A Comparative Study Between China and Germany on the Control System for Agricultural Source Pollution
ZHANG WeiLi1, ZHANG RenLian1, JI HongJie1, KOLBE H2, CHEN YinJun11 Institute of Agricultural Resources and Agricultural Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China 2 S?chsische Landesanstalt für Landwirtschaft, Waldheimer Stra?e 219, D-01683, Germany
Received:2019-12-4Accepted:2020-02-13Online:2020-03-01 作者简介 About authors 张维理,E-mail:zhangweili@caas.cn
摘要 已有许多研究证实防治农业生产过程中氮磷进入水域以及氮素进入大气环境已成为现代农业面临的最大挑战之一。为分析中国在农业源污染防控中存在问题,本文对中国和德国近年来颁布的相关法律、法规、技术标准和实施效果进行了综述和比较分析。研究显示,与中国相似,德国人均耕地资源比较少,以家庭农场为单元的经营方式是德国农业的主要生产方式。农业存在经营规模相对小而分散,受气象条件和市场影响风险大、利润薄、需要财政补贴才能生存等问题。对于农业源污染治理,既要实现环境目标,也要顾及农民利益、农业发展和粮食安全,难以简单采用关、停、并、转等行政指令和惩罚性措施,主要是建立和实施农业源污染管控制度。为提高农民施肥技术水平,减少农田化肥养分投入量,德国最有效的做法是在长期试验研究基础上,为农民专门设计和制作了一套比较完整的分区、分类、量化施肥技术指标和规程,这些指标简单、易记、易懂,对不同地区土壤和气候条件有良好适用性,易于推广和普及,对于提高农民施肥技术水平,实现减肥增产、减肥高产发挥了重要作用。在防治农业源氮磷进入水环境,化合态氮进入大气环境方面,德国主要做法是研究、建立和实施一系列与经济奖惩措施关联的限定性技术标准,对农田氮素养分投入量、农田氮磷盈余量、施肥期、施肥方法、种植作物类型等给出了明确的规定和技术指标。同时不断探索新的、更有效的监管和监测方法,充分发挥经济杠杆作用,鼓励、帮助和疏导农民广泛采用更先进、更精准和环境友好的替代技术。农业源污染管控制度的实施使得自20世纪80年代以来,德国农田化肥养分投入量减少了一半,以农田面积(耕地面积与长期作物面积之和)计化肥养分量从404 kg·hm -2减少到目前的192 kg·hm -2,仅为目前中国的53%,同期粮食单产仍提高了56%,从4 779 kg·hm -2增加到目前的7 464 kg·hm -2,比中国目前粮食单产仍然高37%。中国至今缺少为农民专门设计、适合农民认知和直接采用的量化施肥技术指标。目前也无与国家及地方政府奖惩政策关联的限定性技术标准出台,无论在全国范围,还是在重点流域,至今难以形成有制度性保障的农业源污染管控体系。在占作物总播面23.6%的蔬菜、水果、花卉等高收益作物农田上,农民盲目施肥、过量施肥情形普遍,在这类农田上,氮磷养分盈余量远超过德国肥料法规所规定的环境安全限量(50 kg N·hm -2、10 kg P2O5·hm -2)。比较研究还显示,实施农业源污染管控制度的核心是以创新研究带动法律、法规、相关技术标准和监管方法的出台和广泛实施。而中国近年来公益性土壤肥料专业科研机构的均质化、碎片化,以及科研机构在绩效考核中对SCI论文点数、发文量等量化指标的过分倚重,使得相关研究薄弱,亟需加以改进。 关键词:农业源污染;施肥技术;农业环境标准;农民用技术指标;污染管控制度;中国;德国
Abstract A lot of studies has demonstrated that preventing nitrogen and phosphorus from agricultural production into water and atmospheric environments has become one of the largest challenges facing modern agriculture. In order to understand status and problems existing in pollution control from agricultural sources in China, a comparative study between China and Germany on the control systems for agricultural source pollution was carried out. The relevant laws, regulations and technical standards issued by China and Germany were reviewed and summarized, and implementation effects of these regulations in recent years were compared. Study showed that similar to China, because of the short of per capita arable land resources in Germany, the family farm has been the main management form for agriculture in Germany. Farmers in Germany had always to face several problems, such as relatively small management scale, scattered fields, high risks and low profits, due to meteorological and marketing uncertainties. Financial subsidy by government has been essential to farmer’s surviving and agricultural development in Germany. Thus, attentions should always be paid not only on environmental objectives, but also on farmer’s interests, agricultural surviving and food security. In such conditions, main approach