删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

种间距对不同结瘤特性套作大豆物质积累、 鼓粒及产量形成的影响

本站小编 Free考研考试/2021-12-26

庞婷1, 陈平1, 袁晓婷1, 雷鹿2, 杜青1, 付智丹1, 张晓娜1, 周颖1, 任建锐1, 王甜1, 汪锦1, 杨文钰1, 雍太文,11 四川农业大学农学院/农业部西南作物生理生态与耕作重点实验室/四川省作物带状复合种植工程技术研究中心,成都 611130
2 四川省眉山市仁寿气象局,四川仁寿 620500

Effects of Row Spacing on Dry Matter Accumulation, Grain Filling and Yield Formation of Different Nodulation Characteristic Soybeans in Intercropping

PANG Ting1, CHEN Ping1, YUAN XiaoTing1, LEI Lu2, DU Qing1, FU ZhiDan1, ZHANG XiaoNa1, ZHOU Ying1, REN JianRui1, WANG Tian1, WANG Jin1, YANG WenYu1, YONG TaiWen,1 1 College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130
2 Renshou Meteorological Bureau of Meishan City, Renshou 620500, Sichuan

通讯作者: 雍太文,E-mail: yongtaiwen@sicau.edu.cn

收稿日期:2019-03-17接受日期:2019-06-5网络出版日期:2019-11-08
基金资助:国家重点研发计划.2016YFD030020205
国家自然科学基金.31671625
国家现代农业产业技术体系建设专项.CARS-04-PS19


Received:2019-03-17Accepted:2019-06-5Online:2019-11-08
作者简介 About authors
庞婷,E-mail: 18202806919@163.com















摘要
目的 间套作是实现资源高效利用、解决粮食供求矛盾的重要途径,间套作体系下作物和谐共生受种间互作强度的重要影响。本研究以玉米-大豆套作系统为研究对象,探讨玉豆种间距对不同结瘤特性大豆干物质积累与产量形成的影响。方法 2016—2017年,连续2年进行大田试验,二因素随机区组设计,A因素为不同玉豆种间距,大豆净作(A1)与玉米大豆套作(4种玉豆种间距:30 cm,A2;45 cm,A3;60 cm,A4;75 cm,A5),B因素为3个大豆品种(贡选1号,弱结瘤;桂夏3号,中度结瘤;南豆25号,强结瘤),分析大豆干物质积累、鼓粒、产量构成的变化规律。结果 玉豆种间距对不同结瘤大豆的物质积累分配有显著影响,鼓粒前期净作大豆的干物质积累量显著高于套作,R4期(盛荚期)达到最高;套作大豆的干物质积累则在R5期(始粒期)达到最高,并逐渐高于净作,以玉豆种间距45、60 cm下的物质积累量较高;玉豆种间距60 cm(A4)下的南豆25号在荚果分配率、成熟期干物质积累量和营养器官对荚果的贡献率等方面优于桂夏3号和贡选1号。各品种在套作下均以A4种间距下的鼓粒时间最长、达到最大鼓粒速率时的籽粒重最高,百粒重与产量最大,且与净作产量差异不显著;各玉豆种间距下以南豆25的鼓粒能力最强,A4种间距下南豆25的平均产量分别比桂夏3号、贡选1号高5.4%和6.3%。结论 强结瘤的南豆25号能较好适应玉米大豆套作环境,且在种间距60 cm下表现最优,有利于干物质向籽粒分配和鼓粒,以增加百粒重,弥补荚数不足,达到套作与净作产量相当的目的。
关键词: 玉米-大豆套作;种间距;结瘤特性;干物质;产量

