Nitrogen and Phosphorus Loads and Their Environmental Effects of Animal Manure in Hainan Island from 1988 to 2018
DING Shang,1, FU Yang2, GUO HaoHao1, SONG ChenYang1, LI BoLing3, ZHAO HongWei,1通讯作者:
责任编辑: 岳梅
收稿日期:2019-12-13接受日期:2019-12-30网络出版日期:2020-09-16
基金资助: |
Received:2019-12-13Accepted:2019-12-30Online:2020-09-16
作者简介 About authors
丁尚,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (1365KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
丁尚, 付阳, 郭浩浩, 宋晨阳, 李博玲, 赵洪伟. 海南岛1988—2018年畜禽粪尿氮磷负荷量及环境效应[J]. 中国农业科学, 2020, 53(18): 3752-3763 doi:10.3864/j.issn.0578-1752.2020.18.011
DING Shang, FU Yang, GUO HaoHao, SONG ChenYang, LI BoLing, ZHAO HongWei.
0 引言
【研究意义】近年来,随着经济的发展和农业集约化水平的提高,畜禽养殖业迅猛发展,在供给人们肉类产品的同时,畜禽废弃物的管理不当也带来了严重的环境问题[1],造成耕地氮磷负荷过高[2],水生生态系统富营养化[3,4],病原微生物污染[5]等一系列问题,联合国粮农组织已将畜禽养殖列为世界三大环境污染源之一[6]。因此对畜禽粪污的养分流动进行研究,从资源和环境角度进行优化,对在国家和区域尺度上制定合理布局和方案至关重要。【前人研究进展】目前,就畜禽粪尿资源化利用和环境问题的研究,国内外相关****做了大量工作。如MISHIMA等[7,8]通过明确家畜排泄物的去向估算了粪肥的施用量,提出了合理的施肥水平,并就畜禽粪污的资源化利用做了进一步研究;而BASSANINO等[9]则从环境角度出发,基于气候、土壤类型、作物生产力等数据,开发了一种对不同的农业环境进行空间描述的方法,据此分析了畜禽粪尿的环境效应。也有****[10]引入了畜禽粪尿耕地负荷预警值来评判畜禽粪尿对土地的环境风险。在国家尺度上,王方浩等[11]通过确定估算方法和参数,估算了2003年我国养殖业粪尿产生量以及平均耕地负荷。在此基础上,近年来研究人员就我国畜禽粪尿的能源潜力、还田总量和污染风险进行了系统研究[12,13,14]。在区域尺度上,易秀等[15]以陕西省为研究对象,估算了2006—2010年的畜禽粪尿排放量及负荷量,并评价了其对环境的污染压力;李丹阳等[16]则从空间变化出发,研究了2016年山西省区域畜禽粪污产生量、养分负荷量、能源潜力及环境风险。【本研究切入点】有研究指出,海南单位耕地面积养分污染负荷较高,污染情况较严重[12,17-18]。而《国家生态文明试验区(海南)实施方案》[19]中对农业的生态发展和土壤生态环境提出了高标准要求,因此,明确畜禽粪污耕地负荷及其环境效应对促进海南岛生态建设意义重大。而对于海南省,大多数****[17,20-21]仅从某一年出发,研究中多探讨养殖数量、耕地负荷情况,鲜有在时空尺度上针对该区域畜禽粪尿养分流动、耕地负荷及其环境风险的具体研究。【拟解决的关键问题】以海南岛为研究对象,核算1988—2018年海南岛畜禽粪尿养分产生量以及单位耕地面积氮磷负荷,并通过畜禽粪尿耕地负荷预警值与环境风险指数来综合评价其对环境产生的影响,以期为区域畜禽养殖布局和环境治理提供科学参考。1 材料与方法
1.1 研究区概况
海南岛是我国第二大岛,位于东经108°37′—111°03′,北纬18°10′—20°10′,面积约3.39万平方千米。岛内年平均气温24—27℃,全年无霜冻期,畜禽饲养周期短,出栏率较高,全岛适宜放牧的地区达30%,对发展畜牧业具有较好的潜力。2018年本地有效耕地面积为43.90万公顷,主要集中在沿海平原地区,而中部为山地丘陵地区,耕地面积较小,林地面积相对较大。1988—2018年,海南岛畜牧业快速发展,截至2018年底,畜牧业总产值达245.32亿元,牲畜年出栏量666万头,家禽年出栏量16 011万只,其中肉蛋奶类总产量达84.71万吨[22]。1.2 数据及参数
本研究所需历年海南岛畜禽养殖数量、耕地面积等数据来自1989—2019年《海南省统计年鉴》(通过第三次全国农业普查,统计年鉴数据有所修正,根据2019年海南省统计年鉴,畜禽养殖部分2013—2018年为最新修正数据)。考虑到不同时期及不同地区畜禽饲养周期的差异,选用猪年末出栏量、牛年末存栏量、羊年末存栏量、肉鸡及鸭鹅年末出栏量、蛋鸡年末存栏量作为养殖量进行计算。对于不同地区,畜禽粪尿的排泄系数和养分含量有所差异,不同文献给出的数据也不尽相同,本文采用农业农村部科教司与第一次全国污染普查领导小组办公室于2009年联合发布《第一次全国污染普查畜禽养殖业源产排污系数手册》[23]中南区域(含海南省)的参数,并借鉴张建杰等[24]对参数的修订原则:猪产排污系数=1/3保育期产排污系数+2/3育肥期产排污系数;奶牛产排污系数即为产奶阶段;役用牛产排污系数按育成牛阶段算;肉牛产排污系数按育肥期算;蛋鸡产排污系数按产蛋期算;肉禽产排污系数按肉鸡的产排污系数计算。其他数据,如羊的产排污系数来自耿维等[12]的研究,畜禽鲜重、饲养周期结合调研和文献[24]获得(表1)。
Table 1
表1
表1畜禽粪尿排泄系数及养分含量
Table 1
畜禽种类 Animal category | 鲜重 Fresh weight (kg) | 生长周期 Growth period (d) | 粪尿产生量 Manure production (kg·d-1) | 氮素产生量 N production (g·d-1) | 磷素产生量 P production (g·d-1) |
