Effects of Four Insecticides LC25 on Feeding Behavior of Q-Type Bemisia tabaci Adults
HE YunChuan,, WANG XinPu,, HONG Bo, ZHANG TingTing, ZHOU XueFei, JIA YanXiaSchool of Agriculture, Ningxia University, Yinchuan 750021通讯作者:
责任编辑: 岳梅
收稿日期:2020-04-20接受日期:2020-05-12网络出版日期:2021-01-16
基金资助: |
Received:2020-04-20Accepted:2020-05-12Online:2021-01-16
作者简介 About authors
何云川,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (906KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
何云川, 王新谱, 洪波, 张婷婷, 周雪飞, 贾彦霞. 四种杀虫剂LC25对Q型烟粉虱成虫取食行为的影响[J]. 中国农业科学, 2021, 54(2): 324-333 doi:10.3864/j.issn.0578-1752.2021.02.008
HE YunChuan, WANG XinPu, HONG Bo, ZHANG TingTing, ZHOU XueFei, JIA YanXia.
开放科学(资源服务)标识码(OSID):
0 引言
【研究意义】烟粉虱(Bemisia tabaci)属半翅目(Hemiptera)粉虱科(Aleyrodidae),是一种世界性的农业害虫。在我国危害严重的主要是B型和Q型烟粉虱,生产中多采用化学药剂进行防治。常用的内吸性杀虫剂有吡虫啉(imidacloprid)、吡蚜酮(pymetrozine)、螺虫乙酯(spirotetramat)和溴氰虫酰胺(cyantraniliprole),分别为新烟碱类、嗪酮类、季酮酸类和鱼尼丁受体类杀虫剂。这4种杀虫剂在不同地区因不平衡施用使害虫产生抗药性,或出现亚致死效应[1,2,3,4,5]。化学农药的亚致死效应往往因药剂类型、害虫种类、时空而异,对害虫存在有害和刺激生殖效应[6],易导致种群发生多因子抗性(多基因、基因扩增、连续的等位基因突变)和靶标基因突变抗性[7]。因此,研究杀虫剂亚致死浓度对烟粉虱取食行为的影响,有助于进一步了解烟粉虱的生态学和行为学信息,为化学农药的合理使用提供依据。【前人研究进展】研究表明,杀虫剂对节肢动物的行为和生理特性具有亚致死效应,如取食活动、发育持续时间、繁殖、搜寻宿主等[8,9,10]。刺吸电位技术(electrical penetration graph,EPG)是研究刺吸式口器昆虫取食行为的重要方法,其核心在于建立昆虫的取食行为与EPG波形的对应关系[11]。基于该技术的研究表明,噻虫嗪(thiamethoxam)处理下,B型烟粉虱抗性种群取食能力略强于敏感种群[12];吡蚜酮亚致死剂量下,禾谷缢管蚜(Rhopalosiphum padi)成虫吸食植物汁液的总时间明显延长,持续取食的时间明显缩短[13];烟粉虱能在吡蚜酮亚致死剂量处理过的植物上刺探和取食,而在高浓度处理时则无法取食[14];用吡虫啉和联苯菊酯(bifenthrin)亚致死剂量处理棉花幼苗,可导致烟粉虱对韧皮部的取食减少[15];吡虫啉亚致死浓度处理显著影响棉蚜(Aphis gossypii)在韧皮部的刺吸时间,并缩短了若虫的发育期、成虫寿命,降低了总生殖力[8]。此外,环氧虫啶(cycloxaprid)LC25、噻虫胺(clothianidin)LC25、溴氰虫酰胺(LC10和LC25)和呋虫胺(dinotefuran)LC25处理能延长烟粉虱各龄若虫、伪蛹和成虫的发育期,降低其存活率,雌虫产卵时间显著缩短,产卵量和孵化率均降低[16,17,18,19]。【本研究切入点】杀虫剂亚致死效应对烟粉虱的研究主要集中于发育历期、繁殖与毒力影响等方面,而多种类的杀虫剂亚致死浓度对其取食行为的比较研究鲜有报道。【拟解决的关键问题】明确4种内吸性杀虫剂(吡虫啉、吡蚜酮、螺虫乙酯和溴氰虫酰胺)LC25处理下,Q型烟粉虱成虫对番茄叶片的取食行为特征,为烟粉虱的防治提供理论依据。1 材料与方法
试验于2018年5月至2019年10月在宁夏大学农业害虫防治实验室完成。1.1 供试烟粉虱
烟粉虱成虫于2017年采自宁夏银川市西夏区军马场(38°32′29.53″—38°32′29.66″ N,106°07′47.39″—106°07′49.88″ E;海拔1 108.30 m)番茄大棚,在室内以‘粉印三号’(Solanum lycopersicum,宁夏红禾种子有限公司生产)番茄植株继代饲养,其间未暴露于任何杀虫剂;饲养室平均温度(25.7±2.4)℃,平均相对湿度(60.6±2.3)%,由 Cos-03温湿度记录仪自动记录。根据李小凤等[20]方法,试验种群被鉴定为Q生物型,NCBI登录号MK281483[21]。1.2 供试植株
采用宁夏地区主栽番茄品种‘粉印三号’为供试植株。将种子在25℃智能人工气候箱中催芽,移栽于盛有珍珠岩和泥炭(体积比为1﹕1)的穴盘内,置于智能人工气候箱,培养温度(25±2)℃,相对湿度60%—80%,光周期L﹕D=12 h﹕12 h条件下培育,待幼苗长至4—5片真叶,选健壮、长势相近的番茄苗移栽至水培盒内进行水培,每盒1株,待其长至8片真叶时供试。1.3 供试杀虫剂
4种杀虫剂分别为25%吡蚜酮悬浮剂(江苏克胜集团股份有限公司)、35%吡虫啉悬浮剂(浙江海正化工股份有限公司)、22.4%螺虫乙酯悬浮剂(拜耳作物科学(中国)有限公司)和19%溴氰虫酰胺悬浮剂(上海杜邦农化有限公司)。1.4 供试营养液
在Hoagland营养液[22]基础上经试验操作筛选出适合‘粉印三号’幼苗生长的营养液浓度。其中,除大量元素中的MgSO4用量为241 mg·L-1外,其余元素用量与Hoagland营养液一致。试剂均为分析纯,购于国药集团试剂有限公司,用超纯水进行营养液的配制,用KOH(0.01 mol·L-1)调节营养液pH至5.5。为减少营养液的蒸发,在水培盒口覆上一层保鲜膜。1.5 4种内吸性杀虫剂对烟粉虱成虫的生物活性测定
