Spatial-Temporal Distribution Characteristic and Interaction Between Agronomic Traits of Winter Wheat and Precipitation of Growth Period in Huang-Huai Dryland
LI ShiJing1,2, XU Ping1, ZHANG ZhengBin,1,3,4, WEI YunZong5通讯作者:
编委: 杨鑫浩
收稿日期:2018-12-8接受日期:2019-03-6网络出版日期:2019-05-16
基金资助: |
Received:2018-12-8Accepted:2019-03-6Online:2019-05-16
作者简介 About authors
李世景,E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (3271KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
李世景, 徐萍, 张正斌, 卫云宗. 黄淮旱地冬小麦农艺性状与生育期气象因子的时空分布特征及互作关系[J]. 中国农业科学, 2019, 52(10): 1686-1697 doi:10.3864/j.issn.0578-1752.2019.10.003
LI ShiJing, XU Ping, ZHANG ZhengBin, WEI YunZong.
0 引言
【研究意义】黄淮冬麦区是我国最大的小麦主产区,种植面积占全国小麦种植面积的67.6%,其中黄淮旱地小麦种植面积占整个黄淮麦区种植面积的42.7%[1],对我国小麦生产和粮食安全有重要保障作用。黄淮旱地小麦生产以自然降水为主,特别是关键生育期的降水,在产量形成中起到了决定性作用[2]。全球气候变化下,除温度明显变化外,降水也发生着改变。黄淮旱地小麦生长发育对降水的高度依赖性,使其对气候背景下降水变化的响应更加敏感和突出[3]。深入分析该区小麦农艺性状和降水的时空分布特征及互作关系,有助于揭示黄淮旱地小麦育种适应气候变化的机理。【前人研究进展】HATFIELD等[4]指出,增温对产量造成的负面影响,能够通过提高土壤储水量抵消一部分。FANG等[5]在河北井陉进行的田间模拟实验也指出增加灌溉能够弥补气候变暖带来的负面影响。降水作为作物需水量的重要来源之一,对作物产量的影响也是至关重要的。LOBELL等[6]的研究表明,降水对作物增产的效果不分作物种类,不分国家和地区。全球降水呈现增加趋势,但干旱、半干旱地区呈现减少趋势[7]。我国华北、华中地区年际降水减少显著[8]。史本林等[9]利用河南省商丘市多年冬小麦产量及气象资料分析表明,降水是影响冬小麦产量的主要气象因素之一。史印山等[10]对河北平原的研究进一步表明了降水与小麦产量呈现正相关。但是由于降水的时空差异性[11,12],不同地区、不同季节或生育期的降水对作物产量的影响也各有不同[13,14,15]。GUO等[16]对黄土高原干旱地区的研究表明,冬小麦产量与休耕季降水呈正相关,与生长季降水显著性不大。但ZHANG等人[17]的研究表明,中国北部和东北部地区小麦生长季降水减少10%,该地区小麦产量减少1%—2%以上。柳芳等[18]研究表明,降水时间分布不均造成的干旱是制约天津冬小麦生长的主要气象因子之一。李国强等[19]对山西省临汾市的研究表明,冬小麦生育前期降水对产量影响不明显,但拔节—抽穗期降水与产量呈现正相关。【本研究切入点】前人的研究虽然利用长时间的数据,针对不同区域降水对小麦产量的影响开展了探讨,但这些研究多集中于产量和降水的关系,并未进一步分析冬小麦生长发育受降水影响的具体过程。此外,长时间的小麦物候期记载数据不完整,前人研究多以经验值计算相应生育时期的降水,且未考虑品种更新对降水的影响。本研究所用小麦品种区域试验数据的时间跨度虽然短,但是在此期间,品种未发生变化,且每一年的物候期均有详细记载。本研究将从时空两个维度上,深入剖析黄淮旱地冬小麦农艺性状和生育期降水的时空分布特征和互作关系。研究所用的国家区域试验对照品种,具有多年不变,试点分布广、数据详尽、代表性强等诸多特点,它在筛选适宜种植区方面有重要的标杆作用[20,21],也是研究品种适应气候变化的典型材料。【拟解决的关键问题】本研究利用2010—2017年黄淮旱地国家区域试验对照品种农艺性状数据和降水资料,分析黄淮旱地小麦农艺性状和不同生育期降水的时空分布特征,进一步揭示小麦农艺性状与关键生育期降水之间的互作关系,为气候变化背景下黄淮旱地小麦品种改良方向提供理论依据和技术支撑。1 材料与方法
1.1 研究区概括
国家农作物品种审定委员会印发的国品审【2016】1号文件,依据我国小麦种植区划和各种植区域的气候类型、生态条件、耕作制度、品种特性及生产实际等因素,将国家审定小麦品种适宜生态区划分为九大麦区,分别为长江上游冬麦区、长江中下游冬麦区、黄淮旱地冬麦区、黄淮南片水地冬麦区、黄淮北片水地冬麦区、北部水地冬麦区、北部旱地冬麦区、东北春麦晚熟区、西北春麦区。其中,黄淮旱地冬麦区包括山东省旱地,河北省保定市和沧州市的南部及其以南地区的旱地,河南省除信阳市全部和南阳市南部部分地区以外的旱地,陕西省西安、渭南、咸阳、铜川和宝鸡市的旱地,山西省运城市全部、临汾市和晋城市部分的旱地以及甘肃省天水市丘陵山地。根据土壤肥力又分为旱肥地和旱薄地。本研究共选取了21个区域试验点(简称区试点),其中旱肥地11个,旱薄地10个,主要分布在34—38°N之间(图1)。图1
新窗口打开|下载原图ZIP|生成PPT图1黄淮旱地冬小麦研究区试点分布
Fig. 1The distribution of pilot sites of winter wheat in Huang-Huai dryland
1.2 资料来源
区域试验数据来自《中国冬小麦新品种动态——国家冬小麦品种区域试验汇总报告》2010—2017年历年黄淮旱地区域试验对照品种产量及其相关农艺性状数据[22]。黄淮旱肥地的对照品种为洛旱7号,黄淮旱薄地的对照品种为晋麦47。黄淮旱地播种前进行精细整地,一次施足底肥,生育期一般不追肥且禁止浇水。使用的降水观测资料数据来自中国气象数据网(
1.3 分析方法
1.3.1数据指标 本研究选取的黄淮旱地区域试验对照品种的农艺性状数据指标包括实际单位面积产量(简称实际单产,t·hm-2)、株高(cm)、有效穗数(×104·hm-2)、穗粒数、千粒重(g)以及出苗日期、抽穗日期和成熟日期。气象资料选取相应区试点的日降水资料。无对应气象站点的根据就近原则,综合考虑纬度、海拔高度等影响降水的因子,选择气候条件接近的站点作为替补站[23]。1.3.2 处理方法 利用Excel软件计算理论单位面积产量(简称理论单产,理论单产=有效穗数×穗粒数×千粒重,t·hm-2)、实际单位面积产量和理论单位面积产量比值(简称单产比值,单产比值=实际单位面积产量/理论单位面积产量)、出苗—抽穗期总降水(mm)、抽穗—成熟期总降水(mm)、出苗—成熟期总降水(mm)及各性状的多年平均值。随后利用Arcgis软件制作地理空间分布图。
利用Spss24.0软件进行Pearson相关性分析、简单线性回归和逐步回归分析。
2 结果
2.1 黄淮旱地小麦农艺性状空间分布特征
由图2-A可知,黄淮旱地冬小麦实际单产呈现由西向东增加的趋势,中部和东南部区试点实际单产相对较高。其中,低于黄淮旱地整体平均值的区试点除旱肥地的河北衡水外,其他均为旱薄地区试点;而旱薄地的河南林州是高于整体平均值的唯一旱薄地区试点。由图2-B可知,西部旱地理论单产普遍高于中东部旱地。但西部旱地的单产比值却明显低于中东部旱地(图2-C),说明由西向东实际单产逐渐达到理论单产,东部区试点生产潜力已经基本充分发挥。图2
新窗口打开|下载原图ZIP|生成PPT图2黄淮旱地小麦农艺性状的地区分布
u代表黄淮旱地2010—2017年21个区试点的多年平均值。·代表单独区试点的2010—2017年的平均值。下同
Fig. 2The region distribution of wheat agronomic traits in Huang-Huai dryland
u represents the average of 21 pilot sites in Huang-Huai dryland from 2010 to 2017. · represents the average of individual pilot sites from 2010 to 2017. The same as below
与产量密切相关的农艺性状除产量三要素外,株高也是影响小麦产量的重要因子[24,25]。由图2-D、E可知,有效穗数和穗粒数呈现西部多中东部少的特征。株高也呈现西部高中东部低的特征(图2-G)。千粒重呈现由西向东增加的趋势(图2-F)。单个区试点的农艺性状与黄淮旱地整体平均值的比较发现,旱肥地和旱薄地的有效穗数和穗粒数无明显的高低差异,但千粒重和株高差异明显。千粒重方面,高于整体平均值的只有旱肥地区试点。株高方面,高于整体平均值的区试点有10个,其中8个为旱薄地区试点。由此说明,黄淮旱肥地千粒重大,株高矮;黄淮旱薄地千粒重小,株高高,且东西方向的分布差异明显。
综合来看,位于黄淮旱地东北方向的河北衡水、沧州,无论是在实际单产、理论单产还是株高、有效穗数、穗粒数方面,都表现出较低的水平。因此,建议将这两个区试点由旱肥地改为旱薄地。而作为旱薄地的河南林州,其实际产量高于黄淮旱地多年整体平均值,应该改为旱肥地。这样可能更加符合生产实际,也更便于为当地气候变化下的育种方向提供新的理论依据。
2.2 黄淮旱地小麦生育期降水空间分布特征
图3展示了出苗—成熟期、出苗—抽穗期、抽穗—成熟期总降水多年平均值的地区分布特征。黄淮旱地区试点集中分布在35°N附近,东西方向上各生育阶段的总降水空间分布差异不显著。但中东部偏北的7个区试点(山西万荣、绛县、泽州、阳城;河南林州;河北衡水、沧州)各生育阶段的总降水普遍低于其他区试点。中东部以南的旱地区域各生育阶段的总降水相对较高。图3
新窗口打开|下载原图ZIP|生成PPT图3黄淮旱地生育期降水的地区分布
Fig. 3The region distribution of precipitation of growth period in Huang-Huai dryland
2.3 黄淮旱地小麦农艺性状和生育期降水年际变化趋势
分别对21个区试点的产量等农艺性状和生育期降水进行以年份为自变量的线性回归,将回归方程显著性小于0.05的区试点绘制成表(表1)。结果表明,除黄淮旱肥地河北沧州的穗粒数和黄淮旱肥地山西绛县的千粒重呈显著减少趋势,其他表现显著趋势变化的农艺性状均呈显著增加趋势。株高表现显著增加趋势的只有黄淮旱薄地的河南林州和甘肃天水。有效穗数只有黄淮旱肥地的陕西长武,表现出了显著增加趋势。穗粒数方面,甘肃天水的逐年增多趋势以及河北沧州的逐年减少趋势明显,但山西阳城是在2015年后显著增加(图4)。千粒重方面,河南林州和汝州的增加趋势略大于山西泽州的增加趋势(图5)。Table 1
表1
表1黄淮旱地小麦农艺性状与生育期降水年际趋势
Table 1
麦区 Wheat area | 省份 Province | 区试点 Regional test site | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|---|---|
黄淮旱薄地 Huang-Huai barren dryland | 山西 Shanxi | 阳城 Yangcheng | + | + | |||||||
黄淮旱薄地 Huang-Huai barren dryland | 河南 Henan | 林州 Linzhou | + | + | + | + | |||||
黄淮旱薄地 Huang-Huai barren dryland | 河南 Henan | 三门峡 Sanmenxia | + | + | |||||||
黄淮旱薄地 Huang-Huai barren dryland | 甘肃 Gansu | 天水 Tianshui | + | + | + | ||||||
黄淮旱肥地 Huang-Huai fertile dryland | 河南 Henan | 汝州 Ruzhou | + | + | + | ||||||
黄淮旱肥地 Huang-Huai fertile dryland | 河北 Hebei | 沧州 Cangzhou | - | ||||||||
黄淮旱肥地 Huang-Huai fertile dryland | 河北 Hebei | 衡水 Hengshui | + | ||||||||