---|---|---|---|---|---|
猪Pig | 90 | 199 | 3.74 | 36.43 | 4.83 |
奶牛Dairy cattle | 624 | 365 | 50.99 | 353.41 | 62.46 |
肉牛Beef cattle | 316 | 365 | 23.02 | 65.93 | 10.52 |
役用牛Draft cattle | 328 | 365 | 27.63 | 139.76 | 25.99 |
羊Sheep | 35 | 365 | 0.87 | 2.15 | 0.46 |
肉鸡Chicken | 2 | 80 | 0.06 | 0.71 | 0.06 |
蛋鸡Egg-laying hen | 2 | 365 | 0.12 | 1.16 | 0.23 |
鸭Duck | 2 | 210 | 0.06 | 0.71 | 0.06 |
鹅Goose | 4 | 120 | 0.06 | 0.71 | 0.06 |
新窗口打开|下载CSV
1.3 计算公式
1.3.1 畜禽粪尿养分产生量$Q=\sum \limits ^{9}_{i=1}Qi$,Qi=Fi×Ri×Wi×Ni,N(P)
式中,Q为畜禽粪尿养分产生总量;Qi为某一种畜禽粪尿产生量;Fi为饲养总量;Ri为该畜禽饲养周期;Wi为个体鲜重;Ni,N(P)为粪尿中氮或磷养分含量。
1.3.2 单位耕地面积氮磷负荷量 LN(P)=QN(P)/A
式中,LN(P)为单位耕地面积氮磷负荷;QN(P)为粪尿氮磷产生量;A为有效耕地面积。
1.3.3 畜禽粪尿耕地负荷预警值 单位耕地面积氮磷负荷仅反映区域畜禽粪污是否超标,为判定粪尿排放对环境产生的威胁程度,还需要进一步划分污染等级,参考沈根详等[10]提出的方法对海南岛畜禽粪尿单位耕地面积环境效应进行预警和分级。
R=q/p,q=ΣM×T/A
式中,R为预警值,q为畜禽粪尿负荷量。其中,M各类畜禽粪尿量;T为各类畜禽粪尿换算成猪粪当量的换算系数[10];p为以猪粪当量计的有机肥最大适宜施用量,根据沈根祥、刁晓平等[10,25]的研究,此处取45 t·hm-2。
本文的分级参考沈根祥等[10]的研究,将R值分为<0.4、0.4—0.7、0.7—1.0、1.0—1.5、1.5—2.5和>2.5共6个级别,预警级别分别为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ和Ⅵ,对应的污染程度分别为无、稍有、有、较严重、严重和很严重。R值越大,说明畜禽粪污对生态环境的潜在危害越大。
1.3.4 畜禽粪尿氮磷环境风险评估 利用耕地对氮磷的承载力和单位猪的总氮磷排放量,将其他畜禽折算成猪当量,得出畜禽养殖的环境容量与实际养殖总量。
EN/P=A×SN/P,LE=EN/P/r,$CQ=\sum \limits ^{9}_{i=1}D_{N(P)i}/r$
式中,EN/P为耕地总氮磷环境容量;A为有效耕地面积;SN/P为粪肥年施氮磷限量标准,SN=170 kg·hm-2,SP=35 kg·hm-2[26,27];LE为畜禽养殖环境容量;r为单位猪年粪尿总氮磷排放量;CQ为畜禽养殖实际数量;DN(P)i为第i种畜禽粪尿年总氮磷排放量。
根据耿维、朱建春等[12,28]的研究,将实际畜禽养殖总量与50%环境容量比值作为风险指数,对海南岛氮磷污染进行风险评估。
2 结果
2.1 海南岛畜禽粪尿氮磷养分流动情况
由图1-A可以看出,1988—2018年海南岛畜禽粪尿产生总量大致分为3个阶段,1988—2005年呈现持续增长趋势,总量由12.05×106 t增至17.95×106 t,在2006年后出现较大规模下降,降低至11.32×106 t,而2008年后缓慢增长并趋于稳定。这与海南省畜禽饲养量变化情况一致,此外,畜禽粪尿的总量也受畜禽排泄系数和饲养周期等因素影响,由于牛类饲养周期长,排泄系数大,虽然近30多年牛的养殖不占优势,但其粪尿产生量始终较高,同样地,受养殖周期和排污系数影响,禽类排污总量较低,随着猪的养殖总量增加,其排污占比逐渐升高。图1
新窗口打开|下载原图ZIP|生成PPT图11988—2018年海南岛畜禽粪尿排放变化及养分产生量
Fig. 1Changes of manure emissions and nutrient production in Hainan Island from 1988 to 2018
就养分产生量来看(图1-B),粪尿氮磷年际间变化趋势相似,1988—2005年粪尿氮由5.82×104 t增至10.10×104 t,到2006年降至6.78×104 t,此后缓慢增长,2013年以后,由于系数修正,养殖总量较2012年以前差距较大,但从总量变化来看,近年趋于稳定,保持在7.00×104 t。1988—2005年粪尿磷由0.98×104 t增至1.56×104 t,2006年降至1.01×104 t,2007—2012年保持增长的趋势,近年来维持在1.00×104 t。
2.2 海南岛畜禽粪尿单位耕地面积氮磷负荷量
畜禽粪尿单位耕地面积氮磷负荷在一定程度上反映畜禽粪污潜在的环境风险[29],即假定所有粪尿无损失的进入耕地,将土地作为载体从而衡量整个区域水平上的畜禽污染。本文选取欧盟给出的数据(SN=170 kg·hm-2,SP=35 kg·hm-2[26,27])作为粪肥施用限值,研究表明,超过此值即带来氮磷的淋洗损失[27,30]。1993—2005年、2008—2014年间单位耕地面积总氮负荷超标,2005年最高,为242.60 kg·hm-2。近年来,氮负荷有所下降,但也接近限量值,总体反映出较严重的氮素污染。就单位耕地面积磷元素负荷来看,除2002—2005年超过标准限值,其余年份均未超标,近几年更是呈现较低的水平,维持在22.00 kg·hm-2左右(图2)。
图2
新窗口打开|下载原图ZIP|生成PPT图21988—2018年海南岛单位耕地面积总氮和总磷负荷