采用水培法测定4种内吸性杀虫剂对烟粉虱成虫的室内生物活性。先将供试杀虫剂分别配制成一定浓度的母液,用含0.1%吐温80的营养液进行梯度稀释,配成系列含药营养液培养植株,以含0.1%吐温80的营养液培养的植株作为对照(CK)。番茄植株水培24 h,往改良的昆虫毒力测定装置[23]中各接入烟粉虱成虫40头,放入温度(25±2)℃,相对湿度60%的智能人工气候箱中,每处理3个重复。48 h后检查成虫死亡情况并计算死亡率。CK的死亡率<10%为有效测定,否则为无效测定。1.6 试虫的连接及仪器的运用
每头烟粉虱和每株番茄苗只作一次记录。将整套装置放入接了地线的法拉第笼(50 cm×50 cm×60 cm)内,以屏蔽外界噪声及其他信号的干扰。供试昆虫的EPG试验条件与其饲养条件尽量保持一致,用免驱USB温湿度记录仪进行EPG环境监测。试验期间EPG环境平均温度为(25±1)℃,相对湿度60%—80%。选取羽化1 d的烟粉虱成虫,用银胶将其分别与昆虫电极和植物电极相连。昆虫电极为长2—3 cm、直径12.5 μm的金丝。先将烟粉虱饥饿处理24 h,然后将连接电极的试虫放在经杀虫剂LC25处理24 h的番茄叶片背面,保证试虫能够自由活动。植物电极插入营养液中,通过仪器记录波形。每头烟粉虱连续记录8 h,记录时间段均保持为每天9:00—17:00,每处理成功记录15次及以上。以含0.1%吐温80的营养液水培植株和单头试虫作为对照。
1.7 叶片的透明操作步骤及染色
将经杀虫剂LC25处理24 h的新鲜番茄叶片带柄剪下,用脱脂棉包裹叶柄,外包保鲜膜用于保湿;将叶片背面朝上,放入垫有湿滤纸的培养皿内;平皿以保鲜膜封口,无菌针扎孔若干;以蒸馏水处理为对照。每皿内置10头羽化1 d的试虫,每处理3个重复。将平皿置于智能人工气候箱,温度(25±2)℃,相对湿度60%,培养24 h后取出叶片进行透明、染色及镜检等。取出叶片,放入固定液中24 h,用不同浓度的乙醇梯度脱水,再参照谢兆森等[24]方法进行组织透明。采用超景深三维750倍Leica体式显微镜(德国,DMC4500)和20倍Olympus显微镜(美国,U-RFL-T)观察叶片上的刺吸孔并计数;利用Leica体式显微镜分析工具中的区域线工具测量叶面积;利用40倍Olympus显微镜测量刺吸孔直径,拍照保存。
1.8 数据处理与分析
采用Excel 2016进行数据汇总整理,使用统计学软件IBM SPSS Statistics 19中的probit进行4种杀虫剂的LC50、LC25值、95%置信区间、斜率及标准误计算;选用LSD多重比较法(α=0.05)对各处理的数据进行单因素ANOVA分析;绘图采用Origin Pro8。EPG数据记录和波形识别使用EPG style+a与EPG style+d软件(Giga-8 DC-EPG 系统,荷兰瓦赫宁根大学),根据文献记录的波形图、振幅、相对电压水平、R/emf原点、频率和波形的秒数来识别波形[25,26,27,28,29,30,31,32,33,34,35,36,37]。根据MORENO-DELAFUENTE等[28]和汤清波等[29]标准对np、C、pd、E1、E2、G 6种波形进行归纳统计,利用EPG_analysisworksheet_v 5.0软件[30]处理21个EPG参考指标。
2 结果
2.1 4种杀虫剂对Q型烟粉虱成虫的毒力
吡虫啉、吡蚜酮、螺虫乙酯和溴氰虫酰胺对Q型烟粉虱成虫的LC50和LC25值分别为43.54、114.67、29.95和100.46 mg·L-1;14.23、24.52、4.41和27.52 mg·L-1(表1)。Table 1
表1
表14种杀虫剂对Q型烟粉虱成虫的毒力
Table 1
杀虫剂 Insecticide | 斜率±标准误 Slope±SE | LC25 95%置信区间 95% CI (mg·L-1) | LC50 95%置信区间 95% CI (mg·L-1) | 卡方值 χ2 value | 相关系数 Correlation coefficient (r) | P值 P value |
---|---|---|---|---|---|---|
吡虫啉Imidacloprid | 1.3883±0.1079 | 14.23 (11.62-17.42) | 43.54 (37.37-50.74) | 1.6857 | 0.9911 | 0.0010 |
溴氰虫酰胺Cyantraniliprole | 1.0069±0.0563 | 27.52 (23.41-32.36) | 100.46 (80.71-125.04) | 0.4109 | 0.9953 | 0.0004 |
吡蚜酮Pymetrozine | 1.1994±0.0964 | 24.52 (21.54-27.92) | 114.67 (99.24-132.50) | 1.0909 | 0.9905 | 0.0011 |
螺虫乙酯Spirotetramat | 0.8104±0.0621 | 4.41 (3.11-6.25) | 29.95 (23.69-37.86) | 1.3893 | 0.9913 | 0.0010 |
新窗口打开|下载CSV
2.2 烟粉虱成虫口针在寄主叶片非韧皮部刺探行为的差异
4种杀虫剂LC25及对照处理下,烟粉虱成虫取食寄主叶片非韧皮部的EPG参数见表2。经4种杀虫剂LC25处理番茄幼苗24 h后,CK处理的np波次数与螺虫乙酯和溴氰虫酰胺处理差异显著。溴氰虫酰胺处理的刺探次数最多,与螺虫乙酯、吡蚜酮和CK处理均差异不显著,但与吡虫啉处理差异显著。4种杀虫剂和CK处理在第一次刺探持续时间上无显著差异。CK处理的C波总持续时间最长,与吡虫啉处理无显著差异,与其他3个处理均差异显著。pd波的次数、pd波的总持续时间、G波的次数和G波的总持续时间4项指标均为CK处理值最大,除G波的总持续时间外,其余3项指标均与4种杀虫剂处理差异显著,且4种杀虫剂处理间差异不显著。螺虫乙酯处理的F波次数和F波总持续时间2项指标值均最大,与CK处理均差异显著。CK处理中粉虱从第一次刺探开始至第一个pd波产生的用时最短,而吡虫啉处理用时最长;吡虫啉和吡蚜酮均与CK处理差异显著,溴氰虫酰胺和螺虫乙酯均与CK处理差异不显著。Table 2
表2
表24种杀虫剂LC25浓度下烟粉虱成虫取食非韧皮部的EPG参数(总记录时间为8 h)
Table 2