for agricultural source pollution control was to establish and running the control system and mechanisms with institutional guarantee, instead of simply adopting administrative punitive measures to farmers, such as closing, stopping, merging and turning over. For improving farmer’s knowledge and techniques of fertilization with the purpose to cut down fertilizer application amount, the most effective way was to design a complete quantitative criterions for best farmer’s fertilization practices with differentiated regions and classes’ specifications. These simple quantitative criterions were easy to be understood by farmers and applicable to soil and climate conditions in different regions. Subsequently, these quantitative criterions were easy to be disseminated and have contributed greatly in improving crop yield by decreased fertilizer application. For prevention of nitrogen and phosphorus releasing from agriculture into water and atmosphere, main measures in Germany were establishing and implementing a series of technical specifications with legal restriction and punishments, in which nitrogen input, nitrogen and phosphorus surplus of crop land, fertilizing seasons, fertilizing approach as well as crop rotations were clearly regulated. At the same time, new and more effective monitoring and management methods have been studied continuously in the purpose to enhance economic leverage’s role, to encourage and to help farmers for accepting more accurate and environmentally friendly technique alternatives. Through implementing agricultural source pollution control strategies, the fertilizer input of Germany has been reduced by 50% since the 1980s. The average fertilizer application amount in terms of farmland area (arable land area and long-term crop area) has been reduced from 404 kg·hm -2 to 192 kg·hm -2, which was 53% of the current value of China. In the same period, the average grain yield in Germany increased by 56%, from 4 779 kg·hm -2 to 7 464 kg·hm -2, which was about 37% higher than the current value of China. For improving farmer’s knowledge and techniques of fertilization with the purpose to cut down fertilizer application amount, the most effective approach was to design and complete a set of quantitative criterions for best farmer’s fertilization practices with differentiated regions and classes’ specifications. These simple quantitative criterions were easy to be understand by the farmers and applicable to soil and climate conditions in different regions. Subsequently, these quantitative criterions were easy to be disseminated and played important role in improving farmers' fertilization techniques and increasing crop yield continuously by decreased fertilizer amount. Up to now, there has been a lack of quantitative criterions for best fertilization practices designed for farmers in China, which were suitable for farmers' cognition and direct use. Also, there has been no technical specifications related to the national