Differences of Main Nutrient Concentration in Wheat Grain Between Typical Locations of the Loess Plateau
WANG Li,1, WANG ZhaoHui,1,2, GUO ZiKang1, TAO ZhenKui1, ZHENG MingJun1, HUANG Ning1, GAO ZhiYuan1, ZHANG XinXin1, HUANG TingMiao1通讯作者:
责任编辑: 李云霞
收稿日期:2019-10-27接受日期:2020-02-16网络出版日期:2020-09-01
基金资助: |
Received:2019-10-27Accepted:2020-02-16Online:2020-09-01
作者简介 About authors
王丽,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (572KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
王丽, 王朝辉, 郭子糠, 陶振魁, 郑洺钧, 黄宁, 高志源, 张欣欣, 黄婷苗. 黄土高原不同地点小麦籽粒矿质元素的含量差异[J]. 中国农业科学, 2020, 53(17): 3527-3540 doi:10.3864/j.issn.0578-1752.2020.17.010
WANG Li, WANG ZhaoHui, GUO ZiKang, TAO ZhenKui, ZHENG MingJun, HUANG Ning, GAO ZhiYuan, ZHANG XinXin, HUANG TingMiao.
0 引言
【研究意义】氮和硫是蛋白质重要组成元素,所有生物体都不可或缺[1]。镁是叶绿素、核酸酶等的重要成分,植物缺镁会严重影响光合作用,人体缺镁会导致精神抑郁、心肌坏死等疾病[2]。铁参与叶绿素合成与呼吸作用,植物缺铁会影响养分吸收,人体缺铁易导致缺铁性贫血等疾病[3]。锌与人体智力发育和免疫功能有关,缺锌易导致智力迟缓、免疫力下降等疾病[4]。目前全球约有1/3人口缺乏铁、锌等矿质营养元素[5,6]。谷物是人体矿质营养元素的重要来源。小麦作为我国三大主粮之一,2016年总产量1.3亿t,占世界总产17.6%[7]。旱地,包括有灌溉条件的旱地,生产的小麦占世界小麦总产量的75%以上[8]。旱地土壤贫瘠、水分缺乏,限制小麦生长和营养元素吸收累积。关注旱地小麦的矿质营养品质对人体健康有重要意义。【前人研究进展】植物吸收的养分主要来源于土壤和肥料。施用化学肥料尤其是氮磷钾肥对作物营养品质或元素含量的影响已有大量报道。在我国灌区,适当增加氮钾基肥,减少后期追肥,可提高弱筋小麦籽粒蛋白质含量[9];增加氮肥用量或追施比例可提高小麦谷醇溶蛋白比例和籽粒氮含量[10];稻田施氮160 kg N·hm-2使水稻籽粒蛋白质含量升高9.80%,籽粒铁和锰含量增加28.96%和22.16%,籽粒铜和锌含量升高58.31%和16.00%[11]。在旱地,施用氮磷肥使高氮小麦品种籽粒氮含量提高37.5%,磷、钾含量分别降低5.9%、11.9%,茎叶氮、磷、钾含量分别增加150.0%、33.3%和28.9%[12];小麦籽粒锌含量随施氮量增加而升高,随施磷量增加而降低,施氮量和施磷量每增加100 kg·hm-2,籽粒锌含量分别增加4.0 mg·kg-1和降低9.2 mg·kg-1[13]。施用微肥或植物生长调节剂对谷物矿质营养品质也有较大影响。在非洲梅克勒大学研究站和梅尔法农民培训中心的试验发现,开花期叶喷25 kg·hm-2硫酸铁与低播种量(125 kg·hm-2)的小麦籽粒蛋白质含量比高播种量(175 kg·hm-2)提高了6.04%[14]。在印度中央邦大学的试验表明,叶喷30 kg·hm-2锌肥可使水稻籽粒和秸秆的氮含量分别增加0.2%和11.46 kg·hm-2 [15]。在塞尔维亚的田间试验发现,开花期施用锆石可显著增加大豆粒重、β-胡萝卜素和铁含量,施用生物调节剂可增加大豆铁和锰含量、降低胡萝卜素含量[16]。西班牙巴斯克试验站研究发现,小麦和油菜籽粒氮与硫含量随施氮量的增加而增加,但施硫对籽粒硫含量无影响[17]。施肥对作物养分含量的影响主要是通过改变土壤养分供应能力来实现的。关于土壤养分供应改变与作物籽粒矿质元素含量关系的田间试验研究大多在同一地点进行。在我国黄土高原旱地,施磷提高了土壤有效磷含量、冬小麦籽粒磷和钾含量,但籽粒氮和锌含量降低[18]。河南旱地试验发现,增施氮肥可提高土壤硝态氮含量进而提高土壤供氮能力,在花后10 d时高肥力田块的小麦旗叶氮含量显著高于低肥力田块[19]。陕西长武旱地试验表明,种植绿肥能培肥土壤,使小麦籽粒氮和锌含量分别增加12.1%和12.6%,但对磷、硫、铁含量无显著影响[20]。近年来,关于不同地点的作物养分含量差异也有报道,但不同地点施肥量差异很大,难以确定导致作物养分含量差异的关键土壤自身因素。山西、陕西、甘肃的试验发现,覆膜栽培促进土壤养分活化和吸收,使小麦籽粒产量提高13.7%,但籽粒硫含量降低9.0%[21]。我国不同麦区的研究表明,叶喷锌肥平均可使籽粒锌含量提高5.2 mg·kg-1,籽粒锌含量变异与土壤pH、有效锌有关[22]。我国主要麦区599个地块取样分析发现,旱地小麦单作区的籽粒锌含量与土壤有效钾、有效锌正相关,与有效铁负相关;麦玉轮作区小麦籽粒锌与土壤有效锌正相关,与有效磷负相关;稻麦轮作区小麦籽粒锌与土壤铵态氮和有效锌正相关[23]。【本研究切入点】可见,关于施用化学肥料、栽培措施、土壤养分供应及理化性质与谷物籽粒矿质元素含量、营养品质及养分吸收利用的关系已有大量研究,但针对同一区域内不同地点土壤养分供应与作物养分含量、养分吸收利用之间的关系的研究较少。【拟解决的关键问题】本研究于2017—2018年选择来自全国不同麦区的20个小麦品种,分别在黄土高原旱地两个不同地点布置相同施肥处理的田间试验,研究不同地点小麦籽粒矿质元素含量差异与土壤理化性质、养分供应的关系并解释背后的营养学机制,为调控作物矿物质营养品质提供理论依据。1 材料与方法
1.1 试验地点概况
试验始于2017年9月在陕西永寿(34°44′N, 108°12′E)和杨凌(34°16′N, 108°04′E)同时开展。永寿平均海拔970 m,年均温10.5℃,试验期间降水量平均600.8 mm;杨凌地处渭河三级阶地,平均海拔525 m,年均温12.9℃,试验期间降水量平均650.6 mm,两地均属典型旱作雨养农业区。小麦为主要粮食作物,采用一年一熟种植,每年9月下旬到10月初播种,次年6月中旬收获。土壤类型为土垫旱耕人为土,播前土壤 (0—20 cm)和(20—40 cm)基本理化特性见表1。夏季休闲期(7、8、9月)降水量永寿分别为55.1、73.4和53.2 mm (图1-a),杨凌分别为48.95、70.1和97.8 mm(图1-b)。Table 1
表1
表12017年冬小麦播种前供试土壤0—40 cm土层理化性质
