Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands
WANG Jun1,2, LI Guang,1, YAN LiJuan3, LIU Qiang2, NIE ZhiGang21 College of Forestry, Gansu Agricultural University, Lanzhou 730070 2 College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070 3 Agronomy College, Gansu Agriculture University, Lanzhou 730070
Received:2019-08-2Accepted:2019-09-12Online:2020-03-01 作者简介 About authors 王钧,E-mail:julianwong82@163.com。
摘要 【目的】定量分析陇中黄土丘陵沟壑区旱地春小麦不同生育阶段温度变化对小麦产量的影响,为陇中黄土丘陵沟壑区制定合理种植模式提供理论指导和决策依据。【方法】基于灰色关联度分析不同生育阶段温度与旱地春小麦产量间的关联性,确定影响旱地春小麦产量的关键生育阶段。应用APSIM(Agricultural Production System Simulator)模型模拟不同生育阶段温度变化条件下春小麦的产量,通过二次多项回归分析、单因素边际效应分析方法研究旱地春小麦产量对不同生育阶段温度变化的响应机制。【结果】(1)APSIM模型对模拟陇中黄土丘陵沟壑区不同播种期旱地春小麦的产量和生育期具有较高的适用性,模拟产量和生育期的均方根误差(RMSE)平均值分别为39.95 kg?hm -1和2.78 d,归一化均方根误差(NRMSE)平均值分别为1.55%和1.87%,模型有效性指数(ME)平均值分别为0.73和0.83;(2)陇中黄土丘陵沟壑区旱地春小麦全生育期平均温度总体呈上升趋势,但不同生育阶段的温度增幅各不相同,播种—出苗、出苗—分蘖、分蘖—拔节、拔节—孕穗、孕穗—开花、开花—灌浆和灌浆—成熟阶段的平均气温倾向率分别为0.44℃?(10a) -1、0.34℃?(10a) -1、0.17℃?(10a) -1、0.41℃?(10a) -1、0.49℃?(10a) -1、0.52℃?(10a) -1和0.35℃?(10a) -1;(3)不同生育阶段温度变化对旱地春小麦产量的影响大小依次为灌浆—成熟、开花—灌浆、播种—出苗、孕穗—开花、拔节—孕穗、出苗—分蘖、休闲和分蘖—拔节阶段;(4)在其他生育阶段温度不变的条件下,播种—出苗阶段温度每提高0.5℃,春小麦产量平均增加0.45%;孕穗—开花阶段温度每提高0.5℃,春小麦产量平均减少0.34%。开花—灌浆阶段温度每提高0.5℃,春小麦产量平均减少0.65%;灌浆—成熟阶段温度每增加0.5℃,春小麦产量平均减少1.09%。【结论】APSIM模型对陇中黄土丘陵沟壑区不同播种期旱地春小麦的产量和主要生育期有较好的模拟效果。研究区旱地春小麦全生育期平均温度总体呈上升趋势,但不同生育阶段温度增幅不同。不同生育阶段温度变化对春小麦生长和发育影响不同。播种—出苗阶段增温倾向于增产,其他阶段增温倾向于减产。 关键词:春小麦产量;不同生育时期;温度变化;APSIM模型;灰色关联度分析
Abstract 【Objective】This research quantitatively analyzed the effects of temperature changes in different growth stages on the yield of spring wheat in the Loess Plateau Gully Region of Central Gansu, so as to provide theoretical guidance and decision- making basis for making reasonable cropping pattern in the Loess Plateau Gully Region of Central Gansu 【Method】Specifically, it investigated the relationship between temperature changes in different growth stages and the yield of spring wheat in dryland based on grey relational analysis, so as to identify the key growth stages of spring wheat. The yield of spring wheat was simulated using the APSIM (Agricultural Production System Simulator) model under different temperature conditions in different growth stages. The mechanism of yield response to temperature changes in different growth stages was studied through quadratic polynomial regression analysis and single factor marginal effect analysis. 【Result】(1) The results showed that the APSIM model had good applicability in simulating yield and growth stages of spring wheat in the Loess Plateau Gully Region of Central Gansu. The values of the average root mean square error (RMSE), normalized root mean square error (NRMSE), and model effectiveness index (ME) of the yield of the simulation model were 39.95 kg?hm -1, 1.55% and 0.73, respectively. The values of the RMSE, NRMSE, and ME of the simulated model phenology dates were 2.78 d, 1.87% and 0.83, respectively. (2)The average temperature increased steadily during all growth stages of spring wheat in the Loess Plateau Gully Region of Central Gansu, and the average temperatures of the different growth stages showed an increasing trend. The increase of average annual temperature were 0.44℃?(10a) -1, 0.34℃?(10a) -1, 0.17℃?(10a) -1, 0.41℃?(10a) -1, 0.49℃?(10a) -1, 0.52℃?(10a) -1 and 0.35℃?