删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

不同磷敏感棉花品种临界磷浓度稀释模型与磷营养诊断

本站小编 Free考研考试/2021-12-26

庞保刚, 曹楠, 周治国, 赵文青,南京农业大学农学院/农业部作物生理生态与生产管理重点实验室/江苏省现代作物生产协同创新中心JCIC-MCP,南京 210095

Critical Phosphorus Concentration Dilution Model and Phosphorus Nutrition Diagnosis in Two Cotton Cultivars with Different Phosphorus Sensitivity

PANG BaoGang, CAO Nan, ZHOU ZhiGuo, ZHAO WenQing,College of Agriculture, Nanjing Agricultural University/Key Laboratory of Crop Ecophysiology and Management, Ministry of Agriculture/Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Nanjing 210095

通讯作者: 赵文青,E-mail: zhaowenqing@njau.edu.cn

收稿日期:2020-02-10接受日期:2020-05-5网络出版日期:2020-11-16
基金资助:国家重点研发计划.2018YFD1000900
石河子大学新疆生产建设兵团绿洲生态农业重点实验室开放课题.201802
江苏省现代作物生产协同创新中心JCIC-MCP


Received:2020-02-10Accepted:2020-05-5Online:2020-11-16
作者简介 About authors
庞保刚,E-mail: 2017101049@njau.edu.cn






摘要
【目的】 建立不同磷敏感性棉花品种临界磷浓度稀释模型,并基于模型确定磷营养指数,为实现棉花合理施用磷肥提供理论依据。【方法】 以磷敏感型棉花品种鲁54和磷弱敏感型品种豫早棉9110为试验材料,于2017—2018年在江苏省大丰市稻麦原种场设置施磷量(0、50、100、150、200 kg P2O5·hm -2)试验,分析施磷量对棉花干物质累积、磷浓度动态变化和籽棉产量及产量构成的影响。利用2017年棉花地上部生物量和磷浓度数据分别建立2个品种临界磷浓度稀释模型,确定磷营养指数(phosphorus nutrition index,PNI)。利用2018年数据对模型进行验证,并通过2年数据研究磷营养指数和相对地上部生物量之间的关系。 【结果】 施磷量对铃重没有显著影响,但150、200 kg P2O5·hm -2施磷量下棉花铃数和籽棉产量显著增加。随施磷量的增加,磷敏感型棉花品种鲁54铃数增加幅度为16.0%—37.9%,籽棉产量增加幅度为16.6%—44.9%,均分别高于磷弱敏感性棉花品种豫早棉9110铃数(6.3%—32.6%)和籽棉产量(6.6%—35.6%)的增加幅度。随生育进程的推进,棉花地上部磷浓度逐渐降低,地上部生物量呈升高趋势。在各取样时期,棉花地上部生物量、磷浓度均随施磷量的增加而升高,表现为0<50<100<150≈200 kg P2O5·hm -2。根据2017年地上部生物量和磷浓度的关系,分别建立了2个品种的临界磷稀释曲线模型(鲁54:Pc=0.784W -0.221,豫早棉 9110:Pc=0.774W -0.198)。2个稀释曲线模型的RMSE分别为0.1296、0.1383;n-RMSE分别为17.8504%、18.5447%,说明模型有较好的稳定性,且鲁54的模型稳定性略高于豫早棉9110。与豫早棉9110的模型参数相比,鲁54的参数a、b分别提高了1.29%、11.62%。基于临界磷浓度稀释曲线的PNI随生育进程的推移先升高后下降,在同一取样时期,PNI随施磷量的增加而升高。PNI与相对地上部生物量显著正相关。 【结论】 施磷对铃重没有显著影响,但显著提高棉花铃数,进而提高了棉花籽棉产量。磷敏感棉花品种鲁54每积累单位干物质时磷浓度下降速度大于豫早棉9110。棉花临界磷浓度稀释曲线和PNI可以很好地诊断和评价棉株磷素营养状况。综合考虑棉花籽棉产量及PNI,150 kg P2O5·hm -2的施磷量为本地区棉花适宜施磷量。
关键词: 棉花;施磷量;磷浓度;临界磷稀释曲线;磷营养指数

Abstract
【Objective】In order to provide a theoretical basis for optimum application of phosphorus fertilizer in cotton, the critical phosphorus concentration (CPC) dilution curve of two cotton cultivars with different phosphorus sensitivity and calculated phosphorus nutrition index (PNI) were established and compared. 【Method】In 2017 and 2018, the field experiments with five phosphorus (P) levels (0, 50, 100, 150, and 200 kg P2O5·hm -2) were conducted by `using two cotton cultivars with different phosphorus sensitivity, Lu 54 and Yuzaomian 9110, at Dafeng, Jiangsu province.【Result】Phosphorus application had no significant effect on cotton boll weight, but the application of 150 and 200 kg P2O5·hm -2 significantly increased cotton boll number and seedcotton yield. With phosphorus application increasing, cotton boll number and seedcotton yield of phosphorus sensitive cotton variety (Lu 54) were increased by 16.0%-37.9% and 16.6%-44.9%, respectively, which was higher than the increase of Yuzaomian 9110. Cotton biomass increased while phosphorus concentration decreased as cotton plant growing under all P treatments. At the same sampling day, cotton shoot biomass and phosphorus concentration raised with the phosphorus application increasing and peaked at 150 and 200 kg P2O5·hm -2. Based on the relationship between the shoot biomass and phosphorus concentration in 2017, the critical phosphorus dilution curve models for the two varieties were established (Lu 54: Pc=0.784W -0.221; Yuzaomian 9110: Pc=0.774W -0.198). The RMSE of the two dilution curve models were 0.1296 and 0.1383, and the n-RMSE were 17.8504% and 18.5447%, respectively, indicating that the model was stability, and the stability of Lu 54 was slightly higher than that of Yuzaomian 9110. Compared with the model parameters of Yuzaomian 9110, parameter a and b of Lu 54 was increased by 1.29% and 11.62%, respectively. PNI increased and then decreased with the growth process, and augmented with the increase of phosphorus application at the same sampling day. PNI was also positively correlated with relative aboveground biomass. 【Conclusion】 Phosphorus application had no significant effects on cotton boll weight, but significantly increased boll number, and consequently increased seedcotton yield. Phosphorus-sensitive variety Lu 54 had a faster decline in phosphorus concentration per unit of dry matter accumulation than Yuzaomian 9110. CPC and PNI of two cotton varieties could diagnose and evaluate the phosphorus nutrition status of cotton plants. According to the results of seedcotton yield and PNI, the application of 150 kg·hm -2 phosphorus fertilizer was suitable for cotton in this region.
Keywords:cotton;phosphorus rates;phosphorus concentration;critical phosphorus dilution curve;phosphorus nutrition index