Table 1
土层 Soil layer (cm) | 地点 Site | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 硝态氮 NO3- -N (mg·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 有效磷 Available P (mg·kg-1) | 速效钾 Available K (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
0-20 | 永寿Yongshou | 8.0b | 13.5a | 0.8a | 8.0a | 0.5a | 19.4a | 140.8a |
杨凌Yangling | 8.1a | 14.1a | 0.8a | 6.4a | 0.2a | 3.3b | 167.5a | |
20-40 | 永寿Yongshou | 7.9b | 12.1a | 0.7a | 18.7a | 0.5a | 13.9a | 121.6b |
杨凌Yangling | 8.2a | 9.3b | 0.6b | 3.9b | 0.0b | 1.2b | 134.8a |
新窗口打开|下载CSV
图1
新窗口打开|下载原图ZIP|生成PPT图1两个试验点2017—2018年休闲期(7—9月)和冬小麦生长季(10月至来年6月)降水量
Fig. 1Precipitation during the fallow (7-9 months) and growing seasons (10-6 months) of winter wheat in 2017-2018 at two experimental sites
1.2 试验设计
两地采用相同的方案。施基肥,包括施氮磷钾肥。施肥量为N 180 kg·hm-2(尿素,N 46%)、P2O5 100 kg·hm-2(过磷酸钙,P2O5 16%)、K2O 75 kg·hm-2(硫酸钾,K2O 52%),种植20个小麦品种。供试小麦品种来自我国不同麦区,其中西北麦区4个,黄淮海麦区14个,长江中下游麦区1个和西南麦区1个。试验采用随机区组设计,小区面积 2.0 m2(2.0 m×1.0 m),常规平作、人工点播,株距 2.5 cm,行距 20 cm,种植 5 行,4 次重复。永寿和杨凌试验分别于2017年9 月29日和10月20日播种,均在次年6月12日和5日收获。整个生育期无灌溉,其他田间管理措施与当地农户一致。1.3 样品采集及测定
1.3.1 土壤样品采集及测定 小麦播前期,采集0— 40 cm土层的土壤,20 cm为一层,每区组5 点,4 次重复,同层样品剔除根系等杂物后混匀取 500 g左右,剩余土壤按层次回填田间并压实。新鲜土样捏碎、混匀,采用烘干法测定土壤含水量[24],1 mol·L-1 KCl溶液浸提、连续流动分析仪 (AA3,德国)测定硝、铵态氮。土样风干后,过1 mm 筛保存后取部分过 0.15和 0.25 mm 筛。过 0.15 mm筛后土样,采用重铬酸钾容量法-外加热法测定有机质,过 1 mm 筛后土样,用水土比 2.5﹕1 浸提测定 pH,用浓硫酸消煮、连续流动分析仪测定全氮,0.5 mol·L-1 NaHCO3溶液浸提、连续流动分析仪测定有效磷,1 mol·L-1中性 NH4OAc 溶液浸提、火焰光度计法测定速效钾[25],硫酸钡比浊法测定有效硫,DTPA-TEA 浸提、原子分光光度法测定有效铁、锰、铜、锌,过 0.25 mm筛后土样,1 mol·L-1 乙酸铵浸提、原子吸收分光光度法测定交换性钙和镁。
1.3.2 植物样品采集及测定 成熟期采用盲抽法[12],在每个品种中间两行随机抽取 30 穗小麦全株,用不锈钢剪刀从根茎结合处剪去根系用做考种和化学分析。样品风干后,称取穗和茎叶风干重,穗脱粒分为籽粒与颖壳,称取籽粒风干重,差减法计算颖壳风干重,并行考种。收割中间两行剩余的小麦,自然风干脱粒,与 30 穗小麦一起用于计产。化学分析样中,不锈钢剪刀将茎叶剪至 1 cm 左右小段后,分别称取籽粒、茎叶和颖壳 20 g左右,用自来水快速冲洗两次、蒸馏水洗3次,90℃杀酶 30 min,65℃ 烘至恒重,计算风干样的含水量、小麦产量、生物量。小麦产量、生物量、千粒重均用烘干重表示。
烘干的植物样用球磨仪(RETSCH MM400,Germany,氧化锆研磨罐)粉碎后,用 H2SO4(95%)-H2O2(优级纯)联合消解,用全自动连续流动分析仪(AA3, SEAL Analytical,Germany)测定消解液中的氮和磷含量,火焰光度计测定钾含量;用浓HNO3-H2O2(优级纯)液微波消解,电感耦合等离子体质谱仪(ICP-MS,美国)测定消解液中的钙、镁、硫、铁、锰、铜、锌含量。不同器官的养分含量均以烘干重为基数表示。
1.4 数据计算与统计分析
籽粒养分吸收量=籽粒养分含量×籽粒产量/1000;地上部养分吸收量=(籽粒养分含量×籽粒产量+茎叶养分含量×茎叶生物量+颖壳养分含量×颖壳生物量)/1000;
养分收获指数=籽粒养分吸收量/地上部养分吸收量×100%。
式中,氮、磷、钾、钙、镁、硫养分含量单位为 g·kg-1,铁、锰、铜、锌养分含量单位为 mg·kg-1,氮、磷、钾、钙、镁、硫吸收量单位为 kg·hm-2,铁、锰、铜、锌养分含量单位为 g·hm-2,籽粒与生物量单位为 kg·hm-2。
试验数据采用 Microsoft Excel 2016 进行整理计算,SigmaPlot 12.5作图,采用IBM SPSS Statistics 22.0 进行方差分析。
2 结果
2.1 产量及产量构成差异
两个地点间,永寿的小麦籽粒产量、生物量、收获指数、穗数分别比杨凌显著高出31.7%、11.3%、18.8%和22.7%(表 2);千粒重显著低于杨凌 4.3%,穗粒数差异不显著。可见,两个地点间产量、生物量、收获指数、穗数均存在差异,穗粒数相对稳定。2.2 土壤养分含量差异
对小麦播前土壤大量营养元素的测定表明,0—20 cm土层全氮、硝态氮、铵态氮、速效钾含量地点间差异不显著,永寿的有效磷含量高出杨凌 4.9 倍(表1);20—40 cm 土层,永寿的全氮显著高出杨凌16.7%,硝态氮、铵态氮、有效磷含量分别高出3.8倍、53倍和10.6倍,速效钾显著低于杨凌 9.7%。可见,永寿土壤氮、磷供应充分,钾相对较低,杨凌钾供应充分,氮、磷较低。Table 2
表2
表2两个地点的小麦籽粒产量、生物量和收获指数及产量构成
Table 2
试验地点 Site | 品种数 Variety number | 籽粒产量 Grain yield (kg·hm-2) | 生物量 Biomass (kg·hm-2) | 收获指数 Harvest (%) | 穗数 Spike number (×104·hm-2) | 穗粒数 Grain number | 千粒重 1000-grain weight (g) |
---|---|---|---|---|---|---|---|
