2
3
Effects of Protein Supplements on Agronomic Characters and Quality of the Mushroom Agaricus bisporus
ZHANG WenQiang1, CHEN QingJun,1, ZHANG GuoQing1, SHI ShiDa1, CAO Na1, ABLAT· Tohtirjap1, GUO YuXin2, LIN WenCai31 2
3
通讯作者:
责任编辑: 赵伶俐
收稿日期:2019-12-4接受日期:2020-02-2网络出版日期:2020-05-16
基金资助: |
Received:2019-12-4Accepted:2020-02-2Online:2020-05-16
作者简介 About authors
张文强,E-mail:wqzhang1994@126.com。
摘要
关键词:
Abstract
Keywords:
PDF (483KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
张文强, 陈青君, 张国庆, 石世达, 曹娜, 阿布来提·托合提热结甫, 果禹鑫, 林文才. 蛋白添加剂对双孢蘑菇农艺性状及品质的影响[J]. 中国农业科学, 2020, 53(10): 2091-2100 doi:10.3864/j.issn.0578-1752.2020.10.015
ZHANG WenQiang, CHEN QingJun, ZHANG GuoQing, SHI ShiDa, CAO Na, ABLAT· Tohtirjap, GUO YuXin, LIN WenCai.
0 引言
【研究意义】双孢蘑菇(Agaricus bisporus)又称蘑菇、白蘑菇、洋蘑菇、纽扣蘑菇,味道鲜美,是一种富含氨基酸、高蛋白、低脂肪的健康食材,风靡全世界[1]。中国是世界上双孢蘑菇栽培的主要地区之一[2],根据中国食用菌协会统计数据,2017年中国的双孢蘑菇产量占世界的50%左右。得益于国内工厂化周年生产模式的基本完善,双孢蘑菇工厂化平均产量约25 kg?m-2,但相较于欧美国家的35 kg?m-2仍有较大差距,其主要原因之一是添加剂的使用。目前,国内普遍采用二次发酵料、不添加蛋白类添加剂的栽培工艺;而国外多采用3次发酵料,并添加不同剂量的蛋白类添加剂[3,4]。添加剂已经成为蘑菇产量和品质提高的重要原料。随着国内工厂化栽培技术的升级,国内也开始采用3次发酵栽培技术,但3次发酵与添加剂的相关理论基础及作用效果等均缺乏深入研究。因此,深入研究和分析添加剂材料对蘑菇产量和产品品质的影响,可为添加剂原材料选择、配方设计及生产工艺等提供重要指导意义。【前人研究进展】双孢蘑菇添加剂作为营养补充来源能够及时有效地对培养料的营养状况进行修正,提高蘑菇的产量、生物学转化效率和子实体品质[5]。1962和1964年,SCHISLER等[6,7]分别研究了播种期和覆土期在培养料中添加氮素添加剂的应用效果,均证明了向培养料中添加氮素营养能够提高产量。目前,商业添加剂多以蛋白质为主要成分,同时还含有碳水化合物、脂质、微量元素等,实现对双孢蘑菇出菇阶段的营养补充[8]。PARDO- GIMéNEZ等[9]在双孢蘑菇培养料中添加脱脂开心果粉,可以提高蘑菇子实体的单菇重、菌盖直径、蛋白质和干物质含量,同时,在平菇栽培基质添加脱脂开心果粉可增产34.40%,并发现添加葡萄籽粉可以为双孢蘑菇增产9.15%[10];ARCE-CERVANTES等[11]利用玉米糠、玉米麸皮和植物油混合材料作为双孢蘑菇添加剂,产量达到34 kg?m-2,并提高了培养料中纤维素酶、木聚糖酶和漆酶活性。另外,NARH MENSAH等[12]利用菠萝果皮作为平菇栽培的添加剂,提高了子实体产量、粗蛋白、锌和铜含量。为满足双孢蘑菇工厂化快速发展对于专业添加剂的需求,在世界范围内也出现了一些商业化添加剂生产企业及品牌,如MCSubstradd?等。在工厂化生产中,添加剂的使用需要满足严格的要求,正确的双孢蘑菇添加剂是提高产量和品质的客观因素,培养料的品质决定了使用添加剂的潜力,在品质差的培养料中使用添加剂会适得其反,并且添加剂使用后会增加管理工艺和设施的压力[13,14]。添加剂的作用效果还与培养料的温度、含水量、生物活性、结构、生长系统有关[14]。随着双孢蘑菇与微生物相关研究的深入,以微生物为主体的生物添加剂具有巨大潜力[1]。【本研究切入点】选用豆粕、膨化大豆、玉米蛋白、羽毛粉和商业添加剂MCS,首次在发酵完成的双孢蘑菇3次发酵料中分别加入同等蛋白质含量的不同蛋白质添加剂进行研究。【拟解决的关键问题】明晰不同蛋白添加剂对双孢蘑菇农艺性状及品质的影响,为添加剂配方的开发及优化提供参考。1 材料与方法
试验于2018年在江苏盐城闽中有机食品有限公司双孢蘑菇工厂化生产基地进行。1.1 试验材料
双孢蘑菇(A. bisporus)W192麦粒种(栽培种),购自山东临沂瑞泽生物科技股份有限公司。培养料由基地自主生产,配方:麦草47 t、稻草10.8 t、鸡粪40 t、豆粕4 t、石膏6 t。原材料混合建堆后进行16 d的一次发酵,随后转入封闭式隧道进行二次发酵6—7 d。二次发酵料中播入双孢蘑菇菌种(接种量2%),后转移至菇床进行3次发酵。供试4种单一蛋白原料添加剂包括豆粕(soybean meal,SM)、膨化大豆(extruded soybean,ES)、玉米蛋白(corn protein,CP)、羽毛粉(feather meal,FM),购自河北石家庄孜孜贸易有限公司。阳性对照商业添加剂为MCSubstradd?(MCS),购自Legro Australia Pty Ltd。1.2 试验设计
试验组分别添加SM、ES、CP和FM 4种单一蛋白原料添加剂,阳性对照组添加MCS商业型添加剂,空白对照组不添加任何添加剂,共计6组。各添加剂组均添加培养料鲜重0.5%对应的蛋白量,根据添加剂实际添加量公式及各添加剂蛋白含量和含水量,计算每t培养料中添加剂的添加量。出菇试验在标准工厂化菇房中进行,取菌丝生长良好的3次培养料分别与各种添加剂实际添加量比例充分混合后,取10 kg装入栽培筐(40 cm×30 cm×30 cm)中,保证料面平整且整体紧实度一致,料层高度为26—27 cm,覆土层厚度为3—4 cm,每组16筐。按照标准工厂化出菇管理工艺,进行出菇管理,18—21 d开始采收第一潮蘑菇,之后每7—8 d采收一潮蘑菇,生产过程中共采收三潮蘑菇。1.3 培养料及添加剂理化性质测定
