删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

蛋白添加剂对双孢蘑菇农艺性状及品质的影响

本站小编 Free考研考试/2021-12-26

张文强1, 陈青君,1, 张国庆1, 石世达1, 曹娜1, 阿布来提·托合提热结甫1, 果禹鑫2, 林文才31 北京农学院植物科学技术学院/农业应用新技术北京重点实验室,北京 102206
2 新疆农业大学林学与园艺学院,乌鲁木齐 830052
3 江苏闽中有机食品有限公司,江苏阜宁 224421

Effects of Protein Supplements on Agronomic Characters and Quality of the Mushroom Agaricus bisporus

ZHANG WenQiang1, CHEN QingJun,1, ZHANG GuoQing1, SHI ShiDa1, CAO Na1, ABLAT· Tohtirjap1, GUO YuXin2, LIN WenCai31 Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206
2 Xinjiang Agricultural University, Xinjiang 830052
3 Jiangsu Minzhong Organic Food Co. LTD, Funing 224421, Jiangsu

通讯作者: 陈青君,E-mail: cqj3305@126.com

责任编辑: 赵伶俐
收稿日期:2019-12-4接受日期:2020-02-2网络出版日期:2020-05-16
基金资助:国家现代农业产业技术体系北京市食用菌创新团队.BAIC05-2019
北京市农委农业科技项目.20180125
北京市科技计划.Z181100009818007


Received:2019-12-4Accepted:2020-02-2Online:2020-05-16
作者简介 About authors
张文强,E-mail:wqzhang1994@126.com。










摘要
【目的】 研究蛋白添加剂对双孢菇农艺性状及品质的影响,为工厂化双孢蘑菇蛋白添加剂的开发、应用与评价提供参考。【方法】 以豆粕(SM)、膨化大豆(ES)、玉米蛋白(CP)和羽毛粉(FM)4种单一蛋白原料为添加剂,以1种蛋白型商业添加剂MCSubstradd?(MCS)作为阳性对照、无添加剂为空白对照(CTL),添加剂的使用量根据其蛋白含量决定,蛋白添加量占发酵料的0.5%。覆土前,添加剂与新鲜3次发酵料混合,栽培菌株为W192,按照工厂化栽培工艺进行菇房管理,采收三潮蘑菇。参照UPOV测定子实体产量、菌盖直径、菌盖厚度、单菇重量、硬度等农艺性状;用凯氏定氮法测定子实体蛋白质含量,用氨基酸自动分析仪测定子实体氨基酸含量。【结果】 SM、ES、CP均能有效提高蘑菇产量。4个试验组中,CP组总产量最高,达到35.24 kg?m-2,较CTL组增产24.26%,生物学效率达到105.98%,显著高于其他3个试验组和CTL组,略高于MCS组。每t培养料中添加剂产生的经济效益分析显示,CP组增收最高,为785.23元。SM具有很好的缓释作用,三潮菇产量分别占总产量的48.72%、35.09%和16.19%,接近MCS组缓释效果。ES在提高产量的同时,显著提高第一、二潮蘑菇的硬度品质。5种蛋白添加剂均显著提高3个潮次蘑菇子实体的蛋白质含量,含量最高的3种氨基酸均分别为葡萄糖(Glu)、缬氨酸(Val)和天冬氨酸(Asp)。添加FM和CP能显著提高蘑菇子实体的呈味氨基酸含量,提升蘑菇的风味和口感。【结论】 蛋白添加剂均可以有效提高蘑菇产量,对子实体农艺性状和品质影响存在特异性。综合多种添加剂原料的特异性优势,开发复合、缓释型添加剂,实现双孢蘑菇优质高产,是今后双孢蘑菇添加剂的研究方向。
关键词: 双孢蘑菇;添加剂;农艺性状;蛋白质含量;氨基酸含量

Abstract
【Objective】 The effects of protein supplements on the agronomic characters and quality of mushroom Agaricus bisporus were studied in the study, so as to provide a reference for the development, application and evaluation of Agaricus bisporus protein supplements. 【Method】 Four single protein raw materials were investigated as protein supplements, including soybean meal (SM), extruded soybean (ES), corn protein (CP) and Feather meal (FM). Commercial supplement (MCSubstradd?, MCS) was used as a positive control, and an unsupplemented compost was used as a blank control (CTL). The dosage of each supplement was determined based on their protein content and with a final protein dosage of 0.5% in the compost. Before casing, the supplements were thoroughly mixed with fresh Phase III compost. The mushroom strain was W192. Mushroom cultivation was carried out in accordance with the factory cultivation process mushroom room management. Three flush mushrooms were harvested, and yield, diameter and thickness of pileus, weight of single mushroom, and hardness characters were determined with reference to UPOV. Protein content was determined by kjeldahl method, and amino acid content was determined by amino acid analyzer. 【Result】 SM, ES and CP could effectively increase the mushroom yield. Among the four experimental groups, CP group manifested the highest total yield of 35.24 kg?m-2 with the yield increasing rate of 24.26% towards CTL group. Its biological efficiency was 105.98%, which was significantly higher than that of the other three assayed groups and CTL group, and slightly higher than that of MCS group. CP group demonstrated considerably high sustained-release effect with three flush yield of 48.72%, 35.09%, 16.19%, respectively, which was close to that of MCS group. Economic benefit analysis showed that CP group demonstrated the highest increasing benefit of 785 yuan in one ton compost. ES group showed high yield with significantly high hardness character in the first two flush. All the five protein supplements could significantly enhance the protein content in the fruiting bodies in all the three flush. In all the groups, the three amino acids with the highest content were Glu, Val, and Asp. FM and CP could enhance the content of delicious amino acids, which raised the flavor and taste of mushrooms. 【Conclusion】 Protein supplements could effectively increase mushroom yield, and had specific effects on the agronomic characters and qualities of fruiting bodies. Focusing on specific advantages of various additives, developing mixed and sustained-release supplements could achieve high quality and high yield of A. bisporus, which was the research direction of mushroom supplements in the future.
Keywords:Agaricus bisporus;supplementations;agronomic characteristics;amino acid;protein content


PDF (483KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
张文强, 陈青君, 张国庆, 石世达, 曹娜, 阿布来提·托合提热结甫, 果禹鑫, 林文才. 蛋白添加剂对双孢蘑菇农艺性状及品质的影响[J]. 中国农业科学, 2020, 53(10): 2091-2100 doi:10.3864/j.issn.0578-1752.2020.10.015
ZHANG WenQiang, CHEN QingJun, ZHANG GuoQing, SHI ShiDa, CAO Na, ABLAT· Tohtirjap, GUO YuXin, LIN WenCai. Effects of Protein Supplements on Agronomic Characters and Quality of the Mushroom Agaricus bisporus[J]. Scientia Acricultura Sinica, 2020, 53(10): 2091-2100 doi:10.3864/j.issn.0578-1752.2020.10.015