PDF (554KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
庞保刚, 曹楠, 周治国, 赵文青. 不同磷敏感棉花品种临界磷浓度稀释模型与磷营养诊断[J]. 中国农业科学, 2020, 53(22): 4561-6130 doi:10.3864/j.issn.0578-1752.2020.22.004
PANG BaoGang, CAO Nan, ZHOU ZhiGuo, ZHAO WenQing. Critical Phosphorus Concentration Dilution Model and Phosphorus Nutrition Diagnosis in Two Cotton Cultivars with Different Phosphorus Sensitivity[J]. Scientia Agricultura Sinica, 2020, 53(22): 4561-6130 doi:10.3864/j.issn.0578-1752.2020.22.004


开放科学(资源服务)标识码(OSID):

0 引言

【研究意义】磷是作物生长发育必需的大量营养元素之一[1],它不仅是生命结构体的组成成分,参与核酸、磷脂等的合成[2],还对作物光合代谢、产量等起重要作用[3]。为满足作物的需求,农民经常大量使用磷肥,但磷在土壤中移动慢,磷肥当季利用率仅为10%—25%,施入的过量磷肥大部分残留于土壤中而未被作物吸收,不仅造成了有限磷肥资源的浪费,给农业生产造成巨大的经济损失[4],同时也导致环境问题日益突出,例如水体富营养化[5]、地下水污染[6]等。棉花是我国重要的经济作物[7],虽然棉花对磷的需求量相对氮钾要小[8],但仍然普遍存在磷肥施用过量[9]、利用率低[10]等问题。临界磷浓度稀释曲线可作为作物磷盈亏诊断的方法,对作物磷营养管理尤为重要,因此,建立临界磷浓度稀释曲线并用于棉花磷营养快速诊断,可为指导棉花磷肥合理施用、实现节肥增效提供理论依据。【前人研究进展】磷肥对棉花产量的影响结果较一致,研究结果均表明缺磷会导致棉花产量下降[11]、品质降低[12],充足的磷肥供应可提高棉花生物量[13]、产量[14]和单株铃数、铃重[15]。针对棉花适宜施磷量,前人的研究主要集中在西北内陆棉区,并根据产量或生物量来推荐[16,17],各研究得出的适宜施磷量亦有较大差异(75—180 kg P2O5·hm-2施磷量之间)[11, 14-21],这与棉花品种、气候条件、土壤条件不同等密切相关。从作物出发,根据作物临界磷浓度稀释曲线来进行磷营养管理、推荐适宜施磷量,可在一定程度规避上述差异。临界磷浓度是指作物或作物的某个器官在某个生育时期获得最大生物量时的最低磷浓度[22,23],临界磷浓度(Pc)稀释曲线一般表示为Pc=aW-b,式中,W为地上部生物量,a、b为参数,分别表示当地上部干物质质量为1 t·hm-2时植株的磷浓度和每积累单位干物质时磷浓度下降的速度[22,24-25]。近年来,作物临界磷浓度稀释曲线已应用于梯牧草[22]、小麦[22,24]以及马铃薯[23,25]等作物,但不同作物、相同作物不同品种间以及相同品种在不同地点的临界磷稀释模型参数均会有变化。BELANGER等[22]研究发现,梯牧草成熟度的不同,其临界磷浓度稀释曲线不同,成熟草皮为Pc=3.27W-0.20,新生草皮为Pc=5.23W-0.40。BELANGER等[24]研究发现,小麦的临界磷浓度稀释曲线在不同地点参数不同,其中a值范围为3.62—4.94 g·(100 g)-1,b值范围为0.21—0.49。ZAMUNER等[23]建立了马铃薯的临界磷浓度稀释曲线为Pc=3.919W-0.304,并通过计算磷营养指数(PNI),用于测定播种后60—80 d马铃薯磷营养状况。PNI为棉株地上部磷浓度的实测值与根据临界磷浓度稀释模型求得的相应生物量的临界磷浓度值的比值,经常用于作物营养诊断[23],若PNI<1,表示植株磷缺乏;PNI = 1,表明植株体内磷营养处于最佳状态;PNI>1,则表明植株磷营养过剩。【本研究切入点】前人研究多通过施磷量对棉花产量、磷素利用率的影响提出适宜的施磷量,但从临界磷浓度稀释曲线和磷营养指数的角度分析棉花适宜施磷量的研究较少。【拟解决的关键问题】本研究旨在通过分析磷肥施用量对棉花生物量、产量等的影响,针对不同磷敏感性棉花品种分别建立临界磷稀释曲线,计算磷营养指数,为棉花磷素营养诊断和磷肥管理提供理论依据。

1 材料与方法

1.1 试验设计

试验于2017—2018年在江苏省大丰市稻麦原种场(33°27' N,120°34' E)进行。选用磷敏感型棉花品种鲁54和磷弱敏感型棉花品种豫早棉9110为材料[26],设置施磷量(0、50、100、150、200 kg P2O5·hm-2,分别用P0、P50、P100、P150、P200表示)试验。所用磷肥为重过磷酸钙,在棉花播种前做基肥一次性基施。氮、钾肥用量分别为225 kg N·hm-2、225 kg K2O·hm-2。氮肥播种前施用40%,盛蕾期施用60%;钾肥在棉花播种前做基肥一次性基施。试验采用随机区组设计,共10个处理,每处理重复3次,每小区面积79.2 m2(13.2 m×6 m)。供试土壤为砂壤土,2017、2018年土壤容重分别为1.37、1.36 g·cm-3,pH 分别为8.3、8.1,0—20 cm土层分别含有机质11.9、12.1 g·kg-1,全氮0.8、0.8 g·kg-1、速效氮18.2、18.1 mg·kg-1、速效磷18.3、18.1 mg·kg-1、速效钾 117.1、115.9 mg·kg-1。棉花种子分别于2017年5月28日、2018年5月29日播种,于2017年10月15日、2018年10月14日收获,种植密度均为9.0×105株/hm2。田间其他管理措施均按棉花高产栽培要求进行。

1.2 取样方法与测定内容

分别在棉花苗期、盛蕾期、盛花期、盛铃期、吐絮期取样。每小区选择长势一致的棉花3株,按根、主茎、果枝、主茎叶、果枝叶、铃(壳,纤维,棉籽)等不同器官进行分样,在105℃下杀青30 min,80℃下烘至恒重,分别称量干物质重,并计算地上部生物量。之后粉碎,过1 mm 筛,用H2SO4-H2O2法消煮,采用间断式流动分析仪测定各器官磷浓度,并计算棉

株地上部磷浓度。

在棉花成熟期,每处理小区选取20株棉花,统计单株铃数,待棉花吐絮时,在各小区取连续5 m长的棉花植株,收取全部吐絮棉铃,测定单铃籽棉重、计算籽棉产量。

1.3 临界磷稀释曲线模型的建立及验证

1.3.1 临界磷稀释曲线模型的建立 采用2017年的试验数据进行模型建立。临界磷浓度是指在一定的生长时期内获得最大生物量时的最小磷浓度值[23]。临界磷浓度稀释曲线计算方法参照JUSTES等[27]、薛晓萍等[28]以及ZAMUNER等[23],根据每个取样日的理论最大地上部生物量和与之相应的磷浓度,建立棉花临界磷浓度稀释曲线模型:

Pc=aWc-b

式中,Pc(%)为棉株地上部临界磷浓度值,Wc(t·hm-2)为棉株地上生物量理论最大值,a、b为参数,a代表棉花地上部单位生物量的临界磷浓度值;b为控制临界磷浓度稀释曲线斜率的统计参数。

1.3.2 模型验证 采用2018年的试验数据进行模型验证。模型的验证用国际通用的根均方差RMSE[29,30]和标准化根均方差n-RMSE[31]的方法:

$RMSE=\sqrt{\frac{\sum_{i=1}^{n}(Pi-Oi)^2}{n}}$
$n-RMSE=\frac{RMSE}{S}×100%$

式中,PiOi分别为临界磷浓度测定值和模拟值;n为样本量;S为实测数据的平均值。RMSE值越小,模拟值与测量值的一致性越好,偏差越小,即模型的预测精确度越高。JAMIESON等[32]认为:n-RMSE< 10%,模型稳定性极好;10%<n-RMSE<20%,模型稳定性较好;20%<n-RMSE<30%,模型稳定性一般;n-RMSE>30%,模型稳定性较差。

1.4 棉花磷营养指数(PNI)与相对地上部生物量(RDW)

作物磷营养指数PNI为棉株地上部磷浓度的实测值与根据临界磷浓度稀释模型求得的相应生物量的临界磷浓度值的比值,采用下式计算:

$PNI=\frac{P_{a}}{P_{c}}$
式中,Pa为棉株地上部磷浓度的实测值;Pc为根据临界磷浓度稀释模型求得的相应生物量的临界磷浓度值。若PNI<1,表示植株磷缺乏;PNI = 1,表明植株体内磷营养处于最佳状态;PNI>1,则表明植株磷

营养过剩[23]

相对地上部生物量(RDW)为地上部生物量与同一生育时期各处理地上部生物量最大值的比值。

1.5 数据处理

采用Microsoft Excel 2010进行数据整理与分析,用Origin 2017作图,处理间多重比较采用LSD法。

2 结果

2.1 施磷量对棉花籽棉产量及产量构成的影响

棉花铃数、铃重品种间差异显著,与豫早棉9110相比,鲁54铃数相对较高,铃重较低,因此品种间籽棉产量差异不显著。施磷、品种×施磷量显著提高棉花铃数和籽棉产量,2年2个品种表现一致,但对铃重影响不显著(表1)。

Table 1
表1
表1施磷量对棉花籽棉产量及产量构成的影响
Table 1Effects of phosphorus application rate on cotton yield and yield components
品种
Variety
施磷量
Phosphorus application rate
(kg P2O5·hm-2)
20172018
铃数
Boll number
(×104·hm-2)
铃重
Seedcotton
weight per boll (g)
籽棉产量
Seedcotton
yield (kg·hm-2)
铃数
Boll number
(×104·hm-2)
铃重
Seedcotton
weight per boll (g)
籽棉产量
Seedcotton
yield (kg·hm-2)
豫早棉9110
Yuzaomian 9110
087.1±1.0b4.0±0.0a3459.5±33.6c92.6±0.9d4.2±0.1a3869.3±55.4d
5093.5±1.0b4.0±0.0a3760.8±47.2b98.4±1.3c4.2±0.2a4124.9±65.9c
100110.6±7.2a4.0±0.1a4459.0±79.8a109.6±0.9b4.3±0.0a4681.6±58.6b
150115.2±4.0a4.0±0.1a4643.1±71.9a113.9±2.8a4.3±0.0a4897.2±87.4a
200115.5±1.6a4.1±0.1a4691.7±53.7a116.3±3.3a4.3±0.0a4991.9±93.5a
鲁54
Lu 54
090.0±2.1d3.7±0.1a3366.1±59.9d91.4±1.5d3.9±0.1a3538.1±49.5d
50104.6±3.8c3.8±0.1a3924.9±75.6c108.9±2.2c3.9±0.2a4257.7±58.5c
100115.5±4.0b3.8±0.0a4342.0±70.0b120.3±2.9b4.0±0.1a4762.3±79.1b
150122.7±1.1a3.8±0.0a4686.3±84.4a127.4±1.9a4.0±0.0a5107.6±72.4a
200123.5±2.5a3.8±0.1a4705.7±47.9a126.0±1.6a4.0±0.0a5127.9±81.2a
方差分析ANOVA
品种Variety (V)****NS****NS
施磷量P rate**NS****NS**
品种×施磷量V×P rate**NS****NS**
Values followed by different lowercases within the same column are significantly different at 0.05 probability level. *, significantly different at P<0.05; **, significantly different at P<0.01; ns indicated no significant difference
同列中不同小写字母表示在0.05水平差异显著。*和**分别表示在0.05和0.01水平上差异显著,ns差异不显著

新窗口打开|下载CSV

随施磷量的增加,棉花铃数和籽棉产量增加,两者均在150和200 kg P2O5·hm-2施磷量下达到最大,并显著高于0、50、100 kg P2O5·hm-2施磷量,2个品种表现一致。在2017年,与不施磷相比,50、100、150、200 kg P2O5·hm-2的施磷量下,磷敏感性棉花品种鲁54棉花籽棉产量分别提高16.6%、29.0%、39.2%、39.8%,铃数分别增加了16.0%、28.0%、36.0%、36.9%;磷弱敏感性品种豫早棉 9110的籽棉产量分别提高8.7%、28.9%、34.2%、35.6%,铃数分别提高7.4%、27.0%、32.3%、32.6%。在2018年,与不施磷相比,50、100、150、200 kg P2O5·hm-2的施磷量下,磷敏感性棉花品种鲁54棉花籽棉产量分别提高20.3%、34.6%、44.3%、44.9%,铃数分别提高19.1%、31.6%、39.4%、37.9%;磷弱敏感性品种豫早棉 9110的籽棉产量分别提高6.6%、21.0%、26.6%、29.0%,铃数分别提高6.3%、18.4%、23.0%、25.6%。

2.2 施磷量对棉花地上部生物量及磷浓度的影响

2.2.1 施磷量对棉花地上部生物量的影响 棉株地上部生物量在苗期各施磷量间无显著差异,在盛蕾期、盛花期、盛铃期、吐絮期差异显著,基本表现为P0<P50<P100<P150 ≈ P200,2个品种2年结果一致(图1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1施磷量对棉花地上生物量累积的影响

SS、PSS、PFS、PBS和BOS分别表示棉花苗期、盛蕾期、盛花期、盛铃期和吐絮期。下同
Fig. 1Effects of phosphorus application on the dynamics of aboveground dry matter SS, PSS, PFS, PBS and BOS represented cotton seedling stage, peak squaring stage, peak flowering stage, peak boll setting stage and boll opening stage, respectively. The same as below