黄淮旱肥地 Huang-Huai fertile dryland | 陕西 Shaanxi | 长武 Changwu | + | + | |||||||
黄淮旱肥地 Huang-Huai fertile dryland | 陕西 Shaanxi | 渭南 Weinan | + | ||||||||
黄淮旱肥地 Huang-Huai fertile dryland | 山西 Shanxi | 泽州 Zezhou | + | + | + | ||||||
黄淮旱肥地 Huang-Huai fertile dryland | 山西 Shanxi | 绛县 Jiangxian | - | + |
新窗口打开|下载CSV
图4
新窗口打开|下载原图ZIP|生成PPT图42010—2017年黄淮旱地小麦穗粒数的变化
Fig. 4The change of kernels per ear of wheat from 2010 to 2017 in Huang-Huai dryland
图5
新窗口打开|下载原图ZIP|生成PPT图52010—2017年黄淮旱地小麦千粒重的变化
Fig. 5The change of 1000-kernel weight of wheat from 2010 to 2017 in Huang-Huai dryland
生育期降水有显著变化的区试点均表现为显著增加趋势。出苗—成熟期总降水有8个区试点表现显著增加趋势,集中分布在河南、山西和陕西的中西部旱地。其中,河南三门峡和汝州的增加趋势明显大于其他区试点(图6)。
图6
新窗口打开|下载原图ZIP|生成PPT图62010—2017年黄淮旱地出苗-成熟期总降水的变化
Fig. 6The change of precipitation of germination to maturity period from 2010 to 2017 in Huang-Huai dryland
2.4 黄淮旱地小麦农艺性状与生育期降水互作分析
为验证小麦农艺性状和生育期降水的关系,对小麦农艺性状和不同生育阶段的降水进行了相关性分析(表2)。结果表明,黄淮旱肥地的实际单产与除千粒重和抽穗—成熟期总降水外的农艺性状均表现为极显著正相关,其中与株高的相关性最强。黄淮旱薄地的实际单产与千粒重呈显著正相关,与株高、有效穗数、穗粒数、理论单产、出苗—抽穗期总降水量呈极显著正相关。黄淮旱薄地的实际单产也是与株高的相关性最强。Table 2
表2
表2黄淮旱地小麦农艺性状与生育期降水相关性分析
Table 2
麦区 Wheat area | 性状 Trait | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|
黄淮旱肥地 Huang-Huai fertile dryland | X1 | 0.687** | 0.563** | 0.422** | 0.042 | 0.602** | 0.502** | 0.559** | 0.091 |
X2 | 0.514** | 0.382** | 0.126 | 0.606** | 0.587** | 0.577** | 0.213 | ||
X3 | 0.307** | -0.264* | 0.809** | 0.346** | 0.448** | -0.023 | |||
X4 | -0.092 | 0.697** | 0.286* | 0.276* | 0.110 | ||||
X5 | 0.083 | -0.086 | -0.148 | 0.056 | |||||
X6 | 0.386** | 0.427** | 0.073 | ||||||
X7 | 0.813** | 0.596** | |||||||
X8 | 0.018 | ||||||||
黄淮旱薄地 Huang-Huai barren dryland | X1 | 0.788** | 0.592** | 0.409** | 0.301* | 0.612** | 0.232 | 0.403** | -0.122 |
X2 | 0.669** | 0.392** | 0.098 | 0.618** | 0.422** | 0.627** | -0.091 | ||
X3 | 0.166 | 0.005 | 0.701** | 0.325** | 0.463** | -0.046 | |||
X4 | 0.178 | 0.684** | 0.191 | 0.238 | 0.014 | ||||
X5 | 0.463** | -0.034 | -0.047 | 0.003 | |||||
X6 | 0.316* | 0.392** | 0.027 | ||||||
X7 | 0.793** | 0.649** | |||||||
X8 | 0.052 |
新窗口打开|下载CSV
黄淮旱肥地的株高、有效穗数、穗粒数、理论单产与出苗—成熟期总降水和出苗—抽穗期总降水呈显著正相关。黄淮旱薄地的株高、有效穗数、理论单产与出苗—成熟期总降水和出苗—抽穗期总降水呈显著正相关。
为进一步分析小麦农艺性状与降水对最终产量形成的影响程度,以产量为因变量,株高、有效穗数、穗粒数、千粒重以及出苗—抽穗期和抽穗—成熟期总降水为自变量,分别对黄淮旱肥地和黄淮旱薄地进行逐步回归的通径分析,结果如表3所示。对旱肥地实际单产贡献较大的有株高和有效穗数,二者共同决定了小麦产量变异的53.2%。对旱薄地实际单产贡献较大的有株高和千粒重,二者共同决定了小麦产量变异的67%。
Table 3
表3
表3黄淮旱地小麦产量与其他性状回归分析
Table 3
麦区 Wheat area | 最优回归模型 Optimal regression model |
---|---|
黄淮旱肥地 Huang-Huai fertile dryland | X1=0.056X2+0.003X3-0.193 (F=40.867, P=0.000, R2=0.532) |
黄淮旱薄地 Huang-Huai barren dryland | X1=0.054X2+0.052X5-1.978 (F=61.988, P=0.000, R2=0.670) |
新窗口打开|下载CSV
通过比较图7黄淮旱肥地和黄淮旱薄地筛选出的自变量的通径系数可知,黄淮旱肥地和黄淮旱薄地均是株高对实际单产的贡献最大。此结果与相关分析的结果一致。由出苗—抽穗期总降水与实际单产和株高的相关系数可知,出苗—抽穗期总降水对实际单产有一定的正效应,但对株高的正效应更大,说明出苗—抽穗期的降水主要通过影响株高来影响黄淮旱地小麦产量。
图7
新窗口打开|下载原图ZIP|生成PPT图7黄淮旱地农艺性状与出苗—抽穗期降水关系图
→表示因果关系,其上数字为通径系数; ? 表示相关性,其上数字为相关系数,*和**分别表示在0.05、0.01水平上显著相关。A为黄淮旱肥地,B为黄淮旱薄地
Fig. 7Relationship between agronomic traits of winter wheat and precipitation from germination to heading in Huang-Huai dry land
→ indicates the causal relationship, the number on it is the path coefficient; ? indicates the correlation, the number on it is the correlation coefficient, * and ** indicate significant correlation at 0.05 and 0.01 levels, respectively. A is the Huang-Huai fertile dry land, and B is the Huang-Huai barren dry land
3 讨论
降水的时间趋势变化上,曹倩等[26]对包括河北、河南、山东、山西、陕西在内的冬小麦主产区生育期降水趋势变化的研究表明,生育期内的降水量变化趋势不显著。丁一汇[27]、秦大河[28]等人的研究表明,北方地区冬半年的降雨量呈增加趋势。刘新月等[3]对黄淮旱地山西临汾1986—2014年降水的研究表明,出苗—越冬期降水有增加趋势,抽穗—成熟期降水有减少趋势。但是,本研究的研究结果显示河南、山西和陕西的中西部黄淮旱地出苗—成熟期总降水呈显著增加趋势,但出苗—抽穗期总降水和抽穗—成熟期总降水无显著趋势变化。推测出现上述不同结果的原因是选取的研究区域和时间跨度略有不同。NICHOLLS[29]认为,同一地区、同一种作物产量的年际变化主要是由气候因子的波动引起的。HATFIELD等[4]进一步指出冬季和春季降雨量的年际变化是小麦产量变化的主要原因。YU等[30]从生长阶段角度进行的研究也表明涉及冬春季的营养生长阶段的降水更有利于产量的提高。特别是越冬期降水的增加有利于小麦根部发育和小麦籽粒产量形成及其稳定性的提高[2,31]。本研究农艺性状与生育期降水相关性分析的结果显示,黄淮旱地小麦产量、株高、有效穗数与出苗—抽穗期总降水呈极显著正相关,这与前人研究结果一致。李广等[32]利用APSIM模型对甘肃旱地小麦产量与生育期降水的研究表明,灌浆期每增加1 mm降水,小麦产量约增加3.18 kg·hm-2。而本研究结果则显示黄淮旱地小麦产量及农艺性状与抽穗-成熟期总降水量相关不显著。故此推断黄淮旱地冬小麦主要靠抽穗开花前的降雨量获得高产基础,在培育新品种时建议选育花前高效利用有限降水的品种。
相关性分析和回归分析的结果显示,无论旱肥地还是旱薄地,研究的农艺性状中均是株高对产量的直接作用最大。李朴芳等[33]总结前人的研究认为旱地六倍体小麦株高最好控制在 80—100 cm。结合株高空间分析的结果,中东部的旱肥地小麦育种应侧重提高植株高度,旱薄地小麦稳定当前高度。除株高对黄淮旱地小麦的贡献外,有效穗数是对旱肥地产量影响较大的另一重要因子,千粒重是对旱薄地产量影响较大的另一重要因子。前人研究表明,小麦穗部光合作用对产量形成具有显著贡献,它在缺水状态下比正常状况下光合效率更高[34,35]。此外,花后碳水化合物高效运转到籽粒的特性是决定千粒重大小的关键因素。所以,黄淮旱肥地冬小麦还应选育花前穗部发育多的品种;黄淮旱薄地冬小麦还应选育花后具有高效运转干物质能力和高收获指数的品种。考虑到小麦产量、株高和有效穗数受出苗—抽穗期降水影响较大,而干旱环境下基因型和环境的较高互作会降低小麦的遗传力,为传统育种带来阻力,适时辅以分子育种技术将加快旱地育种的进程[36]。
4 结论
通过对黄淮旱地小麦农艺性状与生育期总降水的空间分布特征分析,结果表明空间分布上,黄淮旱地小麦实际单产、千粒重呈现由西向东增加的趋势。西部旱地的有效穗数、穗粒数、株高相对较多(高),中东部旱地对应农艺性状相对较少(低)。整体来看,黄淮旱薄地实际单产低,千粒重小,株高高;黄淮旱肥地实际单产高,千粒重大,株高矮。山西、河北以北的黄淮旱地不同生育阶段总降水普遍较低,中东部以南的旱地不同生育阶段总降水相对较高。时间变化上,河南、山西和陕西的中西部旱地的出苗—成熟期总降水表现出显著的增加趋势。相关性分析和通径分析的结果表明,株高和有效穗数是影响黄淮旱肥地产量的重要因子,株高和千粒重是影响黄淮旱薄地产量的重要因子。考虑到黄淮旱地实际单产、株高、有效穗数受出苗—抽穗期总降水影响较大,建议黄淮旱肥地选育植株相对较高,花前能够高效利用有限降水以及有效穗数多的旱地品种,黄淮旱薄地选育株高稳定,花后高效转运干物质和收获指数高的旱地品种。(责任编辑 杨鑫浩)
参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
URL [本文引用: 1]
