牡丹品种花瓣呈色物质进行HPLC分析,鉴定出26种类黄酮物质,其中山奈酚、芦丁、芹菜素等衍生物是主要成分;而YANG等[9]进一步对牡丹、芍药和伊藤杂种中的黄色品种进行HPLC-DAD和HPLC-Q-TOF-MS/MS鉴定,最终分离鉴定出29种类黄酮物质,并且发现不同品种间类黄酮物质含量差异显著。ZHAO等[10]对白色品种‘雪塔’和红色品种‘彩绘’的花色素主要成分差异进行比较,发现两者均可检测到芹菜素-7-葡萄糖苷(apigenin- 7-glucoside)和芹菜素脱氧壳聚糖(apigenin deoxyheso- hexoside)2种物质,但是芍药素-3,5-葡萄糖苷(peonidin-3,5-glucoside)仅在红色品种‘彩绘’中检出。JIA等[11]对紫色系、粉色系、白色系和黄色系共41个芍药品种花瓣进行HPLC-DAD分析,最终鉴定出的主要花青素苷与WANG等[5]的结论相似,但是,紫色芍药品种含有4—5种花青素苷,而粉色品种仅含有矢车菊素-3,5-葡萄糖苷和芍药素-3,5-葡萄糖苷,且含量较低。可见,不同花色牡丹品种中花青素物质种类及含量均存在较大差异。【本研究切入点】花青素是广泛分布于植物中的一种水溶性色素,隶属于苯丙氨酸代谢途径,也是目前研究得较为清晰的次生代谢物途径之一[12,13]。目前来看,花青素苷元主要有6种,分别为天竺葵素、矢车菊素、芍药素、飞燕草素、矮牵牛素和锦葵素。不同色素苷元经过羟基化、甲基化和糖基化反应产生较为稳定的结构存在于花瓣中[14]。在牡丹中,花青素苷合成途径中关键节点酶基因的功能分析已有较多研究,如查尔酮合成酶(chalcone synthase,CHS)、二氢黄酮醇4-还原酶(dihydroflavonol 4-reductase,DFR),以及花青素苷合成酶(anthocyanidin synthase,ANS)等[10,15-16]。转录因子对关键基因的转录调控同样受到广泛关注,如PsbHLH1可激活牡丹PsDFRPsANS等基因的表达[17],紫斑牡丹中R2R3-MYB转录因子调控关键节点酶基因的互作也得到验证[18]。然而,不同花色牡丹花青素含量差异及其开花过程中的差异化积累有待深入研究。【拟解决的关键问题】本研究对5个不同花色的牡丹品种花瓣中花青素苷和类黄酮苷进行HPLC和LC-MS的定性定量检测,分析不同花色牡丹品种中花青素苷和类黄酮苷的动态变化规律,为丰富牡丹花青素苷代谢途径的相关理论提供参考,同时为花色育种提供理论基础。

1 材料与方法

1.1 试验材料

本研究选择5种不同花色的牡丹品种为试验材料,分别为白色品种‘白雪塔’、粉色品种‘赵粉’、红色品种‘迎日红’、蓝色品种‘粉荷’和紫色品种‘洛阳红’,均种植于太原迎泽公园牡丹园,株龄均在10年以上。参考李嘉珏等[2]和王莲英等[4]的方法,将牡丹开花时期分为:蕾期(S1)、露色期(S2)、盛开期(S3)和衰败期(S4),并于2020年4—5月采集不同开花时期的花冠下层花瓣(图1),每个品种选择长势一致的5个单株,每个单株分散选取花瓣,随机混合后液氮冷冻带回实验室-80℃保存备用。

图1

新窗口打开|下载原图ZIP|生成PPT
图1不同花色牡丹品种开花期间的形态变化

S1:蕾期;S2:露色期;S3:盛开期;S4:衰败期。BXT:白雪塔;ZF:赵粉;YRH:迎日红;FH:粉荷;LYH:洛阳红
Fig. 1Flower phenotypes of different color cultivars of tree peony at different blooming stages

S1, Bud stage; S2, initial blooming stage; S3, blooming stage; S4, wither stage. BXT: Baixueta; ZF: Zhaofen; YRH: Yingrihong; FH: Fenhe; LYH: Luoyanghong


1.2 试剂

色谱级甲醇、甲酸、三氟乙酸(TFA)和乙腈等化学药品购自Fisher Scientific(Fair Lawn,NJ)公司。本研究使用的标准品槲皮素-3-葡萄糖苷(quercetin- 3-glucoside,Qc3g)、杨梅素(myricetin)、山奈酚-3-鼠李糖苷(kaempferol-3-glucorhamnoside,Km3gr)、芹菜素、矢车菊素-3-葡萄糖苷(cyanindin-3-glucoside,Cy3g)和矢车菊素-3-芸香糖苷(cyanindin 3-rutinoside,Cy3r)购自Sigma-Aldrich(St. Louis, MO)公司;山奈酚和芦丁购自Solarbio(Solarbio,China)公司。试验用超纯水由PureLab Ultra(ELGA LabWater,UK)超纯水系统制备,本试验所用其他试剂均为色谱纯。

1.3 样品提取及HPLC分析方法

取0.1 g新鲜样品于液氮中充分研磨,利用2 mL甲醇/水/甲酸/TFA(70﹕27﹕2﹕1,v/v/v/v)提取液避光静置提取24 h,然后12 000 r/min离心20 min,取上清液0.22 μm滤膜过滤用于液相检测。HPLC分析使用Thermo Fisher高效液相色谱系统连接996二极管阵列检测器(UltiMate 3000,ThermoFisher,US)。检测波长190—600 nm,色谱柱为Venusil ASB C18(4.6 mm×250 mm,5 μm)。流动相为2%甲酸水(A)和乙腈(B)。梯度条件如下:0 min,8% B;3 min,8% B;23 min,20% B;33 min,40% B; 43 min,40% B;45 min,8% B。柱温35℃,进样量10 μL,流速0.8 mL∙min -1。二级阵列管检测器进行全波长扫描,在350 nm检测类黄酮物质,在520 nm检测花青素。所有样品设定3次生物学重复。