and local government's reward and punishment policies issued. Whether in nationwide or in a watershed case, it was still difficult to operate agricultural source pollution control with institutional guarantee. The area of vegetable, fruit, flowers and other cash crops accounted for 23.6% of the total cropping area in China, which was very common for farmers to apply fertilizer blindly or excessively. In such crop field, the nitrogen and phosphorus nutrient surplus far exceeds the environmental safety limit (50 kg N·hm -2, 10 kg P2O5·hm -2) given by German fertilizer regulations. Up to now, there has been a lack of quantitative criterions for the best fertilization practices designed for farmers in China, which were suitable for farmers' cognition and direct use. Also, there has been no technical specifications issued, which was related to the state or local government's reward and punishment policies for environment protection. Whether in nationwide or in a watershed case, it was still difficult to operate agricultural source pollution control with institutional guarantee. Analysis showed that the core for agricultural source pollution control was to issue and implement relevant laws, regulations, technical standards and monitoring methods by innovative research works. In recent years, however, the concerning research work has been weakened up due to homogenization and fragmentation of the research institutions, who are originally specialized for applied research works for soil and fertilization. Also, the quantitative evaluation system for scientific contribution and the excessive dependence on papers with high SCI-index has negative influences on the researches for practical use. This needs to be improved urgently. Keywords:agricultural source pollution;fertilization technique;agricultural environment standard;technique criterions for farmers;pollution control system;China;Germany
PDF (466KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 张维理, 张认连, 冀宏杰, KOLBE H, 陈印军. 中德农业源污染管控制度比较研究[J]. 中国农业科学, 2020, 53(5): 965-976 doi:10.3864/j.issn.0578-1752.2020.05.009 ZHANG WeiLi, ZHANG RenLian, JI HongJie, KOLBE H, CHEN YinJun. A Comparative Study Between China and Germany on the Control System for Agricultural Source Pollution[J]. Scientia Acricultura Sinica, 2020, 53(5): 965-976 doi:10.3864/j.issn.0578-1752.2020.05.009
为应对上述问题,自20世纪80年代末以来,德国以科技创新带动农业源污染管控制度建设,通过持续努力,取得一定成效。与20世纪80年代相比,目前德国农田(耕地面积与长期作物面积之和)化肥养分投入量减少了一半[4]。化肥氮磷养分投入量的大幅度消减使地表水富营养化问题明显改善,地下水硝酸盐污染恶化趋势有所缓解。中国人均耕地资源仅0.09 hm2(1.4亩),比德国(人均0.15 hm2,折合2.2亩)更为紧缺。研究显示:中国农业源氮磷流失引起的环境问题,在程度、规模和潜在风险上远超过德国[1,5]。例如,多年来中国蔬菜、水果、花卉等高收益作物农田面积持续增长,在全国范围,高收益的作物播种面积目前已占作物总播面23.6%,发达的沿海省份平均达到31.2%[6]。在这类农田上,农民盲目施肥、过量施肥现象十分普遍[1],农田氮磷养分盈余量远超过德国肥料法规所规定的环境安全限量(50 kg N·hm-2、10 kg P2O5·hm-2)[7]。中国如何在人均耕地面积少、人口众多、粮食安全压力大条件下,既保障农民利益和农业持续发展,又能有效控制农业面源污染?本文目的是通过比较研究,解析中国在农业源污染管控中存在问题,以便加以改进。