永寿Yongshou | 20 | 5928a | 11995a | 49.4a | 433a | 32a | 44.0b |
杨凌Yangling | 20 | 4502b | 10781b | 41.6b | 353b | 29a | 46.0a |
新窗口打开|下载CSV
分析两地土壤的中微量营养元素发现(表3),0—20 cm土层硫、钙、铁、锰含量地点间差异不显著,永寿的交换性镁、有效铜和有效锌含量显著低于杨凌 54.3%、9.6%和29.8%。20—40 cm土层硫、钙、铁、锰、铜、锌含量地点间差异不显著,永寿的交换性镁含量显著低于杨凌57.9%。结果表明,杨凌土壤交换性镁含量高,0—20 cm 土层有效铜和有效锌含量高。
Table 3
表3
表3播前表层(0—40 cm)土壤的中、微量营养元素含量
Table 3
土层 Soil layer (cm) | 地点 Site | 中量元素Medium element | 微量元素Microelement | |||||
---|---|---|---|---|---|---|---|---|
有效硫 Available S (mg·kg-1) | 交换性钙 Exch.-Ca (g·kg-1) | 交换性镁 Exch.-Mg (g·kg-1) | 有效铁 DTPA-Fe (mg·kg-1) | 有效锰 DTPA-Mn (mg·kg-1) | 有效铜 DTPA-Cu (mg·kg-1) | 有效锌 DTPA-Zn (mg·kg-1) | ||
0-20 | 永寿Yongshou | 9.14a | 36.9a | 1.00b | 5.48a | 10.53a | 1.13b | 0.33b |
杨凌Yangling | 5.69a | 36.6a | 2.19a | 5.26a | 11.64a | 1.25a | 0.47a | |
20-40 | 永寿Yongshou | 9.13a | 37.1a | 1.02b | 5.99a | 9.13a | 1.23a | 0.29a |
杨凌Yangling | 5.46a | 37.6a | 2.42a | 5.63a | 8.75a | 1.44a | 0.24a |
新窗口打开|下载CSV
2.3 籽粒大量营养元素含量差异
分析收获期小麦籽粒大量营养元素含量发现,永寿籽粒氮含量显著低于杨凌 10.6%,磷含量无差异,钾含量显著低于杨凌6.7%(图2-A)。比较两地小麦养分吸收和转移发现,永寿小麦的吸收氮、磷及钾的量显著高出杨凌 17.8%、32.1%和 22.4%(图2-B)。永寿小麦地上部氮、磷吸收量显著高出杨凌 12.5%和 26.5%,钾吸收量差异不显著(图2-C)。氮磷钾养分收获指数永寿显著高出杨凌 4.9%、4.4%和31.4%(图2-D)。说明两地小麦的籽粒大量营养元素含量存在差异,永寿籽粒氮和钾含量显著低于杨凌,籽粒氮、钾吸收量及收获指数显著高于杨凌,地上部氮吸收量显著高于杨凌,钾吸收量地点间差异不显著;两地籽粒磷含量差异不显著,永寿籽粒和地上部磷吸收量及收获指数显著高于杨凌。图2
新窗口打开|下载原图ZIP|生成PPT图2两个地点的冬小麦籽粒氮、磷、钾含量,吸收量和养分收获指数
柱子上部不同小写字母表示在永寿和杨凌各个指标差异显著(P<0.05)。下同
Fig. 2Winter wheat grain N, P and K contents, their uptake and harvest indexes at two experimental sites
Different lowercase letters on the top of columns indicate that differences are significant for the items compared between Yongshou and Yangling(P<0.05). The same as below
2.4 籽粒中量营养元素含量差异
比较两地的中量元素养分发现(图3-A),永寿小麦籽粒的钙、镁含量显著高出杨凌 19.0%和10.3%,硫含量地点间差异不显著。永寿籽粒吸收钙、镁及硫的量显著高于杨凌57.7%、46.1%和34.2%(图3-B),地上部钙、镁、硫吸收量显著高出杨凌 26.2%、18.3%和 27.8%(图3-C),钙、镁、硫养分收获指数显著高出杨凌 23.1%、23.7%和 3.9%(图3-D)。可见,两地小麦籽粒中量营养元素含量存在差异,永寿籽粒钙、镁含量显著高于杨凌,硫含量在两地差异不显著,钙、镁、硫吸收量及收获指数显著高于杨凌。图3
新窗口打开|下载原图ZIP|生成PPT图3两个地点的旱地冬小麦籽粒钙、镁、硫含量,吸收量和养分收获指数
Fig. 3Winter wheat grain Ca, Mg and S contents, their uptake and harvest indexes at two experimental sites
2.5 籽粒微量营养元素含量差异
微量营养元素的测定结果表明,永寿小麦籽粒铁、锰、铜含量显著高出杨凌 9.3%、22.2%和12.7%,锌含量显著低于杨凌 63.1%(图4-A)。比较两地小麦籽粒养分吸收和转移发现,永寿小麦铁、锰、铜吸收量显著高出杨凌 44.6%、62.7%和 48.3%,籽粒锌吸收量显著低于杨凌50.4%(图4-B)。永寿小麦地上部铁、锰、铜的吸收量显著高出杨凌 23.9%、25.8%和 29.0%,地上部锌吸收量永寿显著低于杨凌 53.0%(图 4-C)。分析养分收获指数发现,永寿铁、锰、铜养分收获指数显著高出杨凌 22.6%、31.3%和14.1%,锌养分收获指数地点间差异不显著。说明永寿小麦籽粒铁、锰、铜含量,吸收量和收获指数显著高于杨凌,而籽粒锌含量和吸收量显著低于杨凌。图4
新窗口打开|下载原图ZIP|生成PPT图4两个地点的旱地冬小麦铁、锰、铜、锌含量,吸收量和养分收获指数
Fig. 4Winter wheat grain Fe, Mn, Cu and Zn contents, and their uptake and harvest indexes at two experimental sites
3 讨论
3.1 籽粒氮、磷、钾含量差异