(10a) -1 in sowing-emergence, emergence-tillering, tillering-jointing, jointing-booting, booting-flowering, flowering-grain filling, grain filling-maturity, respectively. (3) The importance of temperature changes in different growth stages on the yield of spring wheat were ranked as follows: grain filling-maturity, flowering-grain filling, sowing-emergence, booting- flowering, jointing-booting, emergence- tillering, fallow, and the tillering-jointing stage. (4) Under constant temperatures at the other growth stages, a temperature increase of 0.5℃ during the sowing-emergence stage could increase the wheat yield by 0.45%; A temperature increase of 0.5℃ during the booting-flowering stage could reduce the wheat yield by 0.34%; a temperature increase of 0.5℃ during the flowering-filling stage could reduce the wheat yield by 0.65%; A temperature increase of 0.5℃ during the filling-maturity stage could reduce the wheat yield by 1.09%. When temperature changes during the sowing-emergence and booting-flowering stages were the same, the effects of the temperature changes on the yield of spring wheat were similar. 【Conclusion】APSIM model has achiedved good simulation results on the yield and growth stages of spring wheat of different sowing dates in the Loess Plateau Gully Region of Central Gansu. The trend of temperature increase obviously existed in the study area during the whole growth stages of spring wheat, but temperature increment was different in different growth stages.The effects of temperature changes in different growth stages on the yield of spring wheat were different. Warming was beneficial to increasing yield during sowing to emergence, but warming led to yield reduction during other growth stages. Keywords:spring wheat yield;different growth stages;temperature change;APSIM;grey relation analysis
PDF (548KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 王钧, 李广, 闫丽娟, 刘强, 聂志刚. 旱地春小麦产量对不同生育阶段温度变化的响应模拟[J]. 中国农业科学, 2020, 53(5): 904-916 doi:10.3864/j.issn.0578-1752.2020.05.004 WANG Jun, LI Guang, YAN LiJuan, LIU Qiang, NIE ZhiGang. Simulation of Spring Wheat Yield Response to Temperature Changes of Different Growth Stages in Drylands[J]. Scientia Acricultura Sinica, 2020, 53(5): 904-916 doi:10.3864/j.issn.0578-1752.2020.05.004
0 引言
【研究意义】全球气候变化是21世纪人类面临最为严重的环境问题之一。全球气候变化主要表现于温度上升、降水格局改变以及极端气候事件增加等,IPCC预测21世纪全球温度升幅可能超过1.5—2.5℃ [1,2]。我国陇中黄土丘陵沟壑区是全球增温最为显著的地区之一,也是对气候变化响应最为脆弱地区之一[3]。小麦作为陇中黄土丘陵沟壑区的主要粮食作物,近年来气候变暖对其生产影响较为严重,尤其对过度依赖自然条件的旱作小麦[4,5]。气候变暖对小麦生长各发育阶段的影响并不完全一致,同时各阶段气候变化对产量及产量构成要素的影响也存在着差异。因此,阐明和量化不同生育阶段温度变化对陇中黄土丘陵沟壑区旱地春小麦产量的影响程度具有重要的研究意义。【前人研究进展】目前,国内外大量研究表明,温度变化对小麦生长的影响十分复杂,对作物不同生长发育阶段产生不同的影响[6,7,8,9,10,11]。高美玲等[12]利用Meta回归分析了田间增温对小麦产量及生育期持续时间的影响;董莉霞等[13]利用APSIM模型研究了逐日最低温度和最高温度变化对陇中旱地春小麦产量的影响;任新庄等[14]利用APSIM模型分析了陇中旱地春小麦产量对降水与温度变化的响应;张凯等[15,16]利用大田开放式红外增温装置,模拟增温对半干旱雨养区春小麦物质生产与分配的影响,以及抽穗—乳熟阶段增温对陇中黄土高原春小麦产量的影响。PRADHAN等[17]研究了出苗到开花期遭遇高温对春小麦产量的影响。【本研究切入点】陇中黄土丘陵沟壑区旱地春小麦不同生育阶段的温度变化趋势差异显著,且不同生育阶段温度变化对旱地春小麦产量影响大小也各不相同。研究不同生育阶段温度变化对旱地春小麦生长过程的影响有助于进一步揭示温度变化对该地区旱地春小麦生产影响的机理[18]。【拟解决的关键问题】本研究利用APSIM模型模拟陇中黄土丘陵沟壑区不同播期旱地春小麦的产量和生育期,以验证模型对模拟温度变化条件下旱地小麦生长的适用性,基于灰色关联度分析不同生育阶段温度变化与旱地春小麦产量的关联性,从而确定影响小麦产量的主要生育阶段,通过APSIM(Agricultural Production System Simulator)模型模拟分析旱地春小麦4个主要生育阶段11种温度变化水平对应的春小麦产量,并运用二次多项式逐步回归分析、单因素边际效应分析等研究方法,定量分析不同生育阶段温度变化对春小麦产量的影响,从而为陇中黄土丘陵沟壑区合理种植模式的制定提供理论指导和决策依据。
Table 5 表5 表5旱地春小麦产量与不同生育阶段内平均温度的灰色关联系数 Table 5Grey correlation coefficients between the average temperatures at different growth stages and spring wheat yield