德国于1991年在欧盟水环境保护指导准则下发布了第一个关于畜禽粪便施用的限定性标准,规定各州于每年冬季的11月15日至来年1月31日期间,农田禁止施用流质厩肥[11]。2009年德国根据欧盟水环境保护准则[11]和欧盟于2001年颁布的大气有害气体挥发限量准则[12]颁布了肥料法[13],对农田化肥、畜禽粪便施用量和施肥方法进行了更明确的限定。2017年对2009年版的肥料法做了进一步修订和补充[13],同时首次颁布了肥料施用法规[7]。2017年版肥料施用法规中较重要的限定性规定有:将农田全年通过化肥、有机肥、秸秆还田等农作措施投入的氮素控制在170 kg N·hm-2。不同类型作物农田均需要进行氮磷养分投入产出平衡计算,农田氮素盈余应当控制在50 kg N·hm-2范围内,磷素盈余应当控制在10 kg P2O5·hm-2范围内。
德国所构建的分区、分类、量化技术指标和规程具有两大特点。第一是通过布置在各地的大田定位试验,为农民专门设计和建立了一套可覆盖各地不同自然和农业生产条件的、统一的指标体系架构。在这一架构中,技术指标的科学基础、分级体系、分级释义、考量因素和评价方法全国一致。各地仅允许在全国统一的体系架构下,对各分区权限内的专业参数进行调整[33,34,35,36,37,38,39,40]。全国统一的体系架构提高了各分区技术指标的稳定性和可扩展性,提高了农业的标准化和量化水平,促进了国家层面绿色农业补贴政策与农作措施的直接关联。第二是指标分为前台和后台两个层面,以兼顾指标的科学性和农民对指标的易接受度。前台指标供农民使用,主要特点是简单、易记、易懂,指标分级数和各分级释义全国统一;且很少变化,具有极高稳定性。后台指标则是支持前台指标的相关专业技术参数,允许各地农业科研机构根据本地试验结果,在保证前台指标释义不变前提下进行相应调整。覆盖全域的多点定位试验和前、后台指标结合模式使得分区指标对不同地区的土壤和气候条件有良好适用性,保证了其增产可靠性和环境安全性,农民对其接受度很高。由德国农研联(德国农业试验与研究联合会,Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten,VDLUFA)发布的农田磷钾养分管理[33,34,35]、农田氮磷及有机碳平衡算法[36,37,38]、土壤调酸改土五等级评价[39]、农田质量百分价[40,41]等分区、分类、量化指标成为这类指标的典范。这些量化指标的广泛推广,全面提高了农民科学施肥技术水平,对德国实现减肥增产发挥了巨大作用。
(3)环境友好新技术的审核与发布
为促进新技术的推广和应用,德国有3个联邦层面的农业技术与标准权威机构负责对农业标准、规程、方法、技术及设备进行审核和发布,以保证推荐给农民技术的专业性、科学性和权威性。有130年多年历史的德国农研联(VDLUFA)和德国农业行业协会(DLG,Deutsche Landwirtschafts-Gesellschaft e.V.)主要负责审核和发布各类技术方法、标准和规程。有90多年历史的德国农业技术与设施委员会(KTBL,Kuratorium für Technik und Bauwesen in der Landwirtschaft)侧重于新农业机械与设施的审核与发布。
当科学试验已经证明新的、环境更友好的技术措施和标准具有可行性之后,地方政府在推行这些技术措施时,仍会以奖励性政策为主,对尝试采用新技术措施的农民给予补贴。对于一些只适合通过惩罚性管理措施实现的技术措施,则通常会先给出一个调整期,给农民留出适应新技术标准的年限。例如,在肥料法规中,对于将农田氮、磷盈余量分别控制在50 kg N·hm-2、10 kg P2O5·hm-2范围内的规定,给出的调整期为5年[7]。
农业源污染管控涉及到管理、技术研发、经济、市场、农业与农民多方面问题,是一个复杂的系统工程,且具有长期性,难以在短期见效。新近调查显示,在德国下萨克森州、北威州、巴伐利亚州的一些地区,肥料法规的落实和化肥用量的大幅度消减仍未能控制住地下水硝酸盐含量。养殖业厩肥在农田的高量施用已成为地下水硝酸盐含量超标的主要原因。欧盟已经两次对此问题提出警告,若德国地下水硝酸盐含量继续升高,将向德国每年征收约4亿欧元罚款。为此,近期德国正在考虑再次修改施肥法规,将占德国农田1/3面积的高地下水硝酸盐污染潜势农区的氮用量在原先基础上(170 kg N·hm-2)再减少20%。
为防治农业产生污染,中国自“八五”以来投入巨资,启动了一系列相关科研计划和示范工程,组织相关科研院所进行联合攻关。国家还在全国范围实施了测土配方施肥项目,在重点流域持续实施农业面源污染治理专项,推动减肥增效和农田面源污染管控。为提高科学施肥、环境友好农业技术的标准化和规范化程度,近年来国家、部门和地方颁布了数以百计的科学施肥、绿色农业和生态农业技术标准、规范和规程。尽管国家、各部门和各地已付出很大努力,调查显示,农民施肥技术水平并无明显提升,在蔬菜、水果、花卉等高收益作物农田上,农民盲目施肥、过量施肥现象依然普遍,在这类农田上,氮磷养分盈余量远超过德国肥料法规所规定的环境安全限量(50 kg N·hm-2、10 kg P2O5·hm-2)[1,43]。
就编制限定性技术标准而言,目前中国相关研究基础依然薄弱。中国自然条件与农业生产条件特征与国外相差大,难以套用国外技术标准。例如,德国规定:农田氮磷养分盈余量的最大限量为50 kg N·hm-2和10 kg P2O5·hm-2,按这一限量,中国1/5以上农田均难以达标。中国疆域辽阔,各地气候差异大,编制限定性的技术指标需要因地制宜,考虑到分区、分类。
ZHANG WL, WU SX, JI HJ, KOLBEH . Estimation of agricultural non-point source pollution in China and the alleviating strategies I: Estimation of agricultural non-point source pollution in China in early 21 century Scientia Agricultura Sinica, 2004,37(7):1008-1017. (in Chinese) [本文引用: 5]
FRICKF . Feinstaub vom Acker , 2019(9):78-81. (in German) [本文引用: 1]
THOMPSON RL, LASSALETTAL, PATRA PK, WILSONC, WELLS KC, GRESSENTA, KOFFI EN, CHIPPERFIELD MP, WINIWARTERW, DAVIDSON EA, TIANH, CANADELL JG. Acceleration of global N2O emissions seen from two decades of atmospheric inversion , 2019. http://doi.org/ 10.1038/s41558-019-0613-7. URL [本文引用: 2]