二次发酵结束的培养料和添加剂的含水量采用干燥称重法[15],含氮量及蛋白含量用全自动凯氏定氮法[16]测定,灰分和含碳量采用马弗炉灼烧法[17]。1.4 双孢蘑菇子实体农艺性状测定
分别测定不同组第一至三潮菇产量。双孢蘑菇子实体农艺性状参照文献[18]测定,每潮菇每个组随机取100个蘑菇子实体,利用游标卡尺测量菌盖直径(mm)、菌盖厚度(mm)、硬度计测定硬度(105 Pa),称量单菇重量(g)。1.5 双孢蘑菇子实体品质分析
采用茚三酮显色法(GB/T 18246—2000)和氨基酸自动分析仪测定每1 g干双孢蘑菇子实体氨基酸含量[19],单位为mg?g-1。分别计算总氨基酸含量(total amino acids,TAA)、总必需氨基酸含量(essential amino acids,EAA)、总非必需氨基酸含量(non essential amino acids,NEAA)、总呈味氨基酸含量(delicious amino acids,DAA)、总必需氨基酸占总氨基酸的量(E/T)、总必需氨基酸与总非必需氨基酸比值(E/N)[19]。1.6 数据分析方法
利用Excel 2019进行数据处理,利用SPSS 20.0计算平均值、标准差,进行差异显著性分析。2 结果
2.1 理化性质分析
二次发酵料的品质很大程度上决定了双孢蘑菇的产量和品质,是工厂化生产的关键数据[20]。二次发酵结束培养料的理化特性为含水量67.42%,含氮量2.21%,灰分含量35.59%,含碳量35.81%,达到双孢蘑菇工厂化栽培对培养料的营养需求范围[21,22,23]。由表1可知,不同蛋白添加剂的蛋白含量差异较大,其中羽毛粉(FM)的蛋白质含量最高,为86.63%,显著高于其他类型。各样品根据蛋白含量从高到低依次为羽毛粉(FM)>玉米蛋白(CP)>豆粕(SM)>商业添加剂(MCS)>膨化大豆(ES)。MCS含水量显著高于其他添加剂(P<0.05),CP含碳量最高,而灰分含量显著低于其他添加剂(P<0.05)。Table 1
表1
表1蛋白添加剂原料理化性质
Table 1
添加原料 Supplementation | 含水量 Moisture (%) | 含氮量 Nitrogen content (%) | 蛋白含量 Protein content (%) | 灰分含量 Ash content (%) | 含碳量 Carbon content (%) |
---|---|---|---|---|---|
SM | 9.88±0.13b | 7.85±0.42c | 49.08±0.26c | 7.03±0.03a | 51.65±0.02b |
ES | 9.07±0.85b | 5.89±0.09d | 36.81±0.58d | 5.38±0.03b | 52.56±0.02b |
CP | 7.39±0.11c | 10.41±0.07b | 65.04±0.45b | 1.30±0.05c | 54.83±0.03a |
FM | 7.07±0.07c | 13.86±0.02a | 86.63±0.12a | 5.17±0.08b | 52.69±0.04b |
MCS | 12.63±0.01a | 7.02±0.12c | 43.87±0.75c | 6.93±0.06a | 51.70±0.03b |
新窗口打开|下载CSV
2.2 蛋白添加剂对双孢蘑菇产量的影响
根据不同蛋白添加剂理化指标,最终确定各添加剂的添加量见表2。本研究统计了2018年河北地区添加剂原料和MCSubstradd?商业添加剂价格,分别为SM 3 250元/t、ES 3 700元/t、CP 4 500元/t、FM 3 900元/t、MCSubstradd?商业添加剂MCS 5 000元/t。增产量以CTL组产量为基础,每m2使用83.33 kg培养料。MCS添加成本最高,达到65.25元/t,羽毛粉添加成本最低,为24.22元/t。每t培养料中添加剂增产最高为CP组(82.56 kg),MCS组次之(61.44 kg),FM组最低,且为负增长,减产2.16 kg。根据目前双孢蘑菇出厂平均价格(10元/kg),添加剂的经济效益为蘑菇增产创收扣除添加剂成本后的实际收益。每t培养料中添加剂产生经济效益最高为CP组(785.23元);MCS组次之,为549.15元;FM组最低,亏损45.82元。Table 2
表2
表2蛋白添加剂原料生产添加量、成本、增产量和经济效益
Table 2
添加剂Supplementation | 豆粕SM | 膨化大豆ES | 玉米蛋白CP | 羽毛粉FM | MCS |
---|---|---|---|---|---|
添加剂添加量Amount of supplementations (kg) | 12.69 | 15.93 | 8.97 | 6.21 | 13.05 |
添加剂成本Cost of supplementations (Yuan) | 41.24 | 58.94 | 40.37 | 24.22 | 65.25 |
蘑菇增产量 Mushroom increased output (kg) | 30.72 | 33.36 | 82.56 | -2.16 | 61.44 |
添加剂经济效益 Economic benefit of supplementations (Yuan) | 265.96 | 274.66 | 785.23 | -45.82 | 549.15 |
新窗口打开|下载CSV