【目的】作物品种选育是在气候变化背景下的自然选择和人工选择的结果。黄淮麦区是中国最大的麦区,在保障中国小麦生产和粮食安全中有重要作用。研究过去30年黄淮旱地冬小麦品种农艺性状和气温要素变化规律,为旱地小麦育种适应未来气候变化提供理论依据和技术支撑。【方法】利用近30年来国家黄淮旱地冬小麦区域试验典型代表临汾点的对照品种农艺性状及该市的气温资料,研究对照品种农艺性状、生育期平均气温和≥0℃积温的变化规律,并进行农艺性状和气象要素的相关、多元回归和通径分析。【结果】小麦生育期的平均气温、≥0℃积温、最低和最高温度在逐年呈缓慢增加。小麦生育期平均气温平均每年上升0.05℃,≥0℃积温平均每年上升21.9℃,且二者呈正相关关系。≥0℃积温变化更能深入反映小麦生育期的温度变化情况。小麦生育期最高气温平均每年上升0.02℃、最低气温平均每年上升0.16℃。播种至越冬前的平均气温和≥0℃积温增加最多,营养生长阶段平均气温和≥0℃积温增加明显,生殖生长阶段平均气温增加较少且≥0℃积温有下降趋势。随着气候变暖,分蘖多的强冬性品种逐渐被分蘖适中的冬性和弱冬性品种替代。1986—1996年对照品种农艺性状变化幅度不大,1997—2007年期间变化较大,2007—2014年变化幅度最大;这和小麦生育期平均气温变化趋势基本相同。黄淮旱地对照品种千粒重和穗粒数逐年缓慢上升,分别每年平均增加1.57%和3.39%。有效穗数和产量及株高缓慢下降,分别每年平均下降0.16%和1.29%。产量与株高(0.684**)、有效穗(0.531**)和千粒重(0.541**)均极显著正相关。株高、起身至拔节期≥0℃积温和平均气温是决定小麦产量的3个主要因子,分别决定了小麦产量的46.73%、26.17和3.26%的变异。在黄淮旱地小麦适应气候变化中,起身至拔节期≥0℃积温和株高对产量贡献较大且为正效应;起身至拔节期平均气温为负效应。【结论】气候变暖对黄淮旱地冬小麦农艺性状变化趋势有较强的影响,选育株高和有效穗数适中、穗粒数较多、千粒重较大的中高产抗旱品种是黄淮旱地小麦适应未来气候变化的育种改良方向。
URL [本文引用: 1]
【目的】作物品种选育是在气候变化背景下的自然选择和人工选择的结果。黄淮麦区是中国最大的麦区,在保障中国小麦生产和粮食安全中有重要作用。研究过去30年黄淮旱地冬小麦品种农艺性状和气温要素变化规律,为旱地小麦育种适应未来气候变化提供理论依据和技术支撑。【方法】利用近30年来国家黄淮旱地冬小麦区域试验典型代表临汾点的对照品种农艺性状及该市的气温资料,研究对照品种农艺性状、生育期平均气温和≥0℃积温的变化规律,并进行农艺性状和气象要素的相关、多元回归和通径分析。【结果】小麦生育期的平均气温、≥0℃积温、最低和最高温度在逐年呈缓慢增加。小麦生育期平均气温平均每年上升0.05℃,≥0℃积温平均每年上升21.9℃,且二者呈正相关关系。≥0℃积温变化更能深入反映小麦生育期的温度变化情况。小麦生育期最高气温平均每年上升0.02℃、最低气温平均每年上升0.16℃。播种至越冬前的平均气温和≥0℃积温增加最多,营养生长阶段平均气温和≥0℃积温增加明显,生殖生长阶段平均气温增加较少且≥0℃积温有下降趋势。随着气候变暖,分蘖多的强冬性品种逐渐被分蘖适中的冬性和弱冬性品种替代。1986—1996年对照品种农艺性状变化幅度不大,1997—2007年期间变化较大,2007—2014年变化幅度最大;这和小麦生育期平均气温变化趋势基本相同。黄淮旱地对照品种千粒重和穗粒数逐年缓慢上升,分别每年平均增加1.57%和3.39%。有效穗数和产量及株高缓慢下降,分别每年平均下降0.16%和1.29%。产量与株高(0.684**)、有效穗(0.531**)和千粒重(0.541**)均极显著正相关。株高、起身至拔节期≥0℃积温和平均气温是决定小麦产量的3个主要因子,分别决定了小麦产量的46.73%、26.17和3.26%的变异。在黄淮旱地小麦适应气候变化中,起身至拔节期≥0℃积温和株高对产量贡献较大且为正效应;起身至拔节期平均气温为负效应。【结论】气候变暖对黄淮旱地冬小麦农艺性状变化趋势有较强的影响,选育株高和有效穗数适中、穗粒数较多、千粒重较大的中高产抗旱品种是黄淮旱地小麦适应未来气候变化的育种改良方向。
,
DOI:10.3969/j.issn.0488-5368.2011.02.002URL [本文引用: 2]
采用陕西关中宝鸡、咸阳、西 安、渭南、铜川5个地市小麦发育期的降水量资料,运用Mann-Kendall突变检验法,对1961-2007年期间关中冬小麦生育期降水量的变化趋势 和突变情况进行分析。结果表明,关中冬小麦生育期降水量整体上呈减少趋势。播种期降水变化都是从2001年开始上升,降水减少的幅度变小,1986年和 2003年是关中地区播种期的降水变化的突变年份。分蘖期趋势呈减少趋势。越冬期各地市降水变化呈增加趋势,对于冬小麦根系发育非常有利。拔节-孕穗期降 水减少趋势明显,对产量形成影响较大,抽穗-灌浆-成熟期降水整体上呈减少的趋势。建议加强冬小麦孕穗期-成熟期的灌溉设施管理,或尽量把冬小麦种植在水 地,在旱地和塬区要减少冬小麦的种植面积,以确保小麦稳产高产。
DOI:10.3969/j.issn.0488-5368.2011.02.002URL [本文引用: 2]
采用陕西关中宝鸡、咸阳、西 安、渭南、铜川5个地市小麦发育期的降水量资料,运用Mann-Kendall突变检验法,对1961-2007年期间关中冬小麦生育期降水量的变化趋势 和突变情况进行分析。结果表明,关中冬小麦生育期降水量整体上呈减少趋势。播种期降水变化都是从2001年开始上升,降水减少的幅度变小,1986年和 2003年是关中地区播种期的降水变化的突变年份。分蘖期趋势呈减少趋势。越冬期各地市降水变化呈增加趋势,对于冬小麦根系发育非常有利。拔节-孕穗期降 水减少趋势明显,对产量形成影响较大,抽穗-灌浆-成熟期降水整体上呈减少的趋势。建议加强冬小麦孕穗期-成熟期的灌溉设施管理,或尽量把冬小麦种植在水 地,在旱地和塬区要减少冬小麦的种植面积,以确保小麦稳产高产。
,
DOI:10.7606/j.issn.1009-1041.2016.07.15URL [本文引用: 2]
为了解过去近30年山西省临汾降水变化对旱地小麦品种农艺性状的影响,利用1986-2014年国家黄淮旱地冬小麦区域试验临汾点的降水和对照品种农艺性状资料,研究其降水和对照品种农艺性状变化规律,并对降水要素和农艺性状进行了相关、多元回归和通径分析。结果表明,该区年降水量有略微的上升趋势,但小麦生育期降水量有略微的下降趋势;播种至越冬期的降水量有增加趋势,但起身至拔节期和抽穗至成熟期的降水量有减少趋势。黄淮旱地区域试验对照品种千粒重和穗粒数逐年缓慢上升,但有效穗数、产量及株高缓慢下降。起身至拔节期降水与株高呈显著正相关,生育期降水量和年降水量与株高、穗粒数呈显著正相关,年降水量与产量呈显著正相关;株高、有效穗和千粒重与产量均呈极显著正相关。千粒重、穗粒数、株高和年降水量是决定产量的四个主要因子,共同决定了产量72%的变异。降水变化对黄淮旱地冬小麦农艺性状变化趋势有较强的影响,选育株高适中、有效穗数较多、千粒重较大的高产抗旱新品种,是黄淮旱地小麦适应未来气候变化进行育种改良的重要方向。
DOI:10.7606/j.issn.1009-1041.2016.07.15URL [本文引用: 2]
为了解过去近30年山西省临汾降水变化对旱地小麦品种农艺性状的影响,利用1986-2014年国家黄淮旱地冬小麦区域试验临汾点的降水和对照品种农艺性状资料,研究其降水和对照品种农艺性状变化规律,并对降水要素和农艺性状进行了相关、多元回归和通径分析。结果表明,该区年降水量有略微的上升趋势,但小麦生育期降水量有略微的下降趋势;播种至越冬期的降水量有增加趋势,但起身至拔节期和抽穗至成熟期的降水量有减少趋势。黄淮旱地区域试验对照品种千粒重和穗粒数逐年缓慢上升,但有效穗数、产量及株高缓慢下降。起身至拔节期降水与株高呈显著正相关,生育期降水量和年降水量与株高、穗粒数呈显著正相关,年降水量与产量呈显著正相关;株高、有效穗和千粒重与产量均呈极显著正相关。千粒重、穗粒数、株高和年降水量是决定产量的四个主要因子,共同决定了产量72%的变异。降水变化对黄淮旱地冬小麦农艺性状变化趋势有较强的影响,选育株高适中、有效穗数较多、千粒重较大的高产抗旱新品种,是黄淮旱地小麦适应未来气候变化进行育种改良的重要方向。
,
DOI:10.3389/fpls.2018.00001URL [本文引用: 2]
Soil treatments withMetarhizium brunneumEAMa 01/58-Su strain conducted in both Northern and Southern Spain reduced the olive fly (Bactrocera oleae) population density emerging from the soil during spring up to 70% in treated plots compared with controls. A model to determine the influence of rainfall on the conidial wash into different soil types was developed, with most of the conidia retained at the first 5 cm, regardless of soil type, with relative percentages of conidia recovered ranging between 56 and 95%. Furthermore, the possible effect of UV-B exposure time on the pathogenicity of this strain againstB. oleaeadults coming from surviving preimaginals and carrying conidia from the soil at adult emergence was also evaluated. The UV-B irradiance has no significant effect onM. brunneumEAMa 01/58-Su pathogenicity withB. oleaeadult mortalities of 93, 90, 79, and 77% after 0, 2, 4, and 6 of UV-B irradiance exposure, respectively. In a next step for the use of theseM. brunneumEAMa 01/58-Sun soil treatments within aB. oleaeIPM strategy, its possible effect of on theB. oleaecosmopolitan parasitoidPsyttalia concolor, its compatibility with the herbicide oxyfluorfen 24% commonly used in olive orchards and the possible presence of the fungus in the olive oil resulting from olives previously placed in contact with the fungus were investigated. Only the highest conidial concentration (1 108conidia ml ) caused significantP. concoloradult mortality (22%) with enduing mycosis in 13% of the cadavers. There were no fungal propagules in olive oil samples resulting from olives previously contaminated by EAMa 01/58-Su conidia. Finally, the strain was demonstrated to be compatible with herbicide since the soil application of the fungus reduced theB. oleaepopulation density up to 50% even when it was mixed with the herbicide in the same tank. The fungal inoculum reached basal levels 4 months after treatments (1.6 103conidia g soil鈭1). These results reveal both the efficacy and environmental and food safety of thisB. oleaecontrol method, protecting olive groves and improving olive oil quality without negative effects on the natural enemyP. concolor.