ZHANG WL, XU AG, JI HJ, KOLBEH . Estimation of agricultural non-point source pollution in China and the alleviating strategies III. A review of policies and practices for agricultural non-point source pollution control in China Scientia Agricultura Sinica, 2004,37(7):1026-1033. (in Chinese) [本文引用: 2]
China Agriculture Statistical Yearbook 2017. Beijing: China Agriculture Press, 2018. ( in Chinese) [本文引用: 2]
NONYM. Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen (Düngeverordnung -DüV) , 2017: 1-46. . (in German) URL [本文引用: 8]
ZHANG WL, JI HJ, KOLBEH, XU AG . Estimation of agricultural non-point source pollution in China and the alleviating strategies II. Status of agricultural non-point source pollution and the alleviating strategies in European and American countries Scientia Agricultura Sinica, 2004,37(7):1018-1025. (in Chinese) [本文引用: 1]
FINKA . Festschrift zum 100jarhrigen Bestehen des Verbandes Duetscher Landwirtscaftlicher Untersuchungungs- und Forschungsanstalten e.V. Darmstadt , 1988: 1-147. (in German) [本文引用: 2]
ANONYM. Statistik und Berichte des BMEL , 2019. https://www.bmel-statistik.de/. (in German) URL [本文引用: 2]
ANONYM. Richtlinie zum Schutz der Gew?sser vor Verunreinigung durch Nitrat aus landwirtschaftlichen Quellen Council Directive 91/676/EEC of 12 December 1991 , 1991: 1-13https://eur-lex.europa.eu/legal-content/. (in German) URL [本文引用: 3]
ANONYM. Richtlinie 2001/81/EG des Europäischen Parlaments und des Rates vom 23. Oktober 2001 über nationale Emissionshöchst- mengen für bestimmte Luftschadstoffe , 2001: 1-9. https://eur-lex.europa.eu/legal-content/. (in German) URL [本文引用: 1]
ANONYM. Düngegesetz. vom 9. Januar 2009 (BGBl. I S. 54, 136) , 2009: 1-13. https://dejure.org/BGBl/2009/BGBl._I_S._54/. (in German) URL [本文引用: 5]
ANONYM. Verordnung über das Inverkehrbringen von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln . 2017: 1-116. https://www.gesetze-im-internet.de/. (in German) URL [本文引用: 3]
ANONYM. Neue Schadstoffregelungen für Düngemittel,Bodenhilfsstoffe, Kultursubstrate und Pflanzenhilfsmittel , 2011: 1-7. https://www.bmel.de/. (in German) URL [本文引用: 1]
ANONYM. Verordnung über die Verwertung von Klärschlamm, Klärschlammgemisch und Klärschlammkompost (Klärschlammverordnung , 2017: 1-47.https://www.gesetze-im-internet.de/. (in German) URL [本文引用: 1]
ANONYM. Gesetz zum Schutz vor schädlichen Bodenveränderungen und zur Sanierung von Altlasten (Bundes-Bodenschutzgesetz- BBodSchG) Ausfertigungsdatum: 17.03.1998 Zuletzt geändert durch 27.9.2017 , 2017: 1-11.https://www.gesetze-im-internet.de/. (in German) URL [本文引用: 1]
ANONYM. Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) Ausfertigungsdatum: 12.07.1999 vom 27. September 2017 (BGBl. I S. 3465) , 2017: 1-33.https://www.gesetze-im-internet.de/. (in German) URL [本文引用: 1]
ANONYM. Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz - BImSchG) , 2017: 1-57.https://www.gesetze-im-internet.de/. (in German) URL [本文引用: 2]