“—”表示总氮施用限量标准,“
Fig. 2Loads of total nitrogen and phosphorus in unit cultivated land of Hainan Island from 1988 to 2018
“—” means the limited amount of total nitrogen application, “
从区域分布来看,2018年单位耕地面积氮磷负荷量区域差异较大,就氮负荷而言,定安、万宁和澄迈数值较大,分别为288.50、277.28和269.52 kg·hm-2。而东方和临高数值均低于100 kg·hm-2,分别为61.66和78.30 kg·hm-2,与氮元素相比,大部分市(县)磷负荷在土壤限值以下,仅万宁、定安、屯昌、澄迈数值超标,其中定安磷元素负荷最高,为40.35 kg·hm-2,最低的为东方,仅为8.83 kg·hm-2(图3)。
图3
新窗口打开|下载原图ZIP|生成PPT图32018年海南各区域单位耕地面积总氮和总磷负荷
Fig. 3Loads of total nitrogen and phosphorus in unit cultivated land area in Hainan Island in 2018
2.3 海南岛畜禽粪尿耕地负荷预警值
q和R受粪尿产生量的影响,故总体趋势与畜禽养殖粪尿产生趋势一致。但从具体数值来看(图4),1988—2018年海南岛畜禽粪尿耕地负荷预警值始终处于较高水平,大多数年份在1.0—1.5,分级标准中达到Ⅳ级,对环境有较严重的影响。可以看出海南30多年来畜禽粪尿带来的污染超过了耕地可承受负荷,对环境已经有较严重的威胁。其中2005年预警值最高,为1.58,严重影响环境,1990年数值最低,为0.75,对环境有一定影响,近年数值在1.23左右,对环境有较严重的威胁。图4
新窗口打开|下载原图ZIP|生成PPT图41988—2018年海南岛猪粪当量负荷及耕地负荷预警值
Fig. 4Pig manure equivalent load and alarm value in Hainan Island from 1988 to 2018
空间分布上(表2),通过对各地区2018年预警值的计算,仅东方畜禽粪尿耕地负荷量对环境无威胁,R=0.36,此外,大部分市(县)畜禽粪污均对环境带来不同程度的影响,海口、三亚、儋州等地对环境有影响,文昌、保亭影响较严重,而琼海、万宁、屯昌预警值已达到Ⅴ级,对环境产生严重威胁,所有地区中最严重的是定安(2.66)和澄迈(4.59),达到Ⅵ级水平。这在一定程度上反映了海南区域尺度上畜禽粪污总量超过有效耕地可承受范围,多余的养分或通过径流、淋溶损失,或不断积累使土壤板结肥力下降,引发较严重的环境问题[2],并且部分地区(如澄迈)潜在环境问题已达到十分严峻的地步。
Table 2
表2
表22018年海南各地区猪粪当量负荷及对环境的威胁分级
Table 2
地区 Area | 猪粪当量 Pig manure equivalent (×104 t) | 畜禽粪尿负荷量 Load of manure (t·hm-2·a-1) | 预警值 Alarm value (R) | 预警级别 Classification level | 对环境的威胁程度 The threat to environment |
---|---|---|---|---|---|
海口Haikou | 159.61 | 32.67 | 0.73 | Ⅲ | 有Medium |
三亚Sanya | 55.48 | 38.15 | 0.85 | Ⅲ | 有Medium |
五指山Wuzhishan | 14.37 | 43.93 | 0.98 | Ⅲ | 有Medium |
文昌Wenchang | 233.28 | 58.47 | 1.30 | Ⅳ | 较严重Less serious |
琼海Qionghai | 176.86 | 76.73 | 1.71 | Ⅴ | 严重Serious |
万宁Wanning | 188.79 | 98.21 | 2.18 | Ⅴ | 严重Serious |
定安Dingan | 264.48 | 119.48 | 2.66 | Ⅵ | 很严重More serious |
屯昌Tunchang | 103.73 | 77.51 | 1.72 | Ⅴ | 严重Serious |
澄迈Chengmai | 631.61 | 206.37 | 4.59 | Ⅵ | 很严重More serious |
临高Lingao | 75.57 | 23.75 | 0.53 | Ⅱ | 稍有Slight |
儋州Danzhou | 143.13 | 27.72 | 0.62 | Ⅱ | 稍有Slight |
东方Dongfang | 75.51 | 16.39 | 0.36 | Ⅰ | 无None |
乐东Ledong | 115.36 | 38.08 | 0.85 | Ⅲ | 有Medium |
琼中Qiongzhong | 28.71 | 28.66 | 0.64 | Ⅱ | 稍有Slight |
保亭Baoting | 29.18 | 48.57 | 1.08 | Ⅳ | 较严重Less serious |
陵水Lingshui | 48.05 | 40.68 | 0.90 | Ⅲ | 有Medium |
白沙Baisha | 30.61 | 26.29 | 0.58 | Ⅱ | 稍有Slight |
昌江Changjiang | 58.12 | 24.60 | 0.55 | Ⅱ | 稍有Slight |
新窗口打开|下载CSV
2.4 海南岛畜禽粪尿氮磷环境风险