研究表明,永寿的小麦籽粒氮、钾含量低于杨凌,而磷含量两地无显著差异。从两地的土壤养分来看,0—20 cm表层全氮、硝态氮、铵态氮含量地点间差异不显著,但永寿 20—40 cm土层全氮显著高出杨凌16.7%,硝态氮、铵态氮分别高出 3.8倍和 53倍,但较强的下层土壤供氮能力并没有使永寿小麦籽粒含氮量提高。进一步分析原因在于两地的产量和养分吸收差异。虽然永寿的氮收获指数显著高出杨凌4.9%,但地上部和籽粒吸氮量仅高出杨凌 12.5%、17.8%,小麦产量却显著高出杨凌 31.7%,产量稀释效应导致籽粒氮含量低。美国长期定位试验也表明,小麦籽粒含氮量与产量呈负相关[26]。江苏品种试验发现,施磷108 kg·hm-2 时,产量增加 31.8%,籽粒吸氮量增加26.3%,结果蛋白质含量降低3.7%[27]。陕西永寿定位试验还发现,产量每增加1 000 kg·hm-2,小麦籽粒含氮量3年平均降低 1.1 g·kg-1[12],均说明产量增加导致的稀释效应会使籽粒氮含量降低。两土层,永寿有效磷含量分别高出杨凌 4.9和 10.6倍,永寿产量、地上部和籽粒吸磷量显著高出杨凌 31.7%、26.5%和 32.1%,磷收获指数也高出杨凌 4.4%,产量与籽粒吸收增幅比例相近,产量未能对籽粒的磷吸收造成稀释,因而两地点间小麦籽粒磷含量差异不显著。华北平原 44 个地点的调研发现,玉米产量增加 21.3% 时,而总磷吸收量只增加 15.3%,所以籽粒磷含量降低 4.3%[28]。印度新德里盆栽试验表明,磷肥基施,施锌5 kg·hm-2使水稻产量增加 5.92%,吸磷量增加了5.88%,结果籽粒磷含量仅降低 0.06%[29]。均说明产量增加会使籽粒磷含量降低。两地点间, 0—20 cm土层速效钾含量差异不显著,20—40 cm土层永寿速效钾含量显著低于杨凌 9.7%,地上部吸钾量在两地无差异,但永寿籽粒吸钾量和钾收获指数高出杨凌 22.4%和 31.4%,说明在土壤速效钾缺乏的情况下,永寿小麦虽然能将钾优先向籽粒分配,可是永寿小麦产量高出杨凌 31.7%,产量的稀释效应仍导致永寿小麦籽粒钾含量降低,显著低于杨凌。丹麦磷钾肥用量试验发现,由于年份间小麦成熟期降雨量增加,籽粒产量增加 8.4%导致其钾含量降低 11.3%[30]。河北廊坊秸秆还田试验发现,秸秆还田使小麦产量和籽粒中的钾吸收量增加 16.5%和 32.7%,没有引起籽粒钾含量变化,但不同年份间产量和籽粒钾含量呈负相关,其中产量每增加 1 000 kg·hm-2,钾含量平均降低 1 g·kg-1[31]。斯里兰卡品种试验也表明,水稻籽粒钾含量随产量增加而降低[32],均表明产量增加导致的稀释效应会使籽粒钾含量降低。
结果表明,在相同的施肥条件下,永寿的小麦产量高于杨凌。分析永寿和杨凌两地的降雨量发现,10月份(出苗期)时,永寿降雨量高于杨凌,充足的水分利于小麦出苗,4月份小麦拔节至开花期时,永寿充足的降水促进小麦生长发育、有效穗形成和干物质累积,5月份小麦开花期至灌浆期,两地降雨量相近。可见,在小麦生长的关键时期,永寿降雨量高于杨凌,有利于小麦生长发育,是小麦产量提高的关键。小麦对于氮磷钾的吸收离不开土壤养分供应,适量施肥增加了土壤氮磷钾养分供应,从而提高小麦籽粒氮磷钾吸收,但籽粒养分含量能否提高还取决于施肥和土壤养分供应引起的籽粒产量变化。
3.2 土壤养分与籽粒钙、镁、硫含量
研究表明,永寿小麦籽粒钙和镁含量高于杨凌,硫含量在两地差异不显著。从两地的土壤养分来看,两个土层的土壤交换性钙在地点间无显著差异,永寿产量显著高出杨凌 31.7%,但地上部和籽粒钙吸收量分别比杨凌高出 26.2%和57.7%,钙收获指数高出杨凌 23.1%。可见,与产量的变化相比,永寿小麦吸收和向籽粒转移钙的能力更强,故永寿籽粒钙含量显著高于杨凌。这可能与 pH 有关。永寿两土层 pH 显著低于杨凌,有利于活化土壤的钙[33],促进了小麦对钙的吸收。波兰的施肥用量试验发现,钾和钙具有拮抗作用,缺钾肥时可以增加冬油菜和冬小麦营养器官钙含量[34]。两地 0—20 cm土层速效钾含量地点间差异虽不显著,但永寿低于杨凌 16.0%,20—40 cm土层土壤速效钾含量永寿显著低于杨凌,这可能是永寿小麦籽粒钙高于杨凌的另一个原因。永寿两层土壤的交换性镁含量均显著低于杨凌,永寿地上部和籽粒镁吸收量显著高出杨凌 18.3%和 46.1%,养分收获指数显著高出杨凌 23.7%,说明永寿土壤供镁少,但小麦吸收镁的能力强,且向籽粒中分配得多,故永寿籽粒镁含量显著高于杨凌,这可能与土壤速效钾含量低有关。钾对镁的吸收具有拮抗作用[35],钾抑制根系对镁的吸收和向地上部转移[36]。 20—40 cm土层中永寿速效钾含量显著低于杨凌,因而籽粒镁含量显著高于杨凌。pH 与土壤交换性镁具有正相关性[37],0—20 cm和 20—40 cm土层中永寿土壤 pH 显著低于杨凌,可能是其土壤交换性镁显著低于杨凌主要原因。湖北省红壤土盆栽试验研究发现,随施钾用量增加,油菜植株中钙和镁含量呈下降趋势,说明钾与钙镁之间存在着明显的拮抗作用,且钾对钙的影响程度大于镁[35,38]。永寿钙和镁含量显著高于杨凌,这一结果与上述结果一致。
两地点间土壤有效硫虽无显著差异,但永寿两土层有效硫分别高出杨凌 60.6%、67.2%,永寿地上部和籽粒硫吸收量显著高出杨凌 27.8%、34.2%,硫养分收获指数显著高出杨凌 3.9%,说明土壤有效硫充足可以促进小麦对硫的吸收及向籽粒分配,由于永寿产量高于杨凌 31.7%,籽粒对硫的吸收增幅接近产量增幅,没有造成小麦籽粒硫含量差异。有研究指出,氮和硫之间具有协同作用[39],小麦籽粒硫含量每增加 1.0 mg·kg-1,籽粒蛋白质含量增加 1.7%[40]。在有效硫为 5.84 mg·kg-1的土壤上施硫可增加根系和旗叶硝酸还原酶活性,从而增加蛋白质含量[41]。在施氮磷钾的基础上,合理配施硫肥 60 kg·hm-2可促进后期干物质及籽粒氮、硫累积,提高产量[42]。永寿籽粒氮含量显著低于杨凌,籽粒硫含量在两地差异却不显著,与上述结果并不一致。可见,钾与钙和镁之间具有拮抗作用,pH与土壤交换性镁具有正相关性,硫和氮之间具有协同作用,但小麦对硫的吸收和籽粒硫含量取决于土壤的供硫能力及产量变化,因此在实践中适宜施肥及考虑元素间的相互作用对提高籽粒养分含量和产量尤为重要。
3.3 土壤养分与籽粒铁、锰、铜、锌含量
研究表明,永寿籽粒铁、锰和铜含量显著高于杨凌,锌含量显著低于杨凌。从土壤养分来看,土壤有效铁和锰含量地点间无显著差异,永寿地上部和籽粒铁吸收量显著高出杨凌 23.9%和 44.6%,地上部和籽粒锰吸收量显著高出杨凌 25.8%和 62.7%,养分收获指数显著高出杨凌22.6%和 31.3%,说明永寿小麦对铁和锰的吸收及向籽粒分配高于杨凌,产量显著高出杨凌 31.7%,小麦籽粒吸收的增幅高于产量增幅,故永寿籽粒铁和锰含量高。中国小麦主产区的调研发现,籽粒产量每增加 1 000 kg·hm-2,春小麦和冬小麦籽粒铁含量分别降低2.1和1.3 mg·kg-1[43]。河南的田间试验也发现,施氮240 kg·hm-2和施磷 209 kg·hm-2后,小麦产量增加 8.7%,籽粒铁吸收量仅增加 6.6%,因而铁含量降低 1.8%[44]。美国的调研也发现,产量升高,小麦籽粒铁含量每年平均降低 0.3%[45]。印度的品种试验发现,两种锰水平下,小麦产量增加 18.5%,籽粒锰吸收量降低 9.8%,锰含量降低 26.9%[46]。欧洲布拉格的肥料用量试验也发现,大麦籽粒锰含量和产量之间呈负相关,主要由稀释效应导致[47]。均说明产量的稀释效应会使小麦籽粒铁和锰含量降低。本试验中永寿小麦地上部铁和锰吸收量及向籽粒的分配远高于杨凌,使得籽粒养分吸收量增幅高于产量增幅,籽粒锰含量因此高于杨凌。