0 引言

【研究意义】双孢蘑菇(Agaricus bisporus)又称蘑菇、白蘑菇、洋蘑菇、纽扣蘑菇,味道鲜美,是一种富含氨基酸、高蛋白、低脂肪的健康食材,风靡全世界[1]。中国是世界上双孢蘑菇栽培的主要地区之一[2],根据中国食用菌协会统计数据,2017年中国的双孢蘑菇产量占世界的50%左右。得益于国内工厂化周年生产模式的基本完善,双孢蘑菇工厂化平均产量约25 kg?m-2,但相较于欧美国家的35 kg?m-2仍有较大差距,其主要原因之一是添加剂的使用。目前,国内普遍采用二次发酵料、不添加蛋白类添加剂的栽培工艺;而国外多采用3次发酵料,并添加不同剂量的蛋白类添加剂[3,4]。添加剂已经成为蘑菇产量和品质提高的重要原料。随着国内工厂化栽培技术的升级,国内也开始采用3次发酵栽培技术,但3次发酵与添加剂的相关理论基础及作用效果等均缺乏深入研究。因此,深入研究和分析添加剂材料对蘑菇产量和产品品质的影响,可为添加剂原材料选择、配方设计及生产工艺等提供重要指导意义。【前人研究进展】双孢蘑菇添加剂作为营养补充来源能够及时有效地对培养料的营养状况进行修正,提高蘑菇的产量、生物学转化效率和子实体品质[5]。1962和1964年,SCHISLER等[6,7]分别研究了播种期和覆土期在培养料中添加氮素添加剂的应用效果,均证明了向培养料中添加氮素营养能够提高产量。目前,商业添加剂多以蛋白质为主要成分,同时还含有碳水化合物、脂质、微量元素等,实现对双孢蘑菇出菇阶段的营养补充[8]。PARDO- GIMéNEZ等[9]在双孢蘑菇培养料中添加脱脂开心果粉,可以提高蘑菇子实体的单菇重、菌盖直径、蛋白质和干物质含量,同时,在平菇栽培基质添加脱脂开心果粉可增产34.40%,并发现添加葡萄籽粉可以为双孢蘑菇增产9.15%[10];ARCE-CERVANTES等[11]利用玉米糠、玉米麸皮和植物油混合材料作为双孢蘑菇添加剂,产量达到34 kg?m-2,并提高了培养料中纤维素酶、木聚糖酶和漆酶活性。另外,NARH MENSAH等[12]利用菠萝果皮作为平菇栽培的添加剂,提高了子实体产量、粗蛋白、锌和铜含量。为满足双孢蘑菇工厂化快速发展对于专业添加剂的需求,在世界范围内也出现了一些商业化添加剂生产企业及品牌,如MCSubstradd?等。在工厂化生产中,添加剂的使用需要满足严格的要求,正确的双孢蘑菇添加剂是提高产量和品质的客观因素,培养料的品质决定了使用添加剂的潜力,在品质差的培养料中使用添加剂会适得其反,并且添加剂使用后会增加管理工艺和设施的压力[13,14]。添加剂的作用效果还与培养料的温度、含水量、生物活性、结构、生长系统有关[14]。随着双孢蘑菇与微生物相关研究的深入,以微生物为主体的生物添加剂具有巨大潜力[1]。【本研究切入点】选用豆粕、膨化大豆、玉米蛋白、羽毛粉和商业添加剂MCS,首次在发酵完成的双孢蘑菇3次发酵料中分别加入同等蛋白质含量的不同蛋白质添加剂进行研究。【拟解决的关键问题】明晰不同蛋白添加剂对双孢蘑菇农艺性状及品质的影响,为添加剂配方的开发及优化提供参考。

1 材料与方法

试验于2018年在江苏盐城闽中有机食品有限公司双孢蘑菇工厂化生产基地进行。

1.1 试验材料

双孢蘑菇(A. bisporus)W192麦粒种(栽培种),购自山东临沂瑞泽生物科技股份有限公司。培养料由基地自主生产,配方:麦草47 t、稻草10.8 t、鸡粪40 t、豆粕4 t、石膏6 t。原材料混合建堆后进行16 d的一次发酵,随后转入封闭式隧道进行二次发酵6—7 d。二次发酵料中播入双孢蘑菇菌种(接种量2%),后转移至菇床进行3次发酵。供试4种单一蛋白原料添加剂包括豆粕(soybean meal,SM)、膨化大豆(extruded soybean,ES)、玉米蛋白(corn protein,CP)、羽毛粉(feather meal,FM),购自河北石家庄孜孜贸易有限公司。阳性对照商业添加剂为MCSubstradd?(MCS),购自Legro Australia Pty Ltd。

1.2 试验设计

试验组分别添加SM、ES、CP和FM 4种单一蛋白原料添加剂,阳性对照组添加MCS商业型添加剂,空白对照组不添加任何添加剂,共计6组。各添加剂组均添加培养料鲜重0.5%对应的蛋白量,根据添加剂实际添加量公式及各添加剂蛋白含量和含水量,计算每t培养料中添加剂的添加量。出菇试验在标准工厂化菇房中进行,取菌丝生长良好的3次培养料分别与各种添加剂实际添加量比例充分混合后,取10 kg装入栽培筐(40 cm×30 cm×30 cm)中,保证料面平整且整体紧实度一致,料层高度为26—27 cm,覆土层厚度为3—4 cm,每组16筐。按照标准工厂化出菇管理工艺,进行出菇管理,18—21 d开始采收第一潮蘑菇,之后每7—8 d采收一潮蘑菇,生产过程中共采收三潮蘑菇。

1.3 培养料及添加剂理化性质测定

二次发酵结束的培养料和添加剂的含水量采用干燥称重法[15],含氮量及蛋白含量用全自动凯氏定氮法[16]测定,灰分和含碳量采用马弗炉灼烧法[17]

1.4 双孢蘑菇子实体农艺性状测定

分别测定不同组第一至三潮菇产量。双孢蘑菇子实体农艺性状参照文献[18]测定,每潮菇每个组随机取100个蘑菇子实体,利用游标卡尺测量菌盖直径(mm)、菌盖厚度(mm)、硬度计测定硬度(105 Pa),称量单菇重量(g)。

1.5 双孢蘑菇子实体品质分析

采用茚三酮显色法(GB/T 18246—2000)和氨基酸自动分析仪测定每1 g干双孢蘑菇子实体氨基酸含量[19],单位为mg?g-1。分别计算总氨基酸含量(total amino acids,TAA)、总必需氨基酸含量(essential amino acids,EAA)、总非必需氨基酸含量(non essential amino acids,NEAA)、总呈味氨基酸含量(delicious amino acids,DAA)、总必需氨基酸占总氨基酸的量(E/T)、总必需氨基酸与总非必需氨基酸比值(E/N)[19]

1.6 数据分析方法

利用Excel 2019进行数据处理,利用SPSS 20.0计算平均值、标准差,进行差异显著性分析。

2 结果

2.1 理化性质分析

二次发酵料的品质很大程度上决定了双孢蘑菇的产量和品质,是工厂化生产的关键数据[20]。二次发酵结束培养料的理化特性为含水量67.42%,含氮量2.21%,灰分含量35.59%,含碳量35.81%,达到双孢蘑菇工厂化栽培对培养料的营养需求范围[21,22,23]。由表1可知,不同蛋白添加剂的蛋白含量差异较大,其中羽毛粉(FM)的蛋白质含量最高,为86.63%,显著高于其他类型。各样品根据蛋白含量从高到低依次为羽毛粉(FM)>玉米蛋白(CP)>豆粕(SM)>商业添加剂(MCS)>膨化大豆(ES)。MCS含水量显著高于其他添加剂(P<0.05),CP含碳量最高,而灰分含量显著低于其他添加剂(P<0.05)。

Table 1
表1
表1蛋白添加剂原料理化性质
Table 1Physicochemical properties of protein supplementations materials
添加原料
Supplementation
含水量
Moisture (%)
含氮量
Nitrogen content (%)
蛋白含量
Protein content (%)
灰分含量
Ash content (%)
含碳量
Carbon content (%)
SM9.88±0.13b7.85±0.42c49.08±0.26c7.03±0.03a51.65±0.02b
ES9.07±0.85b5.89±0.09d36.81±0.58d5.38±0.03b52.56±0.02b
CP7.39±0.11c10.41±0.07b65.04±0.45b1.30±0.05c54.83±0.03a
FM7.07±0.07c13.86±0.02a86.63±0.12a5.17±0.08b52.69±0.04b
MCS12.63±0.01a7.02±0.12c43.87±0.75c6.93±0.06a51.70±0.03b
f检验法进行分析,平均数±标准差;不同小写字母表示差异显著(P<0.05)。SM:豆粕;ES:膨化大豆;CP:玉米蛋白;FM:羽毛粉,PII:二次发酵料。下同
Data were analyzed by T-test, average ± standard deviation. Different lowercase letters mean significant differences (P<0.05). SM: Soybean meal; ES: Extruded soybean; CP: Corn protein; FM: Feather meal; PII: Compost after the phase II. The same as below