1.4 LC-MS分析方法

采用HPLC -microOTOF Q(ThermoFisher,US)飞行时间系统获得质谱数据。全扫描电喷雾电离(either an electrospray ionization,ESI),正负离子模式,HPLC分析条件同1.3,分子量扫描范围m/z 50—1 100,毛细管电压3 500 V,毛细管出口电压500 V,干燥气体(nitrogen)流速为8.0 L∙min-1,干燥气体温度180℃,碰撞频率200 Vpp; 喷雾器压力0.8 bar,预脉冲时间8.0 μs,转移时间80.0 μs,碰撞能量10.0 eV。

1.5 定性定量分析方法

运用LC-MS方法,在350 nm和520 nm下分别检测类黄酮和花青素苷,根据质谱色谱信息、分子量、分子式和二级质谱碎片,以及相关文献等信息综合推定待测化合物。有标准品的化合物,采用外标法[19]分别计算各化合物含量;没有标准品对照的化合物,采用相似结构化合物的外标法确定其相似化合物的含量。本研究构建的标准曲线有:矢车菊素-3-葡萄糖苷(y=274.1046x+0.1328,R2=0.99987);槲皮素(y=392.9441x+0.5815,R2=0.99865);槲皮素-3-葡萄糖苷(y=339.3973x-0.3364,R2=0.99997);芦丁(y=214.2924x-0.1913,R2=0.98327);芹菜素(y=516.2105x+ 0.0001,R2=0.99666);杨梅素(y=1040.74x-2.1097,R2=0.99798)。

2 结果

2.1 花青素化合物定性分析

根据出峰时间,最大吸收波长(λmax)、MS质谱数据等综合信息进物质推定,最终共推定出6种花青素苷(图2),相应的出峰时间、最大波长和HPLC-ESI(±)-MS2等数据详见表1

图2

新窗口打开|下载原图ZIP|生成PPT
图2牡丹品种‘洛阳红’和‘迎日红’S4时期520 nm下HPLC分离图

峰序号代表的样品信息详见表1
Fig. 2HPLC chromatograms at 520 nm of standards and anthocyanins extracted from cultivars LYH and YRH at stage 4

Peak numbers were as shown in Table 1


Table 1
表1
表1不同牡丹品种花青素结构推定的色谱、波长和质谱信息
Table 1Chromatographic, spectroscopic, and mass spectrometric features of identified anthocyanins of different tree peony cultivars
峰序号
Peak number
推定物质
Putative identification matter
保留时间
Rt (min)
吸收波长
λmax (nm)
母离子+
[M+H]+
二级离子
MS2-PI
参考依据
Reference
1Cy3g5g12.22278.22, 512.18611.16287.3[6]
2Pg3g5g14.13274.69, 496.69595.17271.06[6, 20]
3Pn3g5g14.93279.12, 513.17625.15301.1[21]
4Cy3g16.18280.32, 514.05449.1287.3标准品 Std
5Pg3g18.22266.70, 499.91433.01271.06[20, 21]
6Pn3g19.21279.22, 516.05463.12301.1[21]
Cy3g5g:矢车菊素-3,5-葡萄糖苷;Pg3g5g:天竺葵素-3,5-葡萄糖苷;Pn3g5g:芍药素-3,5-葡萄糖苷;Cy3g:矢车菊素-3-葡萄糖苷;Pg3g:天竺葵素-3-葡萄糖苷;Pn3g:芍药素-3-葡萄糖苷。下同
Cy3g5g: Cyanidin-3, 5-glucoside; Pg3g5g: Pelargonidin-3, 5-glucoside; Pn3g5g: Peonidin-3,5-glucoside; Cy3g: Cyaniding-3-glucoside; Pg3g: Pelargonidin-3-glucoside; Pn3g: Peonidin-3-glucoside. The same as below

新窗口打开|下载CSV

前人研究表明,花青素通常在紫外光区(260—280 nm)和可见光区(500—520 nm)有最大吸收值(λmax),不过天竺葵素衍生物的λmax通常在495—505 nm[20,22]。本研究中,峰2和峰5的λmax均小于500 nm(分别为496.69和499.91 nm),而峰2的质谱数据母离子为m/z 595.17([M-H]+),二级离子m/z 271.06([Y0]+),表明丢失2个葡萄糖苷(162 Da),因此可推断该物质为天竺葵素-3,5-葡萄糖苷(pelargonidin-3,5- glucoside,Pg3g5g);同理,峰5的母离子为m/z 433.01([M-H]+),二级离子m/z 271.06([Y0]+),表明丢失了1个葡萄糖苷(162 Da),推定为天竺葵素-3-葡萄糖苷(pelargonidin-3-glucoside,Pg3g),该物质在日本牡丹品种中已有报道[5],不过FAN等[6]在中原牡丹品种中未检测到Pg3g。本研究供试的5个牡丹品种中,仅‘迎日红’中检测到Pg3g,这与前人结论相似。但是,ZHANG等[21]发现‘霓虹幻彩’和‘桔园少女’2个牡丹品种富含天竺葵衍生物。

峰1和峰4有相同的二级离子m/z 287.3([Y0]+),但是一级离子存在差异,峰1为m/z 611.16([M-H]+),峰4为m/z 449.1([M-H]+)。而峰4与标准品Cy3g的保留时间一致(图2),因此,推断峰1为矢车菊-3,5-葡萄糖苷(cyanidin-3,5-glucoside,Cy3g5g),峰4为矢车菊-3-葡萄糖苷(cyanidin-3-glucoside,Cy3g)。研究表明,花青素衍生物中,双糖苷化合物极性通常大于单糖苷化合物,极性较强的物质在HPLC检测系统中通常分离洗脱顺序早于极性较弱的物质[14,23]。FAN等[6]发现Cy3g5g在大多数中原牡丹品种中极性较强,这一现象同样在本研究中得到验证。此外,矢车菊素极性大于天竺葵素和芍药素的现象在其他花卉作物中也得到证明,如月季[24]、荷花[25]、三色堇[26]等。