Abstract
【Objective】 Intercropping is an important way to increase the efficient utilization of resources and to solve the contradiction between grain supply and demand. Under intercropping system, crop symbiosis is influenced by interspecific interaction intensity between the species. In this study, maize-soybean intercropping system was used to investigate the effects of strength of root interaction between maize and soybean on the dry matter accumulation and yield formation of different nodule characteristic soybeans, so as to analyze variation trend dry matter accumulation and yield formation of soybean. 【Method】 Field experiments were carried out for two consecutive years from 2016 to 2017 with randomized complete block factorial design: factor A was different row spacing between maize and soybean, intercropped soybean followed by different row spacing (A2: 30 cm, A3: 45 cm, A4: 60 cm, A5: 75 cm); factor B was three soybean varieties (Gongxuan 1: Weak nodulation, Guixia 3: Moderate nodulation, Nandou 25: Strong nodulation).【Result】 The row spacing between soybean and maize had a significant effect on the biomass accumulation and distribution of soybean with different nodulation. Under monoculture, dry matter accumulation of soybean was significantly higher than that of intercropping, and reached the highest at R4 (full pod stage). The dry matter accumulation of intercropping soybean reached the highest at R5 stage, and was gradually higher than monoculture. Soybean had a highest amount of biomass accumulation when the row spacing was 45 cm and 60 cm. In intercropping, each variety had the longest grain filling time under A4, and the maximum grain filling rate, 100-seeds weight and yield were achieved under A4. Interestingly, there was no significant difference between monoculture and intercropping yield. Nandou 25 had the strongest grain filling capacity under all row spacing. Under A4, the average yield of Nandou 25 was 5.435% and 6.3% higher than that of Guixia 3 and Gongxuan 1, respectively. 【Conclusion】 Nandou 25 with strong nodulation could adapt to the intercropping environment well, and showed the best performance at 60 cm. It could promote dry matter accumulation and stabilize the yield through increasing grain filling rate and 100-seeds weight in intercropping. Furthermore, it could be useful to achieve the goal of stable and optimal yield in intercropping and monoculture.
Keywords:maize-soybean relay strip intercropping;row spacing;nodular varieties;dry matter accumulation;yield


PDF (1359KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
庞婷, 陈平, 袁晓婷, 雷鹿, 杜青, 付智丹, 张晓娜, 周颖, 任建锐, 王甜, 汪锦, 杨文钰, 雍太文. 种间距对不同结瘤特性套作大豆物质积累、 鼓粒及产量形成的影响[J]. 中国农业科学, 2019, 52(21): 3751-3762 doi:10.3864/j.issn.0578-1752.2019.21.004
PANG Ting, CHEN Ping, YUAN XiaoTing, LEI Lu, DU Qing, FU ZhiDan, ZHANG XiaoNa, ZHOU Ying, REN JianRui, WANG Tian, WANG Jin, YANG WenYu, YONG TaiWen. Effects of Row Spacing on Dry Matter Accumulation, Grain Filling and Yield Formation of Different Nodulation Characteristic Soybeans in Intercropping[J]. Scientia Agricultura Sinica, 2019, 52(21): 3751-3762 doi:10.3864/j.issn.0578-1752.2019.21.004


0 引言

【研究意义】大豆是我国主要的粮油作物和动物饲料的蛋白原料,但受经济、环境等问题的影响,对外依存度从2003年开始不断增加[1]。间套作系统既能运用生物多样性原理提高土地复种指数和产出,还能保障粮食稳产和高产[2,3]。研究证明玉米-大豆带状套作模式具有显著增产增收、提升农田生态系统的服务功能[4],能有效提高系统内光能和肥效利用率[5,6],是实现西南地区大豆增产提质的一种高效栽培模式。【前人研究进展】玉米-大豆带状套作模式中,玉米和大豆冠层结构特征的差异引起群体光环境的明显改变[7],影响大豆的光能截获量与光合特性,从而引起干物质积累、转运和分配的差异[8,9,10]。共生期间处于光照弱势的大豆,会出现主茎长增加、茎粗下降[11,12,13],净光合速率和叶绿素a/b值降低,叶面积指数和比叶重减小[14,15]等变化。但研究表明弱光胁迫下大豆的叶绿素含量会因叶绿体的光合羧化活性增高而增加,光能捕捉能力和利用效率也随之增加[16,17]。玉米收获后,大豆的地上部干物质随着光照恢复而迅速增加,茎少叶多,叶茎干物质比例、茎粗与产量表现为显著正相关[18]。行距配置[19]虽然会导致单个作物产量低于净作种植,但适宜的行距可使群体土地当量比超过1.3,总体产量高于单一种植的玉米或大豆。大豆能利用根瘤进行生物固氮,产生的氮素可占植株总氮吸收量的50%—60%[20]。环境胁迫也可以引起大豆根瘤产生不同的响应机制[21],通过改变地下部根系的氮素吸收率,影响地上部植株营养器官的生物量积累。研究证明,强结瘤特性的大豆品种在套作下因环境变化受到的影响更大[22],但其自身的强结瘤特性可以弥补地上部同化能力弱、生物量小等方面的劣势[23],有效保障植株生长所需营养。【本研究切入点】前人针对施肥、空间配置、品种等影响因素对玉米-大豆带状套作模式中作物的干物质积累、转运和分配,光能利用,农艺性状和产量等进行了大量研究,但对豆干物质积累和转运特性及产量影响的研究较少。【拟解决的关键问题】本试验旨在研究不同玉豆种间距下,不同结瘤特性大豆品种之间地下地上各部分物质积累、鼓粒速率和产量的差异,分析大豆各营养器官之间的养分运输和利用规律,为我国西南地区选择适宜大豆品种和种植间距,提高综合产量提供更多科学依据。

