Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau
GONG KaiYuan1, HE Liang2, WU DingRong3, Lü ChangHe4, LI Jun4, ZHOU WenBin5, DU Jun6, YU Qiang,4,71 College of Natural Resources and Environment, Northwest A&F University , Yangling 712100, Shaanxi 2 National Meteorological Center, Beijing 100081 3 Chinese Academy of Meteorological Sciences, Beijing 100081 4 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 5 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081 6 Institute of Plateau Meteorology, China Meteorological Administration, Chengdu, 610071 7 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi
Abstract 【Objective】The climate change of highland barley during the growth season and effect on photo-temperature potential productivity as well as yield gap over Tibetan Plateau from 1977 to 2017 were investigated.【Method】The DSSAT-CERES-barley was validated against statistical and field observational data, and then applied to simulate the potential yield of the highland barley on Tibetan Plateau. Then yield gaps were calculated by using observed yields and simulations. Finally, we analyzed the impact of climate change on highland barley production and yield gaps by using statistical methods.【Result】(1) Temperature and precipitation during highland barley growth period significantly increased on Tibetan Plateau over the past 40 years, whereas solar radiation decreased and it decreased significantly at Lizhi station; (2) The growth period of highland barley has significantly decreased if using the same variety at a fixed sowing date. The decrease of growth period in high-altitude was mainly caused by the increasing of the average maximum temperature, however, at low-altitude, which were mainly caused by the increase of the effective accumulated temperature during the whole growing period due to rising of mean temperature; (3) The potential barley yield was limited by the altitude and more sensitive to solar radiation at the high altitude stations. It was large and stable at the high-altitude stations with an altitude of 3 500 m. The average potential yield of Shannan station approached to 12 000 kg·hm -2 while only 6 000 kg·hm -2at low altitude stations around 3 000 m; (4) The yield gaps of highland barley in Tibetan Plateau in the past 30 years has decreased from 58.2% to 34.5% due to the increase of actual production. And the decreasing rate of yield gaps decelerated in recent decade. The yield gaps in Lasa and Shigatse were the least during 2007-2017, which were less than 25%.【Conclusion】The potential yields of highland barley on Tibetan Plateau were different greatly in different stations on Tibetan Plateau. The potential yield of the high-altitude areas was significantly larger than that of the low-altitude areas in study region. Climate change in the past 40 years had caused the higher variation of potential yield at low-altitude, while relatively stable potential yield at high-altitude. The yield gaps in Tibetan Plateau gradually decreased over the past 30 years because of the increase of actual yield, which was caused by the improvement of varieties and cultivation management. However, the yield gaps except Lasa and Shigatse were still large. Therefore, there was great potential to increase crop production in the future. Keywords:Tibetan Plateau;highland barley;photo-temperature potential productivity;crop model;climate change