华北任丘、北京、赵县的试验发现,过多的降水不利于小麦对铁和锰的吸收[48],在小麦灌浆期时永寿降雨量低于杨凌,这可能是永寿籽粒铁和锰含量高的另一个原因。分析土壤 0—20 cm土层有效铜含量结果发现,永寿显著低于杨凌9.6%,但永寿籽粒铜吸收量和铜收获指数显著高于杨凌 48.3%和14.1%,产量显著却仅高出杨凌31.7%。说明在土壤铜元素缺乏的情况下,永寿籽粒对铜的吸收和分配高于杨凌,故籽粒铜含量高。在杨凌的田间试验发现,相对于秸秆覆盖,地膜覆盖使小麦产量增加了10.7%,籽粒铜吸收量增加了2.5%,铜含量降低7.5%[49]。泰国的试验发现,相对于干旱胁迫,充分灌水使玉米产量提高14.5%,籽粒铜吸收量增加了13%,铜含量降低1.3%[50]。说明在土壤有效铜缺乏的情况下,永寿小麦对铜的吸收和向籽粒的分配高于杨凌,是其籽粒铜含量高的一个主要原因。pH与土壤有效铜呈极显著负相关[51],pH降低使土壤吸附铜离子的能力降低,因此土壤中有效态铜离子增加[52]。永寿两土层 pH显著低于杨凌,这会促进土壤铜的有效化和小麦对铜的吸收。陕西长武绿肥与冬小麦轮作试验发现,影响土壤有效铜的关键时期是灌浆期[53],永寿灌浆期比杨凌长,这可能是永寿小麦铜含量高的另一个原因。
永寿土壤 0—20 cm 土层有效锌显著低于杨凌 29.8%,永寿籽粒锌吸收量显著低于杨凌50.4%,锌养分收获指数地点间差异不显著,说明土壤有效锌缺乏时,永寿小麦对锌的吸收低于杨凌,永寿产量却显著高出杨凌31.7%,故土壤有效锌缺乏和产量稀释效应导致永寿小麦籽粒锌含量低于杨凌。英国的小麦品种试验表明,籽粒产量和锌含量呈负相关,高产品种籽粒锌含量下降约20%—30%[54]。巴基斯坦的田间试验发现,施磷使玉米产量提高12%,籽粒锌含量却显著降低10%,原因是籽粒锌吸收量仅升高0.1%[55]。杨凌田间长期定位试验也发现,施磷使小麦籽粒产量增加15%,其锌吸收量却降低19%,因而锌含量降低31%[56]。均说明产量增加导致的稀释效应使籽粒锌含量降低,磷和锌之间存在拮抗作用[57]。永寿土壤0—20 cm和20—40 cm 土层速效磷显著高出杨凌4.9和10.6倍,可能是其籽粒锌含量降低的另一个原因。
可见,产量的稀释效应会影响籽粒微量元素含量,但不同地点的土壤和气候存在差异,永寿小麦对铁、锰、铜吸收和向籽粒的分配多于杨凌,因而籽粒铁、锰、铜含量高。降水增加会影响小麦对铁和锰的吸收,pH低促进小麦对铜的吸收,永寿土壤有效锌低而有效磷高,磷和锌存在拮抗作用,因而籽粒锌含量低于杨凌。
4 结论
旱地条件下,永寿小麦籽粒氮含量低主要是产量稀释效应导致的,较高的土壤有效磷和硫供应虽然有利于永寿小麦籽粒和地上部磷和硫吸收量提高,但由于吸收量与产量增幅相近,故没有造成其含量降低,土壤钾、锌供应不足和磷、锌拮抗影响了永寿小麦籽粒钾、锌累积,低 pH、低速效钾促进了永寿小麦钙、镁吸收和转移,较长的灌浆期及其低降雨量有利于小麦铁、锰、铜元素吸收和向籽粒转移。因此,同一区域地点间土壤养分和降雨不同引起的小麦产量与养分吸收量增减不一是造成其籽粒养分含量差异的主要原因。在旱地小麦生产中,需根据当地具体的土壤养分和气候特点调控施肥,实现增产的同时,调控籽粒养分含量。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.1094/CCHEM.2004.81.6.759URL [本文引用: 1]
,
DOI:10.1016/j.intimp.2017.12.019URLPMID:29274625 [本文引用: 1]
Magnesium isoglycyrrhizinate (MgIG) is a magnesium salt of the 18-alpha glycyrrhizic acid stereoisomer that has exhibited hepato-protective effects and has anti-inflammatory, antioxidant, and antiviral activities. Here, we have investigated the effects and potential mechanisms of action of MgIG, with respect to myocardial fibrosis induced by isoproterenol (ISO) in mice. Mice were administered MgIG for 14days, with concurrent ISO dosing, and were sacrificed two weeks later. Lactate dehydrogenase (LDH) and creatine kinase (CK) concentrations were measured in the blood. Pathological changes in the myocardium were observed via light microscopy. In addition, the expression of the Bax and Bcl-2 genes, and the basic fibroblast growth factor (bFGF) protein were measured via an immunohistochemical method. The RNA expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), c-fos, and c-jun mRNA were quantified by reverse transcription-polymerase chain reaction (RT-PCR) in the myocardial tissue. The protein expression of toll-like receptor (TLR) 4, and nuclear factor kappa B (NF-kappaB) (p65) were measured using Western blot assays. Compared with the control group, the ISO group showed significant increases in bFGF, Bax, Bcl-2, TLR4, and NF-kappaB (p65) expressions, as well as increased serum levels of LDH and CK. MgIG had a protective effect on ISO-induced myocardial fibrosis, which might be ascribed, at least in part, to the inhibition of the TLR4/NF-kappaB (p65) signaling pathway.