1 材料与方法

1.1 试验材料

试验为2年重复试验,2016年和2017年的4—11月在四川省现代粮食产业(仁寿)示范基地(30°07′N,104°18′E)进行。供试玉米为登海605,春播,由山东登海种业股份有限公司提供。供试大豆为贡选1号,夏播,由四川省自贡市农业科学研究所提供;桂夏3号,夏播,由广西农业科学院提供;南豆25号,夏播,由四川省南充市农业科学研究所提供。主要特征见表1[24,25,26]

Table 1
表1
表13个大豆品种的主要特征
Table 1Main characteristics of three soybean varieties
主要特征 Main characteristic贡选1号 Gongxuan 1桂夏3号 Guixia 3南豆25号 Nandou 25
生育期 Growth time (d)120108134
叶形 Leaf shape卵圆 Oval椭圆 Ellipse卵圆 Oval
株高 Plant height (cm)9659.967.5
结荚习性 Pod fertility有限 limited有限 limited有限 limited
蛋白质 Protein (%)47.0043.6249.10
脂肪 Fat (%)17.2020.1117.50
始粒期单株平均根瘤个数
Number of nodules per plant at seed formation initiation stage
226.946252.264288.016
始粒期单株平均根瘤鲜重
Fresh weight of nodules per plant at seed formation initiation stage (g)
3.68304.23204.3963
始粒期单株根瘤固氮酶活性
C2H2 reduction per plant at seed formation initiation stage (mL·h-1·g-1)
0.53000.65191.0498

新窗口打开|下载CSV

1.2 试验设计

田间试验采用二因素随机区组设计。A因素为不同玉豆种间距,2016年为大豆净作(A1),玉米-大豆套作种间距30 cm(A2)、45 cm(A3)、60 cm(A4),2017年为大豆净作(A1),玉米-大豆套作种间距30 cm(A2)、45 cm(A3)、60 cm(A4)、75 cm(A5);B因素为不同结瘤特性大豆品种,分别为贡选1号(套作下弱结瘤)、桂夏3号(套作下中结瘤)、南豆25号(套作下强结瘤),记为B1、B2、B3;每处理重复3次。

每个处理种植2 带,长6 m、宽2 m,每小区面积为24 m2,采用宽窄行种植(图1)。大豆净作,穴距为17 cm,穴留1 株,密度为1.17×105株/hm2。玉米-大豆套作下,玉米行距为40 cm,穴距17 cm,穴留1 株,密度为5.85×104株/hm2;大豆穴距为17 cm,穴留2 株,密度与净作保持一致。

图1

新窗口打开|下载原图ZIP|生成PPT
图1大田试验种植图

Fig. 1Maize-soybean planting patterns



基础肥力为土壤pH 8.18、有机质14.19 g·kg-1、全氮1.22 g·kg-1、全磷1.95 g·kg-1、全钾26.06 g·kg-1。玉米和大豆的施肥量按当地施肥水平进行,玉米施肥量分别为180 N kg·hm-2、105 P2O5 kg·hm-2、112.5 K2O kg·hm-2,大豆施肥量分别为60 N kg·hm-2、63 P2O5 kg·hm-2、52.5 K2O kg·hm-2。采用一体化施肥,即在玉米、大豆之间距玉米25 cm处开沟施肥。玉米氮肥分2次施用,即玉米底肥和大喇叭口期追肥,大豆氮肥一次性施用。玉米底肥施氮量为72 kg·hm-2,磷钾肥和底肥混合均匀施用,剩余氮肥在玉米大喇叭口期与大豆磷钾肥混合同时施用。

玉米分别于2016年 4月7日、2017年4月5日播种,于2016年8月3日、2017年8月7日收获;大豆分别于2016年6月15日、2017年6月10日播种,于2016年10月29日、10月23日收获。

1.3 测定项目与方法

1.3.1 干物质量的测定 分别于大豆5叶期(V5)、始花期(R1)、盛花期(R2)、始荚期(R3)、盛荚期(R4)、始粒期(R5)、鼓粒期(R6)、成熟期(R8)取样。每小区选取长势一致的植株4株,区分根、叶、茎、荚,在105℃ 下杀青30 min后,于75℃ 烘干至恒重,测定干物质量。