PDF (1596KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 弓开元, 何亮, 邬定荣, 吕昌河, 李俊, 周文彬, 杜军, 于强. 青藏高原高寒区青稞光温生产潜力和产量差时空分布特征及其对气候变化的响应[J]. 中国农业科学, 2020, 53(4): 720-733 doi:10.3864/j.issn.0578-1752.2020.04.005 GONG KaiYuan, HE Liang, WU DingRong, Lü ChangHe, LI Jun, ZHOU WenBin, DU Jun, YU Qiang. Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau[J]. Scientia Acricultura Sinica, 2020, 53(4): 720-733 doi:10.3864/j.issn.0578-1752.2020.04.005
0 引言
【研究意义】气候变化对全球粮食安全产生了深远的影响[1]。气候变化主要体现在降水、温度、太阳辐射等气候因子的变化,对作物的生长发育过程产生影响,最终影响作物产量。对不同作物和不同区域,其影响程度差异较大[2]。因此,明确气候变化对特定地区和特定作物的影响,认识区域作物生产潜力,对于应对未来气候变化、制定适应性措施具有重要意义。青藏高原是世界上地势最高的地区,具有独特而复杂的高原气候,是气候变化的敏感区和启动带,也是全球气候变化的驱动器和放大器[3,4]。在作物生长方面,相比于其他种植区,青藏高原由于海拔原因具有最高的太阳辐射、较低的温度和最低的CO2分压。因此,作物的生长发育特别是光合作用对气候变化的响应及敏感性与低海拔的平原地区有较大差异[5]。近30年来,青藏高原气候变化显著,总体表现为气温上升,降水增加,整体为由干向湿变化[6,7]。青稞作为青藏高原第一大粮食作物,在2002—2004年,其播种面积和总产量分别占粮食总产的43%和38%[8]。因此,研究青藏高原青稞的生产潜力、产量差及其对气候变化的响应,对促进青藏高原农业发展和粮食安全具有十分重要的科学价值和实际意义。【前人研究进展】在20世纪70、80年代,有关作物生产潜力的研究开始进入快速发展期,DE DATTA[9]首次提出产量差概念。2009年LOBELL进一步完善产量差概念,并把产量差定义为特定时空下潜在产量与农户实际产量的差值[10],杨晓光等[11]2014年总结了产量差的定义,并根据潜在产量、可获得产量、农户潜在产量和农户实际产量4个产量水平将产量差分为3个层次。不同产量水平中,潜在产量被认为是作物在不受水分和养分限制、病虫害良好控制条件下获得的产量,主要取决于太阳辐射和温度[12]。潜在产量的计算方法较多,1978年由DE WIT 提出了一套作物生产潜力的计算模型[13],被称之为“FAO生产力计算模型”,得到广泛使用。如BATTISTI等[14]用该模型计算巴西大豆的潜在产量和产量差。20世纪80年代,通过计算机技术开发的各种作物模型(EPIC、APSIM、CERES等)也得到广泛应用,并成为现今研究生产潜力和产量差的主要方法。如WU等[15]借助WOFOST模型计算华北平原夏玉米的潜在产量,ESPE等[16]借助ORYZA模型得出了美国水稻的潜在产量和产量差;也有****通过模型对华北平原冬小麦和东北春玉米等作物在区域上的潜在产量和产量差进行研究[17,18]。国内生产潜力的研究主要集中在东北、黄淮海和南方等主要粮食生产区,虽然有研究表明,青藏高原气候变化对粮食生产产生了巨大影响[3],如青藏高原气候变暖,导致雅鲁藏布江和印度河流域农业灌溉用水减少,粮食安全受到威胁[19]。但对青藏高原本身特别是青稞潜在产量和产量差的研究还鲜见报道。有****通过经验公式的方法,在站点尺度上结合气象数据对过去40年西藏自治区和过去10年青海省的青稞光温生产潜力进行计算,得出西藏自治区青稞光温生产潜力呈上升趋势的结论[20,21];此外,还有****探究青藏高原过去50年的气候变化对气候生产潜力的影响情况[22],发现在气候生产潜力升高的基础上中部地区增加更为明显。【本研究切入点】现有的青藏高原生产潜力研究多采用气候因素为主的经验公式法,而该方法对作物生长因素考虑欠缺,且精确度和准确度低,普适性较差[23]。此外,青藏高原地理位置特殊、分布广、海拔差异大,直接以青藏高原或行政区域内的生产潜力计算易造成较大误差。目前,有关青藏高原青稞产量差仍没有系统研究。本研究借助DSSAT-CERES- barley模型,对青藏高原主要耕作区域站点的光温生产潜力及生育期长度进行模拟。DSSAT模型(decision support system for agrotechnology transfer)是目前应用最广泛的模型之一,其中的DSSAT-CERES-barley模型[24]可模拟不同水供应环境下大麦的生长发育情况。【拟解决的关键问题】通过分析青藏高原1977—2017年间气候因子变化,利用农业气象观测资料校正和检验模型,然后模拟青稞光温生产潜力以及生育期长度的变化趋势和幅度,准确量化不同研究站点青稞产量对气候变化的敏感性。同时结合统计产量进行产量差计算分析,以揭示青藏高原过去40年青稞产量差的时空分布特征及其受气候变化的影响,量化不同产量水平的差距,明确产量提升空间。
Table 2 表2 表2研究站点品种参数及DSSAT-CERES-barley模型校准和验证数据集 Table 2Description of values for variety parameters in research stations and dataset of calibration and validation for the DSSAT-CERES-barley model
省份 Province
站点 Station
校准集 Calibration Set
验证集 Validation Set
P1V (d)
P1D (%)
P5 (℃·d-1)
G1 (No./g)
G2 (mg)
G3 (g)
PHINT (℃·d-1)
甘肃 Gansu
甘南州GTA
1989,1995,2006
1987,1988,1990-1994, 1996-2005,2007-2017
0.0
22.1
412.9
10.6
46.5
1.4
64.0
青海 Qinghai
贵南GN
2008,2014,2017
2007,2009-2013,2016
0.0
24.5
435.0
12.2
51.5
1.1
64.0
门源MHA
2012,2016
2010,2013-2015,2017
0.0
24.7
433.0
12.2
51.5
0.9
64.0
西藏 Tibet
林芝LZ
1996,2008
1994,2000-2007,2009
0.0
22.8
677.1
10.0
40.1
1.5
64.0
山南SN
1997
0.0
23.4
735.8
23.8
60.68
0.8
64.0
日喀则RKZ
1989,1999,2002, 2014,2017
2000,2001, 2008
0.0
14.4
650.5
19.9
54.9
1.2
64.0
拉萨LS
2008,2009
2002,2004, 2011
0.0
23.4
735.8
23.8
60.68
0.8
64.0
