Transcriptome Research of Erect and Short Panicle Mutant esp in Rice
ZHOU KunNeng, XIA JiaFa, YUN Peng, WANG YuanLei, MA TingChen, ZHANG CaiJuan, LI ZeFu,Rice Research Institute, Anhui Academy of Agricultural Sciences/Key Laboratory for Rice Genetics and Breeding of Anhui Province, Hefei 230001
Received:2019-08-5Accepted:2019-10-21Online:2020-03-16 作者简介 About authors 周坤能,E-mail:zhoukunneng1986@163.com。
摘要 【目的】克隆水稻直立短穗基因Erect and Short Panicle(ESP),分析其参与的基因调控途径,解析ESP控制株型、穗长等农艺性状的分子机理。【方法】以直立短穗突变体esp及其野生型为材料,成熟期进行株高、穗长、粒长等表型测定;构建籼粳杂交F2定位群体,挑选与突变表型一致的F2单株,利用与突变性状连锁的分子标记对目的基因进行定位;对野生型和突变体进行基因组测序,结合定位结果,找到突变位点,克隆ESP;利用生物信息学软件进行进化树和基因表达分析;提取野生型和突变体幼穗中的RNA并建库,GO(gene ontology)聚类分析表达差异基因,同时根据KEGG(kyoto encyclopedia of genes and genomes)数据库,分析野生型和突变体中植物激素信号转导和内质网蛋白加工相关基因的表达变化,并通过qRT-PCR验证。【结果】通过表型观察和农艺性状调查,与野生型相比,直立短穗突变体esp株高降低,穗长变短,穗型由弯曲变为直立,每穗粒数减少,粒长变短,粒宽和千粒重增加;有效穗数无显著差异。利用突变体esp与PA64构建籼粳F2定位群体,将目的基因定位于水稻第7染色体长臂标记C7-11和C7-14之间7.58 Mb区间内,基因组测序发现LOC_Os07g42410第6内含子与第7外显子连接位点由碱基G变异为A,导致第6内含子不能被剪切,蛋白翻译提前终止;该基因与已报道的OsDEP2/OsEP2为等位基因。进化分析显示该基因广泛存在于单子叶和双子叶植物中;表达分析表明ESP在茎秆、花序、雌蕊、内外稃和子房中高度表达,其表达水平随着子房变大而逐渐降低。利用转录组分析突变体和野生型幼穗中的基因表达,结果表明,与野生型相比,esp突变体中表达差异显著(差异>1.5倍)的基因630个,其中235个表达上调,395个表达下调。GO分析显示植物激素信号转导和内质网蛋白加工相关基因受到不同程度地调控,利用qRT-PCR进行验证,结果与转录组数据一致。【结论】直立短穗基因ESP与已报道的直立穗基因OsDEP2/OsEP2为等位基因,其突变导致株高降低、穗长变短等多个表型;ESP可能通过调节植物激素信号转导、内质网蛋白加工过程中的基因表达,进而影响植株的发育。 关键词:水稻;直立短穗突变体;基因克隆;进化分析;转录组分析
Abstract 【Objective】In this study, we aimed to identify the ESP gene, whose mutation caused a phenotype, namely erect and short panicle, and to determine its regulatory role in the gene network that controls the related agronomic traits (e.g., plant types and panicle length).【Method】In this study, agronomic traits, such as plant height, panicle length and grain length at mature stages, were used as phenotypic marks to trace the esp mutant. Individuals carrying mutant phenotypes were selected from the F2 population to cross with indica and japonica for further gene mapping and genome sequencing that were used to map the potential mutation region/sites. The bioinformatics software was used to analyze phylogenetic tree and gene expression. The total RNAs isolated from wild type and mutants were used for transcriptome RNA-seq analysis. The differential expressed genes and expression levels of genes related to plant hormone signal transduction and protein processing in endoplasmic reticulum were analyzed by GO software and KEGG database. The transcriptome data were verified by qRT-PCR.【Result】Phenotypic analysis showed that the esp mutant exhibited a erect panicle architecture. The plant height, panicle length, grain length and the number of spikelets per panicle were decreased in the esp mutants, when compared to wild type control, whereas grain width and the 1 000-grain weight were increased, although no obvious difference in the number of effective panicles between mutants and control. The ESP gene was mapped to a 7.58 Mb interval between markers C7-11 and C7-14 on the long arm of rice 7th chromosome by using the F2 population of esp mutant