新窗口打开|下载CSV

2.2 蛋白添加剂对双孢蘑菇产量的影响

根据不同蛋白添加剂理化指标,最终确定各添加剂的添加量见表2。本研究统计了2018年河北地区添加剂原料和MCSubstradd?商业添加剂价格,分别为SM 3 250元/t、ES 3 700元/t、CP 4 500元/t、FM 3 900元/t、MCSubstradd?商业添加剂MCS 5 000元/t。增产量以CTL组产量为基础,每m2使用83.33 kg培养料。MCS添加成本最高,达到65.25元/t,羽毛粉添加成本最低,为24.22元/t。每t培养料中添加剂增产最高为CP组(82.56 kg),MCS组次之(61.44 kg),FM组最低,且为负增长,减产2.16 kg。根据目前双孢蘑菇出厂平均价格(10元/kg),添加剂的经济效益为蘑菇增产创收扣除添加剂成本后的实际收益。每t培养料中添加剂产生经济效益最高为CP组(785.23元);MCS组次之,为549.15元;FM组最低,亏损45.82元。

Table 2
表2
表2蛋白添加剂原料生产添加量、成本、增产量和经济效益
Table 2Additive amount, cost, increased output, and economic benefit of protein supplementations materials
添加剂Supplementation豆粕SM膨化大豆ES玉米蛋白CP羽毛粉FMMCS
添加剂添加量Amount of supplementations (kg)12.6915.938.976.2113.05
添加剂成本Cost of supplementations (Yuan)41.2458.9440.3724.2265.25
蘑菇增产量 Mushroom increased output (kg)30.7233.3682.56-2.1661.44
添加剂经济效益 Economic benefit of supplementations (Yuan)265.96274.66785.23-45.82549.15
上表添加剂添加量、添加剂成本、蘑菇增产量和添加剂经济效益的核算以1 t培养料中添加剂使用情况为例。添加剂产生的经济效益(元)=蘑菇增产量(kg)×蘑菇出厂价(元/kg)-添加剂成本(元),江苏盐城闽中有机食品有限公司蘑菇年平均出厂价为10元/kg
In the table above, amount of supplementations, cost of supplementations, mushroom increased output and economic benefit of supplementations were calculated by taking the use of additives in one ton of compost as an example. Economic benefit of supplementations (yuan)=mushroom increased output (kg) × factory price of mushrooms (yuan/kg)-Cost of supplementations (yuan). The average annual factory price of mushrooms in Jiangsu minzhong organic food co. LTD, Jiangsu is 10 yuan/kg

新窗口打开|下载CSV

不添加任何添加剂的空白对照组(CTL)总产量达到28.36 kg?m-2,高于目前国内25 kg?m-2的平均产量,表明培养料质量和出菇管理工艺达到要求(表3)。MCS组总产量达到33.48 kg?m-2,较CTL组增产18.05%,生物学效率由85.30%提高到100.68%,表明添加剂的使用能够显著提高双孢蘑菇产量。4个试验组中,CP组总产量最高,达到35.24 kg?m-2,较CTL组增产24.26%,显著高于其他3个试验组和CTL组,略高于MCS组。4个试验组一潮菇产量均显著高于MCS和CTL组,CP组产量最高达到19.31 kg?m-2,其次为ES组(18.08 kg?m-2)。MCS组二潮菇产量最高,达到14.39 kg?m-2,其次分别为CP组(12.41 kg?m-2)和CTL组(12.06 kg?m-2),而FM组最低。MCS组第三潮菇产量最高,达到5.62 kg?m-2,显著高于其他组,在总产量中占16.79%。在添加剂试验组中,SM组第三潮菇产量最高,达到5.01 kg?m-2,略低于MCS组,在其总产量中占16.19%。CP组第一、二潮产量分别占总产量54.81%和35.22%,而第三潮产量较低,为3.52 kg?m-2,略高于CTL组(3.35 kg?m-2)。综合不同潮次产量和总产量,CP组总增产效果最佳,而SM组对第三潮菇增产效果最显著。CP组生物学效率最高,达到105.98%,各处理生物学效率由高到低为CP>MCS>ES>SM>CTL>FM。除FM组外,各添加剂均具有提高产量和生物学效率的作用。

Table 3
表3
表3不同蛋白添加剂组的双孢蘑菇产量
Table 3The yield of mushroom in different protein supplementations groups
处理
Treatment
一潮菇
1st flush
二潮菇
2nd flush
三潮菇
3rd flush
总产量
Total yield (kg?m-2)
生物学效率
Biological efficiency (%)
SMY15.06±0.67c10.85±0.58c5.01±0.33b30.92±0.60b93.00±1.81b
P48.72%35.09%16.19%
ESY18.08±0.80a9.05±0.85d4.01±0.23c31.14±1.53b93.65±4.61b
P58.06%29.06%12.88%
CPY19.31±0.99a12.41±0.90b3.52±0.25c35.24±2.13a105.98±6.41a
P54.81%35.22%9.98%
FMY17.59±0.93b7.37±0.99e3.22±0.22d28.18±1.56d84.74±4.69d
P62.43%26.14%11.43%
MCSY13.46±0.36d14.39±0.28a5.62±0.40a33.48±1.04a100.68±3.13a
P40.21%43.00%16.79%
CTLY12.96±0.10d12.06±1.04b3.35±0.35d28.36±1.31c85.30±3.94c
P45.68%42.51%11.81%
食用菌生物学效率(%)=(食用菌鲜重/所需培养料干重)×100。CTL:空白对照;Y:产量(kg?m-2);P:各潮次产量占总产量的比例
Biological efficiency of edible fungi (%)=(fresh weight of edible fungi/dry weight of required medium)×100. CTL: Blank control. Y: Yield, (kg?m-2); P: The percent of yield of each flush in the total yield

新窗口打开|下载CSV

2.3 蛋白添加剂对双孢蘑菇农艺性状的影响

双孢蘑菇的菌盖直径、菌盖厚度、子实体硬度和单菇重是评价其农艺性状重要指标[21]。第一潮菇时,SM、MCS和CTL平均菌盖直径和厚度最大,而CP和FM组平均菌盖直径最小,ES和FM组平均菌盖厚度最小(P<0.05);硬度方面,ES和MCS组硬度最大,CP组硬度最小;SM组单菇重量最大,而无添加的CTL组单菇重最小。第二潮菇时,CP和ES组平均菌盖直径和厚度最大,而SM和MCS组平均菌盖直径和厚度最小;硬度方面,ES组硬度最大,FM和CTL组硬度最小;ES组单菇重量最大,与FM、MCS和CTL组差异显著(P<0.05)。第三潮菇时,CP和MCS组平均菌盖直径最大,FM和MCS组平均菌盖厚度最大,而SM、ES和FM组平均菌盖直径最小,SM、ES和CP组平均菌盖厚度最小;添加剂组硬度均显著高于CTL组(P<0.05);SM、ES、CP和CTL组单菇重相当,高于FM和MCS组。