不添加任何添加剂的空白对照组(CTL)总产量达到28.36 kg?m-2,高于目前国内25 kg?m-2的平均产量,表明培养料质量和出菇管理工艺达到要求(表3)。MCS组总产量达到33.48 kg?m-2,较CTL组增产18.05%,生物学效率由85.30%提高到100.68%,表明添加剂的使用能够显著提高双孢蘑菇产量。4个试验组中,CP组总产量最高,达到35.24 kg?m-2,较CTL组增产24.26%,显著高于其他3个试验组和CTL组,略高于MCS组。4个试验组一潮菇产量均显著高于MCS和CTL组,CP组产量最高达到19.31 kg?m-2,其次为ES组(18.08 kg?m-2)。MCS组二潮菇产量最高,达到14.39 kg?m-2,其次分别为CP组(12.41 kg?m-2)和CTL组(12.06 kg?m-2),而FM组最低。MCS组第三潮菇产量最高,达到5.62 kg?m-2,显著高于其他组,在总产量中占16.79%。在添加剂试验组中,SM组第三潮菇产量最高,达到5.01 kg?m-2,略低于MCS组,在其总产量中占16.19%。CP组第一、二潮产量分别占总产量54.81%和35.22%,而第三潮产量较低,为3.52 kg?m-2,略高于CTL组(3.35 kg?m-2)。综合不同潮次产量和总产量,CP组总增产效果最佳,而SM组对第三潮菇增产效果最显著。CP组生物学效率最高,达到105.98%,各处理生物学效率由高到低为CP>MCS>ES>SM>CTL>FM。除FM组外,各添加剂均具有提高产量和生物学效率的作用。
Table 3
表3
表3不同蛋白添加剂组的双孢蘑菇产量
Table 3
处理 Treatment | 一潮菇 1st flush | 二潮菇 2nd flush | 三潮菇 3rd flush | 总产量 Total yield (kg?m-2) | 生物学效率 Biological efficiency (%) | |
---|---|---|---|---|---|---|
SM | Y | 15.06±0.67c | 10.85±0.58c | 5.01±0.33b | 30.92±0.60b | 93.00±1.81b |
P | 48.72% | 35.09% | 16.19% | |||
ES | Y | 18.08±0.80a | 9.05±0.85d | 4.01±0.23c | 31.14±1.53b | 93.65±4.61b |
P | 58.06% | 29.06% | 12.88% | |||
CP | Y | 19.31±0.99a | 12.41±0.90b | 3.52±0.25c | 35.24±2.13a | 105.98±6.41a |
P | 54.81% | 35.22% | 9.98% | |||
FM | Y | 17.59±0.93b | 7.37±0.99e | 3.22±0.22d | 28.18±1.56d | 84.74±4.69d |
P | 62.43% | 26.14% | 11.43% | |||
MCS | Y | 13.46±0.36d | 14.39±0.28a | 5.62±0.40a | 33.48±1.04a | 100.68±3.13a |
P | 40.21% | 43.00% | 16.79% | |||
CTL | Y | 12.96±0.10d | 12.06±1.04b | 3.35±0.35d | 28.36±1.31c | 85.30±3.94c |
P | 45.68% | 42.51% | 11.81% |
新窗口打开|下载CSV
2.3 蛋白添加剂对双孢蘑菇农艺性状的影响
双孢蘑菇的菌盖直径、菌盖厚度、子实体硬度和单菇重是评价其农艺性状重要指标[21]。第一潮菇时,SM、MCS和CTL平均菌盖直径和厚度最大,而CP和FM组平均菌盖直径最小,ES和FM组平均菌盖厚度最小(P<0.05);硬度方面,ES和MCS组硬度最大,CP组硬度最小;SM组单菇重量最大,而无添加的CTL组单菇重最小。第二潮菇时,CP和ES组平均菌盖直径和厚度最大,而SM和MCS组平均菌盖直径和厚度最小;硬度方面,ES组硬度最大,FM和CTL组硬度最小;ES组单菇重量最大,与FM、MCS和CTL组差异显著(P<0.05)。第三潮菇时,CP和MCS组平均菌盖直径最大,FM和MCS组平均菌盖厚度最大,而SM、ES和FM组平均菌盖直径最小,SM、ES和CP组平均菌盖厚度最小;添加剂组硬度均显著高于CTL组(P<0.05);SM、ES、CP和CTL组单菇重相当,高于FM和MCS组。Table 4
表4
表4不同蛋白添加剂组的双孢蘑菇农艺性状
Table 4
处理组 Treatment | 菌盖直径 Pileus diameter (mm) | 菌盖厚度 Pileus thickness (mm) | 硬度 Hardness (105 Pa) | 单菇重 Mushroom weight (g) | |
---|---|---|---|---|---|
一潮菇 1st flush | SM | 41.31±3.17a | 22.25±4.06a | 7.69±0.80c | 24.29±0.61a |
ES | 39.26±2.68b | 20.76±1.65c | 9.64±1.53a | 22.73±0.81b | |
CP | 38.49±2.75c | 21.15±1.70b | 7.37±0.58d | 22.03±0.14b | |
FM | 38.49±2.89c | 20.09±2.33c | 7.62±1.00c | 21.75±0.04c | |
MCS | 42.49±3.45a | 22.94±1.95a | 9.39±1.42a | 22.73±0.50b | |
CTL | 41.60±3.11a | 22.89±1.76a | 8.09±0.87b | 20.98±0.28d | |
二潮菇 2nd flush | SM | 38.68±2.93c | 20.12±1.47c | 6.09±0.66c | 21.32±0.41b |
ES | 41.79±2.16a | 22.55±1.06a | 8.67±1.03a | 23.68±0.47a | |
CP | 42.20±2.49a | 22.64±1.30a | 7.07±0.58b | 21.82±0.69b | |