1.3.2 干物质转移计算方法及统计分析 营养器官干物质分配率、输出率及贡献率等指标计算公式[27]为:干物质分配率=某时期某营养器官干物质量/某时期植株营养器官干物质总量×100 %;干物质输出率=(营养器官盛荚期干物质量-营养器官成熟期干物质量)/营养器官盛荚期干物质量×100%;干物质对荚果的贡献率=(营养器官盛荚期干物质量-营养器官成熟时干质量)/荚果干物质量×100%。

1.3.3 鼓粒 大豆结荚始期(约花后25 d),各个小区中选择能代表群体的植株,每个处理取10 株,将全部籽粒剥下,大小籽粒混合均匀,测定100 粒的鲜重,烘干称其干重,记录数据,每隔7 d取样1次,直到籽粒完熟。用 Richard方程拟合籽粒生长动态[28],即Y=a/(1-eb-cx)1/d,式中,Y为观测时的籽粒质量(mg),x为开花至观测时的天数(开花当日记为0 d),a为终极生长量(mg),b、c 和d为方程对不同处理所确定的参数。

1.3.4 产量及产量构成 大豆成熟期,每小区取大豆10 株,风干后统计单株荚数、单荚粒数、百粒重,计算产量。

1.3.5 数据处理 试验数据采用Excel 2007进行整理,DPS7.05进行方差分析和LSD显著性测验(显著性水平设定为α=0.05);利用OriginPro8对鼓粒相关数据进行处理。

2 结果

2.1 大豆产量

不同种间距下,各品种在套作下的产量均表现为种间距为60 cm时有最大值,且与净作相比差异不显著(表2)。品种间相比,整体表现为南豆25号>贡选1号>桂夏3号,种间距为60 cm时,南豆25号的平均产量比桂夏3号高出5.4%,比贡选1号高出6.3%(表2)。

Table 2
表2
表2不同处理下各大豆品种的产量表现
Table 2Yield of different soybean varieties under different treatments (kg·hm-2)
种间距
Row spacing
20162017
B1B2B3平均 MeanB1B2B3平均 Mean
A11981.34a1859.04a2077.37a1972.58a1965.05a1970.65ab2175.21a2036.97a
A21191.45b1055.83b1509.66b1252.31b1953.47a1730.45c1931.47b1871.80b
A31328.67b1323.31b1795.36ab1452.11b1900.48a1874.25b1974.59b1916.44b
A41807.99a1819.78a2007.11a1878.29a2015.97a2039.67a2071.52ab2042.39a
A51947.57a1799.39bc1881.13b1876.03b
平均 Mean1627.36b1491.74b1847.37a1956.51a1882.88b2006.78a
A1: Monoculture, A2-A5: The row spacing between maize and soybean is 30cm, 45cm, 60cm, 75cm, B1:Gongxuan1, B2:Guixia 3, B3:Nandou 25. Values in the same column with different letters were significantly different at 0.05 level, the average line comparison alone. The same as below
A1:净作,A2-A5:玉米-大豆套作种间距分别为30 cm、45 cm、60 cm、75 cm,B1:贡选1号,B2:桂夏3号,B3:南豆25号。同列中不同字母表示不同种间距处理间在0.05 水平上差异显著。平均行单独比较。下同

新窗口打开|下载CSV

2.2 大豆的产量构成

净作的单株荚数大于套作;套作贡选1号的单株荚数在种间距为30 cm和45 cm时较高,桂夏3号在种间距为60 cm时达到最高,南豆25则在种间距为45 cm、60 cm时较高(表3)。对比而言,种间距为45 cm和60 cm时,更有利于套作大豆的单株荚数增加。套作种间距为60 cm时,大豆单荚粒数最高且高于净作,贡选1号在不同种间距下的差异显著,桂夏3号和南豆25号则不显著;净作品种间相比,桂夏3号>贡选1>南豆25号,套作整体表现为贡选1>桂夏3号>南豆25号。各品种的百粒重在种间距为60、75 cm时,与净作相比差异不显著;品种间差异整体表现为南豆25号>贡选1>桂夏3号(表3)。