由1.3.4中公式核算出海南岛畜禽养殖的环境容量和实际养殖总量,为保持种植业和养殖业的合理发展,实际养殖量应达到或接近50%养殖容量[12]。过高即超过土壤环境实际容纳量,其畜禽粪污有污染环境的风险,利用实际畜禽养殖总量与50%环境容量比值作为风险指数,对区域环境风险进行评估。以氮为基准(图5-A),受耕地面积限制,海南岛1988—2018年耕地总氮的养殖容量保持在0.055亿头猪当量,实际养殖总量在0.044—0.076亿头猪当量之间;以磷为基准(图5-B),畜禽养殖容量在0.085亿头猪当量左右,实际养殖总量在0.055—0.096亿头猪当量之间,与耿维、朱建春等[12,28]在全国范围研究上估算海南的数值差距较大,原因是在全国尺度上,前人基于《中国统计年鉴》,在核算耕地面积时使用总耕地面积,而本文作者认为使用有效耕地面积作为畜禽粪污承载场所更符合实际情况。由图5可以看出,1988—2018年环境风险指数均高于1.00,即海南岛30多年来畜禽养殖均超过农地合理的环境容量,存在环境风险。其中数值较高的年份为2005年,环境风险指数为2.85(以氮计)和2.14(以磷计)。近年随着养殖总量的控制,2018年环境风险指数下降到1.99(以氮计)和1.32(以磷计)。
图5
新窗口打开|下载原图ZIP|生成PPT图51988—2018年海南岛畜禽养殖的养殖容量、实际养殖总量及环境风险指数
Fig. 5Feeding capacity, actual amounts and environmental risk index of livestock and poultry in Hainan Island from 1988 to 2018
在空间分布上(表3),以氮为基准,2018年各地区仅有东方和临高畜禽养殖未超过当地50%的养殖容量(即环境风险指数在1.00以下),海口、文昌等7个地区环境污染指数介于1.00—2.00,有较高的环境风险,三亚、五指山、定安等9个地区环境风险指数高于2.00,有严重的环境风险,其中定安在区域范围内风险值最高,为3.39。以磷为基准,2018年东方、临高和昌江环境风险指数在1.00以下,可认为畜禽粪污对环境影响较小。海口、三亚、文昌等11个地区环境风险指数介于1.00—2.00,有较高的环境风险,万宁、定安等4个地区环境风险指数高于2.00,有严重的环境风险,定安数值最高,为2.31。
Table 3
表3
表32018年各地区畜禽养殖的环境容量、实际养殖总量及污染风险指数
Table 3
地区 Area | 承载力 Loading capacity (t) | 养殖容量(万头猪当量) Feeding capacity | 实际养殖量(万头猪当量) Actual amounts | 环境风险指数 Environmental risk index | ||||
---|---|---|---|---|---|---|---|---|
N | P | N | P | N | P | N | P | |
海口Haikou | 8305 | 1710 | 62.46 | 96.99 | 55.44 | 56.07 | 1.78 | 1.16 |
三亚Sanya | 2472 | 509 | 18.59 | 28.87 | 20.66 | 21.29 | 2.22 | 1.48 |
五指山Wuzhishan | 556 | 115 | 4.18 | 6.50 | 5.30 | 5.53 | 2.53 | 1.70 |
文昌Wenchang | 6782 | 1396 | 51.01 | 79.21 | 48.09 | 46.45 | 1.89 | 1.17 |
琼海Qionghai | 3918 | 807 | 29.47 | 45.76 | 39.31 | 35.66 | 2.67 | 1.56 |
万宁Wanning | 3268 | 673 | 24.58 | 38.16 | 40.09 | 41.81 | 3.26 | 2.19 |
定安Dingan | 3763 | 775 | 28.30 | 43.94 | 48.03 | 50.66 | 3.39 | 2.31 |
屯昌Tunchang | 2275 | 468 | 17.11 | 26.57 | 26.92 | 28.92 | 3.15 | 2.18 |
澄迈Chengmai | 5203 | 1071 | 39.13 | 60.76 | 62.04 | 60.99 | 3.17 | 2.01 |
临高Lingao | 5410 | 1114 | 40.69 | 63.18 | 18.74 | 19.76 | 0.92 | 0.63 |
儋州Danzhou | 8777 | 1807 | 66.01 | 102.51 | 60.58 | 60.13 | 1.84 | 1.17 |
东方Dongfang | 7834 | 1613 | 58.92 | 91.49 | 21.37 | 23.09 | 0.73 | 0.50 |
乐东Ledong | 5149 | 1060 | 38.73 | 60.14 | 36.68 | 43.17 | 1.89 | 1.44 |
琼中Qiongzhong | 1703 | 351 | 12.81 | 19.88 | 11.24 | 11.74 | 1.76 | 1.18 |
保亭Baoting | 1021 | 210 | 7.68 | 11.93 | 11.09 | 11.32 | 2.89 | 1.90 |
陵水Lingshui | 2008 | 413 | 15.10 | 23.45 | 19.90 | 23.29 | 2.63 | 1.99 |
白沙Baisha | 1979 | 408 | 14.89 | 23.12 | 11.95 | 11.85 | 1.61 | 1.03 |
昌江Changjiang | 4016 | 827 | 30.20 | 46.90 | 19.41 | 21.80 | 1.29 | 0.93 |
新窗口打开|下载CSV
3 讨论
3.1 海南岛畜禽粪尿氮磷产生变化分析