,
DOI:10.1111/jfds.1982.47.issue-3URL [本文引用: 1]
,
DOI:10.1007/BF01531772URL [本文引用: 1]
[EB/OL]. http://www.who.int/nutrition/topics/ida/en/, 2016-4-5.
URL [本文引用: 1]
,
DOI:10.1007/s40011-012-0029-xURL [本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.11674/zwyf.2007.0611URL [本文引用: 1]
在低钾和中钾土壤上,采用田间试验研究了氮钾配施对弱筋小麦氮、钾养分吸收及产量和品质的影响。结果表明,氮钾肥配合施用促进了弱筋小麦植株氮、钾含量的提高,氮、钾养分吸收表现出一定的正交互作用;合理配施氮钾肥能够显著地提高弱筋小麦产量。在低钾土壤上,N180K150处理产量最高(5023.kg/hm2);中钾土壤上,最高产量(5145.kg/hm2)为N180K90处理。两种土壤上,氮肥的产量效应均大于钾肥。低钾土壤上,氮钾对小麦产量表现出极显著的正交互作用。提高氮肥用量显著降低了弱筋小麦的专用品质,钾肥对小麦品质的独立效应不显著,但是钾对氮的品质效应存在着交互作用。弱筋小麦抽穗期或灌浆期植株氮、钾含量与子粒品质的相关系数较大,与产量的相关系数则是以拔节期或抽穗期较大。适当减少氮肥用量和增加氮、钾肥基施比例有利于改善弱筋小麦的品质。
DOI:10.11674/zwyf.2007.0611URL [本文引用: 1]
在低钾和中钾土壤上,采用田间试验研究了氮钾配施对弱筋小麦氮、钾养分吸收及产量和品质的影响。结果表明,氮钾肥配合施用促进了弱筋小麦植株氮、钾含量的提高,氮、钾养分吸收表现出一定的正交互作用;合理配施氮钾肥能够显著地提高弱筋小麦产量。在低钾土壤上,N180K150处理产量最高(5023.kg/hm2);中钾土壤上,最高产量(5145.kg/hm2)为N180K90处理。两种土壤上,氮肥的产量效应均大于钾肥。低钾土壤上,氮钾对小麦产量表现出极显著的正交互作用。提高氮肥用量显著降低了弱筋小麦的专用品质,钾肥对小麦品质的独立效应不显著,但是钾对氮的品质效应存在着交互作用。弱筋小麦抽穗期或灌浆期植株氮、钾含量与子粒品质的相关系数较大,与产量的相关系数则是以拔节期或抽穗期较大。适当减少氮肥用量和增加氮、钾肥基施比例有利于改善弱筋小麦的品质。
, 2005(
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[D]. ,
[本文引用: 3]
[D]. ,
[本文引用: 3]
,
DOI:10.11674/zwyf.2014.0605URL [本文引用: 1]
【目的】小麦是我国西北地区主要的粮食作物,主要种植在低锌的石灰性土壤上,其籽粒锌含量普遍较低,难以满足人们的锌营养需求,因此提高冬小麦籽粒中的锌含量对保证人体健康具有非常重要的意义。氮素、 磷素供应不足或过量会影响冬小麦对锌的吸收与利用,本文基于黄土高原南部9年的长期定位试验,研究了长期不同氮、 磷肥用量对旱地冬小麦籽粒锌含量的影响及籽粒锌含量与氮、 磷吸收与分配的关系,以期为有效调控冬小麦籽粒锌营养品质和优化旱地冬小麦氮、 磷肥管理提供理论依据和切实可行的措施。【方法】田间定位试验开始于2004年10月,位于陕西杨凌西北农林科技大学农作一站。采用单因素完全随机区组设计,重复4次。供试小麦品种为小偃22,整个生育期不灌水。试验一为小麦施氮量试验,在施磷量为P2O5100kg/hm2的基础上,设置0、 80、 160、 240、 320kg/hm2 5个氮肥(N)水平;试验二为小麦施磷量试验,在施氮量为N 160kg/hm2的基础上,设置P2O5 0、 50、 100、 150、 200kg/hm25个磷肥水平。分别于20112013年连续两年进行田间取样,测定小麦籽粒产量及其构成因素,籽粒、 茎叶和颖壳中的氮、 磷、 锌含量,计算小麦地上部的氮、 磷、 锌吸收量。【结果】小麦施氮量试验表明,氮肥用量不超过N 320kg/hm2时,小麦籽粒锌含量和地上部锌吸收量与施氮量呈极显著的正相关关系,施氮量每增加N 100kg/hm2,籽粒锌含量平均提高4.0mg/kg,地上部锌吸收量平均提高36.4 g/hm2;籽粒中的锌含量与氮含量之间、 地上部的锌吸收量与氮吸收量之间也均呈极显著的正相关关系,籽粒氮含量每增加1g/kg,籽粒锌含量平均提高2.0mg/kg,地上部氮吸收量每增加100kg/hm2,其锌吸收量平均提高142.9 g/hm2。小麦施磷量的试验结果表明,施磷量不超过200kg/hm2时,籽粒锌含量与施磷量呈极显著的负相关关系,施磷量每增加P2O5 100kg/hm2,籽粒锌含量平均下降9.2mg/kg;籽粒锌含量与磷含量也呈极显著的负相关关系,籽粒磷含量每增加1g/kg,籽粒锌含量平均降低24.0mg/kg;地上部锌吸收量与施磷量、 地上部磷吸收量之间均没有显著相关关系。【结论】综合考虑冬小麦籽粒产量和籽粒锌含量,建议这一地区冬小麦的施氮量和施磷量分别控制在N 160240kg/hm2和P2O5 50100kg/hm2。
DOI:10.11674/zwyf.2014.0605URL [本文引用: 1]
【目的】小麦是我国西北地区主要的粮食作物,主要种植在低锌的石灰性土壤上,其籽粒锌含量普遍较低,难以满足人们的锌营养需求,因此提高冬小麦籽粒中的锌含量对保证人体健康具有非常重要的意义。氮素、 磷素供应不足或过量会影响冬小麦对锌的吸收与利用,本文基于黄土高原南部9年的长期定位试验,研究了长期不同氮、 磷肥用量对旱地冬小麦籽粒锌含量的影响及籽粒锌含量与氮、 磷吸收与分配的关系,以期为有效调控冬小麦籽粒锌营养品质和优化旱地冬小麦氮、 磷肥管理提供理论依据和切实可行的措施。【方法】田间定位试验开始于2004年10月,位于陕西杨凌西北农林科技大学农作一站。采用单因素完全随机区组设计,重复4次。供试小麦品种为小偃22,整个生育期不灌水。试验一为小麦施氮量试验,在施磷量为P2O5100kg/hm2的基础上,设置0、 80、 160、 240、 320kg/hm2 5个氮肥(N)水平;试验二为小麦施磷量试验,在施氮量为N 160kg/hm2的基础上,设置P2O5 0、 50、 100、 150、 200kg/hm25个磷肥水平。分别于20112013年连续两年进行田间取样,测定小麦籽粒产量及其构成因素,籽粒、 茎叶和颖壳中的氮、 磷、 锌含量,计算小麦地上部的氮、 磷、 锌吸收量。【结果】小麦施氮量试验表明,氮肥用量不超过N 320kg/hm2时,小麦籽粒锌含量和地上部锌吸收量与施氮量呈极显著的正相关关系,施氮量每增加N 100kg/hm2,籽粒锌含量平均提高4.0mg/kg,地上部锌吸收量平均提高36.4 g/hm2;籽粒中的锌含量与氮含量之间、 地上部的锌吸收量与氮吸收量之间也均呈极显著的正相关关系,籽粒氮含量每增加1g/kg,籽粒锌含量平均提高2.0mg/kg,地上部氮吸收量每增加100kg/hm2,其锌吸收量平均提高142.9 g/hm2。小麦施磷量的试验结果表明,施磷量不超过200kg/hm2时,籽粒锌含量与施磷量呈极显著的负相关关系,施磷量每增加P2O5 100kg/hm2,籽粒锌含量平均下降9.2mg/kg;籽粒锌含量与磷含量也呈极显著的负相关关系,籽粒磷含量每增加1g/kg,籽粒锌含量平均降低24.0mg/kg;地上部锌吸收量与施磷量、 地上部磷吸收量之间均没有显著相关关系。【结论】综合考虑冬小麦籽粒产量和籽粒锌含量,建议这一地区冬小麦的施氮量和施磷量分别控制在N 160240kg/hm2和P2O5 50100kg/hm2。
,
DOI:10.1016/j.jcs.2018.08.005URL [本文引用: 1]
,
DOI:10.5958/2348-7542.2018.00005.0URL [本文引用: 1]
,
DOI:10.1186/s40538-015-0034-4URL [本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URLPMID:29722224 [本文引用: 1]
URLPMID:29722224 [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/j.fcr.2019.03.005URL [本文引用: 1]
,
DOI:10.1016/S2095-3119(12)60103-8URL [本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1080/01904167.2018.1510507URL [本文引用: 1]
,