,
DOI:10.1371/journal.pone.0067518URLPMID:3706519 [本文引用: 1]
Winter wheat has a central role in ensuring the food security and welfare of 1.3 billion people in China. Extensive previous studies have concluded that winter wheat yields would decrease with higher temperatures, owing to warming-induced soil drying or shortening of phenophase. Temperature in China is predicted to increase by 1鈥5掳C by 2100, which may greatly impact plant production and cause other negative effects. We performed a manipulative field experiment, creating diverse growth regimes for wheat by infrared radiation (IR) warming day and night, including IR warming only (DW), IR warming + delayed sowing dates (DS), IR warming + increased irrigation (IW), and a control (CK). The results show that IR warming increased daily average wheat canopy and soil temperatures by 2.0掳C and 2.3掳C, respectively. DW was associated with an advanced maturity of 10 days and yield reduction of 8.2%. IR-warming effects on the photosynthetic apparatus of wheat varied with season as well as significant differences were found in the booting stage. DS represented a worsened situation, lowering yield per plant by 16.4%, with a significant decline in aboveground biomass and functional leaf area. Wheat under DS showed double-peak patterns of diurnal gas exchange during booting stages and, consequently, lower photosynthetic capacity with high transpiration for cooling. Significantly lower actual water use efficiency and intrinsic water use efficiency from jointing to anthesis stages were also found under DS. However, IW had no significant difference from CK, irrespective of yield and photosynthesis. Therefore, we concluded that delayed sowing date may not be a good choice for winter wheat, whereas a thoroughly-watered wheat agroecosystem should be promoted in the context of global warming.
,
DOI:10.1126/science.1204531URLPMID:21551030 [本文引用: 1]
Abstract Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.
[本文引用: 1]
,
DOI:10.3321/j.issn:1000-0585.2006.06.010URL [本文引用: 1]
相对于全球性的持续变暖趋势,降水量变化格局及其区域分异有更大的不确定性,因此研究不同区域降水量的变化特征是当前全球气候变化研究的重要内容之一。本研究基于1951~2002年中国约730个气象台站观测数据,利用空间插值和Mann—Kendall时间序列趋势分析方法并结合GIS技术,分析了过去50多年中国降水量的时空变化特征。结果表明,全国平均年降水量从60年代到90年代呈明显下降趋势,但在90年代后期出现回升,其中夏季和冬季降水量已达到50年代和60年代的水平。同时,降水量变化呈现显著的区域分异特征:华北、华中、东北南部地区持续下降,长江流域以南地区明显增加,而新疆北部、东北北部和青藏高原西部60年代到70年代下降,80年代后期有所回升。中国北方有从十早到湿润转变的迹象,但华北和东北南部地区仍然处于持续的干旱期。中国降水量的总体下降及90年代后期的回升与全球变化趋势基本一致,但区域变化格局与全球中高纬度地区降水增加、热带和亚热带地区减少的特征正好相反。
DOI:10.3321/j.issn:1000-0585.2006.06.010URL [本文引用: 1]
相对于全球性的持续变暖趋势,降水量变化格局及其区域分异有更大的不确定性,因此研究不同区域降水量的变化特征是当前全球气候变化研究的重要内容之一。本研究基于1951~2002年中国约730个气象台站观测数据,利用空间插值和Mann—Kendall时间序列趋势分析方法并结合GIS技术,分析了过去50多年中国降水量的时空变化特征。结果表明,全国平均年降水量从60年代到90年代呈明显下降趋势,但在90年代后期出现回升,其中夏季和冬季降水量已达到50年代和60年代的水平。同时,降水量变化呈现显著的区域分异特征:华北、华中、东北南部地区持续下降,长江流域以南地区明显增加,而新疆北部、东北北部和青藏高原西部60年代到70年代下降,80年代后期有所回升。中国北方有从十早到湿润转变的迹象,但华北和东北南部地区仍然处于持续的干旱期。中国降水量的总体下降及90年代后期的回升与全球变化趋势基本一致,但区域变化格局与全球中高纬度地区降水增加、热带和亚热带地区减少的特征正好相反。
,
DOI:10.11821/yj2012010002URL [本文引用: 1]
为探明气候变化对商丘地区冬小麦产量的影响,根据1991~2010商丘市气候资料和小麦产量资料,利用数学统计与Thornthwaite Memoriae模型,结合未来气候预测结果定量分析了气候变化对冬小麦产量的影响。结果表明,冬小麦产量整体上呈波动上升趋势;主成分分析表明,气温、降水量、蒸发量与极端温度为影响冬小麦产量的主要气候因子,蒸发量过大及极端低温对冬小麦生产不利。商丘地区“暖湿型”气候有利于冬小麦生产力的提高,“冷干型”气候对冬小麦生产最为不利;未来几十年内气候可能将向“暖湿型”变化,对商丘地区粮食作物产量的提升较为有利。
DOI:10.11821/yj2012010002URL [本文引用: 1]
为探明气候变化对商丘地区冬小麦产量的影响,根据1991~2010商丘市气候资料和小麦产量资料,利用数学统计与Thornthwaite Memoriae模型,结合未来气候预测结果定量分析了气候变化对冬小麦产量的影响。结果表明,冬小麦产量整体上呈波动上升趋势;主成分分析表明,气温、降水量、蒸发量与极端温度为影响冬小麦产量的主要气候因子,蒸发量过大及极端低温对冬小麦生产不利。商丘地区“暖湿型”气候有利于冬小麦生产力的提高,“冷干型”气候对冬小麦生产最为不利;未来几十年内气候可能将向“暖湿型”变化,对商丘地区粮食作物产量的提升较为有利。
,
DOI:10.3724/SP.J.1011.2008.01444URLMagsci [本文引用: 1]
根据河北平原多年降水、气温及冬小麦产量资料,利用回归分析、M K突变检验、T检验、线性调和滑动平均等统计分析方法,分析了1951~2006年河北省气候变化特征及其对冬小麦气候产量的影响。结果表明:河北省春季气温近56年来线性升高倾向显著,平均每10年升高0.38 ℃,春季降水近56年无明显线性增减倾向。冬小麦气候产量与气温、降水显著相关,当气温距平在-1.2~1.2 ℃之间时,小麦气候产量为正值,温度过低或过高都会使小麦减产,高温使小麦减产更严重,降水量和小麦气候产量呈正相关。
DOI:10.3724/SP.J.1011.2008.01444URLMagsci [本文引用: 1]
根据河北平原多年降水、气温及冬小麦产量资料,利用回归分析、M K突变检验、T检验、线性调和滑动平均等统计分析方法,分析了1951~2006年河北省气候变化特征及其对冬小麦气候产量的影响。结果表明:河北省春季气温近56年来线性升高倾向显著,平均每10年升高0.38 ℃,春季降水近56年无明显线性增减倾向。冬小麦气候产量与气温、降水显著相关,当气温距平在-1.2~1.2 ℃之间时,小麦气候产量为正值,温度过低或过高都会使小麦减产,高温使小麦减产更严重,降水量和小麦气候产量呈正相关。
,
DOI:10.13885/j.issn.0455-2059.2015.02.007URL [本文引用: 1]
利用中国东部季风区20个测站1960-2012年气温和降水量的月值数据,采用线性趋势分析、Mann-Kendall突变检验、Morlet小波分析等方法,分析了季风区各区域年平均气温和年降水量的变化趋势、突变现象和周期特征.结果表明1960-2012年季风区各区域均有增温趋势,在20世纪90年代发生突变,东北地区发生突变要早于其他地区,北方地区的增温幅度大于南方,存在4年左右周期,8~16年的准周期,气温的高频变化周期在内陆地区表现更为明显;年降水量在53年里处于波动状态,四川盆地、华北地区和季风区西北部地区降水有减少趋势,长江流域下游降水有增加趋势,其他地区没有明显变化趋势,存在2~4年周期、8~16年左右准周期,降水的低频变化周期在近海地区表现更为明显.