畜禽养殖规模和养殖结构在一定程度上影响了畜禽粪污总量。在不同历史时期,畜牧业发展规模不同,人们对蛋白质的需求成为刺激畜牧业发展最重要的因素[31],近年来畜牧业集约化水平的提高也促进了养殖规模的进一步扩大。而在2007年后,畜牧业发展被赋予资源高效性和环境友好型等要求,单纯追求量的突破已经不适应新的发展需求[32]。且在2006年后,受疫病和台风等自然条件的影响,畜禽产量出现了较大幅度下降[18],畜禽粪污含量随之减少。此外由于养殖结构的不同,区域污染物排放也会有所差异,牛和猪的产排污系数较高,家禽的产排污系数较低,尽管近年家禽的养殖总量有较大增长,但氮磷排放量较前期未有明显变化。正如YUAN等[33]研究表明,针对动物饮食结构的调整可较好地控制畜禽粪污总量。3.2 海南畜禽养殖的耕地负荷分析
研究表明,海南岛30多年来耕地畜禽粪便氮负荷较高,有潜在的环境风险,而磷负荷在合理范围内,这与武淑霞等[34]基于2015年全国尺度的研究相近(海南单位耕地面积氮负荷超过150 kg·hm-2,磷负荷低于30 kg·hm-2),而与刘越等[20]基于2011年对海南研究中的磷负荷有一定差异,原因是基于不同标准,刘越等采用的磷排污系数相对较高,这也反映出在不同的标准下研究结果会有所差异。就耕地负荷的风险来讲,耿维、朱建春等[12,28]研究也表明海南在全国范围处于较严重水平。由于海南地区耕地面积较小,30多年来有效耕地面积维持在40万公顷左右,而畜禽养殖过程中氮排污系数较高,随着养殖总量的增加,其对耕地的压力越来越大。就磷元素来讲,则主要由于动物粪便中磷的排放系数较低使得耕地磷负荷量较小。在空间上,为优化资源配置,海南划分“西部优势畜牧业产区,中部生态畜牧区,东部畜牧适度发展区”[35],因而澄迈(西部)畜牧业规模较大,畜禽粪污耕地负荷较高,而定安、万宁等地虽在中东部,但由于耕地面积较小,氮磷负荷也保持在较高水平,故仍需进一步控制当地畜禽养殖规模,东方、临高等地(西部)由于耕地面积较大,对畜禽粪污有较好的承载能力,氮磷负荷较低,为满足生产需求,可进一步扩大养殖规模。3.3 海南畜禽养殖的环境效应分析
值得指出的是,为得出畜禽粪尿耕地负荷预警值和环境风险指数,在计算过程中,使用的是畜禽粪污产生的总量,但在实际情况下,由于挥发、淋溶以及在运输过程中的损失,畜禽粪尿无法全部进入耕地中,则基于公式得出的数值无法真正反映出其对环境的实际污染,但区域内污染物总量保持不变,故以耕地作为载体,据此可以反映区域内畜禽粪污总体的负荷量,进而判断对环境是否具有威胁。关于海南畜禽养殖的耕地负荷预警值,周祖光、刘越等[17,20]曾进行相关研究,由于选择的排污系数不同,结果与本文在对应的年份数值不完全一致,但差异不大。在全国尺度上,前人就海南耕地负荷预警值和环境风险指数也有研究[12,28,36],不同年份的研究结果均显示海南有较高的环境威胁,而本文研究结果显示污染风险更高。原因是基于不同年鉴,所得到的耕地面积不同(前人统计了总耕地面积,本文采用有效耕地面积),前人研究时,针对海南有较多的土地去承受畜禽粪污,故预警值和风险值均较小。但从结果上,所有研究均指出海南地区耕地氮磷负荷量较高,环境威胁严重,因而有必要采取总量控制、污染预防和资源化利用等手段。在区域研究中,东部市(县)的环境威胁要高于西部市(县),这主要与区域耕地面积和养殖规模有关,而海南省现代农业“十三五”发展规划(2016—2020)中对东部地区作出了适度发展畜牧业的要求[35],故在今后发展中应进一步通过总量控制和污染防治减轻其对环境的威胁。其中定安、澄迈等地数值更是处于较高水平,环境风险较大,今后应加强针对这两个区域的污染预防。3.4 关于海南岛畜禽粪污控制的对策
由畜禽业快速发展产生的大量畜禽粪污已经成为大多数区域生态环境污染的直接或间接因素[37],针对畜禽粪污带来的问题,GARRETT等[38]认为应综合作物-畜禽系统的发展,提高农业的可持续性;马林等[39]建议考虑生产布局并加强区域间协同发展。本文综合前人研究和本地发展实际,认为应从管理和技术两大方面出发,具体如下:(1)管理上首先统筹区域布局,不仅仅按照西部、中部和东部这种较宽泛的养殖区划分,而是充分考虑耕地面积,以及中部林地面积对发展林下畜牧业的可能性,同时因地制宜推广种养结合模式;其次是从立法和管理条例角度[40],政府对集约化养殖场进行结构调整、管理和排污限度划分;此外,推进畜禽粪污资源化、能源化途径,如沼气工程和有机肥厂建设。(2)针对一定规模的畜禽养殖场可以考虑精细畜牧养殖模式(PLF),即采用相关电子设备监控场内环境(包括微环境和气体排放)以达到及时处理的效果[41],另外,按照“废弃物+清洁能源+有机肥”三位一体技术路线,改造完善规模畜禽场基础条件,对粪污进行固液分离、厌氧消化和好氧生物处理[42],同时推广多原料全混式发酵、全自动高温好氧发酵等技术。与此同时,基于循环利用的原则,开发畜禽粪污作为水产养殖饲料的利用方式和处理技术,以及大力开发和推广蚯蚓转化畜禽粪便和秸秆等农业废弃物的蚯蚓粪肥技术。4 结论
受养殖规模、饲养周期和排污系数等影响,1988—2018年海南岛畜禽粪尿总量和氮磷养分产生量大致经历了上升、下降和稳定3个发展阶段。当前海南岛单位耕地面积氮负荷较严重,接近施用限值,区域间差异较大,呈现东高西低的特点,大多数市(县)氮负荷超标,而磷负荷总体在合理范围内。就环境风险来看,畜禽粪尿耕地负荷预警值和环境风险指数均反映出30多年来海南畜禽粪污潜在环境影响严重,东部地区对环境的威胁要高于中西部地区。产生这一系列变化的原因与当前畜禽养殖规模、有效耕地面积和区域养殖布局有关,当前较为粗放式的畜禽养殖和管理方式已难以适用于海南岛农业绿色发展要求,为减少畜禽粪污带来的环境问题,应着力于提升技术和管理水平,通过集中处置、循环利用等手段降低畜禽粪污向环境的排放量,推广种养结合模式加快对粪肥的处理,以及针对区域发展合理布局养殖规模,保证土地对畜禽粪污的有效消纳。
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
,
DOI:10.1016/j.jclepro.2016.02.104URL [本文引用: 2]
,
DOI:10.1126/science.1155398URLPMID:18388279 [本文引用: 1]
,
DOI:10.1111/j.1365-2427.2007.01950.xURL [本文引用: 1]
,
DOI:10.1023/A:1023690824045URL [本文引用: 1]