同理,峰3和峰6分别推定为芍药素-3,5-葡萄糖苷(peonidin-3,5-glucoside,Pn3g5g)和芍药素-3-葡萄糖苷(peonidin-3-glucoside,Pn3g)。显然,芍药素类衍生物在牡丹不同品种中分布较为广泛[21,27]

2.2 黄酮类化合物定性分析

在350 nm波长下,本研究共鉴定出12种黄酮类物质(图3),主要成分为槲皮素、芹菜素和山奈酚的衍生物(表2),这几种物质在植物界分布广泛[13,28]

图3

新窗口打开|下载原图ZIP|生成PPT
图3牡丹‘洛阳红’S4时期350 nm下HPLC分离图

A:标准品分离图。Std 1:芦丁;Std 2:槲皮素-3-葡萄糖苷;Std 3:杨梅素;Std 4:山奈酚-3-鼠李糖苷;Std 5:槲皮素;Std 6:芹菜素;Std 7:山奈酚。B:‘洛阳红’分离图。峰序号代表的详细信息见表2
Fig. 3HPLC chromatograms at 350 nm of ‘LYH’ at stage 4

A: Mix of standards. Std 1: rutin; Std 2: quercetin-3-glucoside; Std 3: myricetin; Std 4: kaempferol-3-glucorhamnoside; Std 5: quercetin; Std 6: apigenin; Std 7: kaempferol. B: ‘LYH’. Peak numbers were as shown in Table 2


Table 2
表2
表2牡丹品种花瓣中黄酮类化合物的色谱、光谱和质谱特征数据
Table 2Chromatographic, spectroscopic, and mass spectrometric features of identified flavonoids from tree peony cultivars
峰序号
Peak number
推定物质
Putative identification matter
保留时间
Rt (min)
最大波长
λmax (nm)
质谱离子ESIMS (m/z)参考依据
Reference
母离子+
[M+H]+
二级离子+
MS2-PI
母离子-
[M-H]-
二级离子-
MS2-NI
1未知 Unknown14.41352.7----
2未知 Unknown15.78331.9465.08303.02/229.05463.09271.00
3Km3g7g16.54265.11, 345.81633449609447/285.04[6,8]
4Km3g17.24266.22, 352.43471.24287.05447.34284.16/249.04[8]
5Rutin22.76326.9610.53609.1301.04std
6Km7g23.2266.03, 362.07449.11287.05447.09285.04[8]
7Qu3g24.08254.08, 347.39487.12303.01463.09301.03std
8未知Unknown26.27269.81, 336.57625.17479.12--
9Ap5g26.97268.33, 336.57433.11256.96431.36269.22[6,8]
10Aphg27.59265.21, 336.51601.28579.26/433.2/271.07577.44431.36/269.17[6,8]
11Lt7g27.88266.01, 344.77449.1287.05/135.05447.21285.01[6,8]
12My28.56269.11, 345.29319.04217.05463.1179std
Km3g7g:山奈酚3,7-葡萄糖苷;Km3g:山奈酚-3-葡萄糖苷;Km7g:山奈酚-7-葡萄糖苷;Qu3g:槲皮素-3-葡萄糖苷;Ap5g:芹菜素-5-葡萄糖苷;Aphg:芹菜素己糖-葡萄糖苷;Lt7g:木犀草素-7-葡萄糖苷;My:杨梅素。下同
Km3g7g: Kaempferol-3,7-glucoside; Km3g: Kaempferol-3-glucoside; Km7g: Kaempferol-7-glucoside; Qu3g: Quercetin-3-glucoside; Ap5g: Apigenin-5- glucoside; Aphg: Apigenin hexo-glucoside; Lt7g: Luteolin-7-glucoside; My: Myricitrin. The same as below

新窗口打开|下载CSV

峰5、7和12分别与标准品芦丁、槲皮素-3-葡萄糖苷(quercetin-3-glucoside,Qu3g)及杨梅素共洗脱保留时间一致(图3),而质谱数据进一步证明这3个峰可推定为这3个物质(表2)。峰3、4和6的二级离子为m/z 285,表明这3个物质应为山奈酚衍生物;前人报道,山奈酚溶于甲醇之后的λmax位于266 nm(带Ⅱ)和367 nm(带Ⅰ),而槲皮素的λmax位于255 nm(带Ⅱ)和370 nm(带Ⅰ),但是山奈酚和槲皮素3-羟基的糖苷化通常会导致带Ⅰ的λmax蓝移12—17 nm[29];根据这一规律,峰6的λmax为362.07 nm,可推定为山奈酚-7-葡萄糖苷(kaempferol-7-glucoside,Km7g);峰4的λmax为352.43 nm,表明存在蓝移现象,因此该物质为山奈酚-3-葡萄糖苷(kaempferol- 3-glucoside,Km3g);峰3的λmax为265.11 nm和345.81 nm,母离子为m/z 609([M-H]-),二级离子为m/z 447和m/z 285([Y0]-),表明丢失了2个葡萄糖苷(162 Da),因此该物质可推定为山奈酚-3,7-葡萄糖苷(kaempferol- 3,7-glucoside,Km3g7g),这一物质在牡丹黄色品种中大量分布[8,9]

芹菜素及其衍生物的λmax在267 nm和335 nm[30,31],可暂定峰9和峰10为芹菜素衍生物。根据质谱信息,峰9母离子为m/z 431.36([M-H]-),二级离子为m/z 269.22([Y0]-),推定为芹菜素-5-葡萄糖苷(apigenin-5-glucoside,Ap5g);峰10的母离子为m/z 577.44([M-H]-),二级离子为m/z 431.36/269.17([Y0]-),推定为芹菜素己糖-葡萄糖苷(apigenin hexo -glucoside,Aphg)。