Table 4
表4
表4不同蛋白添加剂组的双孢蘑菇农艺性状
Table 4The agronomic character of mushroom in different protein supplementations groups
处理组
Treatment
菌盖直径
Pileus diameter (mm)
菌盖厚度
Pileus thickness (mm)
硬度
Hardness (105 Pa)
单菇重
Mushroom weight (g)
一潮菇
1st flush
SM41.31±3.17a22.25±4.06a7.69±0.80c24.29±0.61a
ES39.26±2.68b20.76±1.65c9.64±1.53a22.73±0.81b
CP38.49±2.75c21.15±1.70b7.37±0.58d22.03±0.14b
FM38.49±2.89c20.09±2.33c7.62±1.00c21.75±0.04c
MCS42.49±3.45a22.94±1.95a9.39±1.42a22.73±0.50b
CTL41.60±3.11a22.89±1.76a8.09±0.87b20.98±0.28d
二潮菇
2nd flush
SM38.68±2.93c20.12±1.47c6.09±0.66c21.32±0.41b
ES41.79±2.16a22.55±1.06a8.67±1.03a23.68±0.47a
CP42.20±2.49a22.64±1.30a7.07±0.58b21.82±0.69b
FM39.08±3.31b21.66±1.44b5.34±0.54d19.64±0.51c
MCS38.45±2.27c19.95±1.49c6.14±0.49c18.00±0.25c
CTL39.77±3.25b21.17±1.99b5.06±0.39d17.14±0.01c
三潮菇
3rd flush
SM39.26±3.90b22.38±2.10b5.14±0.29a20.83±0.14a
ES39.13±3.19b22.24±1.78b5.17±0.36a20.44±0.21a
CP39.89±3.76a22.65±1.92b5.65±0.28a20.62±0.52a
FM39.02±3.32b23.63±2.11a5.11±0.37a20.00±0.14b
MCS39.84±4.84a23.37±3.12a5.16±0.34a20.33±0.25b
CTL37.51±2.73b21.89±1.87c4.70±0.23b20.65±0.02a

新窗口打开|下载CSV

2.4 蛋白添加剂对双孢蘑菇品质的影响

蛋白质含量、总氨基酸含量(TAA)、必需氨基酸(EAA)、非必需氨基酸(NEAA)、呈味氨基酸(DAA)是双孢蘑菇子实体重要品质指标。不同处理组各潮次子实体蛋白质含量见表5。第一潮菇时,ES组蛋白质含量最高(39.10%),按照蛋白质含量从高到低顺序依次为ES>CP>MCS>FM>SM>CTL。第二潮菇时,ES组蛋白质含量最高(26.39%),按照蛋白质含量从高到低顺序依次为ES>FM>SM、CP、MCS>CTL。第三潮菇时,CP组蛋白质含量最高(40.21%),按照蛋白质含量从高到低顺序依次为CP>SM、FM、ES>MCS>CTL。结果表明,5种蛋白添加剂的使用,在3个潮次中均显著提高了子实体中蛋白质含量。

Table 5
表5
表5不同蛋白添加剂组的双孢蘑菇蛋白质含量
Table 5The protein content of mushroom in different protein supplementations groups
处理组
Treatment
蛋白质含量Protein content(%)
一潮菇
1st flush
二潮菇
2nd flush
三潮菇
3rd flush
SM27.55±0.08e25.23±0.23c36.67±0.02b
ES39.10±0.61a26.39±0.01a36.38±0.33b
CP37.55±0.06b24.77±0.17c40.21±0.61a
FM30.46±0.71d25.78±0.38b36.46±0.57b
MCS32.18±0.04c24.80±0.61c34.14±0.56c
CTL26.47±0.01f22.92±0.30d27.63±0.29d

新窗口打开|下载CSV

在被测的17种氨基酸中,3个潮次含量从高到低排名前3的氨基酸均是谷氨酸(Glu)、缬氨酸(Val)和天冬氨酸(Asp),其中Glu和Asp是重要呈味氨基酸(图1)。第一潮菇时,FM组Glu含量最高(55.04 mg?g-1),ES组最低(37.97 mg?g-1);MCS和SM组Val含量最高(分别为23.45和23.09 mg?g-1),ES和CTL组最低(分别为18.89和19.00 mg?g-1);MCS组Asp含量最高(19.50 mg?g-1),ES组最低(15.07 mg?g-1)。第二潮菇时,CP组Glu含量最高(74.28 mg?g-1),CTL组最低(38.00 mg?g-1);CP组Val含量最高(29.58 mg?g-1),CTL组最低(14.45 mg?g-1);CP组Asp含量最高(24.75 mg?g-1),ES组最低(11.55 mg?g-1)。第三潮菇时,FM组Glu含量最高(65.24 mg?g-1),CTL组最低(44.75 mg?g-1);ES组Val含量最高(25.37 mg?g-1),CTL组最低(20.05 mg?g-1);FM组Asp含量最高(21.69 mg?g-1),SM组最低(17.62 mg?g-1)。

图1

新窗口打开|下载原图ZIP|生成PPT
图1不同蛋白添加剂组的双孢蘑菇氨基酸含量

Fig. 1The amino acid content of mushroom in different protein supplementations groups



根据氨基酸含量测定结果,分别计算不同处理组各潮子实体总氨基酸含量(TAA)、必需氨基酸(EAA)、非必需氨基酸(NEAA)和呈味氨基酸(DAA),结果见表6。第一潮菇时,FM和MCS组的TAA和EAA含量显著高于其他3个试验组和CTL组(P<0.05);FM组DAA含量显著高于其他试验组和对照组(P<0.05);除FM和CTL组外,其他各组E/T均达到40%;各组中FM组E/N最低,为0.60。第二潮菇时,CP组TAA和DAA含量显著高于其他组(P<0.05);CP和ES组EAA含量显著高于其他组;FM和MCS组E/T和E/N值显著高于其他组,CP组最低。第三潮菇时,5个添加剂组TAA、EAA、NEAA差异不显著,但均显著高于CTL组(P<0.05);ES和FM组DAA显著高于其他组,SM组显著高于其他各组的E/T(40.23%)和E/N(0.67)。

Table 6
表6
表6不同蛋白添加剂组的双孢蘑菇氨基酸组成
Table 6The amino acid composition of mushroom in different protein supplementations groups
氨基酸组成
Amino acid composition
处理 Treatment
SMESCPFMMCSCTL
一潮菇
1st flush
TAA (mg?g-1)194.58±8.46b173.44±4.10b184.22±0.48b230.66±2.18a217.60±16.97a190.30±10.18b
EAA (mg?g-1)78.78±3.31b69.74±1.90c74.16±0.28b86.50±0.70a87.05±3.46a74.10±5.09b
NEAA(mg?g-1)115.8±5.15b103.70±2.20c110.05±0.75c144.16±2.88a130.55±13.51a116.20±5.09b
DAA(mg?g-1)95.51±4.09b83.87±2.29c87.85±1.29c111.08±1.30a94.20±4.24b91.55±3.75c
E/T (%)40.49±0.06a40.21±0.15a40.26±0.25a37.50±0.66b40.06±1.53a38.92±0.59a
E/N0.68±0.00a0.67±0.00a0.67±0.01a0.60±0.02b0.67±0.04a0.64±0.02a
二潮菇
2nd flush
TAA (mg?g-1)179.85±9.90c252.44±28.88b295.75±16.83a196.43±5.54c191.90±7.21c155.45±4.17c
EAA (mg?g-1)70.54±7.48b94.74±11.41a109.61±5.86a79.15±1.27b76.25±4.31b60.15±1.34c
NEAA (mg?g-1)109.31±2.42c157.70±17.47b186.14±10.97a117.28±4.26c115.65±2.90c95.30±2.83c
DAA (mg?g-1)82.90±2.70c129.00±14.84b147.99±9.06a88.44±1.33c89.15±3.61c72.75±2.47c
E/T (%)39.16±2.00b37.51±0.23b37.07±0.13c40.30±0.54a39.72±0.75a38.70±0.17b
E/N0.64±0.05b0.60±0.01b0.59±0.00c0.68±0.02a0.66±0.02a0.63±0.00b
三潮菇
3rd flush
TAA (mg?g-1)223.63±12.43a240.19±6.81a233.43±5.31a244.52±19.71a226.40±4.10a197.80±10.89b
EAA (mg?g-1)89.78±1.45a91.20±4.39a88.52±3.59a93.63±8.77a83.05±2.62a76.70±5.09b
NEAA (mg?g-1)133.85±13.88a148.99±2.42a144.91±1.71a154.71±10.41a143.35±1.48a121.10±5.80b
DAA (mg?g-1)104.47±12.71b120.55±0.77a107.15±0.31b125.26±6.10a108.35±3.04b94.80±8.34b
E/T (%)40.23±2.88a37.96±0.75b37.91±0.68b37.68±0.62b36.68±0.49c38.76±0.44b
E/N0.67±0.08a0.61±0.02b0.61±0.02b0.60±0.02b0.58±0.01c0.63±0.01b
TAA:总氨基酸 Total amino acid;EAA:必需氨基酸 Essential amino acids;NEAA:非必需氨基酸 Non-essential amino acids;DAA:呈味氨基酸 Delicious amino acids;E/T:EAA/TAA;E/N:EAA/NAA