2.2.2 施磷量对棉花地上部磷浓度的影响 随棉花生育进程的推进,棉株地上部磷浓度呈现出逐渐下降的趋势,鲁54的地上部磷浓度下降幅度大于豫早棉9110。在同一取样日,棉株地上部磷浓度随施磷量增加而升高,2个品种结果趋势一致(图2)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2施磷量对棉花地上生物量磷浓度变化的影响(2017年)

Fig. 2Effects of phosphorus application on the dynamics changes of aboveground biomass phosphorus content in 2017



2.3 棉株地上部临界磷浓度稀释曲线模型的建立及验证

2.3.1 模型建立 苗期各处理地上部生物量之间没

有显著差异,且其地上部磷浓度没有显著差异,因此采用平均值作为该时期的临界磷浓度值。棉花苗期、盛蕾期、盛花期、盛铃期和吐絮期临界磷浓度值分别为1.04%、0.92%、0.62%、0.42% 和 0.36%(鲁54);0.98%、0.93%、0.60%、0.46% 和0.38%(豫早棉9110)。对上述临界磷浓度值与其对应的干物重进行拟合(图3),得到了鲁54、豫早棉 9110 2个品种棉花临界磷浓度稀释模型,方程的决定系数分别为0.858、0.845,均达到显著水平(表2)。此外,对每个取样日磷浓度的最大、最小实测值与其对应的地上部生物量进行拟合,可得到棉花最高(Pmax,%)、最低(Pmin,%)磷浓度稀释模型,即磷稀释边界模型,模型参数见表2。鲁54的最高、临界磷浓度稀释曲线有差异,而豫早棉9110的最高、临界磷浓度稀释曲线基本重合。

2.3.2 模型验证 磷敏感性棉花品种鲁54、磷弱敏感性棉花品种豫早棉9110的临界磷浓度测定值与模拟值的误差分别为0.0257—0.0863、0.0084—0.1163(表3),对应的临界磷浓度稀释模型的RMSE分别为0.1296、0.1383,n-RMSE分别为17.8504%、18.5447%;表明棉花磷稀释模型有较高的稳定性。

Table 2
表2
表2棉花磷稀释模型的参数值
Table 2The parameters of phosphorus dilution model
品种
Variety
磷稀释模型
Phosphorus dilution model
abR2
鲁54
Lu 54
Pmin0.5990.1390.945**
Pmax0.7980.2170.852*
Pc0.7840.2210.858*
豫早棉9110Pmin0.5840.3200.978**
Yuzaomian 9110Pmax0.7820.2010.838*
Pc0.7740.1980.845*
n=5, R20.05 =0.771, R20.01 =0.919. Pmin, Pmax and Pc represent minimum, maximum, and critical phosphorus concentrations, respectively. *, significantly different at P<0.05; **, significantly different at P<0.01
n=5,R20.05 =0.771,R20.01 =0.919。Pmin,Pmax and Pc分别代表最低、最高以及临界磷浓度。*和**分别表示在0.05和0.01水平上差异显著

新窗口打开|下载CSV

图3

新窗口打开|下载原图ZIP|生成PPT
图3棉花地上生物量磷稀释曲线(2017年)

Fig. 3The phosphorus dilution model of cotton aboveground biomass in 2017



Table 3
表3
表3棉花临界磷浓度(CPC)测定值与模拟值(2018年)
Table 3Observed and simulated values of critical phosphorus concentrations in cotton in 2018
生育期
Stage
鲁54 Lu 54豫早棉9110 Yuzaomian 9110
测定值
Observed value
模拟值
Simulated value
误差
Error
测定值
Observed value
模拟值
Simulated value
误差
Error
苗期 Seedling stage1.35001.42920.05601.28001.30450.0173
盛蕾期Peak squaring stage0.92000.79790.08630.93000.76580.1161
盛花期Peak flowering stage0.58000.52620.03810.62650.58330.0305
盛铃期Peak boll setting stage0.40000.43630.02570.47340.48530.0084
吐絮期Boll opening stage0.38000.41670.02590.41810.44730.0207
RMSE0.12960.1383
n-RMSE17.8504%18.5447%

新窗口打开|下载CSV

2.4 不同施磷量对磷营养指数(PNI)的影响

2个棉花品种的PNI均随施磷量的增加而增加,对于同一处理,PNI随着棉花生育时期的推移表现为先升高后降低的趋势(图4)。2017年在盛蕾期P50处理,鲁54的PNI小于1,而豫早棉9110的PNI略大于1;盛花期P100处理,鲁54的PNI大于1,而豫早棉9110的PNI小于1,这与鲁54对施磷量变化更敏感有关。

图4

新窗口打开|下载原图ZIP|生成PPT
图4各施磷量下棉花磷营养指数(PNI)的变化

Fig. 4Changes of phosphorus nutrition indices (PNI) of cotton



2.5 PNI与相对地上部生物量(RDW)之间的关系

鲁54和豫早棉9110不同生育时期的PNI与相对地上部生物量RDW均表现为线性正相关关系(图5)。随着PNI的增加,相对地上部生物量不断增加,方程决定系数分别为0.887、0.930、0.489、0.815和0.781、0.898、0.637、0.495,达到显著或极显著水平。

图5

新窗口打开|下载原图ZIP|生成PPT
图5棉花磷营养指数与相对地上部生物量的关系

n=10, R20.05 = 0.399, R20.01 = 0.586。*和**分别表示在0.05和0.01水平上差异显著
Fig. 5Relationship between phosphorus nutrition index (PNI) and relative shoot biomass (RDW) of cotton

n=10, R20.05 = 0.399, R20.01 = 0.586. *, significantly different at P<0.05; **, significantly different at P<0.01


3 讨论

3.1 棉花临界磷浓度稀释曲线模型及其验证

磷是棉花生长发育所必需的营养元素,参与大部分生理过程。磷肥的合理运筹不仅可以增加棉花的产量,优化纤维品质,还能促进资源利用效率的提高,但目前我国普遍存在磷肥施用过量[9]、利用率低[10]、污染环境等问题。临界磷浓度可用于磷素营养快速诊断,及时有效地评价植株磷素盈亏水平,为指导合理施肥及实现节肥增效提供理论依据。临界磷浓度的研究已经在多种作物[23]上应用,但在棉花上的应用还未见报道。因此,本文通过设置不同磷敏感性棉花品种的施磷量试验,建立并验证了棉花临界磷浓度稀释曲线模型。本研究中,建立的磷敏感棉花品种鲁54的临界磷浓度稀释曲线模型为Pc=0.784W-0.221,磷弱敏感性品种豫早棉9110的模型为Pc=0.774W-0.198。由模型可知,与磷弱敏感性棉花品种豫早棉9110相比,鲁54的临界磷稀释曲线参数a升高了1.29%,参数b增加了11.62%,即在相同单位生物量条件下,磷敏感性棉花品种鲁54有相对较高的磷浓度,但随地上部干物质重增加,鲁54棉株临界磷浓度递减的速率(参数b)却较高。说明2个棉花品种虽然具有不同的磷敏感性,但在生长初期品种间的临界磷浓度相差并不大,随着生物量增加,磷敏感性棉花品种鲁54临界磷浓度下降较磷弱敏感性棉花品种豫早棉9110快,因而表现出对磷更敏感的特性。与前人在马铃薯[23,25]和梯牧草[22]的成熟草皮研究结果相比,本研究建立的模型中,参数a、b均较高;与小麦[24]的研究结果相比,参数a较低;说明不同作物临界磷浓度并不同,因此,有必要在棉花上建立相应临界磷浓度模型,为棉花磷营养管理提供理论依据。