DOI:10.13885/j.issn.0455-2059.2015.02.007URL [本文引用: 1]
利用中国东部季风区20个测站1960-2012年气温和降水量的月值数据,采用线性趋势分析、Mann-Kendall突变检验、Morlet小波分析等方法,分析了季风区各区域年平均气温和年降水量的变化趋势、突变现象和周期特征.结果表明1960-2012年季风区各区域均有增温趋势,在20世纪90年代发生突变,东北地区发生突变要早于其他地区,北方地区的增温幅度大于南方,存在4年左右周期,8~16年的准周期,气温的高频变化周期在内陆地区表现更为明显;年降水量在53年里处于波动状态,四川盆地、华北地区和季风区西北部地区降水有减少趋势,长江流域下游降水有增加趋势,其他地区没有明显变化趋势,存在2~4年周期、8~16年左右准周期,降水的低频变化周期在近海地区表现更为明显.
,
DOI:10.5846/stxb201310242567URLMagsci [本文引用: 1]
利用中国西北干旱区122个气象站点1961-2011年月降水量资料,运用线性趋势、Mann-Kendall 非参数趋势和突变检验法、Morlet小波分析等方法研究了西北干旱区降水量空间分布及多时间尺度下的变化规律和趋势。结果表明:近50年来西北干旱区降水量呈增加趋势,95.9%的站点有增湿特征,全区增湿趋势为9.31 mm/10a(<i>P</i>< 0.01),但增湿幅度存在区域差异性,其中祁连山亚区(38.67 mm/10a)增湿最明显;从季节来看,冬季增湿具有全区普遍性,但夏季增湿的区域差异性特征明显。全区及各亚区降水量在20世纪80年代至90年代初有明显的突变特征,除内蒙西部亚区外均通过了0.01的显著性水平检验,降水量序列存在4、8、12a和22a振荡周期,其中22a尺度振荡周期最强,其次是12a尺度。全区32%的年份降水量属正常范围,偏干年份为24%,异常偏干年份为12%,异常偏湿和偏湿年份均为16%。20世纪70年代之前降水量略低于标准降水均值,80年代开始有区域性增湿趋势,90年代之后全区增湿均较明显,正距平年数比例由70年代的10%上升至21世纪初的80%,西北干旱区整体处于相对湿润时段,且增湿趋势明显。
DOI:10.5846/stxb201310242567URLMagsci [本文引用: 1]
利用中国西北干旱区122个气象站点1961-2011年月降水量资料,运用线性趋势、Mann-Kendall 非参数趋势和突变检验法、Morlet小波分析等方法研究了西北干旱区降水量空间分布及多时间尺度下的变化规律和趋势。结果表明:近50年来西北干旱区降水量呈增加趋势,95.9%的站点有增湿特征,全区增湿趋势为9.31 mm/10a(<i>P</i>< 0.01),但增湿幅度存在区域差异性,其中祁连山亚区(38.67 mm/10a)增湿最明显;从季节来看,冬季增湿具有全区普遍性,但夏季增湿的区域差异性特征明显。全区及各亚区降水量在20世纪80年代至90年代初有明显的突变特征,除内蒙西部亚区外均通过了0.01的显著性水平检验,降水量序列存在4、8、12a和22a振荡周期,其中22a尺度振荡周期最强,其次是12a尺度。全区32%的年份降水量属正常范围,偏干年份为24%,异常偏干年份为12%,异常偏湿和偏湿年份均为16%。20世纪70年代之前降水量略低于标准降水均值,80年代开始有区域性增湿趋势,90年代之后全区增湿均较明显,正距平年数比例由70年代的10%上升至21世纪初的80%,西北干旱区整体处于相对湿润时段,且增湿趋势明显。
,
DOI:10.1038/nature09364URLPMID:20811450 [本文引用: 1]
Abstract China is the world's most populous country and a major emitter of greenhouse gases. Consequently, much research has focused on China's influence on climate change but somewhat less has been written about the impact of climate change on China. China experienced explosive economic growth in recent decades, but with only 7% of the world's arable land available to feed 22% of the world's population, China's economy may be vulnerable to climate change itself. We find, however, that notwithstanding the clear warming that has occurred in China in recent decades, current understanding does not allow a clear assessment of the impact of anthropogenic climate change on China's water resources and agriculture and therefore China's ability to feed its people. To reach a more definitive conclusion, future work must improve regional climate simulations-especially of precipitation-and develop a better understanding of the managed and unmanaged responses of crops to changes in climate, diseases, pests and atmospheric constituents.
,
DOI:10.1016/S0378-4290(03)00154-0URL [本文引用: 1]
The cropping systems simulation model APSIM-Nwheat was tested against detailed field measurements representing possible growing conditions under future climate change scenarios. Increasing average temperatures by 1.7 掳C observed over several seasons at Obregon, Mexico reduced the time to flowering by 11 days and resulted in a decline of total biomass and grain yield. These effects were reproduced by the model, except when the observed total biomass inexplicably rose again in the fourth and fifth year, despite higher temperature and a much shorter growing time. In a water stress experiment, the effects of different timing and duration of water deficit on crop growth and yield were reproduced with the model for a rain-shelter experiment at Lincoln, New Zealand where observed grain yields were reduced from 10 to 4 t ha 鈭1 due to increased water deficit. In experiments from Western Australia, reduced growth and yields due to extreme terminal water deficit were also reproduced with the model where measured yields fall below 0.5 t ha 鈭1. In the Maricopa Free Air Carbon-Dioxide Enrichment (FACE) experiment in Arizona, USA, the largest yield increase occurred with elevated CO 2 in the dry and high N treatments, whereas little or no response was observed in the wet and low N supply treatments, as simulated with the model. Combining elevated CO 2 with increased temperature in a sensitivity analysis, two levels of water supply and a range of N applications indicated a positive effect of elevated CO 2 on yield as long as N was not limiting growth. Increased temperature and reduced water supply reduced yields and the yield response to N supply under ambient and elevated CO 2. Grain protein concentrations were reduced under elevated CO 2, but the difference was minor with ample N fertiliser. Evapotranspiration was reduced under elevated CO 2. Higher temperatures increased evapotranspiration with low N input, but reduced it with ample N fertiliser, resulting in a reduction and an increase, respectively, in drainage below the root zone. In the Mediterranean environment of Western Australia the impact of elevated CO 2 and increased temperature on grain yield was in average positive, but varied with seasonal rainfall distribution. Based on the range of model testing experiments and the sensitivity analysis, APSIM-Nwheat was found suitable for studies on directional impacts of future climate change on wheat production. Due to some large discrepancies between simulated and observed data, field experiments representing only a limited range of possible climate change scenarios and the large possible range of factorial interactions not tested, simulated quantitative effects with the model should be interpreted cautiously.
,
DOI:10.1016/j.agwat.2009.06.004URL [本文引用: 1]
Limited precipitation restricts crop yield in the North China Plain, where high level of production depends largely on irrigation. Establishing the optimal irrigation scheduling according to the crop water requirement (CWR) and precipitation is the key factor to achieve rational water use. Precipitation data collected for about 40 years were employed to analyze the long-term trend, and weather data from 1984 to 2005 were used to estimate the CWR and irrigation water requirements (IWR). Field experiments were performed at the Luancheng Station from 1997 to 2005 to calculate the soil water consumption and water use efficiency (WUE). The results showed the CWR for winter wheat and summer maize were similar and about 430 mm, while the IWR ranged from 247 to 370 mm and 0 to 336 mm at the 25% and 75% precipitation exceedance probabilities for winter wheat and summer maize, respectively. The irrigation applied varied in the different rainfall years and the optimal irrigation amount was about 186, 161 and 99 mm for winter wheat and 134, 88 and 0 mm for summer maize in the dry, normal and wet seasons, respectively. However, as precipitation reduces over time especially during the maize growing periods, development of water-saving management practices for sustainable agriculture into the future is imperative.
,
DOI:10.1016/j.geoderma.2012.06.012URL [本文引用: 1]
Nitrogen (N) and precipitation are the main limiting factors in food production under rain-fed cropping systems in arid and semiarid regions. A long-term field experiment was conducted from 1984 to 2009 in the Changwu State Key Agro-Ecological Experimental Station of the Loess Plateau, China, to study interactions between precipitation and N fertilization. Winter wheat (Triticum aestivum L) was grown with N fertilization at 0, 45, 90, 135, and 180 kg N ha(-1). With 25-year N fertilization, soil organic carbon and total N were increased by 18% and 26%, respectively. Mean yields and precipitation use efficiency (PUE) levels with N fertilization were increased by onefold to twofold compared with unfertilized soils. Generally, during the period of 1984-2009, grain yields with 45-180 kg N ha(-1) increased at the rate of 38-49 kg ha(-1) year(-1) (p<0.05), whereas PUE increased at the rate of 0.071-0.088 kg mm(-1) year(-1). These increases over time are largely attributable to improvements in soil organic carbon and total N. Variations in yield were proportionally reduced by N fertilization, but heavily depended on the fluctuation of precipitation. Grain yields with 45-180 kg N ha(-1) decreased by approximately 10%-45% (p<0.05) in the dry years (drought index<-035) compared with the normal years, whereas significant increases were not detected in the wet years (drought index>035). Grain yields with 90-180 kg N ha(-1) were positively correlated (p<0.05) with fallow season precipitation, but insignificantly correlated with growing season precipitation. The optimum N fertilization rates in the dry, normal and wet years increased following an increasing sequence of 45, 135 and 180 kg N ha(-1). These results have significant implications for optimizing N fertilization and maximizing yield and PUE in rain-fed cropping systems in arid and semiarid regions. (C) 2012 Elsevier B.V. All rights reserved.
,
DOI:10.1007/s00704-014-1343-4URL [本文引用: 1]
Our understanding on the impact of climate change on agricultural production, as well as the potential adaption options, can be accelerated by shedding insights on the historical experiences in the...