取食参数 Feeding parameter | np波的次数 Number of np | 刺探次数 Number of probes | 第一次刺探持续时间 Duration of 1st probe (min) | 短暂刺吸 次数 Number of short probes (C<3 min) | C波的总持续时间 Total duration of C (min) | pd波的次数 Number of pd | pd波的总持续时间 Total duration of pd (s) | G波的次数 Number of G | G波的总持续时间 Total duration of G (min) | F波的次数 Number of F | F波的总持续时间 Total duration of F (min) | 第一次刺探开始时间 Time to 1st probe from start of EPG (min) | 从第一次刺探开始至第一个pd波的时间 Time from the beginning of the 1st probe to 1st pd (min) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
对照 Control | 90.20±14.54bc | 80.27±14.02ab | 13.78±0.40a | 70.13±12.91bc | 190.12±26.01a | 36.33±13.54a | 158.36±106.20a | 3.47±0.73a | 14.31±3.40a | 8.87±3.63bc | 1.12±0.25b | 26.34±15.86a | 97.41±34.65c |
吡虫啉 Imidacloprid | 62.36±8.68c | 60.37±8.65b | 1.86±0.67a | 46.29±7.53c | 149.89±19.78ab | 1.29±0.45b | 5.52±2.19b | 1.50±0.37b | 3.55±1.95ab | 0.93±0.25c | 0.30±0.12c | 8.46±3.13a | 296.30±56.23a |
吡蚜酮 Pymetrozine | 114.93±12.30ab | 100.33±11.38ab | 6.82±0.94a | 98.40±11.65ab | 112.41±13.04bc | 4.33±1.21b | 11.57±7.37b | 1.33±1.00b | 0.19±0.12b | 20.20±6.19a | 1.04±0.16b | 8.55±3.22a | 240.79±50.94ab |
螺虫乙酯 Spirotetramat | 137.53±21.77a | 110.87±19.84a | 7.80±1.33a | 115.07±21.21a | 102.73±11.09bc | 6.00±1.44b | 4.88±1.27b | 0.47±0.24b | 9.94±9.37ab | 24.07±3.33a | 1.87±0.27a | 7.44±4.04a | 146.86±47.89bc |
溴氰虫酰胺 Cyantraniliprole | 138.87±19.03a | 120.00±17.19a | 0.88±0.20a | 124.27±18.74a | 72.30±7.12c | 7.73±1.85b | 7.28±2.05b | 0.27±0.18b | 0.14±0.12b | 17.67±2.99ab | 1.50±0.26ab | 12.50±6.39a | 145.53±42.81bc |
F值 F value | 4.021 | 2.558 | 0.773 | 4.321 | 7.479 | 5.238 | 1.978 | 4.538 | 1.889 | 5.815 | 6.722 | 0.932 | 2.93 |
P值 P value | 0.0055 | 0.0462 | 0.5465 | 0.0035 | 0.0001 | 0.001 | 0.1075 | 0.0026 | 0.1222 | 0.0004 | 0.0001 | 0.4506 | 0.0268 |
新窗口打开|下载CSV
2.3 烟粉虱成虫口针在寄主叶片韧皮部取食行为的差异
4种杀虫剂LC25及对照处理下,烟粉虱成虫取食寄主叶片韧皮部的EPG参数见表3。经4种杀虫剂LC25处理番茄幼苗24 h后,烟粉虱取食参数中CK处理的E1波次数最多,与4种杀虫剂处理差异显著,而4种杀虫剂处理间均无显著差异。CK、吡蚜酮和螺虫乙酯处理在E1波总持续时间上无显著差异。吡蚜酮处理的E1波占总E波的时间值最大,与CK和吡虫啉处理差异显著。CK处理的E2波次数和E2波总持续时间两项指标均为最大值,与4种杀虫剂处理均差异显著。CK处理中粉虱第一次刺探韧皮部持续时间最长,与吡虫啉处理差异显著。溴氰虫酰胺处理的第一次刺探至第一次E波的时间最长,与CK和吡虫啉处理差异显著。CK处理的E2波持续次数(超过10 min)最多,与4种杀虫剂处理差异显著,而4种杀虫剂处理间均无显著差异。Table 3
表3
表34种杀虫剂LC25浓度下烟粉虱成虫取食韧皮部的EPG参数(总记录时间为8 h)
Table 3
取食参数 Feeding parameter | E1波的次数 Number of E1 | E1波的总持续时间 Total duration of E1 (min) | E1波占总的E波 的时间 Contribution of E1 to phloem phase (%) | E2波的次数 Number of E2 | E2波的总持续时间 Total duration of E2 (min) | 第一次韧皮部持续时间 Duration of 1st E (min) | E2波持续次数 (超过10 min) Number of sustained E2 (longer than 10 min) | 第一次刺探至第一次到达E波的时间 Time from 1st probe to 1st E (min) |
---|---|---|---|---|---|---|---|---|