新窗口打开|下载CSV

3 讨论

本研究表明,豆粕、膨化大豆等蛋白类添加剂能够提高双孢蘑菇产量及经济效益。这是由于双孢蘑菇在出菇阶段,需要丰富的氮素营养,为其子实体生长发育提供原料,因此,蛋白类添加剂能以极小代价提高蘑菇产量和质量,是一种低成本、高收益的农艺措施[3,14,22-23]。二次发酵是我国目前双孢蘑菇工厂化栽培的主导技术,技术成熟、稳产高产(相对于我国农业式栽培),在缺乏3次发酵及其配套添加剂使用技术,生产企业自主开展3次发酵时,添加外源氮素添加剂后,往往由于灭菌和添加量等问题,常导致污染、减产甚至绝产。国外已有商业化的蛋白类添加剂,而国内相关技术研究和成熟添加剂均较少,且添加剂原料良莠不齐,缺乏统一标准。

适合的添加剂能够显著提高双孢蘑菇产量,不同添加剂增产效果不同。本研究中玉米蛋白(CP)对产量提高效果最佳,产生经济效益最高。玉米蛋白是玉米籽粒经食品工业生产淀粉或酿酒工业提纯后的副产品,其蛋白质营养成分丰富,同时还含有少量的淀粉和纤维。陈艳琦等[24]在玉木耳栽培基质中添加3%玉米粉,发现总产量较空白对照组提高了11.39%。另外,有研究发现,玉米蛋白粉中含7%—8%的柠檬酸,具有良好的促生长作用[25]。4个试验组一潮菇产量均显著高于MCS和CTL组,与ROYSE[26]得出添加剂促进早期蘑菇产量的结论相符。商业添加剂MCS由多种原材料加工而成,其第一和第二潮菇产量占总产量的80%以上,且第二、三潮菇的产量均高于其他处理组,说明其具有营养缓释作用,而豆粕(SM)组表现出了接近商业添加剂的缓释效果,前两潮菇产量也占总产量的80%以上。ARCE-CERVANTES等[11]报道,玉米糠(corn bran)、玉米谷蛋白(corn gluten)和大豆油(soybean oil)复合配方具有最佳的产量(35.2 kg?m-2)和缓释效果,而单一添加玉米糠产量为28.7 kg?m-2,一潮菇产量占总产量62.7%。豆粕是大豆提取豆油后得到的一种副产品,价格低廉、蛋白质含量高,被广泛用于食用菌产业,也是大多复合型添加剂的主要成分。从本研究的结果来看,玉米蛋白和豆粕分别具有显著提高产量和缓释的效果,二者都是复合型蛋白质添加剂的理想原料。

一潮菇产量直接影响子实体农艺性质,产量升高往往导致品质下降[22]。本研究中,CP组一潮菇产量最高,与之相应的其子实体平均菌盖直径和硬度最小,这是由于CP组一潮菇总产量高,导致该批次子实体平均品质下降。子实体硬度是表征品质的重要指标之一,本研究中CTL组一潮菇平均硬度为8.09×105 Pa,与张昊琳等[16]报道相当((7.57—8.20)×105 Pa)。在第二和第三潮菇时,ES组均表现出了较高的农艺性状。膨化大豆(ES)是一种高营养价值的蛋白添加剂原料,通过高温高压处理,使蛋白质变性、淀粉糊化、油脂外露,同时杀死了病菌。在各添加剂组中,ES组蛋白质含量最低,但能够显著提高子实体硬度,这可能是大豆中的糖类、脂类为子实体发育提供碳源营养导致。正如ARCE-CERVANTES等[11]报道,由糖、蛋白和脂类(玉米糠、玉米谷蛋白和大豆油)组成的复合添加剂配方产量最高。因此,双孢蘑菇添加剂中,需要配比一定含量的糖类和脂类碳源,以保障在增产的同时,双孢蘑菇品质不显著下降。

蘑菇子实体蛋白质含量是评价蘑菇品质的重要指标。在蘑菇品质分析方面,杨红澎等[27]在分析双孢蘑菇和棕色蘑菇发现,双孢蘑菇子实体氨基酸对人体是一种优秀的氨基酸来源。研究表明,使用蛋白添加剂能够提高双孢蘑菇子实体的蛋白质含量[14, 22],但对于氨基酸含量及组成的分析尚未报道。本试验在蛋白质添加量相同的条件下,不同添加剂组蘑菇子实体中蛋白含量在22.92%—40.21%,与前人报道的结果一致[28,29]。蛋白质添加剂的使用,在三潮菇中均能显著提高子实体的蛋白质含量,表明蛋白质类添加剂的使用,能够提高子实体蛋白质含量。另外,同一个处理中,产量最高的第一潮菇其蛋白含量往往低于产量最低的第三潮菇,而产量居中的第二潮菇蛋白含量往往也居中。这是由于一潮菇出菇时营养物质总量最丰富,但产量最高(占总产量40%以上),导致分配给单一子实体的营养物质较第三潮菇(占总产量10%—17%)低;而第二潮菇时,营养物质由于一潮菇的出菇被消耗,从而出现蛋白质含量较一潮菇降低。这也表明,在双孢蘑菇出菇过程中,使用适量的蛋白质添加剂,可以提高子实体产量和品质。程新等[30]报道,茶树菇第三潮菇蛋白质含量略高于前两潮,与本研究结果一致。羽毛粉组(FM)在第一、二潮蛋白含量显著高于其他组,蛋白质含量较高可能是其硬度较大的一部分原因。羽毛粉是广泛用于畜禽水产的高蛋白饲料[31],与ES按一定比例组合可以提高添加剂的平均蛋白质含量,用于生产高蛋白质含量的双孢蘑菇。

蛋白质的营养价值取决于氨基酸的比例及必需氨基酸的种类和含量。根据1973年FAO/WHO规定的理想蛋白质中必需氨基酸的模型[27,31],本研究中各潮次双孢蘑菇子实体的优势氨基酸前3位均为Glu、Val和Asp,其中Glu和Asp是最重要的呈味氨基酸,决定了蘑菇味道鲜美与可口程度[2],而Val则是人体必需的8种氨基酸之一。杨红澎等[27]报道,双孢蘑菇子实体中,氨基酸总含量为31.19%,其中Glu、Val和Asp含量分别居第1、2和5位,含量分别为8.40%、3.14%和2.33%。林忠宁等[32]报道,双孢蘑菇子实体蛋白质含量为42.10%,其中含量最高的7种氨基酸依次为Glu、Asp、Lue、Ala、Lys、Arg和Val。可见,Glu、Val和Asp为双孢蘑菇子实体中的优势氨基酸类型,而不同试验中含量的差异,可能与培养料成分有关。FM组Glu含量和总呈味氨基酸含量(DAA)在第一、三潮菇时最高,与其氨基酸含量丰富且同期产量较低有关[33]。ES和CP组在第二和第三潮菇时,TAA、EAA、DAA较第一潮显著升高,这是由于它们的第二和第三潮菇产量低于第一潮,使子实体品质有所提升。