P1V:最适温度条件下通过春化阶段所需天数 Thermal time from seedling emergence to the end of the juvenile phase during which the plant is not responsive to changes in photoperiod;P1D:光周期参数 Extent to which development is delayed for each hour increase in photo period above the longest photoperiod at which development proceeds at a maximum rate;P5:籽粒灌浆期积温 Thermal time from silking to physiological maturity;G1:开花期单位株冠质量的籽粒数 Potential spikelet number coefficient as estimated from the number of spikelets of main culm dry weight at anthesis;G2:最佳条件下标准籽粒质量Maximum possible number of kernels per plant;G3:成熟期非胁迫下单株茎穗标准干质量 Kernel-filling rate during the linear grain-filling stage and under optimum conditions;PHINT:完成一片叶生长所需积温 The interval in thermal time between successive leaf tip appearances
□门源 MHA △甘南州 GTA ◇贵南 GN ?日喀则 RKZ ○林芝 LZ +拉萨和山南 LS and SN 虚线和实线分别为1:1线和回归趋势线 Fig. 2Comparison of simulated growing period, flowering, maturity, and grain yield by DSSAT-CERES-barley and observed data
The dashed line and solid line are 1:1 line and regression trend line, respectively
平均最低气温(A)、平均气温(B)、平均最高气温(C)、≥0 ℃有效积温(D)、累计太阳辐射量(E)、降水量(F)。同图不同站点不同小写字母表示在0.05水平上存在显著差异 Fig. 1Climatic conditions of highland barley growing season from 1977 to 2017 at research stations on Tibetan Plateau
Minimum temperature (A), average temperature (B), maximum temperature (C), ≥0 ℃ effective accumulated temperature (D), radiation (E), and precipitation (F). Different lowercase letters on different sites of the same table indicate significant differences at 0.05 level
Table 3 表3 表31977—2017年青藏高原站点生长季内气候变化倾向率 Table 3Trend of climatic factors during the growing season of highland barley on Tibetan Plateau from 1977 to 2017
站点 Station
平均气温 Average temperature (℃·(10a)-1)
最高气温 Maximum temperature (℃·(10a)-1)
最低气温 Minimum temperature (℃·(10a)-1)
降水 Precipitation (mm·(10a)-1)
太阳辐射 Radiation (MJ·m-2·(10a)-1)
有效积温 Accumulated temperature (℃·d·(10a)-1)
日照时数 Solar duration (h·(10a)-1)
GTA
0.39**
0.42**
0.39**
-2.11
19.19
61.28**
12.75
GN
0.28**
0.25**
0.29**
29.18**
-19.30
42.52**
-12.38
MHA
0.59**
0.56**
0.73**
1.24
-22.70
89.71**
-15.15
LZ
0.36**
0.31**
0.40**
14.63
-72.91**
65.40**
-50.07**
SN
0.26**
0.38**
0.56**
1.89
-20.87
47.29**
-13.55
RKZ
0.41**
0.28**
0.51**
8.32
-3.70
74.84**
-2.06
LS
0.49**
0.42**
0.78**
31.42**
24.08
90.64**
16.84
**,*分别表示M-K检验在0.01和0.05水平显著 **,* indicate M-K test is significant at 0.01 and 0.05 levels
ΔPY:光温生产潜力变化;ΔPS:生育期长度变化;ΔTmax:生长季平均最高气温变化;ΔTmin:生长季平均最低气温变化;ΔPrec:生长季降水量变化;ΔRad:生长季太阳辐射量变化;ΔTave:生长季平均温度变化;ΔAe:生长季有效积温变化。下同 Fig. 5Correlation coefficient (P<0.05) between climate change and photo-temperature potential productivity and growth period change
ΔPY: Photo-temperature potential productivity change ; ΔPS: Whole growth period change; ΔTmax: Average maximum temperature change in growing season; ΔTmin:Average minimum temperature change in growing season; ΔPrec: Precipitation change in growing season; ΔRad: Radiation change in growing season; ΔTave: Average temperature change in growing season; ΔAe: Effective accumulated temperature change in growing season. The same as below
PIAOS, CIAISP, HUANGY, SHENZ, PENGS, LIJ, ZHOUL, LIUH, MAY, DINGY, FRIEDLINGSTEINP, LIUC, TANK, YUY, ZHANGT, FANGJ . The impacts of climate change on water resources and agriculture in China , 2010,467(7311):43-51. [本文引用: 1]
LOBELL DB, BURKE MB . On the use of statistical models to predict crop yield responses to climate change , 2010,150(11):1443-1452. [本文引用: 1]
WUG, LIUY, HEB, BAOQ, DUANA, JIN FF . Thermal controls on the Asian summer monsoon , 2012,2:404. [本文引用: 2]