前人报道木犀草素的λmax为340 nm[31],根据峰11的最大吸收波长和质谱数据(表2),暂定其为木犀草素-7-葡萄糖苷(luteolin-7-glucoside,Lt7g)。本研究中峰1、峰2和峰8等3个物质未能推定,主要原因是其质谱数据、最大吸收波长,以及前人报道等综合信息无法准确印证。如峰2的质谱数据为母离子为m/z 463.09([M-H]-),二级离子为m/z 463.09和271([Y0]-),表明该物质与槲皮素衍生物相似,但是λmax为331.9 nm,这与前人报道的352—370 nm差距较大,不能证明这一假设[32]

2.3 牡丹不同花色品种花青素苷和类黄酮苷含量的差异

表3所示,5个牡丹品种花青素含量差异较大。

Table 3
表3
表3牡丹4个品种花朵开放期间花青素苷含量动态变化
Table 3Contents of anthocyanins in the four tree peony cultivars at different blooming stages (μg∙g -1 FW)
品种
Cultivar
化合物
Compound
蕾期
Bud Stage
露色期
Initial blooming stage
盛开期
Blooming stage
衰败期
Wither stage
LYHCy3g5g4.24±0.73d8.70±0.76c15.04±1.62b26.22±0.78a
Pn3g5g9.80±1.22d29.59±3.52c48.72±1.39b86.50±3.89a
Cy3g2.99±0.29d11.04±1.33c42.38±1.13b139.63±7.10a
Pn3g3.47±0.22c8.66±1.14c26.46±3.42b87.38±9.64a
合计 Total20.50±1.74d57.99±6.05c132.59±5.25b340.06±9.50a
FHPg3g5g---2.73±0.82
Pn3g5g4.94±0.87b7.48±0.73a8.02±1.66a9.62±1.62a
合计 Total4.94±0.87c7.48±0.73b8.02±1.66b12.35±1.41a
YRHPg3g5g13.95±4.76c22.02±5.65b35.48±5.28a33.17±2.03a
Pg3g3.48±1.70c6.25±1.68ab4.69±1.28bc7.72±0.67a
合计 Total16.27±6.24bc28.27±7.32ab40.17±6.41a40.89±1.53a
ZFPg3g5g-4.43±2.15b7.00±0.83a5.12±0.96ab
不同小写字母表示差异显著(P<0.05)。下同
Different lowercase letters indicate significant difference (P<0.05). The same as below

新窗口打开|下载CSV

其中‘洛阳红’花青素含量最高,在S4时期达到340.06 μg∙g-1 FW,‘白雪塔’未能检出花青素,而前人研究也证实牡丹白色品种中几乎不含有花青素,如‘香玉’[6]和‘冰山雪莲’[21]等。本研究中,不同颜色的品种花青素物质差异也较为明显,‘洛阳红’检出4种花青素(Cy3g5g、Pn3g5g、Cy3g和Pn3g),‘迎日红’检出2种花青素(Pg3g5g和Pg3g),‘粉荷’检出2种花青素(Pg3g5g和Pn3g5g),‘赵粉’仅有1种,即Pg3g5g。由此可见,不同颜色品种花青素含量存在显著差异,这与前人结论相似[6,8,10]

本研究共鉴定出12种类黄酮苷物质,表4所示为不同品种类黄酮苷含量在花朵开放期间的动态变化结果,可以看出类黄酮苷物质在不同品种中分布差异较为明显。‘洛阳红’和‘粉荷’两个品种中能够检出全部的类黄酮苷物质,而‘白雪塔’和‘赵粉’未检出芦丁和Km7g。‘迎日红’未检测到Km7g、Lt7g和杨梅素。总体来看,Ap5g(7.18%—58.46%)、Aphg(1.44%—43.72%)和Km3g7g(2.83%—43.44%)这3种物质的相对含量高于其他物质。