DOI:10.1016/j.biombioe.2007.01.001URL [本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
, 1996(
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
, 2003(
[本文引用: 2]
[本文引用: 2]
,
DOI:10.2136/sssaj1985.03615995004900030032xURL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1104/pp.42.11.1483URLPMID:16656683 [本文引用: 1]
Calcium (or magnesium) sulfate or chloride was found to inhibit energy dependent potassium transport in excised corn roots. This Ca(2+) inhibition of K(+) transport was most pronounced during the initial phases of transport. As the absorption periods were lengthened the effect of Ca(2+) gradually changed from an inhibition to a typical promotion (after about 30-45 mins) of K(+) transport. Kinetic analysis indicated the inhibition to be of a non-competitive nature.Identical experiments with excised barley roots showed that CaSO(4) had no effect on K(+) absorption whereas CaCl(2) had a typical stimulatory effect on K(+) absorption. Kinetic analysis indicated that both corn and barley have efficient K(+) transporting systems but barley roots are approximately 5 times more active (on a fr wt basis) than corn roots.These results illustrate the hazards involved in applying results obtained with 1 (or even several) plant species to all species.
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
, 2003(
[本文引用: 1]
[本文引用: 1]
,
DOI:10.11674/zwyf.2011.0491URL [本文引用: 1]
2009~2010年在河南农业大学科教示范园区,以2个中筋小麦品种多穗型豫农949和大穗型兰考矮早8为供试材料,设置不同灌水次数和施硫试验,研究不同灌水条件下施硫对冬小麦碳、氮、硫物质积累及产量的影响。结果表明,随灌水次数的增加,两品种小麦干物质积累量逐渐升高,且在开花期和成熟期干物质积累量表现为S60显著高于S0;施硫结合灌水1~2次可提高小麦干物质在各器官的积累量,以子粒干物质积累量最多,茎+叶、穗轴+颖壳次之,而各器官分配无显著差异;补施硫肥提高了子粒中氮和硫的含量,但随灌水次数的增加子粒和营养器官中氮含量呈下降趋势,以W0处理含量最高。随着灌水次数的增加,两品种穗粒数、千粒重和产量呈升高趋势,且以S60W2处理达到最大值,较S0W0处理增幅达34.29%,品种间达显著差异,豫农949表现优于兰考矮早8。综上所述,本试验条件下,施用硫肥60 kg/hm2结合灌水1~2次有利于冬小麦干物质和碳氮硫积累分配及产量的提高,品种间对硫的响应有差异。
DOI:10.11674/zwyf.2011.0491URL [本文引用: 1]
2009~2010年在河南农业大学科教示范园区,以2个中筋小麦品种多穗型豫农949和大穗型兰考矮早8为供试材料,设置不同灌水次数和施硫试验,研究不同灌水条件下施硫对冬小麦碳、氮、硫物质积累及产量的影响。结果表明,随灌水次数的增加,两品种小麦干物质积累量逐渐升高,且在开花期和成熟期干物质积累量表现为S60显著高于S0;施硫结合灌水1~2次可提高小麦干物质在各器官的积累量,以子粒干物质积累量最多,茎+叶、穗轴+颖壳次之,而各器官分配无显著差异;补施硫肥提高了子粒中氮和硫的含量,但随灌水次数的增加子粒和营养器官中氮含量呈下降趋势,以W0处理含量最高。随着灌水次数的增加,两品种穗粒数、千粒重和产量呈升高趋势,且以S60W2处理达到最大值,较S0W0处理增幅达34.29%,品种间达显著差异,豫农949表现优于兰考矮早8。综上所述,本试验条件下,施用硫肥60 kg/hm2结合灌水1~2次有利于冬小麦干物质和碳氮硫积累分配及产量的提高,品种间对硫的响应有差异。
,
DOI:10.1016/j.fcr.2013.11.011URL [本文引用: 1]
,
DOI:10.3724/SP.J.1006.2018.01506URL [本文引用: 1]
DOI:10.3724/SP.J.1006.2018.01506URL [本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1016/j.fcr.2013.07.015URL [本文引用: 1]
,
URL [本文引用: 1]
Little attention has been paid to the effect of long-term fertilizer application on concentrations of elements in grain of barley produced on the metal non-contaminated agricultural soil. In 2010, we analyzed yield and concentrations of elements in grain of spring barley in unfertilized control, mineral fertilizer application (N4P2K2 - 70, 60 and 100 kg N, P and I( per ha) and combinations of farmyard manure or poultry litter with mineral fertilizer (FMN4P2K2 and PLN4P2K2) treatments in the Ruzyne Fertilizer Experiment established on Luvisol in 1955 in Prague (Czech Republic). The yield of grain ranged from 4.03 to 9.74 t/ha in the control and FMN4P2K2 treatment. There was a positive effect of fertilizer application on concentrations of nitrogen, phosphorus and potassium, but no effect on concentrations of calcium and magnesium. With the exception of iron, concentrations of micro (copper and zinc) and risk elements (arsenic, cadmium, chromium, lead, manganese and nickel) were not significantly affected by the fertilizer treatments. Long-term use of organic and mineral fertilizers with appropriate application rates does not represent any risk for contamination of barley grain by risk elements on mineral rich and metal non-contaminated agricultural soils.