FM | 39.08±3.31b | 21.66±1.44b | 5.34±0.54d | 19.64±0.51c | |
MCS | 38.45±2.27c | 19.95±1.49c | 6.14±0.49c | 18.00±0.25c | |
CTL | 39.77±3.25b | 21.17±1.99b | 5.06±0.39d | 17.14±0.01c | |
三潮菇 3rd flush | SM | 39.26±3.90b | 22.38±2.10b | 5.14±0.29a | 20.83±0.14a |
ES | 39.13±3.19b | 22.24±1.78b | 5.17±0.36a | 20.44±0.21a | |
CP | 39.89±3.76a | 22.65±1.92b | 5.65±0.28a | 20.62±0.52a | |
FM | 39.02±3.32b | 23.63±2.11a | 5.11±0.37a | 20.00±0.14b | |
MCS | 39.84±4.84a | 23.37±3.12a | 5.16±0.34a | 20.33±0.25b | |
CTL | 37.51±2.73b | 21.89±1.87c | 4.70±0.23b | 20.65±0.02a |
新窗口打开|下载CSV
2.4 蛋白添加剂对双孢蘑菇品质的影响
蛋白质含量、总氨基酸含量(TAA)、必需氨基酸(EAA)、非必需氨基酸(NEAA)、呈味氨基酸(DAA)是双孢蘑菇子实体重要品质指标。不同处理组各潮次子实体蛋白质含量见表5。第一潮菇时,ES组蛋白质含量最高(39.10%),按照蛋白质含量从高到低顺序依次为ES>CP>MCS>FM>SM>CTL。第二潮菇时,ES组蛋白质含量最高(26.39%),按照蛋白质含量从高到低顺序依次为ES>FM>SM、CP、MCS>CTL。第三潮菇时,CP组蛋白质含量最高(40.21%),按照蛋白质含量从高到低顺序依次为CP>SM、FM、ES>MCS>CTL。结果表明,5种蛋白添加剂的使用,在3个潮次中均显著提高了子实体中蛋白质含量。Table 5
表5
表5不同蛋白添加剂组的双孢蘑菇蛋白质含量
Table 5
处理组 Treatment | 蛋白质含量Protein content(%) | ||
---|---|---|---|
一潮菇 1st flush | 二潮菇 2nd flush | 三潮菇 3rd flush | |
SM | 27.55±0.08e | 25.23±0.23c | 36.67±0.02b |
ES | 39.10±0.61a | 26.39±0.01a | 36.38±0.33b |
CP | 37.55±0.06b | 24.77±0.17c | 40.21±0.61a |
FM | 30.46±0.71d | 25.78±0.38b | 36.46±0.57b |
MCS | 32.18±0.04c | 24.80±0.61c | 34.14±0.56c |
CTL | 26.47±0.01f | 22.92±0.30d | 27.63±0.29d |
新窗口打开|下载CSV
在被测的17种氨基酸中,3个潮次含量从高到低排名前3的氨基酸均是谷氨酸(Glu)、缬氨酸(Val)和天冬氨酸(Asp),其中Glu和Asp是重要呈味氨基酸(图1)。第一潮菇时,FM组Glu含量最高(55.04 mg?g-1),ES组最低(37.97 mg?g-1);MCS和SM组Val含量最高(分别为23.45和23.09 mg?g-1),ES和CTL组最低(分别为18.89和19.00 mg?g-1);MCS组Asp含量最高(19.50 mg?g-1),ES组最低(15.07 mg?g-1)。第二潮菇时,CP组Glu含量最高(74.28 mg?g-1),CTL组最低(38.00 mg?g-1);CP组Val含量最高(29.58 mg?g-1),CTL组最低(14.45 mg?g-1);CP组Asp含量最高(24.75 mg?g-1),ES组最低(11.55 mg?g-1)。第三潮菇时,FM组Glu含量最高(65.24 mg?g-1),CTL组最低(44.75 mg?g-1);ES组Val含量最高(25.37 mg?g-1),CTL组最低(20.05 mg?g-1);FM组Asp含量最高(21.69 mg?g-1),SM组最低(17.62 mg?g-1)。
图1
新窗口打开|下载原图ZIP|生成PPT图1不同蛋白添加剂组的双孢蘑菇氨基酸含量
Fig. 1The amino acid content of mushroom in different protein supplementations groups
根据氨基酸含量测定结果,分别计算不同处理组各潮子实体总氨基酸含量(TAA)、必需氨基酸(EAA)、非必需氨基酸(NEAA)和呈味氨基酸(DAA),结果见表6。第一潮菇时,FM和MCS组的TAA和EAA含量显著高于其他3个试验组和CTL组(P<0.05);FM组DAA含量显著高于其他试验组和对照组(P<0.05);除FM和CTL组外,其他各组E/T均达到40%;各组中FM组E/N最低,为0.60。第二潮菇时,CP组TAA和DAA含量显著高于其他组(P<0.05);CP和ES组EAA含量显著高于其他组;FM和MCS组E/T和E/N值显著高于其他组,CP组最低。第三潮菇时,5个添加剂组TAA、EAA、NEAA差异不显著,但均显著高于CTL组(P<0.05);ES和FM组DAA显著高于其他组,SM组显著高于其他各组的E/T(40.23%)和E/N(0.67)。
Table 6
表6
表6不同蛋白添加剂组的双孢蘑菇氨基酸组成
Table 6
氨基酸组成 Amino acid composition | 处理 Treatment | ||||||
---|---|---|---|---|---|---|---|
SM | ES | CP | FM | MCS | CTL | ||