Table 4
表4
表4牡丹5个品种花朵开放期间类黄酮苷含量动态变化
Table 4Contents of flavonoids in the five tree peony cultivars at different blooming stages (μg∙g-1 FW)
品种
Cultivar
化合物
Compound
蕾期
Bud Stage
露色期
Initial blooming stage
盛开期
Blooming stage
衰败期
Wither stage
LYH峰1 Peak 14.98±0.37d14.61±3.06c22.58±3.69b26.08±7.39a
峰2 Peak 25.07±0.36b10.53±2.35a13.55±3.00a5.38±3.15b
Km3g7g13.11±2.08d33.93±7.46c50.51±8.56b72.10±15.70a
Km3g12.00±1.42c25.48±6.50b26.70±3.72b66.86±13.43a
Rutin4.32±0.17b7.39±1.43a8.67±1.72a6.33±5.03ab
Km7g4.42±0.06b6.67±1.24a8.29±1.94a7.37±2.77a
Qu3g206.18±34.09b254.00±13.21a243.70±21.08a232.37±15.81a
峰8 Peak 85.62±0.24cd8.19±1.57b11.73±2.53a6.29±3.11bc
Ap5g84.13±4.83c111.64±16.90b159.68±11.85a147.41±15.63a
Aphg61.19±1.64b81.58±4.58b83.11±6.68b123.29±14.70a
Lt7g37.83±4.70b38.61±6.78b45.37±6.37a39.15±3.84b
My24.71±2.99a20.34±4.93b22.77±3.35a20.29±4.05b
山奈酚总含量Total km29.54±3.55c66.08±14.88b85.50±14.14b146.34±17.60a
芹菜素总含量Total ap145.32±5.17b193.22±15.21b242.79±17.93a270.70±28.52a
合计 Total463.58±44.14c612.98±31.23b696.67±12.25ab752.93±48.10a
FH峰1 Peak 17.85±2.24a6.99±3.72a4.83±1.27b5.03±3.03b
峰2 Peak 217.34±2.49a12.31±5.82b8.94±2.06c15.62±3.78ab
Km3g7g58.04±7.36b77.78±9.03a75.13±5.25a88.24±5.57a
Km3g12.33±0.72ab11.11±0.58b10.56±1.47bc12.69±4.41a
Rutin3.12±0.03b4.22±1.94a4.28±0.98a
Km7g3.73±0.03a3.77±1.69a1.84±0.43b
Qu3g27.41±1.28a18.12±2.76ab13.57±1.01b14.01±2.89b
峰8 Peak 829.96±1.14a19.99±4.73b16.69±4.56b15.84±1.48b
Ap5g432.95±27.17a333.13±13.86b247.42±19.42d251.88±28.77c
Aphg132.20±7.25b164.13±1.36a125.38±11.46c28.09±7.47e
Lt7g14.05±0.24b5.40±3.34c5.17±1.19c15.39±3.25a
My6.15±0.58a4.64±0.43b3.33±0.03c3.78±0.25b
山奈酚总含量Total km71.61±6.87c59.26±15.67d88.20±7.35b102.16±10.46a
芹菜素总含量Total ap565.15±24.11a331.51±27.33b372.80±10.57b279.96±22.45bc
合计 Total740.56±16.08a435.72±37.50c515.53±19.46b456.07±26.12bc
BXT峰1 Peak 16.26±2.04b7.71±0.03b12.24±1.43a6.00±1.82b
峰2 Peak 26.23±1.93c19.61±1.77b39.89±7.15a32.92±10.35a
Km3g7g10.52±2.48c67.29±3.54b159.68±15.43a179.49±17.09a
Km3g13.02±3.61a4.04±0.54b14.24±1.90a8.02±1.63b
Qu3g183.68±46.64a7.37±1.32d12.85±2.15c6.08±1.96d
峰8 Peak 87.32±2.30c14.46±2.66b19.15±1.94a8.05±1.91c
Ap5g74.10±18.05d259.97±21.93b304.54±25.31a145.99±19.20c
Aphg4.84±1.64d294.44±76.50a45.72±5.24b16.94±6.61c
品种
Cultivar
化合物
Compound
蕾期
Bud Stage
露色期
Initial blooming stage
盛开期
Blooming stage
衰败期
Wither stage
Lt7gna6.01±1.73c14.25±0.38a5.46±1.41c
My24.65±5.72a3.10±0.03bc7.50±0.80b2.42±0.71c
山奈酚总含量Total km29.79±8.14c69.98±2.00b173.92±17.31a187.51±18.57a
芹菜素总含量Total ap78.95±9.66d554.41±18.93a350.26±30.35b162.93±14.23c
合计 Total336.87±6.44c673.45±9.96a625.98±15.87a413.18±25.33b
YRH峰1 Peak 13.89±1.60ab5.04±0.53a4.14±0.80a4.75±0.42a
峰2 Peak 214.68±1.05b12.44±2.58b5.44±2.48c23.68±8.08a
Km3g7g76.80±3.73b68.99±2.30b72.09±3.25b117.40±11.45a
Km3g5.94±1.23a5.97±0.78a4.11±0.45a5.32±0.26a
Rutin6.96±3.96b8.14±1.09ab10.83±0.66a4.75±1.28c
Qu3g4.99±0.71a3.79±0.67a2.76±0.89a4.31±0.54a
峰8 Peak 811.52±3.26a11.91±2.03a8.89±0.61b12.20±4.26a
Ap5g262.87±5.68a250.79±28.04a173.83±18.97b252.57±30.53a
Aphg137.57±10.44a128.71±34.98a58.71±9.04b57.09±18.54b
山奈酚总含量Total km82.75±4.89b74.97±2.63b76.20±3.57b122.72±11.20a
芹菜素总含量Total ap400.44±16.11a379.50±14.87a232.54±7.63c309.66±4.77b
合计 Total525.88±22.38a495.79±13.54a340.80±5.82b482.06±24.03a
ZF峰1 Peak 15.10±0.55b7.40±0.67b13.16±0.03a6.60±1.60b
峰2 Peak 29.96±4.36ab9.63±4.32b16.28±9.32a16.75±1.48a
Km3g7g50.88±3.86b69.01±15.50b77.41±3.70b100.30±1.84a
Km3g4.55±0.51a5.87±1.59a6.29±0.70a2.54±0.14b
Qu3g7.96±1.39ab8.66±2.28a10.31±1.93a4.37±0.59b
峰8 Peak 811.29±2.19a12.31±4.53a15.07±2.19a6.60±1.37b
Ap5g231.30±52.55b250.31±76.68b263.98±30.52a173.39±25.33c
Aphg154.19±59.74c161.46±76.31b202.70±21.61a124.80±29.55d
Lt7g4.08±0.03abna8.99±0.03a3.55±1.08b
My3.50±0.22b3.29±1.55b6.48±0.83ana
山奈酚总含量Total km55.42±4.34d74.88±1.99c81.60±0.04b102.83±1.98a
芹菜素总含量Total ap385.49±3.30c411.77±15.86b466.68±2.53a298.19±4.19d
合计 Total478.39±8.64ab524.38±16.89a603.81±6.30a438.89±6.62b

新窗口打开|下载CSV

2.4 牡丹花朵开发不同期间花青素苷和类黄酮苷含量的动态变化

本研究中,6种花青素苷在花朵开放期间总体上不断积累,从蕾期(S1)至衰败期(S4),花青素总含量持续增加,在S4时期达到最高值,这种现象在其他研究中同样存在。ZHAO等[10]测定牡丹品种‘彩绘’发现花青素含量在花期不断积累;而ZHANG等[33]发现‘洛阳红’花朵膨大期至半开期花青素含量不断增加;GU等[18]发现紫斑牡丹品种‘青海湖银波’色斑区花青素含量在开花前20 d开始增加,至花期达到最大值。