,
[本文引用: 1]
[本文引用: 1]
, 2006(
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
, 2002(
[本文引用: 1]
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D]. ,
[本文引用: 1]
,
[本文引用: 1]
,
DOI:10.1002/jpln.201500441URL [本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2017.16.012URL [本文引用: 1]
【Objective】Wheat is one of the main cereal crops in northern China, and mainly grown in calcareous soils with low available zinc (Zn) , thus its grain Zn concentration generally is low. Nutrient biofortification of Zn in wheat grain has attracted great attention in recent years. Zn absorption and utilization of wheat are affected by the interaction between Zn and nitrogen (N) or phosphorus (P). Present study was based on a long-term fertilization experiment initiated in 2004 and on the potentially Zn-deficient and calcareous soil in dryland areas of northwestern China. Changes of yield and Zn concentration in grain of wheat affected by N and P application were investigated. 【Method】The field experiment was carried out in a completely randomized block design with four treatments: control (CK, no fertilizer added), mono N application (N160, 160 kg N·hm-2), mono P application (P100, 100 kg P2O5·hm-2) and combined of N and P fertilization (N160P100, 160 kg N·hm-2, 100 kg P2O5·hm-2). Plant samples were collected to analyze the wheat biomass, grain yield and yield components, and Zn concentration, Zn uptake and distribution in wheat during four cropping seasons from 2012-2016.【Result】Compared with the control, the N mono-application decreased the spike number of wheat by 9% and the grain yield and shoot biomass both by 12%, but increased the grain Zn concentration from 29.4 mg·kg-1 to 42.8 mg·kg-1 and by 46%, enhanced Zn uptake in grain and shoot, respectively, by 29% and 37%, and reduced the N /Zn and P/Zn ratios in shoot, respectively, by 13% and 45%. The P mono-application increased spike number, grain yield and shoot biomass, respectively, by 18%, 15% and 16%, but decreased grain Zn concentration and Zn uptake in grain and shoot, respectively, 31%, 19% and 17%, with the N/Zn and P/Zn ratios in shoot increased, respectively, by 19% and 83%. The N and P application also significantly increased the spike number, grain yield and shoot biomass, respectively, by 40%, 46% and 38%, enhanced Zn uptake in grain and shoot, respectively, by 36% and 34%, but decreased grain Zn concentration by 8%, with the N /Zn and P/Zn ratios in shoot increased, respectively, by 43% and 27%. Compared with the mono P, the N and P application not only increased grain yield, but also elevated the grain Zn concentration, as the result of the enhanced wheat Zn uptake and the weakened P inhibition on Zn uptake. 【Conclusion】Although N application could increase the grain Zn concentration of winter wheat to achieve crop nutrient biofortification, the long term of mono N application is not a conducive way to sustain and increase the wheat grain production due to the nutrient imbalance in soil. The mono P application could increase the wheat grain yield, but suppress the Zn uptake, then depress the grain Zn accumulation and decrease the grain Zn concentration. Therefore, it is suggested that the N and P fertilizers should be applied together to ensure the wheat production with high yield and high quality in dryland of the Loess Plateau.
DOI:10.3864/j.issn.0578-1752.2017.16.012URL [本文引用: 1]
【Objective】Wheat is one of the main cereal crops in northern China, and mainly grown in calcareous soils with low available zinc (Zn) , thus its grain Zn concentration generally is low. Nutrient biofortification of Zn in wheat grain has attracted great attention in recent years. Zn absorption and utilization of wheat are affected by the interaction between Zn and nitrogen (N) or phosphorus (P). Present study was based on a long-term fertilization experiment initiated in 2004 and on the potentially Zn-deficient and calcareous soil in dryland areas of northwestern China. Changes of yield and Zn concentration in grain of wheat affected by N and P application were investigated. 【Method】The field experiment was carried out in a completely randomized block design with four treatments: control (CK, no fertilizer added), mono N application (N160, 160 kg N·hm-2), mono P application (P100, 100 kg P2O5·hm-2) and combined of N and P fertilization (N160P100, 160 kg N·hm-2, 100 kg P2O5·hm-2). Plant samples were collected to analyze the wheat biomass, grain yield and yield components, and Zn concentration, Zn uptake and distribution in wheat during four cropping seasons from 2012-2016.【Result】Compared with the control, the N mono-application decreased the spike number of wheat by 9% and the grain yield and shoot biomass both by 12%, but increased the grain Zn concentration from 29.4 mg·kg-1 to 42.8 mg·kg-1 and by 46%, enhanced Zn uptake in grain and shoot, respectively, by 29% and 37%, and reduced the N /Zn and P/Zn ratios in shoot, respectively, by 13% and 45%. The P mono-application increased spike number, grain yield and shoot biomass, respectively, by 18%, 15% and 16%, but decreased grain Zn concentration and Zn uptake in grain and shoot, respectively, 31%, 19% and 17%, with the N/Zn and P/Zn ratios in shoot increased, respectively, by 19% and 83%. The N and P application also significantly increased the spike number, grain yield and shoot biomass, respectively, by 40%, 46% and 38%, enhanced Zn uptake in grain and shoot, respectively, by 36% and 34%, but decreased grain Zn concentration by 8%, with the N /Zn and P/Zn ratios in shoot increased, respectively, by 43% and 27%. Compared with the mono P, the N and P application not only increased grain yield, but also elevated the grain Zn concentration, as the result of the enhanced wheat Zn uptake and the weakened P inhibition on Zn uptake. 【Conclusion】Although N application could increase the grain Zn concentration of winter wheat to achieve crop nutrient biofortification, the long term of mono N application is not a conducive way to sustain and increase the wheat grain production due to the nutrient imbalance in soil. The mono P application could increase the wheat grain yield, but suppress the Zn uptake, then depress the grain Zn accumulation and decrease the grain Zn concentration. Therefore, it is suggested that the N and P fertilizers should be applied together to ensure the wheat production with high yield and high quality in dryland of the Loess Plateau.
,
DOI:10.1016/j.fcr.2015.10.002URL [本文引用: 1]