此外,本研究采用2018年的数据对临界磷浓度模型进行了验证,豫早棉9110和鲁54的临界磷浓度稀释模型的RMSE分别为0.1296、0.1383。从验证结果可知,基于生物量的棉花临界磷浓度模型模拟效果较好,且豫早棉9110的模拟效果稍好。与油菜、玉米、小麦等作物的临界磷浓度稀释模型模拟效果相比,本研究建立的模型RMSE相对较小,说明模型模拟的效果相对较好,这可能与作物的不同磷浓度变化特性相关。此外,豫早棉9110和鲁54的临界磷浓度稀释模型n-RMSE的值分别为17.8504%、18.5447%,表明模型的稳定性亦较好,可以作为棉花磷素营养状况判断的工具之一。

3.2 不同磷敏感性棉花品种磷营养诊断及适宜施磷量推荐

PNI是基于作物临界磷稀释模型提出的指标,以实际磷浓度与临界磷浓度的比值来评价磷素营养状况以及定量动态描述作物磷营养状况的变化。本研究中,相同生育时期PNI值随施磷量的增加而增加。本研究还发现,磷营养指数与相对地上部生物量呈现显著正相关,与安志超等[33]在玉米中发现氮营养指数与相对地上生物量呈现正相关结果相似,说明本研究确定的磷稀释曲线模型可以用来评估棉花磷营养状况。

关于棉花最佳施磷量目前已有不少研究。杨鸿杰等[18]研究发现棉花获得最高产的施磷量为158.3 kg P2O5·hm-2,最佳施磷量为146.3 kg P2O5·hm-2。杨明花等[34]研究发现随着施磷量的增加,棉花产量呈现先增加后降低的趋势,最优的施磷量是150 kg P2O5·hm-2。姚银坤等[21]从施磷对产量的影响出发,得到获得最大产量时的施磷量为132 kg P2O5·hm-2。本研究中,施磷量低于150 kg P2O5·hm-2时,2个棉花品种产量随施磷量的增加而增加,且鲁54产量增加幅度大于豫早棉9110,施磷量多于150 kg P2O5·hm-2时,棉花产量增加不显著;棉花地上部生物量在150 kg P2O5·hm-2施磷范围内,随着施磷量的增加而增加,超过此施磷量,生物量增加不显著甚至略有下降;根据2个品种各时期PNI与水平“1”的关系,发现在磷肥用量150 kg P2O5·hm-2时,PNI值整体在1附近,磷肥用量为200 kg P2O5·hm-2时,则表现出磷素盈余现象,施磷量低于150 kg P2O5·hm-2时,PNI小于1,表明磷肥供应不足。综合产量结果与PNI,本研究认为较适宜的棉花施磷量为150 kg P2O5·hm-2,这与王海洋等[19]的研究结果一致。

4 结论

棉花铃数和籽棉产量在150、200 kg P2O5·hm-2施磷量下显著增加,铃数在各施磷量间差异不显著。随生育进程的推进,棉花地上部磷浓度逐渐降低,地上部生物量呈升高趋势。根据地上部生物量和磷浓度的关系,分别建立了不同磷敏感性棉花品种的临界磷稀释曲线模型(鲁54:Pc=0.784W-0.221,豫早棉9110:Pc=0.774W-0.198)。2个稀释曲线模型的RMSE分别为0.1296、0.1383;n-RMSE分别为17.8504%、18.5447%,说明模型有较好的稳定性。棉花磷营养指数PNI随生育进程的推移呈先升高后下降的趋势,在同一取样时期,PNI随施磷量的增加而升高,150 kg·hm-2施磷量时PNI平均值较接近于1。根据棉花籽棉产量在不同施磷量之间的表现及PNI,推荐本地区棉花最佳施磷量为150 kg P2O5·hm-2

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

张炎, 毛端明, 王讲利, 付明鑫, 李磐 . 新疆棉花平衡施肥技术的发展现状
中国土壤与肥料, 2003(4):7-10, 23.

[本文引用: 1]

ZHANG Y, MAO D M, WANG J L, FU M X, LI P . Developing status of balanced fertilization technology of cotton in Xinjiang
Soils and Fertilizers Science in China, 2003(4):7-10, 23. (in Chinese)

[本文引用: 1]

VANCE C P, UHDE-STONE C, ALLAN D L . Phosphorus acquisition and use: Critical adaptation by plants for securing a non-renewable resource
New Phytologist, 2003,157:423-447.

DOI:10.1046/j.1469-8137.2003.00695.xURL [本文引用: 1]

STIAN G, ALEJANDRA Z F, GASTON M, PABLO C, ALEYSIA K, ALEX V . Photosynthetic metabolism during phosphate limitation in a legume from the Mediterranean-type Fynbos ecosystem
Journal of Plant Physiology, 2019,243:153051.

DOI:10.1016/j.jplph.2019.153051URLPMID:31639535 [本文引用: 1]
Phosphorus (P) is an essential mineral, required for crucial plant genetic, metabolic and signaling functions. Under P deficiency, normal physiological function can be disrupted, especially photosynthetic metabolism. The majority of photosynthetic studies of P stress has been on model organisms, and very little is known about plants that evolved on P deficient soils. Aspalathus linearis (Burm.f.) R.Dahlgren, a native to the Mediterranean ecosystem of South Africa was used to study the photosynthetic responses during short-term P limitation. A. linearis seedlings were cultured under glasshouse conditions and exposed to short-term P stress. Leaf photosynthetic gas exchange was coupled with metabolic analyses. In spite of the decline in leaf cellular Pi, the photosynthetic rates remained unchanged. These leaves also maintained their levels of light harvesting and reaction center pigments. The efficiency of the light reactions' utilization of ATP and NADPH increased during P-stress. Leaf glucose levels decreased during P-stress, while sucrose concentrations remained unaffected. These results show that during short-term P-stress, A. linearis can maintain its photosynthetic rates by altering the structural and functional components of the light reactions.

DODDS W K, BOUSKA W W, EITZMANN J L, PILGER T J, PITTS K L, PILEY A J, SCHLOESSER J T, THORNBRUGH D J . Eutrophication of us freshwaters: Analysis of potential economic damages
Environmental Science and Technology, 2009,43(1):12-19.