ANONYM. Vierte Verordnung zur Durchführung des Bundes- Immissionsschutzgesetzes (Verordnung übergenehmigungsbedürftige Anlagen - 4. BImSchV) . 2017: 1-32.https://www.gesetze-im-internet.de/. (in German) URL [本文引用: 2]
ANONYM. Futtermittelverordnung FuttMV 1981 die zuletzt durch Artikel 2 der Verordnung vom 18. Juli 2018 (BGBl. I S. 1219) , 2017: 1-39.https://www.gesetze-im-internet.de/. ( (in German) URL [本文引用: 1]
ANONYM. No 1275/2013 of 6 December 2013 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, cadmium, lead, nitrites, volatile mustard oil and harmful botanical impurities , 2017: 1-7.https://eur-lex.europa.eu/legal-content/. (in German) URL [本文引用: 1]
ANONYM. 2019/1869 of 7 November 2019 amending and correcting Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for certain undesirable substances in animal feed , 2017: 1-5.https://eur-lex.europa.eu/legal-content/. (in German) URL [本文引用: 1]
ANONYM. Düngeberatung-Anforderungen und Perspektiven. Tagung des Verbandes der Landwirtschaftskammern e.V. (VLK) und des Bundesarbeitskreises Düngung (BAD) , 2006: 1-84.https://www.chinaagrisci.com/article/2020/0578-1752/www.duengung.net. (in German) URL [本文引用: 1]
ANONYM. Umsetzung der Düngeverordnung. Sächsische Landesanstalt für Landwirtschaft , 2007: 1-166.https://www.Landwirtschaft.Sachsen.de/ LFL. (in German) URL [本文引用: 1]
ANONYM. Phosphor- und Kaliumdün-gung: brauchen wir neue Düngekonzepte , 2010: 1-169. https://www.iva.de/sites/default/files/benutzer/uid/publikationen/tb2010_0.pdf. (in German) URL [本文引用: 1]
ANONYM. Düngebedarfsermittlung und N-Düngung auf Ackerland im Herbst ab 2017 . 2017:1-5.http://www.tll.de/www/daten/pflanzenproduktion/ duengung/. (in German) URL [本文引用: 1]
DLG. Technik zur Ausbringung fester Mineral Duegung , 2017. https://www.dlg.org. URL [本文引用: 1]
ANONYM. Stallgeb?ude erfolgreich errichten Ein Leitfaden für die Landwirtschaft . . 2014:1-31.https://www.lfl.bayern.de/ilt/umwelttechnik/. (in German) URL [本文引用: 1]
VDLUFA. Phosphordüngung nach Bodenuntersuchung und Pflanzenbedarf , 1997:1-8.https://www.vdlufa.de/de/ index.php/fachinformation. (in German) URL [本文引用: 3]
VDLUFA. Phosphordüngung nach Bodenuntersuchung und Pflanzenbedarf , 2018:1-11.https://www.vdlufa.de/ de/index.php/fachinformation. (in German) URL [本文引用: 3]
VDLUFA. Kalium-Düngung nach Bodenuntersuchung und Pflanzenbedarf , 1999: 1-5. https://www.vdlufa.de/ de/index.php/fachinformation. (in German) URL [本文引用: 2]
VDLUFA. N?hrstoffbilanzierung im landwirtschaftlichen Betrieb , 2007: 1-9.https://www.vdlufa.de/de/ index.php/fachinformation. (in German) URL [本文引用: 3]
VDLUFA. Humusbilanzierung: Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland , 2004: 1-12. https://www.vdlufa.de/de/index.php/fachinformation. (in German) URL [本文引用: 2]
VDLUFA. Humusbilanzierung-Eine Methode zur Analyse und Bewertung der Humusversorgung von Ackerland . , 2014: 1-12. . (in German) URL [本文引用: 2]
VDLUFA. Bestimmung des Kalkbedarfs von Acker- und Grünlandb?den , 2000: 1-8. https://www.vdlufa.de/de/ index.php/fachinformation. (in German) URL [本文引用: 2]