4 结论

添加玉米蛋白添加剂使双孢蘑菇总产量达到35.24 kg?m-2,较空白对照增产24.26%,每t培养料中添加剂产生的经济效益达到785.23元。添加豆粕添加剂可显著提高第三潮菇产量,达到5.01 kg?m-2,缓释效果与商业化添加剂相当。添加膨化大豆后,在提高产量的同时可显著提高第一、二潮蘑菇的硬度品质。5种蛋白添加剂的使用,在3个潮次中均显著提高了子实体中蛋白质含量。添加羽毛粉和玉米蛋白能显著提高蘑菇子实体的呈味氨基酸含量,提升蘑菇的风味和口感。综合不同蛋白添加剂原料的特异性优势,开发复合、缓释型添加剂,实现双孢蘑菇优质高产,是今后双孢蘑菇添加剂的研究方向。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

KERTESZ M A, THAI M . Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms
Applied Microbiology and Biotechnology, 2017,102(4):1639-1650.

[本文引用: 2]

AISALA H, LAAKSONEN O, MANNINEN H, RAITTOLA A, HOPIA A, SANDELL M . Sensory properties of Nordic edible mushrooms
Food Research International, 2018,109:526-536.

[本文引用: 2]

ROYSE D J . Effects of fragmentation, supplementation and the addition of phase II compost to 2nd break compost on mushroom ( Agaricus bisporus) yield
Bioresource Technology, 2010,101(1):188-192.

[本文引用: 2]

VOS A M, HEIJBOER A, BOSCHKER H T S, BONNET B, LUGONES L G, WOSTEN H A B . Microbial biomass in compost during colonization of Agaricus bisporus
AMB Express, 2017,7(1):12.

[本文引用: 1]

Randle P E . Supplementation of mushroom composts-a review
Crop Research, 1983,23(1):51-69.

[本文引用: 1]

SCHISLER L, SINDEN J . Nutrient supplementation of mushroom compost at spawning
Mushroom Science, 1962,5:150-164.

[本文引用: 1]

SCHISLER L, SINDEN J . Nutrient supplementation of mushroom compost at casing
Mushroom Science, 1962, ( 5):267-280.

[本文引用: 1]

朱燕华, 王倩, 陈明杰, 汪虹, 宋晓霞, 黄建春 . 培养料中添加豆粕对双孢蘑菇产量的影响
食用菌学报, 2015,22(4):40-43.

[本文引用: 1]

ZHU Y H, WANG Q, CHEN M J, WANG H, SONG X X, HUANG J C . Effects of supplementing cultivation compost with soybean meal at spawning and prior to casing on Agaricus bisporus fruit body yields
Acta Edulis Fungi, 2015,22(4):40-43. (in Chinese)

[本文引用: 1]

PARDO-GIMENEZ A, CATALAN L, CARRASCO J, ALVAREZ- ORTI M, ZIED D, PARDO J . Effect of supplementing crop substrate with defatted pistachio meal on Agaricus bisporus and Pleurotus ostreatus production
Journal of the Science of Food and Agriculture, 2016,96(11):3838-3845.

DOI:10.1002/jsfa.2016.96.issue-11URL [本文引用: 1]

PARDO-GIMENEZ A, ZIED D C, ALVAREZ-ORTI M, RUBIO M, PARDO J E . Effect of supplementing compost with grapeseed meal on Agaricus bisporus production
Journal of the Science of Food and Agriculture, 2012,92(8):1665-1671.

DOI:10.1002/jsfa.5529URL [本文引用: 1]
BACKGROUND: This work assesses the agronomic performance of grapeseed meal, before and after oil extraction, in nutritional compost supplement when growing the mushroom species Agaricus bisporus (Lange) Imbach. The effect of formaldehyde treatment before using this compost is also considered. Materials were applied at different doses at spawning. Along with non-supplemented compost, three commercial nutritional supplements were used as controls.
RESULTS: In general terms, grapeseed meal performance was similar to that of commercial delayed-release nutrients, but improved the non-supplemented compost response. We highlight that grapeseed enhances performance as larger yields of harvested mushrooms were obtained with greater dry weight content; however, their protein content was lower. The best performance was displayed by fresh formaldehyde-treated grapeseed (6000 ppm) when applied to the 10 g kg(-1) compost dose.
CONCLUSIONS: Our findings suggest that grapeseed meal offers a great potential to be applied on a commercial scale. The addition of grapeseed resulted in an enhanced performance as shown by the higher number of harvested mushrooms. The use of grapeseed meal (extracted or non-extracted), a low-cost ingredient with high levels of carbohydrates, may suppose an economic profit on the basis of the positive effect of adding carbon in the mushroom cultivation. (C) 2012 Society of Chemical Industry

ARCE-CERVANTES O, SAUCEDO-GARCíA M, LEAL LARA H, RAMíREZ-CARRILLO R, CRUZ-SOSA F, LOERA O . Alternative supplements for Agaricus bisporus production and the response on lignocellulolytic enzymes
Scientia Horticulturae, 2015,192:375-380.

[本文引用: 3]

NARH MENSAH D L, ADDO P, DZOMEKU M, OBODAI M . Bioprospecting of powdered pineapple rind as an organic supplement of composted sawdust for Pleurotus ostreatus mushroom cultivation
Food Science & Nutrition, 2018,6(2):280-286.

[本文引用: 1]

GOLESTANI T, HAMIDOGHLI Y, OLFATI J A . Substrate, casing supplementation and fragmentation have no effect on button mushroom yield under appropriate conditions
Indian Horticulture Journal, 2014,4(3/4):162-166.

[本文引用: 1]

CARRASCO J, ZIED D C, PARDO J E, PRESTON G M, PARDO-GIMENEZ A . Supplementation in mushroom crops and its impact on yield and quality
AMB Express, 2018,8(1):146.

[本文引用: 4]

秦改娟, 王晓, 陈青君, 张国庆 . 不同配方培养料生产双孢蘑菇过程中主要木质纤维素降解酶及物料组分的变化
应用与环境生物学报, 2017,23(6):1035-1041.

[本文引用: 1]

QIN G J, WANG X, CHEN Q J, ZHANG G Q . Changes of lignocellulolytic enzymes and material components in different compost formulas during the production of Agaricus bisporus
Chinese Journal Applied and Environmental Biology, 2017,23(6):1035-1041. (in Chinese)

[本文引用: 1]

张昊琳, 陈青君, 张国庆, 秦勇, 高晓静, 秦改娟, 武芯蕊 . 不同基质培养料理化性状及其对双孢蘑菇农艺性状与产量的影响
中国农业科学, 2017,50(23):4622-4631.