PAN BT, LI JJ . Qinghai-Tibetan Plateau: A driver and amplifier of the global climatic change Journal of Lanzhou University(Natural Sienees), 1996,32(1):108-115. (in Chinese) [本文引用: 1]
YUQ, LIUY, LIUJ, WANGT . Simulation of leaf photosynthesis of winter wheat on Tibetan Plateau and in North China Plain , 2002,155(2/3):202-216. [本文引用: 1]
WU SH, YIN YH, ZHENGD, YANG YQ . Climate change in the Tibetan Plateau during the last three decades Acta Geographica Sinica, 2005,60(1):3-11. (in Chinese) [本文引用: 2]
QIANG XL, CHI DZ, FENG JL . Status of production and development of barley in the Tibet Plateau Tibet Science and Technology, 2008(3):11-17. (in Chinese) [本文引用: 1]
DE DATTA SK . Principles and Practices of Rice Production . 1981. [本文引用: 1]
LOBELL DB, CASSMAN KG, FIELD CB . Crop yield gaps: Their importance, magnitudes, and causes , 2009,34:179-204. [本文引用: 1]
YANG XG, LIU ZJ . Advances in research on crop yield gaps Scientia Agricultura Sinica, 2014,47(14):2731-2741. (in Chinese) URL [本文引用: 1]
LOBELL DB, CASSMAN KG, FIELD CB . Crop yield gaps: Their importance, magnitudes, and causes , 2009,34(1):179-204. [本文引用: 1]
DE WIT CT . Simulation of assimilation, respiration, and transpiration of crops. Simulation Monographs , 1978, 1-112. [本文引用: 1]
BATTISTIR, SENTELHAS PC, PASCOALINOJ A L, SAKOH, DESá DANTAS J P, MORAESM F Soybean yield gap in the areas of yield contest in Brazil , 2018,12(3):159-168. [本文引用: 1]
WUD, YUQ, LUC, HENGSDIJKH . Quantifying production potentials of winter wheat in the North China Plain , 2006,24(3):226-235. [本文引用: 2]
ESPE MB, CASSMAN KG, YANGH, GUILPARTN, GRASSINIP, VAN WARTJ, ANDERSM, BEIGHLEYD, HARRELLD, LINSCOMBES, MCKENZIEK, MUTTERSR, WILSON LT, LINQUIST BA . Yield gap analysis of US rice production systems shows opportunities for improvement , 2016,196:276-283. [本文引用: 1]
LUC, FANL . Winter wheat yield potentials and yield gaps in the North China Plain , 2013,143:98-105. [本文引用: 1]
LIU ZJ, YANG XG, LüS, WANGJ, LIN XM . Spatial-temporal variations of yield gaps of spring maize in Northeast China Scientia Agricultura Sinica, 2017,50(9):1606-1616. (in Chinese) URL [本文引用: 1]
IMMERZEEL WW, VANBEEK L P H, BIERKENSM F P . Climate change will affect the Asian water towers , 2017,328(5984):1382-1385. [本文引用: 1]
GE S QZ, PU B CR, HU XY . Effect of climate change on yield potential of crops in Tibet Agricultural Research in the Arid Areas, 2015,33(2):266-271. (in Chinese) [本文引用: 2]
WUR, ZHOU BR . Study on the influence of plateau climate change on the potential of grain production in Qinghai province Qinghai Science and Technology, 2011,18(1):34-38. (in Chinese) [本文引用: 1]
ZHAO XY, WANG WJ, WAN WY, LIH . Influence of climate change on potential productivity of naked barley in the Tibetan Plateau in the past 50 years Chinese Journal of Eco-Agriculture, 2015,23(10):1329-1338. (in Chinese) [本文引用: 1]
MORELL FJ, YANG HS, CASSMAN KG, WART JV, ELMORE RW, LICHTM, COULTER JA, CIAMPITTI IA, PITTELKOW CM, BROUDER SM, THOMISONP, LAUERJ, GRAHAMC, MASSEYR, GRASSINIP . Can crop simulation models be used to predict local to regional maize yields and total production in the U.S. Corn Belt? , 2016,192:1-12. [本文引用: 1]
JONES JW, HOOGENBOOMG, PORTER CH, BOOTE KJ, BATCHELOR WD, HUNT LA, WILKENS PW, SINGHU, GIJSMAN AJ, RITCHIE JT . The DSSAT cropping system model , 2003,18:235-265. [本文引用: 1]