类黄酮物质总含量在花朵开放至衰老期间呈现先增加后降低的趋势,但不同品种的变化趋势差异明显。‘洛阳红’的类黄酮总含量在S4时期达到最大值((752.93±48.10)μg∙g FW),‘赵粉’在S3时期达到最大值((603.81±6.30)μg∙g FW),‘白雪塔’在露色期(S2)时期达到最大值((673.45±9.96)μg∙g FW),‘迎日红’和‘粉荷’均在现蕾期(S1)达到最大值。这表明类黄酮物质在花朵开放之后开始降解,这一现象在其他花卉作物中同样存在,如兰花(Cymbidium cv. Mystique)花瓣的花期黄酮醇含量是蕾期的1.9倍[31];WAN等[24]发现月季(Rosa)品种‘Sun City’花瓣中主要黄酮醇化合物含量在花开放之前不断积累,然后开始逐渐衰减。

3 讨论

3.1 牡丹花青素和类黄酮合成代谢的特点

花青素是广泛分布于植物中的一种天然色素,其合成代谢隶属于类黄酮代谢途径[12-14,34],CHS是花青素苷合成的核心酶,DHK是关键的分支节点,下游酶往往具有底物特异性;本研究中4个品种的花青素苷均以多种糖基衍生物形式存在,表明下游葡萄糖基转移酶(glycosyl transferases,GT)在牡丹花青素合成代谢途径中较为活跃。FAN等[6]认为花青素的羟基化和甲基化是导致花色变紫或变蓝的原因之一。参照类黄酮代谢途径可知[12,13],芍药素是由矢车菊素苷元及其上游化合物经过甲基化衍生合成,本研究中紫色品种‘洛阳红’含有矢车菊素和芍药素等多种花青素苷,蓝色品种‘粉荷’含有Pg3g5g和Pn3g5g两种花青素苷,而红色品种‘迎日红’和粉色品种‘赵粉’仅含有天竺葵素(Pg3g5g和Pn3g),表明牡丹中矢车菊素经甲基化反应产生芍药素,这是形成蓝色和紫色品种的重要因素。虽然本研究检测到了杨梅素,但相对含量不高,表明DHK向二氢杨梅素(dihydromyricetin,DHM)的转化途径并不活跃。此外,未能检出飞燕草素、矮牵牛素和锦葵素,表明无色飞燕草苷元下游合成途径在牡丹中缺失。因此,可推断DHK是牡丹花青素代谢途径重要的分支节点,F3’H和DFR的不同酶促反应对牡丹不同花色的代谢途径分支起决定性作用。

3.2 不同牡丹品种花青素苷和类黄酮苷物质组成差异

植物花色的形成受多种因素影响,如色素组成及含量、金属离子含量、细胞pH、花瓣表皮细胞性状等[35]。牡丹花色多样,不同品种间花色差异明显,结合前人研究及本研究结果,发现紫色品种和蓝色花瓣中矢车菊素和芍药素含量较高,红色品种天竺葵素含量较高,白色品种几乎不含有花青素,因此,复杂的花青素苷组成可能导致了牡丹品种花色的差异。一些牡丹品种开花过程中花色变化明显,如‘金衣花脸’和‘霞光’在初开期分别呈现橙色和红紫色,此后逐渐变为黄色和橙黄色,HPLC分析表明‘金衣花脸’仅含Pn3g5g一种花青素,‘霞光’含有3种花青素,在开花各时期花青素含量不断降低[36]。此外,牡丹花器官中富含多种活性成分,如GUO等[37]对四川牡丹(P. decomposita)和凤丹(P. ostii)花瓣及雄蕊等4个部分中的活性物质成分进行分析,通过B16细胞活力测定发现牡丹花瓣提取物可有效降低黑色素生成。而XIE等[38]对35个凤丹和紫斑牡丹品种的雄蕊进行物质鉴定,发现牡丹雄蕊中富含多酚类、总黄酮和花青素物质,其中紫斑牡丹品种‘紫二乔’雄蕊中多酚类物质含量最高。可见,不同花色牡丹品种中呈色物质多样性较高,而花器官中活性物质分布同样存在显著差异,进一步弄清不同花青素苷组分及其分布规律对牡丹花色育种具有重要意义。

4 结论

通过HPLC和LC-MS鉴定出6种花青素苷和12种类黄酮苷,不同颜色牡丹品种花瓣中花青素苷差异较大,紫色品种‘洛阳红’花青素苷种类最多、含量最高,白色品种‘白雪塔’几乎不含有花青素苷。类黄酮苷中芹菜素-5-葡萄糖苷、芹菜素己糖-葡萄糖苷和山奈酚-3,7-葡萄糖苷等3种物质含量较高。花青素苷在花朵开放期间不断积累,而类黄酮苷存在先积累后降解的变化趋势。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

STERN F C. A Study of The Genus Paeonia
London: Royal Horticulture Society, 1946.

[本文引用: 1]

李嘉珏, 张西方, 赵孝庆. 中国牡丹
北京:中国大百科全书出版社, 2011:15-17.

[本文引用: 3]

LI J J, ZHANG X F, ZHAO X Q. Chinese Peony
Beijing:Encyclopaedia of China Publishing House, 2011:15-17. (in Chinese)

[本文引用: 3]

CUI H L, CHEN C R, HUANG N Z, CHENG F Y. Association analysis of yield, oil and fatty acid content, and main phenotypic traits in Paeonia rockii as an oil crop
The Journal of Horticultural Science and Biotechnology, 2018, 93(4):425-432.

DOI:10.1080/14620316.2017.1381045URL [本文引用: 1]

王莲英, 袁涛. 中国牡丹品种图志
北京:中国林业出版社, 1997:25-28.