ZHAO HY, GONG LJ, QU HH, ZHU HX, LI XF, ZHAOF . The climate change variations in the northern greater khingan mountains during the past centuries Journal of Geographical Sciences, 2016,26(5):585-602. [本文引用: 1]
ZHANGK, WANG RY, FENGQ, WANG HL, ZHAOH, ZHAO FN, YANG FL, LEIJ . Effect of simulated warming and precipitation change on growth characteristics and grain yield of spring wheat in semi-arid area Transactions of the Chinese Society of Agricultural Engineering, 2015,31(1):161-170. (in Chinese) [本文引用: 1]
KHEIRIM, SOUFIZADEHS, GHAFFARIA, AGHAALIKHANIM, ESKANDARIA . Association between temperature and precipitation with dryland wheat yield in northwest of Iran Climatic Change, 2017,141(4):703-717. [本文引用: 1]
PEI XX, DANG JY, ZHANG DY, WU XP, ZHAOJ . Climate change during nearly 54 years in south of shanxi and its effect on wheat yield in dry land Journal of Triticeae Crops, 2016,36(11):1502-1509. (in Chinese) [本文引用: 1]
SUN ZG . Control response of temperature enhancement on growth and soil health of wheat Journal of Nuclear Agricultural Sciences, 2016,30(10):2041-2048. (in Chinese) [本文引用: 1]
FANG SB, TAN KY, REN SX . Winter wheat yields decline with spring higher night temperature by controlled experiments Scientia Agricultura Sinica, 2010,43(15):3251-3258. (in Chinese) [本文引用: 1]
ZHANGK, WANG RY, WANG HL, ZHAOH, ZHAO FN, YANG FL, LEIJ . Effects of increasing field temperature on growth, development and yield of spring wheat in semi-arid area Chinese Journal of Applied Ecology, 2015,26(9):2681-2688. (in Chinese) [本文引用: 1]
TIAN YL, CHENJ, DENG AX, ZHENG JC, ZHANG WJ . Effects of asymmetric warming on the growth characteristics and yield components of winter wheat under free air temperature increased Chinese Journal of Applied Ecology, 2011,22(3):681-686. (in Chinese) [本文引用: 1]
DALLA MA, EITZINGERJ, KERSEBAUM KC, TODOROVICM, ALTOBELLIF . Assessment and monitoring of crop water use and productivity in response to climate change The Journal of Agricultural Science, 2018,156:575-576. [本文引用: 1]
SHANGY, ZHAOH, CHAI SX . Effects of climate change and cultivars change on winter wheat in Semi-arid region of Loess Plateau in northeast China Agricultural Research in the Arid Areas, 2017,35(5):66-72. (in Chinese) [本文引用: 1]
GAO ML, ZHANG XB, SUN ZG, SUNN, LI SJ, GAO YH, ZHANG CY . Wheat yield and growing period in response to field warming in different climatic zones in China Scientia Agricultura Sinica, 2018,51(2):386-400. (in Chinese) [本文引用: 1]
DONG LX, LIG, LIUQ, YAN ZG, LUO ZZ . Simulation analysis of spring wheat grain yield response to mean daily minimum and maximum temperature in drylands Chinese Journal of Eco-Agriculture, 2013,21(8):1016-1022. (in Chinese) [本文引用: 1]
REN XZ, YAN LJ, LIG, NIE ZG, WANGJ, LUO YZ . Simulation of the effects of precipitation and temperature change on spring wheat yield in dryland of central Gansu Agricultural Research in the Arid Areas, 2018,36(3):125-129. (in Chinese) [本文引用: 2]
ZHANGK, WANG RY, WANG HL, ZHAOH, QIY, ZHAO FN, LEIJ . Effect of simulated warming on dry matter production and distribution of rainfed spring wheat in semi-arid area Transactions of the Chinese Society of Agricultural Engineering, 2016,32(16):223-232. (in Chinese) [本文引用: 1]
ZHANGK, WANG RY, WANG HL, ZHAOH, ZHAO FN, YANG FL, CHENF, QIY, LEIJ . Influence of climate warming and rainfall reduction on semi-arid wheat production Chinese Journal of Eco-Agriculture, 2019,27(3):413-421. (in Chinese) [本文引用: 2]
PRADHAN GP, PRASADP V V, FRITZ AK, KIRKHAMM B . Effects of drought and high temperature stress on synthetic hexaploidy wheat Functional Plant Biology, 2012,39(3):190-198. [本文引用: 1]