一潮菇 1st flush | TAA (mg?g-1) | 194.58±8.46b | 173.44±4.10b | 184.22±0.48b | 230.66±2.18a | 217.60±16.97a | 190.30±10.18b |
EAA (mg?g-1) | 78.78±3.31b | 69.74±1.90c | 74.16±0.28b | 86.50±0.70a | 87.05±3.46a | 74.10±5.09b | |
NEAA(mg?g-1) | 115.8±5.15b | 103.70±2.20c | 110.05±0.75c | 144.16±2.88a | 130.55±13.51a | 116.20±5.09b | |
DAA(mg?g-1) | 95.51±4.09b | 83.87±2.29c | 87.85±1.29c | 111.08±1.30a | 94.20±4.24b | 91.55±3.75c | |
E/T (%) | 40.49±0.06a | 40.21±0.15a | 40.26±0.25a | 37.50±0.66b | 40.06±1.53a | 38.92±0.59a | |
E/N | 0.68±0.00a | 0.67±0.00a | 0.67±0.01a | 0.60±0.02b | 0.67±0.04a | 0.64±0.02a | |
二潮菇 2nd flush | TAA (mg?g-1) | 179.85±9.90c | 252.44±28.88b | 295.75±16.83a | 196.43±5.54c | 191.90±7.21c | 155.45±4.17c |
EAA (mg?g-1) | 70.54±7.48b | 94.74±11.41a | 109.61±5.86a | 79.15±1.27b | 76.25±4.31b | 60.15±1.34c | |
NEAA (mg?g-1) | 109.31±2.42c | 157.70±17.47b | 186.14±10.97a | 117.28±4.26c | 115.65±2.90c | 95.30±2.83c | |
DAA (mg?g-1) | 82.90±2.70c | 129.00±14.84b | 147.99±9.06a | 88.44±1.33c | 89.15±3.61c | 72.75±2.47c | |
E/T (%) | 39.16±2.00b | 37.51±0.23b | 37.07±0.13c | 40.30±0.54a | 39.72±0.75a | 38.70±0.17b | |
E/N | 0.64±0.05b | 0.60±0.01b | 0.59±0.00c | 0.68±0.02a | 0.66±0.02a | 0.63±0.00b | |
三潮菇 3rd flush | TAA (mg?g-1) | 223.63±12.43a | 240.19±6.81a | 233.43±5.31a | 244.52±19.71a | 226.40±4.10a | 197.80±10.89b |
EAA (mg?g-1) | 89.78±1.45a | 91.20±4.39a | 88.52±3.59a | 93.63±8.77a | 83.05±2.62a | 76.70±5.09b | |
NEAA (mg?g-1) | 133.85±13.88a | 148.99±2.42a | 144.91±1.71a | 154.71±10.41a | 143.35±1.48a | 121.10±5.80b | |
DAA (mg?g-1) | 104.47±12.71b | 120.55±0.77a | 107.15±0.31b | 125.26±6.10a | 108.35±3.04b | 94.80±8.34b | |
E/T (%) | 40.23±2.88a | 37.96±0.75b | 37.91±0.68b | 37.68±0.62b | 36.68±0.49c | 38.76±0.44b | |
E/N | 0.67±0.08a | 0.61±0.02b | 0.61±0.02b | 0.60±0.02b | 0.58±0.01c | 0.63±0.01b |
新窗口打开|下载CSV
3 讨论
本研究表明,豆粕、膨化大豆等蛋白类添加剂能够提高双孢蘑菇产量及经济效益。这是由于双孢蘑菇在出菇阶段,需要丰富的氮素营养,为其子实体生长发育提供原料,因此,蛋白类添加剂能以极小代价提高蘑菇产量和质量,是一种低成本、高收益的农艺措施[3,14,22-23]。二次发酵是我国目前双孢蘑菇工厂化栽培的主导技术,技术成熟、稳产高产(相对于我国农业式栽培),在缺乏3次发酵及其配套添加剂使用技术,生产企业自主开展3次发酵时,添加外源氮素添加剂后,往往由于灭菌和添加量等问题,常导致污染、减产甚至绝产。国外已有商业化的蛋白类添加剂,而国内相关技术研究和成熟添加剂均较少,且添加剂原料良莠不齐,缺乏统一标准。适合的添加剂能够显著提高双孢蘑菇产量,不同添加剂增产效果不同。本研究中玉米蛋白(CP)对产量提高效果最佳,产生经济效益最高。玉米蛋白是玉米籽粒经食品工业生产淀粉或酿酒工业提纯后的副产品,其蛋白质营养成分丰富,同时还含有少量的淀粉和纤维。陈艳琦等[24]在玉木耳栽培基质中添加3%玉米粉,发现总产量较空白对照组提高了11.39%。另外,有研究发现,玉米蛋白粉中含7%—8%的柠檬酸,具有良好的促生长作用[25]。4个试验组一潮菇产量均显著高于MCS和CTL组,与ROYSE[26]得出添加剂促进早期蘑菇产量的结论相符。商业添加剂MCS由多种原材料加工而成,其第一和第二潮菇产量占总产量的80%以上,且第二、三潮菇的产量均高于其他处理组,说明其具有营养缓释作用,而豆粕(SM)组表现出了接近商业添加剂的缓释效果,前两潮菇产量也占总产量的80%以上。ARCE-CERVANTES等[11]报道,玉米糠(corn bran)、玉米谷蛋白(corn gluten)和大豆油(soybean oil)复合配方具有最佳的产量(35.2 kg?m-2)和缓释效果,而单一添加玉米糠产量为28.7 kg?m-2,一潮菇产量占总产量62.7%。豆粕是大豆提取豆油后得到的一种副产品,价格低廉、蛋白质含量高,被广泛用于食用菌产业,也是大多复合型添加剂的主要成分。从本研究的结果来看,玉米蛋白和豆粕分别具有显著提高产量和缓释的效果,二者都是复合型蛋白质添加剂的理想原料。