[本文引用: 2]

WANG L Y, YUAN T. Sequel of Chinese Tree Peony
Beijing:China Forestry Publishing House, 1997:25-28. (in Chinese)

[本文引用: 2]

WANG L S, SHIRAISHIA, HASHIMOTOF, AOKI N, SHIMIZU K, SAKATA Y. Analysis of petal anthocyanins to investigate flower colouration of Zhongyuan (Chinese) and daikon island (Japanese) tree peony cultivars
Journal of Plant Research, 2001, 114(1113):33-43.

DOI:10.1007/PL00013966URL [本文引用: 3]

FAN J L, ZHU W X, KANG H B, MA H L, TAO G J. Flavonoid constituents and antioxidant capacity in flowers of different Zhongyuan tree penoy cultivars
Journal of Functional Foods, 2012, 4(1):147-157.

DOI:10.1016/j.jff.2011.09.006URL [本文引用: 8]

BAO Y T, QU Y, LI J H, LI Y F, REN X D, MAFFUCCI K G, LI R P, WANG Z G, ZENG R. In vitro andin vivo antioxidant activities of the flowers and leaves from Paeonia rockii and identification of their antioxidant constituents by UHPLC-ESI-HRMSn via pre-column DPPH reaction
Molecules, 2018, 23(2):392.

DOI:10.3390/molecules23020392URL [本文引用: 1]

LI C H, DU H, WANG L S, SHU Q Y, ZHENG Y R, XU Y J, ZHANG J L, ZHANG J, YANG R Z, GE Y X. Flavonoid composition and antioxidant activity of Tree Peony (Paeonia Section Moutan) yellow flowers
Journal of Agricultural and Food Chemistry, 2009, 57(18):8496-8503.

DOI:10.1021/jf902103bURL [本文引用: 3]

YANG Y, LI B, FENG C Y, WU Q, WANG Q Y, LI S S, YU X N, WANG L S. Chemical mechanism of flower color microvariation in Paeonia with yellow flowers
Horticultural Plant Journal, 2020, 6(3):179-190.

DOI:10.1016/j.hpj.2020.04.002URL [本文引用: 2]

ZHAO D Q, TANG W H, HAO Z J, TAO J. Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers
Biochemical and Biophysical Research Communications, 2015, 459(3):450-456.

DOI:10.1016/j.bbrc.2015.02.126URL [本文引用: 4]

JIA N, SHU Q Y, WANG L S, DU H, XU Y J, LIU Z A. Analysis of petal anthocyanins to investigate coloration mechanism in herbaceous peony cultivars
Scientia Horticulturae, 2008, 117(2):167-173.

DOI:10.1016/j.scienta.2008.03.016URL [本文引用: 1]

TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids
The Plant Journal, 2008, 54(4):733-749.

DOI:10.1111/j.1365-313X.2008.03447.xURL [本文引用: 3]

戴思兰, 洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种
中国农业科学, 2016, 49(3):529-542.

[本文引用: 3]

DAI S L, HONG Y. Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration
Scientia Agricultura Sinica, 2016, 49(3):529-542. (in Chinese)

[本文引用: 3]

GROTEWOLD E. The genetics and biochemistry of floral pigments
Annual review of plant biology, 2006, 57:761-780.

DOI:10.1146/annurev.arplant.57.032905.105248URL [本文引用: 3]

SHI Q Q, LI L, ZHANG X X, LUO J R, LI X, ZHAI L J, HE L X, ZHANG Y L. Biochemical and comparative transcriptomic analyses identify candidate genes related to variegation formation in Paeonia rockii
Molecules, 2017, 22(8):1364.

DOI:10.3390/molecules22081364URL [本文引用: 1]

ZHANG Y Z, CHENG Y W, YA H Y, XU Z Z, HAN J M. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes
Frontiers in Plant Science, 2015, 6:964.

[本文引用: 1]

QI Y, ZHOU L, HAN L L, ZOU H Z, MIAO K, WANG Y. PsbHLH1, a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa)
Plant Physiology and Biochemistry, 2020, 154:396-408.

DOI:10.1016/j.plaphy.2020.06.015URL [本文引用: 1]

GU Z Y, ZHU J, HAO Q, YUAN Y U, DUAN Y W, MEN S Q, WANG Q Y, HOU Q Z, LIU Z A, SHU Q Y, WANG L S. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony (Paeonia suffruticosa)
Plant & Cell Physiology, 2019, 60(3):599-611.

[本文引用: 2]

于世林. 图解高效液相色谱与应用
北京:科学出版社, 2009:56-66.

[本文引用: 1]

YU S. Graphic High Performance Liquid Chromatography and Its Application
Beijing:The Science Publishing Company, 2009:56-66. (in Chinese)

[本文引用: 1]

YILDIRIM S, KADIOGLU A, SAGLAM A, YASAR A, SELLITEPE H E. Fast determination of anthocyanins and free pelargonidin in fruits, fruit juices, and fruit wines by high-performance liquid chromatography using a core-shell column
Journal of Separation Science, 2016, 39(20):3927-3935.

DOI:10.1002/jssc.201600661URL [本文引用: 3]

ZHANG J J, WANG L S, SHU Q Y, LIU Z A, LI C H, ZHANG J, WEI X L, TIAN D K. Comparison of anthocyanins in non-blotches and blotches of the petals of Xibei tree peony
Scientia Horticulturae, 2007, 114(2):104-111.

DOI:10.1016/j.scienta.2007.05.009URL [本文引用: 6]

SINGH R, WU B J, TANG L, LIU Z Q, HU M. Identification of the position of Mono-O-glucuronide of flavones and flavonols by analyzing shift in online UV spectrum (λmax) generated from an online diode array detector
Journal of Agricultural and Food Chemistry, 2010, 58(17):9384-9395.

DOI:10.1021/jf904561eURL [本文引用: 1]

张玲, 徐宗大, 汤腾飞, 张辉, 赵兰勇. ‘紫枝’玫瑰(Rosa rugosa ‘Zi zhi’)开花过程花青素相关化合物及代谢途径分析
中国农业科学, 2015, 48(13):2600-2611.