,
DOI:10.3969/j.issn.1000-6362.2010.03.020Magsci [本文引用: 1]
利用天津1960-2008年冬小麦单产资料,采用统计方法分析了影响冬小麦产量变化的主要气象因子及其变化趋势。结果表明:3个时段(全生育期、拔节-灌浆期、播种前)的降水量以及越冬前正积温是影响天津冬小麦产量的两种主要气象因子。趋势分析表明,49a中天津地区3个时段的降水量呈先减少后增加的变化趋势,越冬前正积温呈直线增加趋势;根据分别建立的冬小麦气象产量与影响时段降水量、越冬前正积温的回归方程,计算得出全生育期降水量达到122mm、拔节-灌浆期降水量达到41mm、播种前降水量达到36mm和越冬前正积温达到511~627℃.d是天津冬小麦气象产量为正值的水分和温度临界指标;据此标准,49a中,3个时段降水亏缺概率为22%~80%,但由于灌溉能力的提高,降水对产量的影响作用减小;冬小麦越冬前遭遇低温的概率为10%~50%,遭遇高温的概率为8%,并随年代增加呈上升的趋势,积温对产量的影响作用逐渐增强。
DOI:10.3969/j.issn.1000-6362.2010.03.020Magsci [本文引用: 1]
利用天津1960-2008年冬小麦单产资料,采用统计方法分析了影响冬小麦产量变化的主要气象因子及其变化趋势。结果表明:3个时段(全生育期、拔节-灌浆期、播种前)的降水量以及越冬前正积温是影响天津冬小麦产量的两种主要气象因子。趋势分析表明,49a中天津地区3个时段的降水量呈先减少后增加的变化趋势,越冬前正积温呈直线增加趋势;根据分别建立的冬小麦气象产量与影响时段降水量、越冬前正积温的回归方程,计算得出全生育期降水量达到122mm、拔节-灌浆期降水量达到41mm、播种前降水量达到36mm和越冬前正积温达到511~627℃.d是天津冬小麦气象产量为正值的水分和温度临界指标;据此标准,49a中,3个时段降水亏缺概率为22%~80%,但由于灌溉能力的提高,降水对产量的影响作用减小;冬小麦越冬前遭遇低温的概率为10%~50%,遭遇高温的概率为8%,并随年代增加呈上升的趋势,积温对产量的影响作用逐渐增强。
,
DOI:10.3969/j.issn.1002-2481.2011.08.31URL [本文引用: 1]
冬小麦产量的变化主要受降水、温度、光照等气象要素的影响,其中,以降水尤为明显。冬小麦全生育期对降水量的需求不尽相同,拔节—抽穗期和抽穗—乳熟期是冬小麦需水最大的时期,降水对产量的影响也最大。临汾市冬小麦生育期降水量的变化是影响冬小麦产量的主要因素。1985—2008年冬小麦产量和降水的对比分析发现:4月份(拔节—抽穗)降水量的多少对冬小麦产量影响很大,降水量与小麦产量呈正相关,在适宜的范围内,降水量偏多的年份为增产年,降水量偏少的年份为减产年;在冬小麦全生育期,临汾市多年平均降水量小于冬小麦生育期需水量;在春季降水异常的年份中,降水量偏少比降水量偏多对冬小麦减产影响明显;在冬小麦生育后期,降水因素(降水量与降水日数)是影响冬小麦产量的主要因素。
DOI:10.3969/j.issn.1002-2481.2011.08.31URL [本文引用: 1]
冬小麦产量的变化主要受降水、温度、光照等气象要素的影响,其中,以降水尤为明显。冬小麦全生育期对降水量的需求不尽相同,拔节—抽穗期和抽穗—乳熟期是冬小麦需水最大的时期,降水对产量的影响也最大。临汾市冬小麦生育期降水量的变化是影响冬小麦产量的主要因素。1985—2008年冬小麦产量和降水的对比分析发现:4月份(拔节—抽穗)降水量的多少对冬小麦产量影响很大,降水量与小麦产量呈正相关,在适宜的范围内,降水量偏多的年份为增产年,降水量偏少的年份为减产年;在冬小麦全生育期,临汾市多年平均降水量小于冬小麦生育期需水量;在春季降水异常的年份中,降水量偏少比降水量偏多对冬小麦减产影响明显;在冬小麦生育后期,降水因素(降水量与降水日数)是影响冬小麦产量的主要因素。
,
URLMagsci [本文引用: 1]
以1985~1994年黄河流域棉花区域试验中春棉5轮和夏棉4轮(共计331次单年单点试验)的小区霜前皮棉产量为资料,在单点单年、单点两年和多点两年三个层次上研究棉花区域试验的精确度问题,获得如下主要结果:①品种区域试验应同时采用两项指标来反映其精确度,一为误差项变异系数(CEV),说明试验精确度,另一为品种均值的相对最小显著差数(RLSDa),说明品种比较精确度,②RLSDa和CEV在不同层次上关系不一致,若不考虑试验设计和RLSDa,单纯以CEV的大小决定试验的取舍,缺乏理论与实践依据。③RLSDa能客观反映出试验的综合水平,无量纲,可用于所有以比较处理效应为目的的田间试验,不受作物种类、性状和试验类型限制,建议用作区试中试点评价与建设的一个主要指标。④黄河流域的9轮区试中,春、夏棉仅分别有36.54%和48.78%的单年单点试验的精度足以鉴别出品种间10%的差异,其相应的CEV(v=8,r=4时)为6.8%。有半数以上的试验鉴别不出10%的差异,其精度有待提高。
URLMagsci [本文引用: 1]
以1985~1994年黄河流域棉花区域试验中春棉5轮和夏棉4轮(共计331次单年单点试验)的小区霜前皮棉产量为资料,在单点单年、单点两年和多点两年三个层次上研究棉花区域试验的精确度问题,获得如下主要结果:①品种区域试验应同时采用两项指标来反映其精确度,一为误差项变异系数(CEV),说明试验精确度,另一为品种均值的相对最小显著差数(RLSDa),说明品种比较精确度,②RLSDa和CEV在不同层次上关系不一致,若不考虑试验设计和RLSDa,单纯以CEV的大小决定试验的取舍,缺乏理论与实践依据。③RLSDa能客观反映出试验的综合水平,无量纲,可用于所有以比较处理效应为目的的田间试验,不受作物种类、性状和试验类型限制,建议用作区试中试点评价与建设的一个主要指标。④黄河流域的9轮区试中,春、夏棉仅分别有36.54%和48.78%的单年单点试验的精度足以鉴别出品种间10%的差异,其相应的CEV(v=8,r=4时)为6.8%。有半数以上的试验鉴别不出10%的差异,其精度有待提高。
,
URL [本文引用: 1]
对照品种的选择和更换应以通过审定、生产中表现较好的品种为依 据,随着育种水平的发展适时更迭.品种推广走势与对照更换的时期一致,进一步说明对照品种的示范和标杆作用.玉米品种区试应适时提高对照水平,加大品种选 择压力,针对性设置对照,提高区域品种竞争力,及早筛选后备对照品种.品种试验中对照品种或形式可以探索参试组合的平均或几个对照的综合考量,使品种试验 更加科学,以此选拔出来的品种可信度和适应性更强,更能体现客观、公正、公平.
URL [本文引用: 1]
对照品种的选择和更换应以通过审定、生产中表现较好的品种为依 据,随着育种水平的发展适时更迭.品种推广走势与对照更换的时期一致,进一步说明对照品种的示范和标杆作用.玉米品种区试应适时提高对照水平,加大品种选 择压力,针对性设置对照,提高区域品种竞争力,及早筛选后备对照品种.品种试验中对照品种或形式可以探索参试组合的平均或几个对照的综合考量,使品种试验 更加科学,以此选拔出来的品种可信度和适应性更强,更能体现客观、公正、公平.
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3969/j.issn.1000-6362.2018.04.003URL [本文引用: 1]
利用1993-2013年中国北部冬麦区19个农业气象观测站的冬小麦生育期及气象资料,研究了冬小麦各生育阶段积温和生育期的时空变异特征。通过皮尔逊相关性分析等方法,探究冬小麦各生育阶段积温变化对生育期的影响。结果表明:(1)播种-出苗、返青-拔节阶段≥0℃积温和越冬期负积温的值呈东高西低的空间分布,拔节-抽穗、抽穗-乳熟、乳熟-成熟和播种-成熟阶段≥0℃积温为东南低西北高,而出苗-越冬开始阶段≥0℃积温则呈东南高西北低的分布;拔节-抽穗和乳熟-成熟阶段≥0℃积温均在21%的站点上显著减少,返青-拔节、抽穗-乳熟和播种-成熟阶段≥0℃积温及越冬期负积温分别在26%、37%、21%和42%的站点上显著增加,而播种-出苗和出苗-越冬开始阶段≥0℃积温的变化较小;(2)播种和出苗期呈东部晚西部早的空间分布,抽穗、乳熟和成熟期则相反;越冬开始期呈东南晚西北早的分布,返青期则相反;拔节早的站点主要位于麦区东部。播种、出苗、返青、拔节、乳熟和成熟期分别在21%、16%、37%、26%、42%和21%站点显著推迟且多位于麦区东部,而越冬开始期和抽穗期仅在5%站点变化显著;(3)相关分析表明,各生育阶段≥0℃积温(或越冬期负积温)与多个生育期的相关性显著,生育阶段积温的变化可能直接或间接影响了冬小麦的生长发育。越冬期负积温与返青、拔节、抽穗、乳熟和成熟期相关性最大,且与冬后多个生育期呈现一致的时空变异特征,其时空变异性可能是造成冬小麦冬后生育期在时空上存在差异的原因。
DOI:10.3969/j.issn.1000-6362.2018.04.003URL [本文引用: 1]
利用1993-2013年中国北部冬麦区19个农业气象观测站的冬小麦生育期及气象资料,研究了冬小麦各生育阶段积温和生育期的时空变异特征。通过皮尔逊相关性分析等方法,探究冬小麦各生育阶段积温变化对生育期的影响。结果表明:(1)播种-出苗、返青-拔节阶段≥0℃积温和越冬期负积温的值呈东高西低的空间分布,拔节-抽穗、抽穗-乳熟、乳熟-成熟和播种-成熟阶段≥0℃积温为东南低西北高,而出苗-越冬开始阶段≥0℃积温则呈东南高西北低的分布;拔节-抽穗和乳熟-成熟阶段≥0℃积温均在21%的站点上显著减少,返青-拔节、抽穗-乳熟和播种-成熟阶段≥0℃积温及越冬期负积温分别在26%、37%、21%和42%的站点上显著增加,而播种-出苗和出苗-越冬开始阶段≥0℃积温的变化较小;(2)播种和出苗期呈东部晚西部早的空间分布,抽穗、乳熟和成熟期则相反;越冬开始期呈东南晚西北早的分布,返青期则相反;拔节早的站点主要位于麦区东部。播种、出苗、返青、拔节、乳熟和成熟期分别在21%、16%、37%、26%、42%和21%站点显著推迟且多位于麦区东部,而越冬开始期和抽穗期仅在5%站点变化显著;(3)相关分析表明,各生育阶段≥0℃积温(或越冬期负积温)与多个生育期的相关性显著,生育阶段积温的变化可能直接或间接影响了冬小麦的生长发育。越冬期负积温与返青、拔节、抽穗、乳熟和成熟期相关性最大,且与冬后多个生育期呈现一致的时空变异特征,其时空变异性可能是造成冬小麦冬后生育期在时空上存在差异的原因。
,
DOI:10.1017/S0021859600028665URL [本文引用: 1]
Experiments were carried out to assess the increase in yield potential of winter wheat in the U.K. due to variety improvement since the early years of this century. The effects of other genetic changes were minimized by applying fungicide to control eyespot and foliar diseases, and by using nets to prevent lodging. The experiments were carried out in 1978 at Cambridge. One, on soil of high fertility in Camp Field, received 104 kg N/ha and the other, on soil of lower fertility in Paternoster Field, received 38 kg N/ha. Twelve genotypes were tested. Eight were varieties which formed a chronological series beginning with Little Joss, introduced in 1908. The remaining genotypes were recently developed selections from the Plant Breeding Institute and a line bred by the French breeders, Benoist.The average yield of the 12 varieties and lines tested was 3 96 t/ha in Paternoster Field and 6 40 t/ha in Camp Field. In both fields the two highest yielding entries, Hobbit and the advanced breeding line 989/10, outyielded Little Joss by close to 40%. Benoist 10483 was the only entry for which the percentage yield advantage depended on high soil fertility.The newer, high yielding, varieties were shorter and reached anthesis earlier than the older varieties. They had lower stem weights/m2 than the older varieties but similar maximum leaf area indices and leaf weights/m2. Within each experiment the total dry-matter production of the varieties was similar, the increase in grain yield due to variety improvement being associated mainly with greater harvest index (ratio of grain yield to grain + straw yield).It is argued that by a continuation of the trend towards reduced stem length, with no change in above-ground biomass, breeders may be able to increase harvest index, from the present value of about 50% to about 60%, achieving a genetic gain in yield of some 25%. As the limit to harvest index is approached, genetic gain in yield will depend on detecting and exploiting genetic variation in biomass production.