DOI:10.1021/es801217qURLPMID:19209578 [本文引用: 1]
Human-induced eutrophication degrades freshwater systems worldwide by reducing water quality and altering ecosystem structure and function. We compared current total nitrogen (TN) and phosphorus (TP) concentrations for the U.S. Environmental Protection Agency nutrient ecoregions with estimated reference conditions. In all nutrient ecoregions, current median TN and TP values for rivers and lakes exceeded reference median values. In 12 of 14 ecoregions, over 90% of rivers currently exceed reference median values. We calculated potential annual value losses in recreational water usage, waterfront real estate, spending on recovery of threatened and endangered species, and drinking water. The combined costs were approximately $2.2 billion annually as a result of eutrophication in U.S. freshwaters. The greatest economic losses were attributed to lakefront property values ($0.3-2.8 billion per year, although this number was poorly constrained) and recreational use ($0.37-1.16 billion per year). Our evaluation likely underestimates economic losses incurred from freshwater eutrophication. We document potential costs to identify where restoring natural nutrient regimes can have the greatest economic benefits. Our research exposes gaps in current records (e.g., accounting for frequency of algal blooms and fish kills) and suggests further research is necessary to refine cost estimates.

LEMERCIER B, GAUDIN L, WALTER C, AUROUSSEAU P, ARROUAYS D, SCHVARTZ C, SABY N P A, FOLLAIN S, ABRASSART J,. Soil phosphorus monitoring at the regional level by means of a soil test database
Soil Use and Management, 2008,24(2):131-138.

DOI:10.1111/j.1475-2743.2008.00146.xURL [本文引用: 1]

RAUT P . Determining a critical phosphorus dilution curve for spring wheat
[D]. Norway: Norwegian University of Life Sciences, As, 2017.

[本文引用: 1]

WU Y, LI Y, LI Y, MA Y, ZHAO Y, WANG Y, CHI H, CHEN M, DING Y, GUO X, MIN L, ZHANG X . Proteomic analysis reveals that sugar and fatty acid metabolisms play a central role in sterility of the male-sterile line 1355A of cotton
Journal of Biological Chemistry, 2019,294(17):7057-7067.

DOI:10.1074/jbc.RA118.006878URL [本文引用: 1]

张旺锋, 李蒙春, 勾玲, 杜亮 . 北疆高产棉花养分吸收特性的研究
棉花学报, 1998, 10(2): 33-37, 39-40.

[本文引用: 1]

ZHANG W F, LI M C, GOU L, DU L. Study on the nutrient absorbtion aharacters of cotton with higher productivity in north Xinjiang
Cotton Science, 1998, 10(2): 33-37, 39-40. (in Chinese)

[本文引用: 1]

刘艳飞 . 中国磷矿供需趋势研究
[D]. 北京: 中国地质大学, 2016.

[本文引用: 2]

LIU Y F . Study on supply and demand trend of phosphate rock in China
[D]. Beijing: China University of Geosciences, 2016. (in Chinese)

[本文引用: 2]

杜会英, 冯洁, 郭海刚, 王风, 张克强 . 麦季牛场肥水灌溉对冬小麦-夏玉米产量与磷吸收利用及土壤剖面分布的影响
应用生态学报, 2015,26(8):2379-2386.

URL [本文引用: 2]
Field experiments of winter wheatsummer maize rotation were conducted in North China Plain irrigation area to explore the effects of wheat season irrigation with dairy effluent on grain yield, phosphorus uptake, accumulative phosphorus usage efficiency and phosphorus accumulation in soil. The results showed that the irrigation with dairy effluent significantly improved the yields of winter wheat and summer maize. With the increasing of P2O5 carried by dairy effluent into soil, winter wheat yield increased at first and then decreased. When the P2O5 increased 137 kg·hm-2, winter wheat yield increased to the maximum (7646.4 kg·hm-2) and the phosphorus utilization rate was the highest (24.8%). But excessive phosphorus decreased the winter wheat yield and phosphorus utilization efficiency. Summer maize yield and phosphorus uptake increased with the increase of P2O5 carried by dairy effluent. The summer maize yield increased by 2222.4-2628.6 kg·hm-2 and the phosphorus uptake increased by 13.9-21.1 kg·hm-2 in contrast to the control (CK). Under conventional phosphorus fertilization at 88 kg·hm-2, and the summer maize yield increased by 2235.0 kg·hm-2 compared with CK. As the time of irrigation with dairy effluent increasing, the grain yield increased more significantly. The cumulative phosphorus utilization in this rotation system increased year by year. After six seasons of crop harvest, the cumulative phosphorus utilization rate increased into 40.0%-47.7%. Under the experimental condition, two times of irrigation with the dairy effluents in the winter wheatsummer maize rotation system was the best operating mode.
DU H Y, FENG J, GUO H G, WANG F, ZHANG K Q . Effects of irrigation using dairy effluent on grain yield, phosphorus utilization and distribution in soil profile in winter wheat-summer maize rotation system
Chinese Journal of Applied Ecology, 2015,26(8):2379-2386. (in Chinese)

URL [本文引用: 2]
Field experiments of winter wheatsummer maize rotation were conducted in North China Plain irrigation area to explore the effects of wheat season irrigation with dairy effluent on grain yield, phosphorus uptake, accumulative phosphorus usage efficiency and phosphorus accumulation in soil. The results showed that the irrigation with dairy effluent significantly improved the yields of winter wheat and summer maize. With the increasing of P2O5 carried by dairy effluent into soil, winter wheat yield increased at first and then decreased. When the P2O5 increased 137 kg·hm-2, winter wheat yield increased to the maximum (7646.4 kg·hm-2) and the phosphorus utilization rate was the highest (24.8%). But excessive phosphorus decreased the winter wheat yield and phosphorus utilization efficiency. Summer maize yield and phosphorus uptake increased with the increase of P2O5 carried by dairy effluent. The summer maize yield increased by 2222.4-2628.6 kg·hm-2 and the phosphorus uptake increased by 13.9-21.1 kg·hm-2 in contrast to the control (CK). Under conventional phosphorus fertilization at 88 kg·hm-2, and the summer maize yield increased by 2235.0 kg·hm-2 compared with CK. As the time of irrigation with dairy effluent increasing, the grain yield increased more significantly. The cumulative phosphorus utilization in this rotation system increased year by year. After six seasons of crop harvest, the cumulative phosphorus utilization rate increased into 40.0%-47.7%. Under the experimental condition, two times of irrigation with the dairy effluents in the winter wheatsummer maize rotation system was the best operating mode.

张学昕, 刘淑英, 王平 . 施磷量对棉花磷素吸收利用和产量的影响
农业科技与信息, 2019(10):36-41.