DOI:10.3864/j.issn.0578-1752.2017.23.015URL [本文引用: 2]
【Objective】In order to provide theoretical basis and technical support for Agaricus bisporus cultivation in formula optimization and resource utilization.【Method】Four formulas of different substrates were performed as substrate materials, including wheat straw formula (T1), wheat and rice straw mixing formula (T2), wheat straw and corn stalk mixing formula (T3), and wheat straw and spent compost mixing formula (T4). The substrates were composted using the secondary fermentation method in the factory fermentation tunnel. Mushroom management proceeded in standard mushroom room workshop with controllable temperature, humidity and ventilation. The culture strain was Sylven A15. Substrate samples were collected at different time during composting and mushroom cultivation. Seven physical and chemical properties were measured, including water content, pH value, conductivity, carbon content, ash content, nitrogen content, and C/N ratio. The relationship between the physicochemical properties and corresponding yields were analyzed by multiple regression analysis. The agronomic traits of mushroom, such as mushroom weight, pileus diameter, pileus thickness and fruit body hardness, were analyzed based on the UPOV method. 【Result】The results showed that both water content and pH of the substrates in the four formulas were declined from the composting to cultivation periods. At the end of secondary fermentation, water content of the four formulas was about 70%, and the pH of formula T1 was 9.02. They were significantly higher than other formulations. The conductivity started to rise at the end of secondary fermentation. The conductivity of the four formulas softly increased during the secondary fermentation except T4 which underwent a significant declining at first fermentation stage. The ash content of the samples presented an upward trend. While at the end of the secondary fermentation, the ash content of formula T1 was significantly lower than that of the other three. The carbon content was continuously decreased during the culturing period especially in fruiting stage. At the end of the secondary fermentation, the carbon content of formula T1 was significantly higher than that of others. The nitrogen content of substrates at the end of the secondary fermentation was an important indicator for mushroom yield of the 1st flush. The amount reached to 1.9%-2.2%. During the fruiting stage, the nitrogen content was gradually reduced due to the consumption of substrates nutrition by mushroom mycelia. The nitrogen content of formula T4 was significantly higher than that of others. The formula T1 possessed the highest water content at cultivation period, and the highest yield of mushroom with the most stable agronomic characters. The second flush yield of formulas T1, T2 and T3 were 3 061.41, 2 534.47, 2 534.47 kg, respectively. They accounted for 43.81%, 39.89% and 49.71% of their total yield, respectively. The first flush yield of formula T4 was the the highest (3 064.19 kg), and accounted for 47.39% of its total yield. The multiple regression analysis resulted Y1=-5926.766+3770.091X6, Y2=6285.502+4920.672X1-1061.418X2-245.782X3+949.998X5+26081.326X6, Y3=3073.013+7030.476X1-114.728X5-910.576X6. The results showed that the water content of substrates was positively correlated with the yield of the 1st, 2nd and 3rd flush. The nitrogen content of substrates was positively correlated with the yield of the 1st and 2nd flush. The carbon content of substrates was positively correlated with the yield of the 2nd flush, while the carbon and nitrogen content of substrates was negatively correlated with the yield of 3rd flush. 【Conclusion】The water content of substrates during fruiting stage is the key element to improve the agronomic traits and yield ofmushroom A. bisporus. Increasing the content of carbon and nitrogen is beneficial for the yield formation of the 1st and 2nd flush.
ZHANG H L, CHEN Q J, ZHANG G Q, QIN Y, GAO X J, QIN G J, WU X R . The physical and chemical properties of different substrates and their effects on agronomic traits and yield of Agaricus bisporus
Scientia Agricultura Sinica, 2017,50(23):4622-4631. (in Chinese)

DOI:10.3864/j.issn.0578-1752.2017.23.015URL [本文引用: 2]
【Objective】In order to provide theoretical basis and technical support for Agaricus bisporus cultivation in formula optimization and resource utilization.【Method】Four formulas of different substrates were performed as substrate materials, including wheat straw formula (T1), wheat and rice straw mixing formula (T2), wheat straw and corn stalk mixing formula (T3), and wheat straw and spent compost mixing formula (T4). The substrates were composted using the secondary fermentation method in the factory fermentation tunnel. Mushroom management proceeded in standard mushroom room workshop with controllable temperature, humidity and ventilation. The culture strain was Sylven A15. Substrate samples were collected at different time during composting and mushroom cultivation. Seven physical and chemical properties were measured, including water content, pH value, conductivity, carbon content, ash content, nitrogen content, and C/N ratio. The relationship between the physicochemical properties and corresponding yields were analyzed by multiple regression analysis. The agronomic traits of mushroom, such as mushroom weight, pileus diameter, pileus thickness and fruit body hardness, were analyzed based on the UPOV method. 【Result】The results showed that both water content and pH of the substrates in the four formulas were declined from the composting to cultivation periods. At the end of secondary fermentation, water content of the four formulas was about 70%, and the pH of formula T1 was 9.02. They were significantly higher than other formulations. The conductivity started to rise at the end of secondary fermentation. The conductivity of the four formulas softly increased during the secondary fermentation except T4 which underwent a significant declining at first fermentation stage. The ash content of the samples presented an upward trend. While at the end of the secondary fermentation, the ash content of formula T1 was significantly lower than that of the other three. The carbon content was continuously decreased during the culturing period especially in fruiting stage. At the end of the secondary fermentation, the carbon content of formula T1 was significantly higher than that of others. The nitrogen content of substrates at the end of the secondary fermentation was an important indicator for mushroom yield of the 1st flush. The amount reached to 1.9%-2.2%. During the fruiting stage, the nitrogen content was gradually reduced due to the consumption of substrates nutrition by mushroom mycelia. The nitrogen content of formula T4 was significantly higher than that of others. The formula T1 possessed the highest water content at cultivation period, and the highest yield of mushroom with the most stable agronomic characters. The second flush yield of formulas T1, T2 and T3 were 3 061.41, 2 534.47, 2 534.47 kg, respectively. They accounted for 43.81%, 39.89% and 49.71% of their total yield, respectively. The first flush yield of formula T4 was the the highest (3 064.19 kg), and accounted for 47.39% of its total yield. The multiple regression analysis resulted Y1=-5926.766+3770.091X6, Y2=6285.502+4920.672X1-1061.418X2-245.782X3+949.998X5+26081.326X6, Y3=3073.013+7030.476X1-114.728X5-910.576X6. The results showed that the water content of substrates was positively correlated with the yield of the 1st, 2nd and 3rd flush. The nitrogen content of substrates was positively correlated with the yield of the 1st and 2nd flush. The carbon content of substrates was positively correlated with the yield of the 2nd flush, while the carbon and nitrogen content of substrates was negatively correlated with the yield of 3rd flush. 【Conclusion】The water content of substrates during fruiting stage is the key element to improve the agronomic traits and yield ofmushroom A. bisporus. Increasing the content of carbon and nitrogen is beneficial for the yield formation of the 1st and 2nd flush.

高晓静, 张昊琳, 佟佳兴, 秦改娟, 张国庆, 陈青君 . 不同配方双孢蘑菇培养料的细菌群落结构和理化性状
应用与环境生物学报, 2017,23(3):502-510.

[本文引用: 1]

GAO X J, ZHANG H L, TONG J X, QIN G J, ZHANG G Q, CHEN Q J . Bacterial community structure and physical-chemical properties of different formulations of cultivated mushroom (Agaricus bisporus) composts
Chinese Journal Applied and Environmental Biology, 2017,23(3):502-510. (in Chinese)

[本文引用: 1]

李晓博 . 双孢蘑菇[Agaricus bisporus]生产对农业有机废弃物的降解利用研究
[D]. 长春: 吉林农业大学, 2008.

[本文引用: 1]

LI X B . Studies on the degradation and utilization of Agaricus bisporus production on agricultural organic wastes
[D]. Changchun: Jilin Agricultural University, 2008. (in Chinese)

[本文引用: 1]

陈洪雨, 鲍大鹏, 杨瑞恒, 王莹, 高英女, 李燕, 吴莹莹 . 亚东黑耳的氨基酸特征分析及蛋白质品质评价
核农学报, 2019,33(1):81-87.

[本文引用: 2]

CHEN H Y, BAO D P, YANG R H, WANG Y, GAO Y N, LI Y, WU Y Y . Amino acid characteristic analysis and protein quality evaluation of Exidia sp
Journal of Nuclear Agricultural Sciences, 2019,33(1):81-87. (in Chinese)

[本文引用: 2]

ZHANG H L, WEI J K, WANG Q H, YANG R, GAO X J, SANG Y X, CAI P P, ZHANG G Q, CHEN Q J . Lignocellulose utilization and bacterial communities of millet straw based mushroom ( Agaricus bisporus) production
Scientific Reports, 2019,9:1151.