[本文引用: 1]

ZHANG L, XU Z D, TANG T F, ZHANG H, ZHAO L Y. Analysis of anthocyanins related compounds and their biosynthesis pathways in Rosa rugosa ‘Zi Zhi’ at blooming stages
Scientica Agricultura Sinica, 2015, 48(13):2600-2611. (in Chinese)

[本文引用: 1]

WAN H H, YU C, HAN Y, GUOX L, AHMAD S, TANG A Y, WANG J, CHENG T R, PAN H T, ZHANG Q X. Flavonols and carotenoids in yellow petals of rose cultivar (Rosa ‘Sun City’): A possible rich source of bioactive compounds
Journal of Agricultural and Food Chemistry, 2018, 66(16):4171-4181.

DOI:10.1021/acs.jafc.8b01509URL [本文引用: 2]

CHEN S, XIANG Y, DENG J, LIU Y L, LI S H. Simultaneous analysis of anthocyanin and non-anthocyanin flavonoid in various tissues of different Lotus(Nelumbo) cultivars by HPLC-DAD- ESI-MSn
PLoS ONE, 2013, 8(4):e62291.

[本文引用: 1]

LI Q, WANG J, SUN H Y, SHANG X. Flower color patterning in pansy (Viola×wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas
Plant Physiology and Biochemistry, 2014, 84:134-141.

DOI:10.1016/j.plaphy.2014.09.012URL [本文引用: 1]

WANG X, CHENG C, SUN Q L, LI F W, LIU J H, ZHENG C C. Isolation and purification of four flavonoid constituents from the flowers of Paeonia suffruticosa by high-speed counter-current chromatography
Journal of chromatography A, 2005, 1075(1):127-131.

DOI:10.1016/j.chroma.2005.04.017URL [本文引用: 1]

KITDAMRONGSONT K, PPTHAVORN P, SWANGPOL S, WONGNIAM S, ATAWONGSA K, SVASTI J, SOMANA J. Anthocyanin composition of wild bananas in Thailand
Journal of Agricultural and Food Chemistry, 2008, 56(22):10853-10857.

DOI:10.1021/jf8018529URL [本文引用: 1]

STOCHMAL A, SIMONET A M, MACIAS F A, OLIVEIRA M A, ABREU J M, NASH R, OLESZEK W. Acylated apigenin glycosides from alfalfa (Medicago sativa L.) var. Artal
Phytochemistry, 2001, 57(8):1223-1226.

DOI:10.1016/S0031-9422(01)00204-7URL [本文引用: 1]

POP R M, SOCACIU C, PINTEA A, BUZOIANU A D, SANDERS M G. UHPLC/PDA-ESI/MS analysis of the main berry and leaf flavonol glycosides from different carpathian Hippophaë rhamnoides L. varieties
Phytochemical Analysis, 2013, 24(5):484-492.

DOI:10.1002/pca.v24.5URL [本文引用: 1]

NAKATSUKA T, SUZUKI T, HARADA K, KOBAYASHI Y, DOHRA H, OHNO H. Floral organ- and temperature-dependent regulation of anthocyanin biosynthesis in Cymbidium hybrid flowers
Plant Science, 2019, 287:110173.

DOI:10.1016/j.plantsci.2019.110173URL [本文引用: 3]

SUI X N, ZHANG Y, ZHOU W B. In vitro and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic α-amylase
Journal of Functional Foods, 2016, 21:50-57.

DOI:10.1016/j.jff.2015.11.042URL [本文引用: 1]

ZHANG C, WANG W N, WANG Y J, GAO S L, DU D N, FU J X, DONG L. Anthocyanin biosynthesis and accumulation in developing flowers of tree peony (Paeonia suffruticosa) ‘Luoyang Hong’
Postharvest Biology and Technology, 2014, 97:11-22.

DOI:10.1016/j.postharvbio.2014.05.019URL [本文引用: 1]

MITCHELL K, MARKHAM K R, BOASE M R. Pigment chemistry and colour of pelargonium flowers
Phytochemistry, 1998, 47(3):355-361.

DOI:10.1016/S0031-9422(97)00595-5URL [本文引用: 1]

赵昶灵, 郭维明, 陈俊愉. 植物花色形成及其调控机理
植物学通报, 2005, 22(1):70-81.

[本文引用: 1]

ZHAO C L, GUO W M, CHEN J Y. Formation and regulation of flower color in higher plants
Chinese Bulletin of Botany, 2005, 22(1):70-81. (in Chinese)

[本文引用: 1]

杨琴, 袁涛, 孙湘滨. 两个牡丹品种开花过程中花色变化的研究
园艺学报, 2015, 42(5):930-938.

[本文引用: 1]

YANG Q, YUAN T, SUN X B. Preliminary studies on the changes of flower color during the flowering period in two tree peony cultivars
Acta Horticulturae Sinica, 2015, 42(5):930-938. (in Chinese)

[本文引用: 1]

GUO L, YIN Z Y, WEN L, XIN J, GAO X, ZHENG X X. Flower extracts from Paeonia decomposita and Paeonia ostii inhibit melanin synthesis via Camp-REB-ssociated melanogenesis signaling pathways in murine B16 melanoma cells
Journal of Food Biochemistry, 2019, 43(4):e12777.

DOI:10.1111/jfbc.2019.43.issue-4URL [本文引用: 1]

XIE L H, YAN Z G, LI M C, TIAN Y, KILARU A, NIU L X, ZHANG Y L. Identification of phytochemical markers for quality evaluation of tree peony stamen using comprehensive HPLC-based analysis
Industrial Crops and Products, 2020, 154:112711.

DOI:10.1016/j.indcrop.2020.112711URL [本文引用: 1]

相关话题/物质 鉴定 数据 花青素 糖苷