[本文引用: 2]

ZHANG X X, LIU S Y, WANG P . Effects of phosphorus application on phosphorus uptake, utilization and yield of cotton
Agricultural Technology and Information, 2019(10):36-41. (in Chinese)

[本文引用: 2]

SALEEM M F, CHEEMA M A, BILAL M F, ANJUM S A, SHAHID M Q, KHURSHID I . Fiber quality of cotton cultivars under different phosphorus levels
The Journal of Animal and Plant Sciences, 2011,21(1):26-30.

[本文引用: 1]

孙淼, 李鹏程, 郑苍松, 刘帅, 刘爱忠, 韩慧敏, 刘敬然, 董合林 . 低磷胁迫对不同基因型棉花苗期根系形态及生理特性的影响
棉花学报, 2018,30(1):45-52.

DOI:10.11963/1002-7807.smdhl.20180103URL [本文引用: 1]
[Objective] Phosphorus is one of three major required nutrients for cotton growth and development. A phosphorus deficiency will lead to retarded cotton growth, undeveloped roots, and the abscission of buds and bolls, which results in serious reductions in cotton yield and quality. While applied phosphorus is easily fixed in soils, it is mostly transferred to occluded P, which is not available to plants. Therefore, this study aimed to provide theoretical support for the study of response mechanisms to low phosphorus stress and the efficient phosphorus uptake and utilization of different cotton genotypes. [Method] The effects of phosphorus accumulation and utilization, leaf photosynthetic characteristics and root morphology of two genotypes of cotton (CCRI 79 and SCRC 28) were studied in hydroponic cultures having different phosphorus concentrations. [Result] CCRI 79 had higher phosphorus utilization rates of 90.92 mg·mg–1 at the low phosphorus level (KH2PO4 1.0×10–5 mol·L–1) and 23.09 mg·mg–1 at the high phosphorus level (KH2PO4 0.5 mol·L–1) compared with SCRC 28. When phosphorus was deficient, the total root length, total root surface area and total root volume of SCRC 28 increased by 13.05%, 18.78% and 10.50%, respectively, while the total root length, total root surface area and total root volume of CCRI 79 decreased significantly. [Conclusion] Here, we found that SCRC 28 had a root morphology and physiological characteristics that allowed it to adapt to low phosphorusstress, while CCRI 79 utilized phosphorus more efficiently.
SUN M, LI P C, ZHENG C S, LIU S, LIU A Z, HAN H M, LIU J R, DONG H Z . Effects of low phosphorus stress on root morphology and physiological characteristics of different cotton genotypes at the seedling stage
Cotton Science, 2018,30(1):45-52. (in Chinese)

DOI:10.11963/1002-7807.smdhl.20180103URL [本文引用: 1]
[Objective] Phosphorus is one of three major required nutrients for cotton growth and development. A phosphorus deficiency will lead to retarded cotton growth, undeveloped roots, and the abscission of buds and bolls, which results in serious reductions in cotton yield and quality. While applied phosphorus is easily fixed in soils, it is mostly transferred to occluded P, which is not available to plants. Therefore, this study aimed to provide theoretical support for the study of response mechanisms to low phosphorus stress and the efficient phosphorus uptake and utilization of different cotton genotypes. [Method] The effects of phosphorus accumulation and utilization, leaf photosynthetic characteristics and root morphology of two genotypes of cotton (CCRI 79 and SCRC 28) were studied in hydroponic cultures having different phosphorus concentrations. [Result] CCRI 79 had higher phosphorus utilization rates of 90.92 mg·mg–1 at the low phosphorus level (KH2PO4 1.0×10–5 mol·L–1) and 23.09 mg·mg–1 at the high phosphorus level (KH2PO4 0.5 mol·L–1) compared with SCRC 28. When phosphorus was deficient, the total root length, total root surface area and total root volume of SCRC 28 increased by 13.05%, 18.78% and 10.50%, respectively, while the total root length, total root surface area and total root volume of CCRI 79 decreased significantly. [Conclusion] Here, we found that SCRC 28 had a root morphology and physiological characteristics that allowed it to adapt to low phosphorusstress, while CCRI 79 utilized phosphorus more efficiently.

戴婷婷, 盛建东, 陈波浪 . 磷肥不同用量对棉花干物质及氮磷钾吸收分配的影响
棉花学报, 2010,22(5):466-470.

DOI:1002-7807(2010)05-0466-05URL [本文引用: 2]
通过田间试验,研究了磷肥不同用量对棉花干物质积累、产量及氮磷钾吸收、积累、分配的影响。结果表明:增施磷肥可以增加棉花干物质量、产量和氮磷钾素的积累量,但过量施用磷肥增加效果并不明显。当磷肥用量(P2O5)为 75 ~ 150 kg·hm-2 时,对棉花干物质积累、产量和棉花各器官氮磷钾素的积累有明显的促进作用,棉花花铃期干物质积累和棉花各器官氮磷钾的积累量分别比对照平均提高了 24.6%、30.7%、55.9% 和 36.4%;吐絮期干物质积累、产量和棉花各器官氮磷钾的积累量分别比对照平均提高了 33.4%、39.9%、49.1%、47.7% 和 53.0%。
DAI T T, SHENG J D, CHEN B L . Effect of different phosphorus fertilizer rate on dry matter accumulation and the absorption and distribution of nitrogen, phosphorous, potassium of cotton
Cotton Science, 2010,22(5):466-470. (in Chinese)

DOI:1002-7807(2010)05-0466-05URL [本文引用: 2]
通过田间试验,研究了磷肥不同用量对棉花干物质积累、产量及氮磷钾吸收、积累、分配的影响。结果表明:增施磷肥可以增加棉花干物质量、产量和氮磷钾素的积累量,但过量施用磷肥增加效果并不明显。当磷肥用量(P2O5)为 75 ~ 150 kg·hm-2 时,对棉花干物质积累、产量和棉花各器官氮磷钾素的积累有明显的促进作用,棉花花铃期干物质积累和棉花各器官氮磷钾的积累量分别比对照平均提高了 24.6%、30.7%、55.9% 和 36.4%;吐絮期干物质积累、产量和棉花各器官氮磷钾的积累量分别比对照平均提高了 33.4%、39.9%、49.1%、47.7% 和 53.0%。

唐保善, 杨安民, 邢宏宜, 贺道华 . 磷钾肥对棉花产量构成因素及产量的影响
西北农业学报, 2016,25(11):1629-1635.

[本文引用: 1]

TANG B S, YANG A M, XING H Y, HE D H . Effects of P, K fertilizers on cotton yield and yield component factors. Acta Agriculture Boreali-Occidentalis Sinica, 2016, 25(11):1629-1635. (in Chinese)
[本文引用: 1]

胡国智, 张炎, 胡伟, 李青军, 汤明尧, 齐桂红 . 施磷对棉花磷素吸收、利用和产量的影响
中国土壤与肥料, 2010(4):27-31.

[本文引用: 1]

HU G Z, ZHANG Y, HU W, LI Q J, TANG M Y, QI G H . Effects of phosphate fertilizer application on P absorption, utilization and yield of cotton.Soils and Fertilizers Science in China, 2010(4):27-31. (in Chinese)
[本文引用: 1]

胡国智 . 磷肥运筹对棉花生长发育、磷素吸收及产量的影响研究
[D]. 新疆: 新疆农业大学, 2010.