一潮菇产量直接影响子实体农艺性质,产量升高往往导致品质下降[22]。本研究中,CP组一潮菇产量最高,与之相应的其子实体平均菌盖直径和硬度最小,这是由于CP组一潮菇总产量高,导致该批次子实体平均品质下降。子实体硬度是表征品质的重要指标之一,本研究中CTL组一潮菇平均硬度为8.09×105 Pa,与张昊琳等[16]报道相当((7.57—8.20)×105 Pa)。在第二和第三潮菇时,ES组均表现出了较高的农艺性状。膨化大豆(ES)是一种高营养价值的蛋白添加剂原料,通过高温高压处理,使蛋白质变性、淀粉糊化、油脂外露,同时杀死了病菌。在各添加剂组中,ES组蛋白质含量最低,但能够显著提高子实体硬度,这可能是大豆中的糖类、脂类为子实体发育提供碳源营养导致。正如ARCE-CERVANTES等[11]报道,由糖、蛋白和脂类(玉米糠、玉米谷蛋白和大豆油)组成的复合添加剂配方产量最高。因此,双孢蘑菇添加剂中,需要配比一定含量的糖类和脂类碳源,以保障在增产的同时,双孢蘑菇品质不显著下降。
蘑菇子实体蛋白质含量是评价蘑菇品质的重要指标。在蘑菇品质分析方面,杨红澎等[27]在分析双孢蘑菇和棕色蘑菇发现,双孢蘑菇子实体氨基酸对人体是一种优秀的氨基酸来源。研究表明,使用蛋白添加剂能够提高双孢蘑菇子实体的蛋白质含量[14, 22],但对于氨基酸含量及组成的分析尚未报道。本试验在蛋白质添加量相同的条件下,不同添加剂组蘑菇子实体中蛋白含量在22.92%—40.21%,与前人报道的结果一致[28,29]。蛋白质添加剂的使用,在三潮菇中均能显著提高子实体的蛋白质含量,表明蛋白质类添加剂的使用,能够提高子实体蛋白质含量。另外,同一个处理中,产量最高的第一潮菇其蛋白含量往往低于产量最低的第三潮菇,而产量居中的第二潮菇蛋白含量往往也居中。这是由于一潮菇出菇时营养物质总量最丰富,但产量最高(占总产量40%以上),导致分配给单一子实体的营养物质较第三潮菇(占总产量10%—17%)低;而第二潮菇时,营养物质由于一潮菇的出菇被消耗,从而出现蛋白质含量较一潮菇降低。这也表明,在双孢蘑菇出菇过程中,使用适量的蛋白质添加剂,可以提高子实体产量和品质。程新等[30]报道,茶树菇第三潮菇蛋白质含量略高于前两潮,与本研究结果一致。羽毛粉组(FM)在第一、二潮蛋白含量显著高于其他组,蛋白质含量较高可能是其硬度较大的一部分原因。羽毛粉是广泛用于畜禽水产的高蛋白饲料[31],与ES按一定比例组合可以提高添加剂的平均蛋白质含量,用于生产高蛋白质含量的双孢蘑菇。
蛋白质的营养价值取决于氨基酸的比例及必需氨基酸的种类和含量。根据1973年FAO/WHO规定的理想蛋白质中必需氨基酸的模型[27,31],本研究中各潮次双孢蘑菇子实体的优势氨基酸前3位均为Glu、Val和Asp,其中Glu和Asp是最重要的呈味氨基酸,决定了蘑菇味道鲜美与可口程度[2],而Val则是人体必需的8种氨基酸之一。杨红澎等[27]报道,双孢蘑菇子实体中,氨基酸总含量为31.19%,其中Glu、Val和Asp含量分别居第1、2和5位,含量分别为8.40%、3.14%和2.33%。林忠宁等[32]报道,双孢蘑菇子实体蛋白质含量为42.10%,其中含量最高的7种氨基酸依次为Glu、Asp、Lue、Ala、Lys、Arg和Val。可见,Glu、Val和Asp为双孢蘑菇子实体中的优势氨基酸类型,而不同试验中含量的差异,可能与培养料成分有关。FM组Glu含量和总呈味氨基酸含量(DAA)在第一、三潮菇时最高,与其氨基酸含量丰富且同期产量较低有关[33]。ES和CP组在第二和第三潮菇时,TAA、EAA、DAA较第一潮显著升高,这是由于它们的第二和第三潮菇产量低于第一潮,使子实体品质有所提升。
4 结论
添加玉米蛋白添加剂使双孢蘑菇总产量达到35.24 kg?m-2,较空白对照增产24.26%,每t培养料中添加剂产生的经济效益达到785.23元。添加豆粕添加剂可显著提高第三潮菇产量,达到5.01 kg?m-2,缓释效果与商业化添加剂相当。添加膨化大豆后,在提高产量的同时可显著提高第一、二潮蘑菇的硬度品质。5种蛋白添加剂的使用,在3个潮次中均显著提高了子实体中蛋白质含量。添加羽毛粉和玉米蛋白能显著提高蘑菇子实体的呈味氨基酸含量,提升蘑菇的风味和口感。综合不同蛋白添加剂原料的特异性优势,开发复合、缓释型添加剂,实现双孢蘑菇优质高产,是今后双孢蘑菇添加剂的研究方向。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 2]
,
[本文引用: 2]
,
[本文引用: 2]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1002/jsfa.2016.96.issue-11URL [本文引用: 1]
,
DOI:10.1002/jsfa.5529URL [本文引用: 1]
BACKGROUND: This work assesses the agronomic performance of grapeseed meal, before and after oil extraction, in nutritional compost supplement when growing the mushroom species Agaricus bisporus (Lange) Imbach. The effect of formaldehyde treatment before using this compost is also considered. Materials were applied at different doses at spawning. Along with non-supplemented compost, three commercial nutritional supplements were used as controls.