对照Control | 5.73±0.75a | 20.52±5.26a | 26.88±6.63b | 5.13±0.71a | 59.60±10.72a | 24.19±7.30a | 1.47±0.29a | 118.39±19.51b |
吡虫啉Imidacloprid | 3.50±0.59b | 0.81±0.25c | 19.92±5.34b | 3.14±0.55b | 5.60±2.63c | 0.64±0.14b | 0.14±0.1b | 130.31±44.94b |
吡蚜酮Pymetrozine | 3.33±1.01b | 15.88±3.87ab | 56.48±7.09a | 2.40±0.63bc | 21.32±6.70bc | 12.00±5.17ab | 0.73±0.25b | 172.99±43.22ab |
螺虫乙酯Spirotetramat | 2.60±0.51b | 24.77±7.20a | 48.39±5.43a | 2.20±0.39bc | 24.62±5.52b | 20.18±6.22a | 0.73±0.18b | 142.01±38.20ab |
溴氰虫酰胺Cyantraniliprole | 1.60±0.43b | 5.57±1.99bc | 45.70±7.87a | 1.53±0.38c | 9.20±3.92bc | 10.75±3.88ab | 0.33±0.19b | 252.32±49.25a |
F值 F value | 4.915 | 4.939 | 5.674 | 6.442 | 10.535 | 2.772 | 5.622 | 1.789 |
P值 P value | 0.0015 | 0.0015 | 0.0006 | 0.0002 | 0.0001 | 0.0354 | 0.0006 | 0.1391 |
新窗口打开|下载CSV
2.4 不同处理下烟粉虱成虫各阶段取食时间占比
烟粉虱成虫在4种杀虫剂LC25及对照处理下的各EPG波形持续时间占比见图1。np波持续时间由长至短的占比顺序为螺虫乙酯(51.63%)>溴氰虫酰胺(43.00%)>吡蚜酮(36.76%)>CK(15.80%)>吡虫啉(4.32%)。C波持续时间由长至短的占比顺序为吡虫啉(90.07%)>CK(52.27%)>溴氰虫酰胺(48.20%)>吡蚜酮(46.00%)>螺虫乙酯(33.15%)。F波持续时间由长至短的占比顺序为溴氰虫酰胺(0.75%)>螺虫乙酯(0.55%)>吡蚜酮(0.39%)>CK(0.29%)>吡虫啉(0.18%)。E1波持续时间由长至短的占比顺序为吡蚜酮(8.16%)>螺虫乙酯(6.32%)>CK(5.96%)>溴氰虫酰胺(3.47%)>吡虫啉(0.43%)。E2波持续时间由长至短的占比顺序为CK(21.63%)>吡蚜酮(8.61%)>螺虫乙酯(6.63%)>溴氰虫酰胺(4.51%)>吡虫啉(2.90%)。G波持续时间由长至短的占比顺序为CK(4.05%)>吡虫啉(2.10%)>螺虫乙酯(1.72%)>吡蚜酮(0.08%)>溴氰虫酰胺(0.07%)。图1
新窗口打开|下载原图ZIP|生成PPT图1烟粉虱成虫在4种杀虫剂LC25下的各EPG波形持续时间占比
Fig. 1Percentage of each EPG waveform duration to the total time of B. tabaci adults under LC25 of four insecticides
2.5 烟粉虱成虫取食不同杀虫剂处理番茄叶片后刺吸孔的显微观察
烟粉虱成虫取食不同杀虫剂处理番茄叶片后刺吸孔的显微观察结果见表4和图2。番茄叶片平均叶面积范围为189.81—299.71 mm2,溴氰虫酰胺处理与吡虫啉、吡蚜酮和CK处理差异显著。刺吸孔产生个数由多至少依次为CK>螺虫乙酯>溴氰虫酰胺>吡虫啉>吡蚜酮,CK处理与4种杀虫剂处理产生的刺吸孔数存在显著差异,4种杀虫剂处理间的刺吸孔数无显著差异。各处理中烟粉虱成虫取食番茄叶片的刺吸孔直径差异不显著。Table 4
表4
表4烟粉虱成虫取食不同杀虫剂处理番茄叶片刺吸孔数
Table 4
处理 Treatment | 叶面积 Leaf area (mm2) | 刺吸孔数(个) Number of sucking holes | 刺吸孔直径 Piercing hole diameter (μm) |
---|---|---|---|
吡虫啉 Imidacloprid | 299.71±14.18a | 9.00±2.31b | 76.78±8.02a |
溴氰虫酰胺Cyantraniliprole | 189.81±11.74c | 11.00±3.79b | 73.48±6.09a |
吡蚜酮 Pymetrozine | 270.10±24.18ab | 7.67±0.88b | 75.27±16.90a |
螺虫乙酯 Spirotetramat | 237.53±16.17bc | 13.33±3.76b | 72.16±12.49a |
对照 Control | 274.54±12.15ab | 23.67±1.20a | 71.78±7.06a |
供试昆虫数量均为30只The number of tested insects is 30 |
新窗口打开|下载CSV
图2
新窗口打开|下载原图ZIP|生成PPT图2烟粉虱成虫取食不同杀虫剂处理番茄叶片刺吸孔显微观察图
Fig. 2Microscopic observation of piercing holes on tomato leaves of B. tabaci adults treated with different insecticides
3 讨论