ANONYM. Gesetz zur Schätzung des landwirtschaftlichen Kulturbodens (Bodenschätzungsgesetz -BodSchätzG) . 2007: 1-10.https://www.juris.de. (in German) URL [本文引用: 2]
ANONYM. Bodensch?tzungsdurchführungsverordnung-BodSch?tzDV . 2014: 1-114.https://www.juris.de. (in German) URL [本文引用: 1]
ZHANG HZ, TANG JW, YUANS, HUANG SW . Investigation and analysis of greenhouse vegetable fertilization in Tianjin and Hebei Province Soil and Fertilizer Sciences in China, 2018(2):54-60. (in Chinese) [本文引用: 1]
People’s Republic of China Environment Protection Ministry. Technical Guideline on Environmental Safety Application of Chemical Fertilizer:HJ 555—2010. Beijing: China Environmental Science Press, 2010: 1-6. (in Chinese) [本文引用: 1]
People’s Republic of China Agricultural Standard NY/T 1118—2006. Technical Specification of Balanced Fertilization by Soil Testing.2006: 1-13. (in Chinese) [本文引用: 1]
宁省地方标准DB21/T 1288—2008 . 2008: 1-16. (in Chinese) [本文引用: 1]
Local Standard of Liaoning Province DB21/T 1288—2008 Technical Specification of Balanced Fertilization by Soil Testing, 2008: 1-16. (in Chinese) [本文引用: 1]
Local Standard of Gansu Province DB62/T 2273—2012 Technical Specifications for Green Agriculture Recycling County Mode. 2012:1-9. (in Chinese) [本文引用: 1]
Local Standard of Anhui Province DB34/T 1019—2009 Technical Regulation of Fertilization for Middle-season Indica Rice.2009: 1-6. (in Chinese) [本文引用: 1]
Local Standard of Anhui Province DB34/T 1226—2010 Subarea of Paddy Soil and Recommend Fertilization Techniques in Single Mid-Season Rice . 2006:1-6. (in Chinese) [本文引用: 1]
High Efficiency Fertilization of Rapeseed in Rapeseed-Rice Rotation Field High Efficiency Fertilization of Rapeseed in Rapeseed-Rice Rotation Field.2010: 1-8. (in Chinese) [本文引用: 1]
Local Sandard of Anhui Province DB34/T 1427—2011 Technical Regulation of Rice Nitrogen and Phosphorus Reduction Control cultivation in Chaohu Area. 2011:1-9. (in Chinese) [本文引用: 1]
LLocal Standard of Hebei Province DB13/T775—2006 Technical Specification for Saving Fertilizer and Water of Winter Wheat.2006: 1-11. (in Chinese) [本文引用: 1]
Local Standard of Nanjing City DB3201/T 071—2004 Fertilization Specification for Pollution-Free Agricultural Products. 2004:1-6. (in Chinese) [本文引用: 1]
Local Standard of Tianjin City DB12/T 728—2017 Technical Regulation for Efficient and Safe Fertilization of Fruit Vegetables in Greenhouse. 2017:1-5. (in Chinese) [本文引用: 1]
Local Standard of Anhui Province DB34/T 1426—2011 Technical Regulation of Reduced Nitrogen and Phosphorus Fertilization in Covered Field in Chaohu Area.2011: 1-7. (in Chinese) [本文引用: 1]
People’s Republic of China Agricultural Standard NY/T 1105—2006 The Rule of Rational Fertilization Nitrogen Fertilizer.2006: 1-7. (in Chinese) [本文引用: 1]
Local Standard of Hebei Province Zibo City DB3703/T 003-2005 The Rule of Material Input for Pollution-Free Vegetables.2005: 1-6. (in Chinese) [本文引用: 1]
KAGERMEIERE . Deutsche Schweine für China , . (in German) URL [本文引用: 1]