RESULTS: In general terms, grapeseed meal performance was similar to that of commercial delayed-release nutrients, but improved the non-supplemented compost response. We highlight that grapeseed enhances performance as larger yields of harvested mushrooms were obtained with greater dry weight content; however, their protein content was lower. The best performance was displayed by fresh formaldehyde-treated grapeseed (6000 ppm) when applied to the 10 g kg(-1) compost dose.
CONCLUSIONS: Our findings suggest that grapeseed meal offers a great potential to be applied on a commercial scale. The addition of grapeseed resulted in an enhanced performance as shown by the higher number of harvested mushrooms. The use of grapeseed meal (extracted or non-extracted), a low-cost ingredient with high levels of carbohydrates, may suppose an economic profit on the basis of the positive effect of adding carbon in the mushroom cultivation. (C) 2012 Society of Chemical Industry
,
[本文引用: 3]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 4]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2017.23.015URL [本文引用: 2]
【Objective】In order to provide theoretical basis and technical support for Agaricus bisporus cultivation in formula optimization and resource utilization.【Method】Four formulas of different substrates were performed as substrate materials, including wheat straw formula (T1), wheat and rice straw mixing formula (T2), wheat straw and corn stalk mixing formula (T3), and wheat straw and spent compost mixing formula (T4). The substrates were composted using the secondary fermentation method in the factory fermentation tunnel. Mushroom management proceeded in standard mushroom room workshop with controllable temperature, humidity and ventilation. The culture strain was Sylven A15. Substrate samples were collected at different time during composting and mushroom cultivation. Seven physical and chemical properties were measured, including water content, pH value, conductivity, carbon content, ash content, nitrogen content, and C/N ratio. The relationship between the physicochemical properties and corresponding yields were analyzed by multiple regression analysis. The agronomic traits of mushroom, such as mushroom weight, pileus diameter, pileus thickness and fruit body hardness, were analyzed based on the UPOV method. 【Result】The results showed that both water content and pH of the substrates in the four formulas were declined from the composting to cultivation periods. At the end of secondary fermentation, water content of the four formulas was about 70%, and the pH of formula T1 was 9.02. They were significantly higher than other formulations. The conductivity started to rise at the end of secondary fermentation. The conductivity of the four formulas softly increased during the secondary fermentation except T4 which underwent a significant declining at first fermentation stage. The ash content of the samples presented an upward trend. While at the end of the secondary fermentation, the ash content of formula T1 was significantly lower than that of the other three. The carbon content was continuously decreased during the culturing period especially in fruiting stage. At the end of the secondary fermentation, the carbon content of formula T1 was significantly higher than that of others. The nitrogen content of substrates at the end of the secondary fermentation was an important indicator for mushroom yield of the 1st flush. The amount reached to 1.9%-2.2%. During the fruiting stage, the nitrogen content was gradually reduced due to the consumption of substrates nutrition by mushroom mycelia. The nitrogen content of formula T4 was significantly higher than that of others. The formula T1 possessed the highest water content at cultivation period, and the highest yield of mushroom with the most stable agronomic characters. The second flush yield of formulas T1, T2 and T3 were 3 061.41, 2 534.47, 2 534.47 kg, respectively. They accounted for 43.81%, 39.89% and 49.71% of their total yield, respectively. The first flush yield of formula T4 was the the highest (3 064.19 kg), and accounted for 47.39% of its total yield. The multiple regression analysis resulted Y1=-5926.766+3770.091X6, Y2=6285.502+4920.672X1-1061.418X2-245.782X3+949.998X5+26081.326X6, Y3=3073.013+7030.476X1-114.728X5-910.576X6. The results showed that the water content of substrates was positively correlated with the yield of the 1st, 2nd and 3rd flush. The nitrogen content of substrates was positively correlated with the yield of the 1st and 2nd flush. The carbon content of substrates was positively correlated with the yield of the 2nd flush, while the carbon and nitrogen content of substrates was negatively correlated with the yield of 3rd flush. 【Conclusion】The water content of substrates during fruiting stage is the key element to improve the agronomic traits and yield ofmushroom A. bisporus. Increasing the content of carbon and nitrogen is beneficial for the yield formation of the 1st and 2nd flush.