WCISLOR, MILLER SS, DZWINELW . Particle automata model in simulation of Fusarium graminearum pathogen expansion. Journal of Theoretical Biology, 2016,389:110-122. [本文引用: 1]
JIN ZN, RISHIP, JOHNS, ZHUANG QL . Crop model and satellite imagery-based recommendation tool for variable rate N fertilizer application for the US corn system Precision Agriculture, 2017,18:779-800. [本文引用: 1]
FAN DL, YANG FY, PAN ZH, SU XY . Development of an improved model to evaluate vulnerability in spring wheat under climate change in Inner Mongolia Sustainability, 2018,10(12):4581-4596. [本文引用: 1]
PALMERJ, THORBURN PJ, BIGGS JS, DOMINATI EJ, PROBERT ME, MEIER EA, HUTH NI, DODDM, SNOWV, LARSEN JR, PARTON WJ . Nitrogen cycling from increased soil organic carbon contributes both positively and negatively to ecosystem services in wheat agro-ecosystems Frontiers In Plant Science, 2017,8:1-12. [本文引用: 1]
LIG, HUANG GB, WILLIAMB, CHENW . Adaptation research of APSIM model under different tillage systems in the Loess hill-gullied region Acta Ecology Sinica, 2009,29:2655-2663. (in Chinese) [本文引用: 1]
YANGY, LUOX, LI RP, WANGY, WEN RH, YANG GJ, JIAOM, ZHANGQ, ZHANG XY . A review of the effect of meteorological factors on plant phenology and its driving mechanisms Journal of Meteorology and Environment, 2016,32(5):154-159. (in Chinese) [本文引用: 1]
HUO ZG, SHANGY, WU DR, WUL, FAN YX, WANG PJ, YANG JY, WANG CZ . Review on disaster of hot dry wind for wheat in China Journal of Applied Meteorological Science, 2019,30(2):129-138. (in Chinese) [本文引用: 1]
LIK, XIONGW, PANJ, LIN ED, LI YX, HANX . Trend evaluation on changes of maize yield in China under global warming by 1.5℃ and 2.0℃ Chinese Journal of Agrometeorology, 2018,39(12):765-777. (in Chinese) [本文引用: 1]
MENG ZL, CHENK, YAN XQ, ZHUQ, NI XF, ZHUW . Research status of change of meteorological factors and its influence on wheat production Journal of Anhui Agricultural Sciences, 2018,46(7):27-29. (in Chinese) [本文引用: 1]
HOU XH, SUI XY, YAO HM, LIANG SZ, WANGM . Response of winter wheat phenology to climate change in northern China Journal of Triticeae Crops, 2019,39(2):202-209. (in Chinese) [本文引用: 1]
XIAO GJ, ZHANGQ, ZHANG FJ, LUO CK, WANG RY . The impact of rising temperature on spring wheat production in the Yellow River irrigation region of Ningxia Acta Ecologica Sinica, 2011,31(21):6588-6592. (in Chinese) [本文引用: 1]
ZHANG XY, WANG HL, LEIJ . Impacts of climate warming and drying on spring wheat yield in a semi-arid region Ecology and Environmental Sciences, 2015,24(4):569-574. (in Chinese) [本文引用: 1]
ZHAOH, HE YC, LI FM, WANG RY, YANG QG, DENG ZY, WANG HL . Effects of climate warming on spring wheat growth and yield in high-altitude cold and dankness region Chinese Journal of Ecology, 2008,27(12):2111-2117. (in Chinese) [本文引用: 1]
HATFIELD JL, BOOTE KJ, KIMBALL BA, ZISKA LH, IZAURRALDE RC, ORTD, THOMSON AM, WOLFED . Climate impacts on agriculture: Implications for crop production Agronomy Journal, 2011,103(2):351-370. [本文引用: 1]
TACKJ, BARKLEYA, NALLEY LL . Effect of warming temperatures on US wheat yields Proceedings of the National Academy of Sciences of the USA, 2015,112(22):6931-6936. [本文引用: 1]
PU ZC, ZHANG SQ, XU WX, LI JL, WANG RX . Impact of climate change to winter wheat yield in Yili river valley of Xinjiang Chinese Agricultural Science Bulletin, 2014,30(15):173-182. (in Chinese) [本文引用: 1]