本研究通过EPG技术记录了Q型烟粉虱成虫在吡虫啉、吡蚜酮、螺虫乙酯和溴氰虫酰胺4种杀虫剂LC25处理下取食8 h的情况,结果表明4种杀虫剂对烟粉虱均存在拒食作用。烟粉虱成虫拒食时间长短依次为新烟碱类吡虫啉、鱼尼丁受体类溴氰虫酰胺、嗪酮类吡蚜酮和季酮酸类螺虫乙酯。以上结果表明,具体施用4类杀虫剂时,应考虑用药后烟粉虱产生的拒食行为,进而做到精准有效施用,最终可降低用药总量。此外,本文溴氰虫酰胺和螺虫乙酯研究结果与CAMERON等[31]采用荧光法证明了烟粉虱取食量减少或停食研究结果一致。ZENG等[32]研究表明,吡虫啉和溴氰虫酰胺能抑制绿色型烟蚜(Myzus persicae)的取食行为;孙文青[33]研究表明,三氟苯嘧啶对褐飞虱(Nilaparvata lugens)和白背飞虱(Sogatella furcifera)有明显的拒食作用,经LC50和LC90处理后的稻飞虱非刺探和唾液分泌时间增长,口针在临近韧皮部的细胞外移动和韧皮部的持续取食时间显著减短;彭建红等[34]研究发现,新烟碱类杀虫剂亚致死剂量对麦长管蚜(Sitobion avenae)具有很强的拒食作用,而对棉蚜则无此效果;吴佳星等[35]选取吡虫啉对3种色型烟蚜取食行为的31个EPG参考指标进行分析,结果表明吡虫啉处理烟苗后能明显抑制烟蚜对烟草韧皮部的取食;都振宝[36]利用EPG技术研究表明,吡虫啉和噻虫嗪均能抑制荻草谷网蚜(Sitobion miscanthi)的取食活动。本研究中Q型烟粉虱成虫能在溴氰虫酰胺LC25上取食,与CIVOLANI等[26]报道的Q型烟粉虱成虫完全不能在溴氰虫酰胺处理过的番茄植株韧皮部取食研究结果不一致,推测可能由于溴氰虫酰胺的施用方式(叶面喷施和灌根)不同所致。对大多数昆虫来说,取食量取决于昆虫每次取食持续时间及取食速率。刺吸式口器昆虫刺吸汁液的过程与肌肉活动密切相关,口针刺入寄主筛管组织吸食时,需依靠咽喉唧筒与食窦唧筒交替伸缩将汁液抽吸入食道[37]。本研究中,烟粉虱在吡蚜酮LC25浓度下E1波持续时间占比最大,说明吡蚜酮刺激了烟粉虱的唾液分泌,但对咽喉唧筒与食窦唧筒产生了堵塞作用,进而导致烟粉虱的取食能力减弱。而HARREWIJN等[38]研究却提出吡蚜酮是通过控制扩张肌活动的前额神经结或上唇神经节引起昆虫的取食变化。此外,本试验通过不同处理下烟粉虱成虫各阶段取食时间占比得出4种杀虫剂可能因内吸速度不一致而导致烟粉虱成虫的取食行为存在差异。其中,螺虫乙酯对烟粉虱取食行为的影响大于其他3种杀虫剂,推测主要原因与螺虫乙酯具双向内吸性有关。烟粉虱在4种杀虫剂处理的韧皮部和非韧皮部取食均存在差异性,除了上述取食持续时间、取食速率及药剂内吸性等因素外,本试验未考虑烟粉虱成虫性别因素,推测烟粉虱雌雄个体也存在取食差异,这也是影响本试验取食行为差异的因素之一。
烟粉虱的口器为刺吸式,其口器由上唇、上颚和下唇组成,上颚和下唇被糅合为细长、柔韧的细针,具穿透植物组织细胞的功能。下颚口针为食物通道和唾液通道,用于取食植物汁液,并将唾液分泌到植物组织中[39];上颚口针的针束为穿透植物提供了大部分穿刺力。此外,口针上还布满了微毛,内腔是实心的,无神经元,无感觉功能[40]。4种药剂处理间烟粉虱的刺吸孔数无显著差异,而使用叶片叶面积存在显著差异,说明刺吸孔数的多少与叶面积大小无相关性。烟粉虱若虫的口针长度为113—200 μm,成虫的口针长度约为217 μm[41],与洪慧金等[40]报道的成虫口针长约300 μm有差别。本试验烟粉虱成虫取食不同杀虫剂处理番茄叶片平均刺吸孔直径范围为72.16—76.78 μm,所测值偏大,其一可能存在测量误差,其二可能是所测值为粉虱成虫的唇槽直径,因为口针可从唇槽内伸出进行取食。黄翠虹等[42]研究也表明人工饲料囊膜口径孔洞直径越大则烟粉虱口针刺进去得越深,说明烟粉虱越喜食该食物。烟粉虱口针刺入囊膜的深度不同,膜上则出现大小不一的孔洞。而本试验5个处理产生的刺吸孔直径值无显著差异,进一步表明此次刺吸孔直径值测量存在较大误差,主要由于试验时间较短(24 h),使得Q型烟粉虱在4种杀虫剂中产生的刺吸孔数量差异并不明显。但从刺吸孔数量上来看,Q型烟粉虱刺探所形成的孔数在CK处理下的比在4种杀虫剂中的多,说明与4种杀虫剂处理相比,Q型烟粉虱在CK处理下更容易取食。为了能更客观地反映不同杀虫剂对烟粉虱刺探行为的影响,在以后此类试验中,应延长昆虫取食时间,并增加试虫数量。
4 结论
在LC25亚致死浓度处理下,Q型烟粉成虫对吡虫啉、吡蚜酮、螺虫乙酯和溴氰虫酰胺4种杀虫剂处理的番茄叶片均产生拒食作用。研究结果可为烟粉虱或具刺吸式口器农业害虫对4类杀虫剂亚致死效应的拒食作用机理研究及田间的生产实践用药提供理论依据。致谢
中国科学院动物研究所白明研究员和中国科学院新疆生态与地理研究所吕昭智研究员对英文摘要进行了修改润色,在此表示感谢!参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.1016/j.chemosphere.2011.12.082URL [本文引用: 1]
The generalist predator Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) is a key natural enemy of various arthropods in agricultural and natural ecosystems. Releases of this predator are frequently carried out, and it is included in the Integrated Pest Management (IPM) programs of several crops. The accurate assessment of the compatibility of various pesticides with predator activity is key for the success of this strategy. We assessed acute and sublethal toxicity of 14 pesticides on O. laevigatus adults under laboratory conditions. Pesticides commonly used in either conventional or organic farming were selected for the study, including six biopesticides, three synthetic insecticides, two sulfur compounds and three adjuvants. To assess the pesticides' residual persistence, the predator was exposed for 3 d to pesticide residues on tomato sprouts that had been treated 1 h, 