LIS, WANGZ, ZHANGY . Crop cover reconstruction and its effects on sediment retention in the Tibetan Plateau for 1900-2000 , 2017,27(7):786-800. [本文引用: 1]
LU HT, LI ZX . Investigation and research on the status quo and development prospect of highland barley production in Qinghai province. Journal of Qinghai Agriculture and Animal Husbandry, 2013(8):7-9. (in Chinese) [本文引用: 1]
XU XL, LIU JY, ZHANG SW, LI RD, YAN CZ, WU SX. China land use and land cover change database(CNLUCC) Data Center for Resources and Environmental Sciences,Chinese Academy of Sciences (), 2018. (in Chinese) [本文引用: 1]
DAIY, SHANGGUANW, DUANQ, LIUB, FUS, NIUG . Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling , 2013,14(3):869-887. [本文引用: 1]
YIN ZF, OUYANGH, ZHANG XZ . Study on water consumption of spring naked barley land and suitable irrigation system in Tibet Journal of Natural Resources, 2010,25(10):1666-1675. (in Chinese) [本文引用: 2]
HOU YH . Water requirement rules of highland barley in different sowing time and irrigation levels Tibet Journal of Agricultural Sciences, 2018(1):13-18. (in Chinese) [本文引用: 2]
LUO HY, CUI YL, ZHAO SJ . Spatial distribution of irrigation water quota of highland barley in Tibet region Transactions of the Chinese Society of Agricultural Engineering, 2013,29(10):116-122. (in Chinese) [本文引用: 2]
PRESCOTT JA . Evaporation from a water surface in relation to solar radiation , 1940,64:114-125. [本文引用: 1]
MANN HB . Non-parametric tests against trend , 1945,13:245-259. [本文引用: 1]
SEN PK . Estimates of the Regression Coefficient Based on Kendall's Tau , 1968,63:1379-1389. [本文引用: 1]
THEILH . A rank-invariant method of linear and polynomial regression analysis, Part 3 , 1950,53:1397-1412. [本文引用: 1]
GOCICM, TRAJKOVICS . Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia , 2013,100:172-182. [本文引用: 1]
LIN XD, ZHANG YL, YAO ZJ, GONG TL, WANGH, LIU LS . Trend analysis of the runoff variation in Lhasa River Basin in Tibetan Plateau during the last 50 years Progress in Geography, 2007,26(3):58-67. (in Chinese) [本文引用: 1]
PARTALT, KAHYAE . Trend analysis in Turkish precipitation data , 2006,20(9):2011-2026. [本文引用: 1]
LOBELL DB, ASNER GP . Climate and management contributions to recent trends in U.S. agricultural yields , 2003,299:1032. [本文引用: 1]
HUS, MO XG, LIN ZH . The contribution of climate change to the crop phenology and yield in Haihe River Basin Geographical Research, 2014,33(1):3-12. (in Chinese) [本文引用: 1]
CONG ZT, WANG SZ, NI GH . Simulations of the impact of climate change on winter wheat production Journal of Tsinghua University (Science and Technology), 2008,48(9):46-50. (in Chinese) [本文引用: 1]
CHENJ, TIANY, ZHANGX, ZHENGC, SONGZ, DENGA, ZHANGW . Nighttime warming will increase winter wheat yield through improving plant development and grain growth in North China , 2013,33(2):397-407. [本文引用: 1]
LIU XD, CHENG ZG, ZHANGR . The A1B scenario projection for climate change over the Tibetan Plateau in the next 30-50 years Plateau Meteorology, 2009,28(3):475-484. (in Chinese) [本文引用: 1]
HUQ, JIANG DB, FAN GZ . Climate change projection on the Tibetan Plateau: Results of CMIP5 models Chinese Journal of Atmospheric Sciences, 2015,39(2):260-270. (in Chinese) [本文引用: 1]
QIANG XL , DUN Z C R, CI Z, WEI X H, ZHANG Y H. Analysis on industry status of Tibetan highland barley Tibet Journal of Agricultural Sciences, 2011,33(1):1-3. (in Chinese) [本文引用: 1]