,
DOI:10.3864/j.issn.0578-1752.2013.11.003URLMagsci [本文引用: 1]
【目的】研究中国北部冬麦区水地组小麦品种农艺性状适应气候变暖的变化规律,为小麦品种改良提供理论依据和指导方法。【方法】利用2001—2009年国家冬小麦区域试验北部冬麦区水地组对照品种的农艺性状和该地区相关气象资料,研究对照品种农艺性状变化规律,并进行农艺性状和气象要素的相关分析。【结果】对照品种出苗日期和成熟日期逐渐推迟;生育期逐渐缩短,且与年平均温度和生育期≥0℃积温呈负相关;生殖生长阶段随着相应期间≥0℃积温的增加而延长;随着气候变暖,千粒重和每公顷产量呈增加趋势。农艺性状相关分析表明,千粒重与每公顷产量呈极显著正相关,生殖生长阶段与每公顷产量呈较强正相关;多元线性回归分析表明,株高和千粒重2 性状决定了产量变异的95.7%。【结论】气候变暖对北部冬麦区冬小麦生长发育有较强的影响,选育生育期较短,但生殖生长阶段较长,千粒重大的高产品种是北部冬麦区未来适应气候变暖的品种改良方向。
DOI:10.3864/j.issn.0578-1752.2013.11.003URLMagsci [本文引用: 1]
【目的】研究中国北部冬麦区水地组小麦品种农艺性状适应气候变暖的变化规律,为小麦品种改良提供理论依据和指导方法。【方法】利用2001—2009年国家冬小麦区域试验北部冬麦区水地组对照品种的农艺性状和该地区相关气象资料,研究对照品种农艺性状变化规律,并进行农艺性状和气象要素的相关分析。【结果】对照品种出苗日期和成熟日期逐渐推迟;生育期逐渐缩短,且与年平均温度和生育期≥0℃积温呈负相关;生殖生长阶段随着相应期间≥0℃积温的增加而延长;随着气候变暖,千粒重和每公顷产量呈增加趋势。农艺性状相关分析表明,千粒重与每公顷产量呈极显著正相关,生殖生长阶段与每公顷产量呈较强正相关;多元线性回归分析表明,株高和千粒重2 性状决定了产量变异的95.7%。【结论】气候变暖对北部冬麦区冬小麦生长发育有较强的影响,选育生育期较短,但生殖生长阶段较长,千粒重大的高产品种是北部冬麦区未来适应气候变暖的品种改良方向。
,
DOI:10.3969/j.issn.1000-6362.2011.02.002URLMagsci [本文引用: 1]
在冬小麦主产区内选取113个气象站点的1961-2008年逐日气象资料,应用Mann-Kendall突变检测和气候线性倾向率方法,分析冬小麦生育期内农业气候资源变化趋势和特征。结果表明:研究区域近50a冬小麦生育期内≥0℃积温呈明显的增加趋势(P<0.01),90年代初期以来,≥0℃积温增加趋势更加显著(P<0.05);冬小麦生育期内的降水量变化趋势不显著,也不存在突变现象,但降水量年际间变化较大;冬小麦生育期内参考作物蒸散量的变化趋势不显著,80年代出现弱的减少趋势(P<0.1),90年代以后有弱的增加趋势(P<0.1);冬小麦生育期内的初霜冻日期呈推迟趋势(P<0.01),终霜冻日期呈提前趋势(P<0.01),导致霜冻日长度呈减少趋势。21世纪初初霜冻日的推迟趋势、终霜冻日的提前趋势更加显著(P<0.05)。
DOI:10.3969/j.issn.1000-6362.2011.02.002URLMagsci [本文引用: 1]
在冬小麦主产区内选取113个气象站点的1961-2008年逐日气象资料,应用Mann-Kendall突变检测和气候线性倾向率方法,分析冬小麦生育期内农业气候资源变化趋势和特征。结果表明:研究区域近50a冬小麦生育期内≥0℃积温呈明显的增加趋势(P<0.01),90年代初期以来,≥0℃积温增加趋势更加显著(P<0.05);冬小麦生育期内的降水量变化趋势不显著,也不存在突变现象,但降水量年际间变化较大;冬小麦生育期内参考作物蒸散量的变化趋势不显著,80年代出现弱的减少趋势(P<0.1),90年代以后有弱的增加趋势(P<0.1);冬小麦生育期内的初霜冻日期呈推迟趋势(P<0.01),终霜冻日期呈提前趋势(P<0.01),导致霜冻日长度呈减少趋势。21世纪初初霜冻日的推迟趋势、终霜冻日的提前趋势更加显著(P<0.05)。
,
DOI:10.3969/j.issn.1002-2511.2006.02.004URLMagsci [本文引用: 1]
中国的气候变化与全球变化有相当的一致性,但也存在明显差别。在全球变暖背景下,近100 a来中国年平均地表气温明显增加,升温幅度比同期全球平均值略高。近100 a和近50 a的降水量变化趋势不明显,但1956年以来出现了微弱增加的趋势。近50 a来中国主要极端天气气候事件的频率和强度也出现了明显的变化。研究表明,中国的CO2年排放量呈不断增加趋势,温室气体正辐射强迫的总和是造成气候变暖的主要原因。对21世纪气候变化趋势做出的预测表明:未来20~100 a,中国地表气温增加明显,降水量也呈增加趋势。
DOI:10.3969/j.issn.1002-2511.2006.02.004URLMagsci [本文引用: 1]
中国的气候变化与全球变化有相当的一致性,但也存在明显差别。在全球变暖背景下,近100 a来中国年平均地表气温明显增加,升温幅度比同期全球平均值略高。近100 a和近50 a的降水量变化趋势不明显,但1956年以来出现了微弱增加的趋势。近50 a来中国主要极端天气气候事件的频率和强度也出现了明显的变化。研究表明,中国的CO2年排放量呈不断增加趋势,温室气体正辐射强迫的总和是造成气候变暖的主要原因。对21世纪气候变化趋势做出的预测表明:未来20~100 a,中国地表气温增加明显,降水量也呈增加趋势。
,
DOI:10.3969/j.issn.1673-1719.2005.01.002URLMagsci [本文引用: 1]
近百年来,全球气候正经历着一次以变暖为主要特征的显著变化,全球气候与环境的重大变化对中国的气候与环境演变也产生了重大影响。来自气候、环境、海洋和经济社会科学等领域的百余位专家和****对中国气候与环境的演变及其对自然生态系统和社会经济部门的影响进行了评估,在此基础上,提出了适应和减缓气候变化的对策。本文主要阐述在全球气候变化背景下中国气候与环境的演变,并对未来气候变化的趋势做出了预测。
DOI:10.3969/j.issn.1673-1719.2005.01.002URLMagsci [本文引用: 1]
近百年来,全球气候正经历着一次以变暖为主要特征的显著变化,全球气候与环境的重大变化对中国的气候与环境演变也产生了重大影响。来自气候、环境、海洋和经济社会科学等领域的百余位专家和****对中国气候与环境的演变及其对自然生态系统和社会经济部门的影响进行了评估,在此基础上,提出了适应和减缓气候变化的对策。本文主要阐述在全球气候变化背景下中国气候与环境的演变,并对未来气候变化的趋势做出了预测。
,
DOI:10.1038/387484a0URL [本文引用: 1]
The possibility that future climate change may affect agriculture has attracted considerable attention 1,2 . As a step towards evaluating such influences, the effect of climate trends over the past few decades 3 needs to be assessed. Here I estimate the contribution of climate trends in Australia 4,5 to the substantial increase in Australian wheat yields since 1952. Non-climatic influences— such as new cultivars and changes in crop management practices—are removed by detrending the wheat yield and climate variables and using the residuals to calculate quantitative relationships between variations in climate and yield. Climate trends appear to be responsible for 30–50% of the observed increase in wheat yields, with increases in minimum temperatures being the dominant influence. This approach should be applicable in other regions for which sufficient data exist.