[本文引用: 1]

HU G Z . The effect of phosphate fertilizer operations on the cotton growth phosphorus uptake and yield
[D]. Xinjiang: Xinjiang Agricultural University, 2010. (in Chinese)

[本文引用: 1]

杨鸿杰, 王琪贞 . 盐碱地棉花经济施用磷肥的研究
中国棉花, 1984(3):39-40.

[本文引用: 1]

YANG H J, WANG Q Z . Study on economical application of phosphate fertilizer to cotton in saline alkali soil.China Cotton, 1984(3):39-40. (in Chinese)
[本文引用: 1]

王海洋, 陈建平, 张萼, 蔡立旺, 戚永奎, 施庆华 . 氮磷钾肥施用量及配比对棉花产量的影响
江西棉花, 2011,33(4):25-28.

[本文引用: 1]

WANG H Y, CHEN J P, ZHANG E, CAI L W, QI Y K, SHI Q H . Effect of nitrogen, phosphorus and potassium fertilizer application rate and proportion on cotton yield
Jiangxi Cottons, 2011,33(4):25-28. (in Chinese)

[本文引用: 1]

龚江, 王桂花, 谢海霞, 吕新 . 膜下滴灌氮、磷、钾耦合对杂交棉产量的影响
新疆农业科学, 2010,47(9):1878-1881.



GONG J, WANG G H, XIE H X, X . Effect of nitrogen, phosphorus, kalium coupling on the yield of hybrid cotton under film drip irrigation
Xinjiang Agricultural Sciences, 2010,47(9):1878-1881. (in Chinese)



姚银坤, 张炎, 胡伟, 高媛, 祁永春, 曾雄, 文启凯 . 施磷对长绒棉干物质积累、分配比例和产量的影响
中国土壤与肥料, 2008(5):36-40.

[本文引用: 2]

YAO Y K, ZHANG Y, HU W, GAO Y, QI Y C, ZENG X, WEN Q K . Effects of phosphorus application on biomass accumulation, distribution rate and yield of sea island cotton.Soils and Fertilizers Science in China, 2008(5):36-40. (in Chinese)
[本文引用: 2]

BELANGER G, ZIADI N . Phosphorus and nitrogen relationships during spring growth of an aging timothy sward
Agronomy Journal, 2008,100:1757-1762.

DOI:10.2134/agronj2008.0132URL [本文引用: 6]

ZAMUNER E C, LLOVERAS J, ECHEVERRIA H E . Use of a critical phosphorus dilution curve to improve potato crop nutritional management
American Journal of Potato Research, 2016,93:392-403.

DOI:10.1007/s12230-016-9514-8URL [本文引用: 9]

BELANGER G, ZIADI N, PAGEAU D, GRANT C, HOGNASBACKA M, VIRKAJARVI P, HU Z, LU J, LAFONG J, NYIRANEZA J . A model of critical phosphorus concentration in the shoot biomass of wheat
Agronomy Journal, 2015,107:963-970.

DOI:10.2134/agronj14.0451URL [本文引用: 4]

GOMES M I, MAGNITSKIY S, RODRIGUEZ L E . Critical dilution curves for nitrogen, phosphorus, and potassium in potato group andigenum
Soil Fertility and Crop Nutrition, 2019,111:419-427.

[本文引用: 3]

LI H J, WANG J W, SAIF A, BABAR I, ZHANG H, WANG S S, CHEN B L, ZHOU Z G . Agronomic traits at the seedling stage, yield and fiber quality in two cotton ( Gossypium hirsutum L.) cultivars in response to phosphorus deficiency
Soil Science and Plant Nutrition, 2019,66(2):308-316.

DOI:10.1080/00380768.2019.1709543URL [本文引用: 1]

JUSTES E, MARY B, MEYNARD J M, MACHET J M, THELIER-HUCHE L . Determination of a critical nitrogen dilution curve for winter wheat crops
Annals of Botany, 1994,74(4):397-407.

DOI:10.1006/anbo.1994.1133URL [本文引用: 1]

XUE X, WANG J, WANG Z, GUO W, ZHOU Z . Determination of a critical dilution curve for nitrogen concentration in cotton
Journal of Plant Nutrition and Soil Science, 2007,170:811-817.

DOI:10.1002/jpln.v170:6URL [本文引用: 1]

WILLMOTT C J . Some comments on the evaluation of model performance
Bulletin of the American Meteorological Society, 1982,63(11):1309-1369.

DOI:10.1175/1520-0477(1982)063&lt;1309:SCOTEO&gt;2.0.CO;2URL [本文引用: 1]

刘其 . 基于过程的滴灌春小麦临界氮需求量定量化模拟模型
[D]. 新疆: 石河子大学, 2013.

[本文引用: 1]

LIU Q . Process-based simulation model for the critical nitrogen demand of drip irrigation spring wheat
[D]. Xinjiang: Shihezi University, 2013. (in Chinese)

[本文引用: 1]

YANG J, GREENWOOD D J, ROWELL D L, WADSWORTH G A, BURNS I G . Statistical methods for evaluating a crop nitrogen simulation model
Agricultural Systems, 2000,64(1):37-53.

DOI:10.1016/S0308-521X(00)00010-XURL [本文引用: 1]

JAMIESON P D, PORTER J R, WILSON D R . A test of computer simulation model Arc-wheat1 on wheat crops grown in New Zealand
Field Crops Research, 1991,27(4):337-350.

DOI:10.1016/0378-4290(91)90040-3URL [本文引用: 1]

安志超, 黄玉芳, 汪洋, 赵亚南, 岳松华, 师海斌, 叶优良 . 不同氮效率夏玉米临界氮浓度稀释模型与氮营养诊断
植物营养与肥料学报, 2019,25(1):123-133.

[本文引用: 1]

AN Z C, HUANG Y F, WANG Y, ZHAO Y N, YUE S H, SHI H B, YE Y L . Critical nitrogen concentration dilution model and nitrogen nutrition diagnosis in summer maize with different nitrogen efficiencies
Journal of Plant Nutrition and Fertilizers, 2019,25(1):123-133. (in Chinese)

[本文引用: 1]

杨明花, 姜益娟, 聂万林, 郑明德 . 施磷量对膜下滴灌杂交棉氮磷钾养分吸收利用及产量的影响
干旱地区农业研究, 2010,28(5):75-78.

[本文引用: 1]

YANG M H, JIANG Y J, NIE W L, ZHENG M D . Effect of phosphorus rates on nitrogen, phosphorus and potassium uptake and utilization and yield of hybrid cotton with drip irrigation under membrane
Agricultural Research in the Arid Areas, 2010,28(5):75-78. (in Chinese)

[本文引用: 1]

责任编辑: 杨鑫浩


相关话题/棉花 营养 作物 物质 生育