DOI:10.1038/s41598-018-37681-6URL [本文引用: 1]

MAMIRO D P, ROYSE D J . The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost
Bioresource Technology, 2008,99(8):3205-3212.

DOI:10.1016/j.biortech.2007.05.073URL [本文引用: 2]

MAMI Y, PEYVAST G, GHASEMNEZHAD M, ZIAIE F . Supplementation at casing to improve yield and quality of white button mushroom
Agricultural Sciences, 2013,4(1):27-33.

DOI:10.4236/as.2013.41005URL [本文引用: 4]

AHMAD J J, THALIJ K M, MOSA K A . The Effect of Sorbitol and Mannitol Supplementation at Casing on the Productive characteristics of Agaricus bisporus Mushroom
Journal of Biology, Agriculture and Healthcare, 2017,7(12):46-51.

[本文引用: 2]

陈艳琦, 简冰, 孙晓仲, 吕志文, 杨蕾蕾, 李雪飞, 李长田, 宋冰, 李玉 . 玉米粉添加量对玉木耳室内栽培的影响
分子植物育种, 2020,18(1):340-346.

[本文引用: 1]

CHEN Y Q, JIAN B, SUN X Z, Lü Z W, YANG L L, LI X F, LI C T, SONG B, LI Y . Effect of indoor cultivation of Auricularia cornea by adding different quantity of corn meal
Molecular Plant Breeding, 2020,18(1):340-346. (in Chinese)

[本文引用: 1]

俞路, 王雅倩, 章世元, 周联高, 严桂芹, 仲伟芳, 谢月华, 周树春, 闫寒寒 . 玉米蛋白饲料在樱桃谷肉鸭日粮中的应用研究
中国饲料, 2008(10):12-15.

URL [本文引用: 1]
本文研究了3~5周龄肉鸭日粮中玉米蛋白饲料适宜添加比例.480只21日龄健康樱桃谷肉鸭,按体重相近的原则随机分为4组,每组设6个重复,各重复20只.对照组饲喂基础日粮,试验组分别在基础日粮中添加5%、8%、11%玉米蛋白粉代替部分豆粕.试验期间记录各组体增重及耗料量等,试验结束后,测定各组肉鸭的生产性能、屠宰性能及血清中尿素氮、总蛋白、甘油三酯含量.结果表明,3种添加比例时肉鸭体增重、料重比和屠宰性能无显著影响(P>0.05).5%、8%添加量对肉鸭血清尿素氮、总蛋白、甘油三酯含量无显著影响(P>0.05),日粮中添加11%玉米蛋白饲料,尿素氮显著增加(P<0.05).本试验条件下,日粮中添加8%玉米蛋白饲料,肉鸭生产性能最理想,单位增重饲料成本比基础日粮组低3.82%,胴体品质也有一定改善,且对血清中尿素氮、总蛋白、甘油三酯含量无显著影响.
YU L, WANG Y Q, ZHANG S Y, ZHOU L G, YAN G Q, ZHONG W F, XIE Y H, ZHOU S C, YAN H H . Application of corn gluten meal in meat duck diet
Chinese Feed, 2008(10):12-15. (in Chinese)

URL [本文引用: 1]
本文研究了3~5周龄肉鸭日粮中玉米蛋白饲料适宜添加比例.480只21日龄健康樱桃谷肉鸭,按体重相近的原则随机分为4组,每组设6个重复,各重复20只.对照组饲喂基础日粮,试验组分别在基础日粮中添加5%、8%、11%玉米蛋白粉代替部分豆粕.试验期间记录各组体增重及耗料量等,试验结束后,测定各组肉鸭的生产性能、屠宰性能及血清中尿素氮、总蛋白、甘油三酯含量.结果表明,3种添加比例时肉鸭体增重、料重比和屠宰性能无显著影响(P>0.05).5%、8%添加量对肉鸭血清尿素氮、总蛋白、甘油三酯含量无显著影响(P>0.05),日粮中添加11%玉米蛋白饲料,尿素氮显著增加(P<0.05).本试验条件下,日粮中添加8%玉米蛋白饲料,肉鸭生产性能最理想,单位增重饲料成本比基础日粮组低3.82%,胴体品质也有一定改善,且对血清中尿素氮、总蛋白、甘油三酯含量无显著影响.

ROYSE D J . Influence of spawn rate and commercial delayed release nutrient levels on Pleurotus cornucopiae (oyster mushroom) yield, size, and time to production
Applid Microbiology and Biotechnology, 2002,58(4):527-531.

[本文引用: 1]

杨红澎, 班立桐, 黄亮, 王玉, 童应凯, 孙建成 . 双孢蘑菇和棕色蘑菇氨基酸的对比分析
食品研究与开发, 2013,34(5):84-86.

[本文引用: 3]

YANG H P, BAN L T, HUANG L, WANG Y, TONG Y K, SUN J C . Comparison and analysis of amino acid in Agaricus bisporus and Agaricus brunnescens Peck
Food Research And Development, 2013,34(5):84-86. (in Chinese)

[本文引用: 3]

柯斌榕, 兰清秀, 卢政辉, 廖剑华 . 菌渣培养料对双孢蘑菇子实体蛋白质营养价值的影响
福建农业学报, 2017,32(10):1106-1110.

[本文引用: 1]

KE B R, LAN Q X, LU Z H, LIAO J H . Effect of spent mushroom for substrate in culture mdium on nutritional value of Agaricus bispoius
Fujian Journal of Agricultural Sciences, 2017,32(10):1106-1110. (in Chinese)

[本文引用: 1]

KOSSON M R, BAKOWSKI M J . The effect of cultivation methods on the amino acid and protein content of the mushroom ( Agaricus bisporus Lange/Sing.)
Molecular Nutrition & Food Research, 2010,28(10):1045-1051.

[本文引用: 1]

程新, 李昆太, 黄林, 李荣同 . 前三潮茶树菇的成分差异比较研究
食品与发酵工业, 2018,44(8):271-276.

[本文引用: 1]

CHENG X, LI K T, HUANG L, LI R T . Comparison on compositions of Agrocybe cylindracea among the first three tides
Food and Fermentation Industries, 2018,44(8):271-276. (in Chinese)

[本文引用: 1]

陈志敏, 褚殿文, 常文环 . 膨化羽毛粉的营养价值及对断奶仔猪生长性能的影响
养猪, 2019(3):17-18.

[本文引用: 2]

CHEN Z M, CHU D W, CHANG W H . Nutritional value of puffed feather powder and its effect on growth performance of weaned piglets
Swine Production, 2019(3):17-18. (in Chinese)

[本文引用: 2]

林忠宁, 陈敏健, 刘明香, 周代顺 . 双孢蘑菇菇脚氨基酸含量的测定及营养评价
氨基酸和生物资源, 2011,33(4):20-23.

[本文引用: 1]

LIN Z N, CHEN M J, LIU M X, ZHOU D S . Determination and nutritional evaluation of amino acid content in the foot of Agaricus bisporus
Amino Acids & Biotic Resources, 2011,33(4):20-23. (in Chinese)

[本文引用: 1]

高必成, 郁建强, 沈明泉, 殷戎一 . 膨化羽毛粉在金针菇生产上的应用初报
上海农学院学报, 1992,10(3):263-264.

[本文引用: 1]

GAO B C, YU J Q, SHEN M Q, YING R Y . Application of expanded feather powder in production of Flammulina velutipes
Journal of Shanghai Agricultural College, 1992,10(3):263-264. (in Chinese)

[本文引用: 1]

相关话题/培养 生产 营养 比例 生物学