7 d or 14 d prior to the assay. The percentage of mortality and the sublethal effects on predator reproductive capacity were summarized in a reduction coefficient (E-x) and the pesticides were classified according to the IOBC (International Organization for Biological Control) toxicity categories. The results showed that the pesticides greatly differed in their toxicity, both in terms of lethal and sub lethal effects, as well as in their persistence. In particular, abamectin was the most noxious and persistent, and was classified as harmful up to 14 d after the treatment, causing almost 100% mortality. Spinosad, emamectin, metaflumizone were moderately harmful until 7 d after the treatment, while the other pesticides were slightly harmful or harmless. The results, based on the combination of assessment of acute mortality, predator reproductive capacity pesticides residual and pesticides residual persistence, stress the need of using complementary bioassays (e.g. assessment of lethal and sublethal effects) to carefully select the pesticides to be used in IPM programs and appropriately time the pesticides application (as function of natural enemies present in crops) and potential releases of natural enemies like O. laevigatus. (C) 2012 Elsevier Ltd.
,
DOI:10.1002/ps.4090URLPMID:26248607 [本文引用: 1]
BACKGROUND: Wheat aphid (Hemiptera: Aphididae) is one of the major pests of winter wheat and has posed a significant threat to winter wheat production in China. Although neonicotinoid insecticidal seed treatments have been suggested to be a control method, the season-long efficacy on pests and the impact on their natural enemies are still uncertain. Experiments were conducted to determine the efficacy of imidacloprid and clothianidin on the control of aphids, the number of their natural enemies and the emergence rate and yield of wheat during 2011-2014. RESULTS: Imidacloprid and clothianidin seed treatments had no effect on the emergence rate of winter wheat and could prevent yield losses and wheat aphid infestations throughout the winter wheat growing season. Furthermore, their active ingredients were detected in winter wheat leaves up to 200 days after sowing. Imidacloprid and clothianidin seed treatments had no adverse effects on ladybirds, hoverflies or parasitoids, and instead increased the spider-aphid ratios. CONCLUSION: Wheat seeds treated with imidacloprid and clothianidin were effective against wheat aphids throughout the winter wheat growing season and reduced the yield loss under field conditions. Imidacloprid and clothianidin seed treatments may be an important component of the integrated management of wheat aphids on winter wheat. (c) 2015 Society of Chemical Industry.