and PA64. Genome sequencing demonstrated that a single nucleotide change (G to A) at the junction of 6th intron and 7th exon of LOC_Os07g42410, which led to a splicing defect, causing premature protein translation. The ESP was allelic to OsDEP2/OsEP2. Phylogenetic analysis revealed that the ESPs are widely present in monocot and dicot plants. Expression analysis predicted that ESP gene was highly expressed in stem, inflorescence, pistil, glumelle, lemma and ovary, and the expression level was gradually decreased with the ovary inflation. Transcriptome RNA-seq analysis of young panicle identified 630 differential expressed genes in esp mutants versus wild type, including 235 up-regulated and 395 down-regulated. GO and qRT-PCR analysis revealed that genes involved in plant hormone signal transduction and protein processing in endoplasmic reticulum were misregulated in esp mutants.【Conclusion】The ESP gene was allelic to OsDEP2/OsEP2, the mutation of which leads to multiple phenotypes, such as decreased plant height and shorter panicle length. Transcriptome analysis suggested that the ESP gene might affect plant development by regulating genes expression associated with plant hormone signal transduction and protein processing in endoplasmic reticulum. Keywords:rice (Oryza sativa L.);erect and short panicle mutant;gene cloning;phylogenetic analysis;transcriptome analysis
PDF (5500KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 周坤能, 夏加发, 云鹏, 王元垒, 马廷臣, 张彩娟, 李泽福. 水稻直立短穗突变体esp的转录组研究[J]. 中国农业科学, 2020, 53(6): 1081-1094 doi:10.3864/j.issn.0578-1752.2020.06.001 ZHOU KunNeng, XIA JiaFa, YUN Peng, WANG YuanLei, MA TingChen, ZHANG CaiJuan, LI ZeFu. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice[J]. Scientia Acricultura Sinica, 2020, 53(6): 1081-1094 doi:10.3864/j.issn.0578-1752.2020.06.001
Table 1 表1 表1突变体和野生型的农艺性状分析 Table 1Agronomic traits of the esp mutant and WT
农艺性状Agronomic traits
野生型WT
突变体esp
株高Plant height (cm)
79.1±1.7
67.2±1.5**
有效穗数Number of effective panicles
14.8±1.7
14.9±1.2
穗长Panicle length (cm)
21.06±0.85
17.03±0.70**
每穗粒数Grain number per panicle
190.5±15.2
136.7±8.8**
剑叶长Flag leaf length (cm)
26.60±1.53
36.07±2.64**
剑叶宽Flag leaf width (cm)
1.86±0.05
1.83±0.08
千粒重1000-grain weight (g)
24.33±0.34
25.34±0.42*
Values are the mean±SD from ten replications in Hefei, in 2017. *and ** separately indicate significantly different at P <0.05 and P <0.01 数据为10次重复数据平均值,来源于2017年合肥正季。*和**分别代表差异显著(P <0.05)和极显著(P <0.01)
利用天根RNA提取试剂盒(RNA Prep Pure Plant Kit)提取突变体和野生型幼穗中的总RNA。剪取约100 mg孕穗期新鲜幼穗组织,液氮研磨成粉状,根据试剂盒操作步骤提取组织中的总RNA,琼脂糖电泳和Nanodrop分别检测RNA的完整性和纯度。进一步利用TaKaRa反转录试剂盒(SuperScript II Kit)将RNA反转成cDNA,-20℃保存备用。
利用QuantStudio? 3(ABI)定量PCR仪,参考SYBR ? Premix Ex TaqTM Kit(TaKaRa)试剂盒说明书进行qRT-PCR分析,反应体系为cDNA模板2 μL(质量为50—100 ng)、10 μmol·L-1前后引物各0.8 μL、SYBR Premix Ex Taq II 10 μL、50×ROX Reference Dye II 0.4 μL,补ddH2O至20μL,3次样品重复和2次生物学重复。试验中所用到的定量引物见电子附表1,ubiquitin(LOC_Os03g13170,Ubq)为内参对照,利用2-ΔΔCT法分析相对基因表达结果。
A:不同时期不同组织中ESP的表达模式;B:ESP在子房发育过程中的表达分析。数据来源于水稻表达模式数据库RiceXPro Fig. 4Expression analysis of ESP gene