DOI:10.3864/j.issn.0578-1752.2017.23.015URL [本文引用: 2]
【Objective】In order to provide theoretical basis and technical support for Agaricus bisporus cultivation in formula optimization and resource utilization.【Method】Four formulas of different substrates were performed as substrate materials, including wheat straw formula (T1), wheat and rice straw mixing formula (T2), wheat straw and corn stalk mixing formula (T3), and wheat straw and spent compost mixing formula (T4). The substrates were composted using the secondary fermentation method in the factory fermentation tunnel. Mushroom management proceeded in standard mushroom room workshop with controllable temperature, humidity and ventilation. The culture strain was Sylven A15. Substrate samples were collected at different time during composting and mushroom cultivation. Seven physical and chemical properties were measured, including water content, pH value, conductivity, carbon content, ash content, nitrogen content, and C/N ratio. The relationship between the physicochemical properties and corresponding yields were analyzed by multiple regression analysis. The agronomic traits of mushroom, such as mushroom weight, pileus diameter, pileus thickness and fruit body hardness, were analyzed based on the UPOV method. 【Result】The results showed that both water content and pH of the substrates in the four formulas were declined from the composting to cultivation periods. At the end of secondary fermentation, water content of the four formulas was about 70%, and the pH of formula T1 was 9.02. They were significantly higher than other formulations. The conductivity started to rise at the end of secondary fermentation. The conductivity of the four formulas softly increased during the secondary fermentation except T4 which underwent a significant declining at first fermentation stage. The ash content of the samples presented an upward trend. While at the end of the secondary fermentation, the ash content of formula T1 was significantly lower than that of the other three. The carbon content was continuously decreased during the culturing period especially in fruiting stage. At the end of the secondary fermentation, the carbon content of formula T1 was significantly higher than that of others. The nitrogen content of substrates at the end of the secondary fermentation was an important indicator for mushroom yield of the 1st flush. The amount reached to 1.9%-2.2%. During the fruiting stage, the nitrogen content was gradually reduced due to the consumption of substrates nutrition by mushroom mycelia. The nitrogen content of formula T4 was significantly higher than that of others. The formula T1 possessed the highest water content at cultivation period, and the highest yield of mushroom with the most stable agronomic characters. The second flush yield of formulas T1, T2 and T3 were 3 061.41, 2 534.47, 2 534.47 kg, respectively. They accounted for 43.81%, 39.89% and 49.71% of their total yield, respectively. The first flush yield of formula T4 was the the highest (3 064.19 kg), and accounted for 47.39% of its total yield. The multiple regression analysis resulted Y1=-5926.766+3770.091X6, Y2=6285.502+4920.672X1-1061.418X2-245.782X3+949.998X5+26081.326X6, Y3=3073.013+7030.476X1-114.728X5-910.576X6. The results showed that the water content of substrates was positively correlated with the yield of the 1st, 2nd and 3rd flush. The nitrogen content of substrates was positively correlated with the yield of the 1st and 2nd flush. The carbon content of substrates was positively correlated with the yield of the 2nd flush, while the carbon and nitrogen content of substrates was negatively correlated with the yield of 3rd flush. 【Conclusion】The water content of substrates during fruiting stage is the key element to improve the agronomic traits and yield ofmushroom A. bisporus. Increasing the content of carbon and nitrogen is beneficial for the yield formation of the 1st and 2nd flush.
,
[本文引用: 1]
[本文引用: 1]
[D]. ,
[本文引用: 1]
[D].
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
DOI:10.1038/s41598-018-37681-6URL [本文引用: 1]
,
DOI:10.1016/j.biortech.2007.05.073URL [本文引用: 2]
,
DOI:10.4236/as.2013.41005URL [本文引用: 4]
,
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
本文研究了3~5周龄肉鸭日粮中玉米蛋白饲料适宜添加比例.480只21日龄健康樱桃谷肉鸭,按体重相近的原则随机分为4组,每组设6个重复,各重复20只.对照组饲喂基础日粮,试验组分别在基础日粮中添加5%、8%、11%玉米蛋白粉代替部分豆粕.试验期间记录各组体增重及耗料量等,试验结束后,测定各组肉鸭的生产性能、屠宰性能及血清中尿素氮、总蛋白、甘油三酯含量.结果表明,3种添加比例时肉鸭体增重、料重比和屠宰性能无显著影响(P>0.05).5%、8%添加量对肉鸭血清尿素氮、总蛋白、甘油三酯含量无显著影响(P>0.05),日粮中添加11%玉米蛋白饲料,尿素氮显著增加(P<0.05).本试验条件下,日粮中添加8%玉米蛋白饲料,肉鸭生产性能最理想,单位增重饲料成本比基础日粮组低3.82%,胴体品质也有一定改善,且对血清中尿素氮、总蛋白、甘油三酯含量无显著影响.
URL [本文引用: 1]
本文研究了3~5周龄肉鸭日粮中玉米蛋白饲料适宜添加比例.480只21日龄健康樱桃谷肉鸭,按体重相近的原则随机分为4组,每组设6个重复,各重复20只.对照组饲喂基础日粮,试验组分别在基础日粮中添加5%、8%、11%玉米蛋白粉代替部分豆粕.试验期间记录各组体增重及耗料量等,试验结束后,测定各组肉鸭的生产性能、屠宰性能及血清中尿素氮、总蛋白、甘油三酯含量.结果表明,3种添加比例时肉鸭体增重、料重比和屠宰性能无显著影响(P>0.05).5%、8%添加量对肉鸭血清尿素氮、总蛋白、甘油三酯含量无显著影响(P>0.05),日粮中添加11%玉米蛋白饲料,尿素氮显著增加(P<0.05).本试验条件下,日粮中添加8%玉米蛋白饲料,肉鸭生产性能最理想,单位增重饲料成本比基础日粮组低3.82%,胴体品质也有一定改善,且对血清中尿素氮、总蛋白、甘油三酯含量无显著影响.
,
[本文引用: 1]
,
[本文引用: 3]
[本文引用: 3]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]