,
DOI:10.1002/ps.3752URLPMID:24488629 [本文引用: 1]
BACKGROUND: The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a key pest in many agricultural crops, including vegetables, ornamentals and field crops. B. tabaci is known for its genetic diversity, which is expressed in a complex of biotypes or, as recently suggested, a complex of distinct cryptic species. The biotypes are largely differentiated on the basis of biochemical or molecular polymorphism and differ in characteristics such as host plant range, attraction by natural enemies, secondary symbionts and expression of insecticide resistance. An extensive survey of B. tabaci biotypes and their impact on insecticide resistance was conducted from 2003 to 2012 in cotton fields and other crops from several locations in Israel. RESULTS: Two biotypes of B. tabaci, B and Q, were identified, and some differences in the biotype dynamics were recorded from different areas. In northern Israel from 2003 to 2007, a higher proportion of the B biotype was consistently found in early season. However, by the end of the season a definite rise of the Q biotype was sampled, ranging from 60 to 100%, along with high resistance to the insect growth regulator (IGR) pyriproxyfen and to a lesser extent to the neonicotinoid insecticides. In fields located in the central part of Israel, the Q biotype was predominant throughout the seasons, with high resistance to pyriproxyfen. Since 2009, a significant shift in the biotype ratios has been observed: the B biotype has come to predominate over the Q biotype ranging up to 90% or more in most fields. At the same time, resistance to the IGR pyriproxyfen was reduced considerably. CONCLUSION: The possible reasons for the change in the dynamics of B. tabaci biotypes, and its implications for resistance management, are discussed. Strong B. tabaci resistance to pyriproxyfen in Israel has been associated with the Q rather than with the B biotype. The B biotype is more competitive than the Q biotype under untreated conditions. Reduction in the acreage of cotton fields during recent years, along with a decrease in insecticide use, especially pyriproxyfen, has resulted in the expansion of the B biotype.
,
[本文引用: 1]
,
URLPMID:16842032 [本文引用: 1]
,
URLPMID:18937216 [本文引用: 1]
,
URLPMID:21308950 [本文引用: 1]
,
[本文引用: 2]
,
[本文引用: 1]
,
DOI:10.1007/s10646-017-1828-xURLPMID:28685415 [本文引用: 1]
Beta-cypermethrin has long been recommended as an effective pesticide to control the soybean aphid, Aphis glycines Matsumura, a serious pest in soybean crops. Besides acute toxicity, it leads to changes in life history traits of A. glycines, notably its reproductive potential. This study has assessed the effects of five sublethal concentrations (0.625, 1.25, 2.5, 5 and 10 microg/L) of beta-cypermethrin on different life history traits of A. glycines. Exposure to these concentrations caused shorter oviposition period and reduced adult longevity. The strongest stimulatory effect on aphid reproduction was achieved when exposed to a higher sublethal beta-cypermethrin concentration (5 microg/L). Net reproduction rate (R 0 ), intrinsic rate of increase (r m ) and finite rate of increase (lambda) were significantly higher than that of the control, increasing by 20.58, 4.89 and 2.06%, respectively. We found no significant difference in mean generation time (T) between the treatment of 5 microg/L beta-cypermethrin and the control. However, when the concentration increased to 10 microg/L, the reproduction behavior was restrained and the mean generation time (T) was shortened, resulting in significant decrease in R 0 and T by 16.58 and 3.83%, respectively. In conclusion, a sublethal concentration (5 microg/L) of beta-cypermethrin triggered the strongest hormesis on A.glycines, thus providing valuable knowledge on the sublethal effects of this insecticide on soybean aphids. Hormesis may be one of the mechanisms underlying pest resurgences, and better knowledge would enable a more effective use of insecticides in Integrated Pest Management programs.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URLPMID:23494876 [本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
URL [本文引用: 1]
URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[P]. (
[本文引用: 1]
[P]. (
[本文引用: 1]
,
URL [本文引用: 1]
URL [本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1603/ec13511URLPMID:25026647 [本文引用: 2]
Cyantraniliprole is a novel insecticide for control of multiple chewing and sucking insect pest species including the sweetpotato whitefly Bemisia tabaci (Gennadius), which is one of the most important polyphagous pests in tropical, subtropical, and Mediterranean regions. This study aims to evaluate the effects of cyantraniliprole on the probing behavior of B. tabaci on tomato. Electrical penetration graph data indicated that on plants treated with cyantraniliprole (foliar application), adult whiteflies of the genetic variant Q2 were not able to reach the phloem and consequently did not perform the activities represented by E1 and E2 waveforms, i.e., phloem salivation (during which inoculation of geminiviruses occurs) and phloem sap ingestion (during which geminiviruses are acquired by the whiteflies), respectively. The complete failure of B. tabaci biotype Q adults to feed from the phloem of tomato plants treated with cyantraniliprole could be explained by rapid cessation of ingestion because of the mode of action of this insecticide. Overall, these findings indicated that cyantraniliprole might represent a useful new tool for producers to protect tomato plants from damage by B. tabaci.