Livestock production has undergone massive industrialization in recent decades. Nationwide, millions of swine, poultry, and cattle are raised and fed in concentrated animal feeding operations (CAFOs) owned by large, vertically integrated producer corporations. The amount of nutrients (nitrogen and phosphorus) in animal manure produced by CAFOs is enormous. For example, on the North Carolina Coastal Plain alone an estimated 124,000 metric tons of nitrogen and 29,000 metric tons of phosphorus are generated annually by livestock. CAFO wastes are largely either spread on fields as dry litter or pumped into waste lagoons and sprayed as liquid onto fields. Large amounts of nitrogen and phosphorus enter the environment through runoff, percolation into groundwater, and volatilization of ammonia. Many CAFOs are located in nutrient-sensitive watersheds where the wastes contribute to the eutrophication of streams, rivers, and estuaries. There is as yet no comprehensive Federal policy in place to protect the environment and human health from CAFO generated pollutants.
URL [本文引用: 1]
,
DOI:10.1080/00380768.2012.658581URL [本文引用: 1]
,
DOI:10.1016/j.biombioe.2011.09.009URL [本文引用: 1]
,
DOI:10.1016/j.ecolind.2010.05.005URL [本文引用: 1]
Regionally mandated budgets often ignore important sub-regional differences. To help identify hot-spots, where environmental pressures and agricultural activities combine and heighten the need to optimise farming strategies, we recommend using detailed spatial target analysis.
In this paper, we propose a methodology for identifying different agro-environments, test that method in a case-study territory in the western Po River plain (the largest and most intensive agricultural area in Italy), and then calculate the nutrient budget indicators of these defined agro-environments as a means to assess environmental sustainability.
We identified five Macro Land Units (MLUs) representing five different agro-environments from official datasets and territorial surveys, detected and quantified land use, crop productivity, and fertilisation management in these MLUs, and calculated nutrient budgets according to the IRENA European methodology. As expected, the highest nutrient surpluses (103, 39, and 95 kg ha(-1) for N, P. and K, respectively) were detected in the most intensely managed area. N surpluses were attributed to excess mineral inputs and P surpluses to excess organic inputs. At the territorial scale, the manure N load was far below the 170 kg ha(-1) threshold; at the crop scale, maize showed the least-optimised fertilisation management.