A: Expression profile of ESP gene in different tissues at various stages; B: Expression analysis of ESP gene during the progress of ovary development; Data were collected from the rice expression profile database, RiceXPro
A:突变体esp和野生型幼穗转录组分析火山图;红点和绿点分别代表上调基因和下调基因,蓝点代表无显著差异表达基因;B:表达差异>1.5倍的上调和下调基因数目;C:表达差异基因的功能分类 Fig. 5Transcriptome analysis of young panicles in esp mutant and WT
A: Volcano Plot of transcriptome analysis of young panicles in esp mutant and wild type; Red and green dots separately represent up- and down-regulated genes, blue dots indicate genes with no significant difference; B: Numbers of up-regulated and down-regulated genes expressed differentially more than 1.5 time; C: Functional classification of differentially expressed genes
A:内质网蛋白质加工KEGG代谢途径;B:转录组分析内质网蛋白质加工途径相关基因的表达 Fig. 7Expression analysis of genes related to protein processing in endoplasmic reticulum
A: Pathway of protein processing in endoplasmic reticulum; B: Expression of genes related to protein processing of endoplasmic reticulum in transcriptome analysis
A:植物激素信号转导途径相关基因的表达分析;B:内质网蛋白质加工途径相关基因的表达分析。*和**分别代表t测验下差异显著和极显著水平 Fig. 8Quantitative PCR analysis of genes involved in plant hormone signal transduction and protein processing of endoplasmic reticulum between mutant and WT
A: Expression analysis of genes related to plant hormone signal transduction; B: Expression analysis of genes related to protein processing of endoplasmic reticulum; * and ** separately indicate significance at P=0.05 and P=0.01 by Student's t test
LIS, QIANQ, FUZ, ZENGD, MENGX, KYOZUKAJ, MAEKAWAM, ZHUX, ZAHNGJ, LIJ, WANGY . Short panicle1 encodes a putative PTR family transporter and determines rice panicle size The Plant Journal, 2009,58:592-605. [本文引用: 1]
YUB, LINZ, LIH, LIX, LIJ, WANGY, ZHANGX, ZHUZ, ZHAIW, WANGX, XIED, SUNC . TAC1, a major quantitative trait locus controlling tiller angle in rice The Plant Journal, 2007,52:891-898. [本文引用: 1]
HUANGX, QIANQ, LIUZ, SUNH, HES, LUOD, XIAG, CHUC, LIJ, FUX . Natural variation at the DEP1 locus enhances grain yield in rice Nature Genetics, 2009,41:494-497. [本文引用: 2]
YAN CJ, ZHOU JH, YANS, CHENF, YEBOAHM, TANG SZ, LIANG GH, GU MH . Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice,(Oryza sativa L.) Theoretical and Applied Genetics, 2007,115:1093-1100. [本文引用: 2]
ZHOUY, ZHUJ, LIZ, YIC, LIUJ, ZHANGH, TANGS, GUM, LIANGG . Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication Genetics, 2009,183:315-324. [本文引用: 2]
SUNH, QIANQ, WUK, LUOJ, WANGS, ZHANGC, MAY, LIUQ, HUANGX, YUANQ, HANR, ZHAOM, DONGG, GUOL, ZHUX, GOUZ, WANGW, WUY, LINH, FUQ . Heterotrimeric G proteins regulate nitrogen-use efficiency in rice Nature Genetics, 2014,46:652-656. [本文引用: 1]
YIX, ZHANGZ, ZENGS, TIANC, PENGJ, LIM, LUY, MENGQ, GUM, YANC . Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.) Journal of Genetics and Genomics, 2011,38:217-223. [本文引用: 1]
CHEN WF, XU ZJ, ZHANG LB, ZHANG WZ, MA DR . Theories and practices of breeding japonica rice for super high yield Scientia Agricultura Sinica, 2007,40(5):869-874. (in Chinese) URL [本文引用: 2]