,
DOI:10.1002/joc.3704URL [本文引用: 1]
Rainfall, temperature, and solar radiation are important climate factors, which determine crop growth, development and yield from instantaneous to decadal scales. We propose to identify year patterns of climate impact on yield on the basis of rain and non-rain weather. There are inter-related impacts of climatic factors on crop production within a specific pattern. Historical wheat yield data in Queensland during 1889鈥2004 were used. The influence of meteorological conditions on wheat yields was derived from statistical yield data which were detrended by 9-year-smoothing averages to remove the effects of technological improvements on wheat yields over time. Climate affects crop growth and development differently over different growth stages. Therefore, we considered the climate effects at both vegetative and reproductive stages (before and after flowering date, respectively) on yield. Cluster analysis was employed to identify the year patterns of climate impact. Five patterns were significantly classified. Precipitation during the vegetative stage was the dominant and beneficial factor for wheat yields while increasing maximum temperature had a negative influence. Crop yields were strongly dependent on solar radiation under normal rainfall conditions. As the effect of rainfall on soil water is relatively long-lasting, its beneficial effect in vegetative stage was higher than its effect during the reproductive stage. The Agricultural Production Systems sIMulator (APSIM) was evaluated using long-term historical data to determine whether the model could reasonably simulate effects of climate factors for each year pattern. The model provided good estimates of wheat yield when conditions resulted in medium yield levels, however, in extremely low or high yield years, corresponding to extremely low or high precipitation in the vegetative stage, the model tended to underestimate or overestimate. Under high growing season precipitation, simulations responded more favourably to reproductive stage rainfall than measured yields.
,
[本文引用: 1]
,
DOI:10.3724/SP.J.1011.2010.00342URLMagsci [本文引用: 1]
为探索降水量分配对作物产量的作用机制和规律, 在对APSIM模型检验的基础上, 运用APSIM模型和多元积分回归方法研究黄土高原雨养农业区降水季节分配对作物产量的影响。结果表明: APSIM模型可用来模拟小麦和豌豆的产量; 作物产量除与年降水总量有关外, 还与降水量的季节分配有关; 降水量的季节分配对小麦和豌豆产量影响为开口向上的二次曲线, 并且都为正效应; 当年6~7月份降水对小麦产量影响最大, 5~6月份降水对豌豆产量影响最大, 最大贡献率为每增加1 mm的降水量, 小麦增产10.4 kg?hm<sup>-2</sup>, 豌豆增产10.3 kg?hm<sup>-2</sup>; 降水量季节分配比年降水总量对作物产量的形成有更为深刻的影响。
DOI:10.3724/SP.J.1011.2010.00342URLMagsci [本文引用: 1]
为探索降水量分配对作物产量的作用机制和规律, 在对APSIM模型检验的基础上, 运用APSIM模型和多元积分回归方法研究黄土高原雨养农业区降水季节分配对作物产量的影响。结果表明: APSIM模型可用来模拟小麦和豌豆的产量; 作物产量除与年降水总量有关外, 还与降水量的季节分配有关; 降水量的季节分配对小麦和豌豆产量影响为开口向上的二次曲线, 并且都为正效应; 当年6~7月份降水对小麦产量影响最大, 5~6月份降水对豌豆产量影响最大, 最大贡献率为每增加1 mm的降水量, 小麦增产10.4 kg?hm<sup>-2</sup>, 豌豆增产10.3 kg?hm<sup>-2</sup>; 降水量季节分配比年降水总量对作物产量的形成有更为深刻的影响。
,
URL [本文引用: 1]
理想株型选择是旱地小麦节水栽培和高产育种的重要前提。围绕群体条件下旱地小麦产量形成、节水效率和干旱适应性等关键指标,从根型、茎型、叶型和穗型4个方面总结了旱地小麦株型演变规律和调控机理。旱地小麦从野生近缘种二倍体和四倍体向现代六倍体进化的漫长演变过程中,株型经历了从"高根冠比、低收获指数、高冠幅/株高比、小穗和种子扁长"等"杂草"型向"低根冠比、高收获指数和高粒叶比及小冠幅/株高、大穗多粒"的"作物"型的演变。从株型各组件演变规律看,根型以根系大小适中、根条数较多、根系生理活性较高为主;茎型以各茎节长度比例趋近"黄金分割"演变,株高控制在80-100 cm左右的适中高度;叶型以叶片直立、旗叶长宽比例适中为主,倒二叶长维持在20 cm左右;穗型以直立、大穗和小穗数多为主;单株分蘖数趋于减少,株型结构趋于紧凑。上述组件特征将促使旱地小麦向弱竞争能力的方向发展。总之,旱地小麦经历了自然选择和人工选择双重压力,其株型结构有利于群体产量和水分利用效率提高,从而获得较高的种群适合度。
URL [本文引用: 1]
理想株型选择是旱地小麦节水栽培和高产育种的重要前提。围绕群体条件下旱地小麦产量形成、节水效率和干旱适应性等关键指标,从根型、茎型、叶型和穗型4个方面总结了旱地小麦株型演变规律和调控机理。旱地小麦从野生近缘种二倍体和四倍体向现代六倍体进化的漫长演变过程中,株型经历了从"高根冠比、低收获指数、高冠幅/株高比、小穗和种子扁长"等"杂草"型向"低根冠比、高收获指数和高粒叶比及小冠幅/株高、大穗多粒"的"作物"型的演变。从株型各组件演变规律看,根型以根系大小适中、根条数较多、根系生理活性较高为主;茎型以各茎节长度比例趋近"黄金分割"演变,株高控制在80-100 cm左右的适中高度;叶型以叶片直立、旗叶长宽比例适中为主,倒二叶长维持在20 cm左右;穗型以直立、大穗和小穗数多为主;单株分蘖数趋于减少,株型结构趋于紧凑。上述组件特征将促使旱地小麦向弱竞争能力的方向发展。总之,旱地小麦经历了自然选择和人工选择双重压力,其株型结构有利于群体产量和水分利用效率提高,从而获得较高的种群适合度。
,
DOI:10.1080/07352680601147901URL [本文引用: 1]
This review concerns ear photosynthesis and its contribution to grain filling in C3 cereals. Ear photosynthesis is quantitatively important to grain filling, particularly in dry areas where source (i.e., assimilate) limitations can occur. Compared to the flag leaf, ear photosynthesis exhibits higher water stress tolerance. Several factors could be involved in the ear's “drought tolerance.” First, although degree of C4 metabolism in ear parts has been reported, current evidence supports only typical C3 metabolism. Second, recycling of respired CO2 (i.e., refixation) could have considerable impact on final crop yield by preventing loss of CO2. Because refixation of CO2 is independent of atmospheric conditions, water use efficiency (measured as total ear photosynthesis divided by transpiration) could be higher in the ear than in the flag leaf. Moreover, ear parts (in particular awns) show higher relative water content and better osmotic adjustment under water stress compared to the flag leaf. This capacity, in addition to persistence of photosynthetic components under drought (delayed senescence), might help the ear to continue to fix CO2 late in the grain filling period.
,
DOI:10.1016/j.fcr.2010.06.014URL [本文引用: 1]
The contribution of ear photosynthesis to grain filling in wheat ( Triticum aestivum L.) is not well known. The main objective of this work was to evaluate this contribution through three different experimental approaches: (1) ear photosynthesis was reduced by removing awns or shading the ears (in combination with a defoliation treatment), (2) grain weight per ear was compared in an ‘all shaded’ crop versus plants where only the vegetative parts were shaded (‘ear emerging’), and (3) ear photosynthesis was reduced with DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea), a specific inhibitor of photosystem II. In field experiments in La Plata (Argentina), cultivars Klein Escudo and BioINTA 3000 were subjected to awn removal and ear shading treatments, with or without severe defoliation, and to ‘all canopy shaded’ versus ‘ear emerging’ treatments. Although the estimated contribution of ear photosynthesis to grain yield differed depending on the experimental approach used (from about 12–42%), in general cv. Klein Escudo (with the largest awns) showed a greater contribution of ear photosynthesis. In both cultivars, the percentage contribution of ear photosynthesis was larger for defoliated plants. The magnitude of this contribution was positively associated with the length of awns of each cultivar. Awn removal had a non-significant ( p ≤ 0.05) effect on grain weight per ear (GW ear) in the short-awned cv. BioINTA 3000. In cv. Klein Escudo, the effects of de-awning were larger, reaching values of ca. 15 and 19% decrease of GW ear in non-defoliated and defoliated plants respectively. In both cultivars, grains in a distal position within the spikelet (G3) were most affected by the decrease of the photosynthetic source. The photosynthetic rate of the ear was higher in cv. Klein Escudo than in cv. BioINTA 3000. We analyzed the contribution of remobilization of pre anthesis assimilates (stem plus sheaths). Comparing both cultivars, dry matter translocation from the stem showed the opposite pattern to the contribution of ear photosynthesis, i.e. it was higher in cv. BioINTA 3000 than in Klein Escudo. In Bordenave, Argentina, ear shading treatments revealed an important contribution of ear photosynthesis to grain yield in cv. Huenpan (a long awned, water-deficit tolerant genotype), either under water deficit or irrigation, whereas in cv. Baguette Premiun 11 (short awns) there was apparently no effect of ear photosynthesis on yield. Finally, inhibition of ear photosynthesis with DCMU reduced grain weight per ear to a similar extent as ear shading. Ear photosynthesis might represent a “buffer” to maintain grain yield under source limitations (e.g. defoliation, water stress conditions), and could have an important role even without stress, because an incipient ‘source’ limitation might be emerging in modern cultivars of bread wheat.
,
DOI:10.1080/07352689.2014.875291URL [本文引用: 1]
Drought is a major environmental stress threatening wheat productivity worldwide. Global climate models predict changed precipitation patterns with frequent episodes of drought. Although drought impedes wheat performance at all growth stages, it is more critical during the flowering and grain-filling phases (terminal drought) and results in substantial yield losses. The severity and duration of the stress determine the extent of the yield loss. The principal reasons for these losses are reduced rates of net photosynthesis owing to metabolic limitations鈥攐xidative damage to chloroplasts and stomatal closure鈥攁nd poor grain set and development. A comprehensive understanding of the impact of terminal drought is critical for improving drought resistance in wheat, with marker-assisted selection being increasingly employed in breeding for this resistance. The limited success of molecular breeding and physiological strategies suggests a more holistic approach, including interaction of drought with other stresses and plant morphology. Furthermore, integration of physiological traits, genetic and genomic tools, and transgenic approaches may also help to improve resistance against drought in wheat. In this review, we describe the influence of terminal drought on leaf senescence, carbon fixation, grain set and development, and explain drought resistance mechanisms. In addition, recent developments in integrated approaches such as breeding, genetics, genomics, and agronomic strategies for improving resistance against terminal drought in wheat are discussed.