This work suggests that GIS-based analysis of environmental pressures of agricultural activities at a sub-regional level is useful for identifying areas and crops for which fertilization must be well managed. The proposed methodology depends on accurate collection and collation of farm data into GIS databases; public authorities should promote investment in planning and managing data collection in agriculture. (C) 2010 Elsevier Ltd.
,
[本文引用: 5]
[本文引用: 5]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 8]
[本文引用: 8]
,
[本文引用: 1]
,
DOI:10.1021/acs.est.8b02651URLPMID:30059205 [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 3]
[本文引用: 3]
,
DOI:10.3864/j.issn.0578-1752.2019.05.008URL [本文引用: 2]
DOI:10.3864/j.issn.0578-1752.2019.05.008URL [本文引用: 2]
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 3]
[本文引用: 3]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 2]
随着国家经济的高速发展和人民饮食结构的改变,畜禽养殖业由传统粗放式向规模化、集约化快速转变,畜禽粪尿的循环利用及其对环境的风险评价值得关注.本文利用统计资料和文献数据,通过使用食物链养分流动模型(NUFER)与GIS相结合,深入分析了山西省畜禽养殖量的变化特征,模拟了畜禽粪尿的产生量及其氮、磷养分的资源量,并从时空维度评价了山西省畜禽粪尿资源量及其环境风险.结果表明: 1978—2012年,山西省畜禽粪尿的产生量由1.61×107 t增加至2.75×107 t,增幅达1.71倍,粪尿氮由7.74×104 t增长至17.32×104 t,粪尿磷则由1.09×104 t增长至3.39×104 t,增幅分别达到2.38和3.10倍.除养殖总量增加之外,养殖结构和养殖方式也发生了重大变化.从空间分布看,2012年山西省耕地畜禽粪尿氮、磷承载量呈现晋北、晋中和晋东南高,中北部和西南部低的分布特征,耕地畜禽粪尿养分资源承载量在空间上分布极不平衡,这是区域养殖专业化程度与农业政策共同作用的结果.因此,应通过优化生产布局和区域间养分协同管理等手段,来调控畜禽粪尿的排放与循环利用,减少污染及环境风险,以实现畜禽粪尿养分资源的高效与可持续利用.
URL [本文引用: 2]
随着国家经济的高速发展和人民饮食结构的改变,畜禽养殖业由传统粗放式向规模化、集约化快速转变,畜禽粪尿的循环利用及其对环境的风险评价值得关注.本文利用统计资料和文献数据,通过使用食物链养分流动模型(NUFER)与GIS相结合,深入分析了山西省畜禽养殖量的变化特征,模拟了畜禽粪尿的产生量及其氮、磷养分的资源量,并从时空维度评价了山西省畜禽粪尿资源量及其环境风险.结果表明: 1978—2012年,山西省畜禽粪尿的产生量由1.61×107 t增加至2.75×107 t,增幅达1.71倍,粪尿氮由7.74×104 t增长至17.32×104 t,粪尿磷则由1.09×104 t增长至3.39×104 t,增幅分别达到2.38和3.10倍.除养殖总量增加之外,养殖结构和养殖方式也发生了重大变化.从空间分布看,2012年山西省耕地畜禽粪尿氮、磷承载量呈现晋北、晋中和晋东南高,中北部和西南部低的分布特征,耕地畜禽粪尿养分资源承载量在空间上分布极不平衡,这是区域养殖专业化程度与农业政策共同作用的结果.因此,应通过优化生产布局和区域间养分协同管理等手段,来调控畜禽粪尿的排放与循环利用,减少污染及环境风险,以实现畜禽粪尿养分资源的高效与可持续利用.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/S1573-5214(01)80002-6URL [本文引用: 2]
,
URLPMID:15053104 [本文引用: 3]
This study explores the effects of manure policy options for agricultural land in The Netherlands on nitrate leaching to groundwater, ammonia and nitrous oxide emissions to the atmosphere and on eutrophication of surface waters. The implementation of the farm gate balance MINAS at farm level, with levy-free N surpluses in the range of 300 to 40 kg per ha per year, and levy-free P surpluses in the range of 17.5 to 0.4 kg of P per ha per year, have been examined. Results indicate that nitrate concentrations in the upper groundwater are related to N surplus, land use, soil type and groundwater level. On dry sandy soils, the N surplus has to be below 60 to 140 kg of N per ha per year, depending on land use, to decrease the nitrate concentrations in the upper groundwater to below 50 mg nitrate per litre. Decreases of N and P concentrations in surface waters, upon lowering levy-free surpluses appear relatively small. For improving the ecological state of surface waters, we recommend a combination of low levy-free N and P surpluses with dredging P rich sediments, flushing of ditches, and decreasing discharges from other sources.