WANGJ, NAKAZAKIT, CHENS, CHENW, SAITOH, TSUKIYAMAT, OKUMOTOY, XUZ, TANISAKAT . Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice,(Oryza sativa L.) Theoretical and Applied Genetics, 2009,119:85-91. [本文引用: 1]
LIF, LIUW, TANGJ, CHENJ, TONGH, HUB, LIC, FANGJ, CHENM, CHUC . Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation Cell Research, 2010,20:838-849. [本文引用: 3]
ZHUK, TANGD, YANC, CHIZ, YUH, CHENJ, LIANGJ, GUM, CHENGZ . ERECT PANICLE2 encodes a novel protein that regulates panicle erectness in indica rice Genetics, 2010,184:343-350. [本文引用: 3]
ABEY, MIEDAK, ANDOT, KONOI, YANOM, KITANOH, IWASAKIY . The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice Genes and Genetic Systems, 2010,85:327-339. [本文引用: 2]
ZHU HT, KE SW, FENG XL, ZOU LH, ZENG XY, ZHANG XQ . Identification of an erect panicle mutant ep7 in rice and analysis of the candidate gene Acta Agricultura Boreali-Sinica, 2014,29(4):44-48. (in Chinese) URL [本文引用: 1]
QIAOY, PIAOR, SHIJ, LEE SI, JIANGW, KIM BK, LEEJ, HANL, MAW, KOH HJ . Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice,(Oryza sativa L.) Theoretical and Applied Genetics, 2011,122:1439-1449. [本文引用: 1]
PIAOR, JIANGW, HAM TH, CHOI MS, QIAOY, CHU SH, PARK JH, WOO MO, JINZ, ANG, LEEJ, KOH HJ . Map-based cloning of the ERECT PANICLE 3 gene in rice Theoretical and Applied Genetics, 2009,119:1497-1506. [本文引用: 1]
YUH, MURCHIE EHGONZALEZ-CARRANZAZ H, PYKEK A, ROBERTSJ A . Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development. Journal of Experimental Botany, 2015,66(5):1543-1552. [本文引用: 1]
ZHU JY, WANGJ, YANGJ, FAN FJ, YANG JH, ZHONG WG . Development and application for a functional marker for erect panicle gene qPE9-1 of rice Molecular Plant Breeding, 2012,10(5):583-588. (in Chinese) [本文引用: 1]
HU YG, GUO LA, YANG GT, QINP, FAN CL, PENG YL, YANW, HEH, LI SG . Genetic analysis of dense and erect panicle 2 alleleDEP2-1388 and its application in hybrid rice breeding Hereditas, 2016,38(1):72-81. (in Chinese) [本文引用: 1]
ISHIMARUK, HIROTSUN, MADOKAY, MURAKAMIN, HARAN, ONODERAH, KASHIWAGIT, UJIIEK, SHIMIZUB, ONISHIA, MIYAGAWAH, KATOHE . Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield Nature Genetics, 2013,45(6):707-711. [本文引用: 1]
ZHANGS, WANGS, XUY, YUC, SHENC, QIANQ, GEISLERM, JIANG DEA, QIY . The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1 Plant Cell and Environment, 2015, 38(4):638-654. [本文引用: 1]
ZHANGS, WUT, LIUS, LIUX, JIANGL, WANJ . Disruption of OsARF19 is critical for floral organ development and plant architecture in rice ( Oryza sativa L.) Plant Molecular Biology Reporter, 2016,34(4):748-760. [本文引用: 1]
JINJ, HUAL, ZHUZ, TANL, ZHAOX, ZHANGW, LIUF, FUY, CAIH, SUNX, GUP, XIED, SUNC . GAD1 encodes a secreted peptide that regulates grain number, grain length and awn development in rice domestication The Plant Cell, 2016,28(10):2453-2463. [本文引用: 1]
TAGUCHI-SHIOBARAF, KAWAGOEY, KATOH, ONODERAH, TAGIRIA, HARAN, MIYAOA, HIROCHIKAH, KITANOH, YANOM, TOKIS . A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets Breeding Science, 2011,61(1):17-25. [本文引用: 1]