,
[本文引用: 1]
,
DOI:10.1371/journal.pone.0061543URLPMID:23613872 [本文引用: 2]
Plant viruses can produce direct and plant-mediated indirect effects on their insect vectors, modifying their life cycle, fitness and behavior. Viruses may benefit from such changes leading to enhanced transmission efficiency and spread. In our study, female adults of Bemisia tabaci were subjected to an acquisition access period of 72 h in Tomato yellow leaf curl virus (TYLCV)-infected and non-infected tomato plants to obtain viruliferous and non-viruliferous whiteflies, respectively. Insects that were exposed to virus-infected plants were checked by PCR to verify their viruliferous status. Results of the Ethovision video tracking bioassays indicated that TYLCV induced an arrestant behavior of B. tabaci, as viruliferous whitefly adults remained motionless for more time and moved slower than non-viruliferous whiteflies after their first contact with eggplant leaf discs. In fact, Electrical Penetration Graphs showed that TYLCV-viruliferous B. tabaci fed more often from phloem sieve elements and made a larger number of phloem contacts (increased number of E1, E2 and sustained E2 per insect, p<0.05) in eggplants than non-viruliferous whiteflies. Furthermore, the duration of the salivation phase in phloem sieve elements (E1) preceding sustained sap ingestion was longer in viruliferous than in non-viruliferous whiteflies (p<0.05). This particular probing behavior is known to significantly enhance the inoculation efficiency of TYLCV by B. tabaci. Our results show evidence that TYLCV directly manipulates the settling, probing and feeding behavior of its vector B. tabaci in a way that enhances virus transmission efficiency and spread. Furthermore, TYLCV-B. tabaci interactions are mutually beneficial to both the virus and its vector because B. tabaci feeds more efficiently after acquisition of TYLCV. This outcome has clear implications in the epidemiology and management of the TYLCV-B. tabaci complex.
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
,
DOI:10.1603/EC12370URLPMID:23786044 [本文引用: 2]
The sweet potato whitefly, Bemisia tabaci (Gennadius), is an economically important pest in the United States and other countries. Growers in many places rely on the use of insecticides to reduce populations of B. tabaci. However, insecticides may take a few days to cause B. tabaci mortality and some do not reduce feeding before death. Earlier reduction of feeding of whiteflies would decrease the physiological effects on plants, reduce the production of sooty mold and potentially reduce the transmission of viruses. Measuring the reduction in feeding after the exposure of B. tabaci to an insecticide has proven difficult. This series of laboratory experiments demonstrate the usefulness of fluorescence in determining B. tabaci feeding cessation. Fluorescein sodium salt is systemically transported in the xylem from the roots to the plant leaves and absorbed by B. tabaci nymphs feeding on these plants. Nymphs start fluorescing shortly after the cotton plant root system is submerged in the fluorescein sodium salt. Using this novel technique, the effect of three insecticides with different modes of action, cyantraniliprole, imidacloprid, and spirotetramat on B. tabaci was evaluated and compared to determine reduction in feeding. Results indicate that B. tabaci nymphs feeding on a plant treated with Benevia have a significant reduction of feeding when compared with nymphs feeding on plants treated with imidacloprid or spirotetramat. Both Benevia and spirotetramat caused significant nymphal mortality by 48 h after exposure. This novel technique will be useful to demonstrate the feeding cessation or reduction in feeding produced by different insecticides in several sucking insect groups.
,
DOI:10.1093/jee/tow104URLPMID:27247299 [本文引用: 2]
The green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), is an agricultural pest that seriously infests many crops worldwide. This study used electrical penetration graphs (EPGs) and life table parameters to estimate the sublethal effects of cyantraniliprole and imidacloprid on the feeding behavior and hormesis of M. persicae The sublethal concentrations (LC30) of cyantraniliprole and imidacloprid against adult M. persicae were 4.933 and 0.541 mg L(-1), respectively. The feeding data obtained from EPG analysis indicated that the count probes and number of short probes (<3 min) were significantly increased when aphids were exposed to LC30 of imidacloprid-treated plants. In addition, the phloem-feeding behavior of M persicae was significantly impaired on fed tobacco plants treated with cyantraniliprole and imidacloprid at LC30 Analysis of life table parameters indicated that the growth and reproduction of F1 generation aphids were significantly affected when initial adults were exposed to LC30 of cyantraniliprole and imidacloprid. The nymphal period, female longevity, total preoviposition period, and mean generation time were significantly prolonged when initial adults were exposed to LC30 of imidacloprid. By comparison, these parameters were prolonged but not significantly in the cyantraniliprole treatment. The fecundity and gross reproductive rate were significantly increased in the treated groups. Similarly, the net reproductive rate was greater in the treated group than the control group. Our results indicate that treatment with LC30 of imidacloprid and cyantraniliprole would lead to a hormetic response of M. persicae, with higher likelihood of occurrence when initial adults were exposed to LC30 of cyantraniliprole.
[D]. ,
[本文引用: 2]
[D]. ,
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
[D]. ,
[本文引用: 2]
[D]. ,
[本文引用: 2]
,
[本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
,
URL [本文引用: 1]
[本文引用: 1]