,
[本文引用: 4]
[本文引用: 4]
,
DOI:10.1016/j.ocecoaman.2017.03.024URL [本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1016/j.jclepro.2015.07.073URL [本文引用: 1]
,
URL [本文引用: 1]
为准确掌握近年来中国畜禽养殖发展的区域差异及畜禽粪便对环境的污染威胁,该研究利用年平均增长率方法,揭示畜禽养殖量及其氮污染的增长率的区域差异和时序变化规律,分析耕地的畜禽污染负荷。结果表明,近些年中国畜禽养殖业发展迅速,各地区的猪、羊、家禽养殖量的年平均增长率都普遍较高,增幅甚至超过12%;牛和羊的年平均增长率的区域差异较大。畜禽养殖发展基本可分为3个阶段:稳步发展阶段(1980-1995年),全面发展阶段(1996-2006年),现代化发展阶段(2007年-至今)。华北、华中、华南、西南地区畜禽氮污染产生量都较大,华北和东北各省的年平均增长率相对较高,其中河南、四川、山东三省的畜禽养殖的增幅较快、养殖量较大、耕地的氮污染负荷较重。全国平均单位耕地面积的畜禽氮污染负荷达138.13 kg/hm2,其中四川等6省市已达202.98 kg/hm2以上。该研究为全国和各省区农业发展规划和畜禽养殖结构调整提供参考。
URL [本文引用: 1]
为准确掌握近年来中国畜禽养殖发展的区域差异及畜禽粪便对环境的污染威胁,该研究利用年平均增长率方法,揭示畜禽养殖量及其氮污染的增长率的区域差异和时序变化规律,分析耕地的畜禽污染负荷。结果表明,近些年中国畜禽养殖业发展迅速,各地区的猪、羊、家禽养殖量的年平均增长率都普遍较高,增幅甚至超过12%;牛和羊的年平均增长率的区域差异较大。畜禽养殖发展基本可分为3个阶段:稳步发展阶段(1980-1995年),全面发展阶段(1996-2006年),现代化发展阶段(2007年-至今)。华北、华中、华南、西南地区畜禽氮污染产生量都较大,华北和东北各省的年平均增长率相对较高,其中河南、四川、山东三省的畜禽养殖的增幅较快、养殖量较大、耕地的氮污染负荷较重。全国平均单位耕地面积的畜禽氮污染负荷达138.13 kg/hm2,其中四川等6省市已达202.98 kg/hm2以上。该研究为全国和各省区农业发展规划和畜禽养殖结构调整提供参考。
,
DOI:10.1016/j.jenvman.2019.04.028URLPMID:31125871 [本文引用: 1]
Identifying the key nodes of the phosphorus flows in animal raising system is fundamental to improve P utilization efficiency and reduce the P contamination. This study established a phosphorus flow analysis model for livestock and poultry raising, depicted P flows for major livestock and poultry under two raising modes, and further analyzed their spatial and temporal distributions. We find that around 15% of P input was transferred into the products, and in P output around 40% lost into the environment in 2015. The P flows have been increasing since 2000, and the main contributor is pigs followed by beef cattle. It should be noticed that P loss from livestock and poultry raising is huge with extensive prospect of recycling in some central provinces of China, and western region where ecological environment is fragile, has a higher P loss rate which need to change the dietary preference and adjust raising structure. As for diets, pork and eggs are better choices than milk or other kinds of meat in terms of reducing the P load, when producing per unit protein or energy. This study contributes to the understanding of P management in husbandry industry, the quantification of environmental loads of animal-based food and the identification of the potential of reducing P loss to realize sustainable utilization of P.
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1007/s13280-012-0249-6URL [本文引用: 1]
Non-point source (NPS) pollution has been increasingly serious in China since the 1990s. The increases of agricultural NPS pollution in China is evaluated for the period 2000-2008 by surveying the literature on water and soil pollution from fertilizers and pesticides, and assessing the surplus nitrogen balance within provinces. The main causes for NPS pollution were excessive inputs of nitrogen fertilizer and pesticides, which were partly the result of the inadequate agricultural extension services and the rapid expansion of intensive livestock production with little of waste management. The annual application of synthetic nitrogen fertilizers and pesticides in China increased by 50.7 and 119.7%, respectively, during 1991-2008. The mitigation measures to reduce NPS pollution include: correct distortion in fertilizer prices; improve incentives for the recycling of organic manure; provide farmers with better information on the sound use of agro-chemicals; and tighten the regulations and national standards on organic waste disposal and pesticides use.
,
DOI:10.1016/j.agsy.2017.05.003URL [本文引用: 1]
,
DOI:10.1016/j.gloenvcha.2014.06.015URL [本文引用: 1]
,
DOI:10.1021/es400456uURLPMID:23656482 [本文引用: 1]
The nitrogen (N) and phosphorus (P) costs of food production have increased greatly in China during the last 30 years, leading to eutrophication of surface waters, nitrate leaching to groundwater, and greenhouse gas emissions. Here, we present the results of scenario analyses in which possible changes in food production-consumption in China for the year 2030 were explored. Changes in food chain structure, improvements in technology and management, and combinations of these on food supply and environmental quality were analyzed with the NUFER model. In the business as usual scenario, N and P fertilizer consumption in 2030 will be driven by population growth and diet changes and will both increase by 25%. N and P losses will increase by 44 and 73%, respectively, relative to the reference year 2005. Scenarios with increased imports of animal products and feed instead of domestic production, and with changes in the human diet, indicate reductions in fertilizer consumption and N and P losses relative to the business as usual scenario. Implementation of a package of integrated nutrient management measures may roughly nullify the increases in losses in the business as usual scenario and may greatly increase the efficiency of N and P throughout the whole food chain.
,
DOI:10.1016/j.biosystemseng.2016.12.005URL [本文引用: 1]
,
[本文引用: 1]