Table 3
表3
表3不同处理下大豆产量构成
Table 3The yield components of soybean under different treatments
年份
Year
种间距
Row spacing
单株荚数 Pods per plant单荚粒数 Seeds per pod百粒重 Weight of 100-seeds (g)
B1B2B3平均MeanB1B2B3平均MeanB1B2B3平均Mean
2016A167.00a71.67a65.33a68.00a1.66b1.80a1.62a1.69a20.23a19.27a22.98a20.83a
A259.33b44.33c50.00c48.22d1.46c1.70a1.62a1.59b17.99c16.06d21.17b18.41c
A355.33b48.33c57.67b53.78c1.46c1.69a1.60a1.59b18.64b17.06c22.18a19.29b
A450.33b54.67b60.33a58.11b1.82a1.82a1.63a1.76a20.08a18.53b22.19a20.26a
平均 Mean58.00b54.75b58.33b1.60b1.75a1.62a19.24b17.73c22.13a
2017A163.00a60.00a49.00a57.33a1.46b1.54a1.45a1.48c18.24b18.24a26.10ab20.86a
A254.40a57.60a43.20a51.73a1.69a1.60a1.50a1.60ab18.19b16.01b25.43bc19.87ab
A356.00a60.80a46.90a54.57a1.55ab1.61a1.53a1.56abc18.68ab16.39ab23.59c19.55b
A449.20a67.20a43.80a53.40a1.70a1.60a1.54a1.62a20.59a16.18ab26.18ab20.99a
A552.80a63.20a41.80a52.60a1.60ab1.56a1.38a1.51bc19.72ab15.59b27.80a21.04a
平均 Mean55.08a61.76a44.94a1.60ab1.58a1.48a19.08ab16.48ab25.82b

新窗口打开|下载CSV

2.3 鼓粒

2.3.1 鼓粒的拟合方程 以开花后天数(x)为自变量,开花日计x=0,花后百粒重(y)为因变量,采用Richard方程拟合开花后籽粒干重变化规律,方程表达式为y=a/(1+eb-cx)1/d。模拟方程的决定系数在0.9851—0.9983,均达到极显著水平,表明模拟方程拟合度较高,可以客观反映不同处理下大豆籽粒干物质积累过程(表4)。

Table 4
表4
表4不同处理下大豆鼓粒进程的曲线模拟
Table 4The simulative equation of grain filling process of soybean under different treatments
处理
Treatment
模拟方程
Simulative equation
相关系数
Correlation coefficient
A1B1Y=17.5570/(1+e3.6696-0.1501x)1/0.08060.9977**
A1B2Y=17.1461/(1+e3.4713-0.1508x)1/0.08410.9947**
A1B3Y=24.4795/(1+e3.4113-0.2168x)1/0.01340.9911**
A2B1Y=18.7089/(1+e2.3874-0.1275x)1/0.04170.9971**
A2B2Y=15.4204/(1+e9.0364-0.2440x)1/0.47500.9954**
A2B3Y=23.4872/(1+e0.8381-0.1386x)1/0.01310.9851**
A3B1Y=18.5408/(1+e2.6195-0.1380x)1/0.04200.9963**
A3B2Y=16.2227/(1+e3.4650-0.1622x)1/0.05400.9961**
A3B3Y=24.2147/(1+e2.5246-0.1638x)1/0.02690.9975**
A4B1Y=19.9867/(1+e1.8642-0.1218x)1/0.03420.9956**
A4B2Y=16.8530/(1+e1.0419-0.0982x)1/0.05140.9950**
A4B3Y=25.6150/(1+e1.8951-0.1568x)1/0.01910.9950**
A5B1Y=18.2363/(1+e2.4845-0.1506x)1/0.02450.9922**
A5B2Y=18.0886/(1+e0.5033-0.1045x)1/0.01960.9983**
A5B3Y=26.2659/(1+e0.4055-0.1268x)1/0.01360.9859**
** means significantly different at P<0.01
**表示相关性极显著(P<0.01)

新窗口打开|下载CSV

2.3.2 鼓粒特征参数 同一品种的鼓粒参数在不同种间距下差异显著(表5)。贡选1号除平均鼓粒速率表现为净作显著优于套作外,其他鼓粒参数均表现为套作更优。套作下的桂夏3号鼓粒参数优于净作,种间距为75 cm时,起始鼓粒值和最大鼓粒速率最高,种间距为60 cm时,鼓粒期最长,种间距为30 cm时,达到最大鼓粒速率时的百粒重和平均鼓粒速率有最大值。南豆25号在净作下起始鼓粒值和平均鼓粒速率显著高于套作;套作下种间距为30 cm时,起始鼓粒值、鼓粒期和达到最大鼓粒速率时的百粒重均表现最好,种间距为60 cm时,鼓粒期较长且达到最大鼓粒速率时的百粒重较大,达到最大速率所用天数较少。

Table 5
表5
表5不同处理下的大豆鼓粒特征参数
Table 5The grain-filling parameters of soybean under different treatments
处理 TreatmentR0Se (d)Ymax (g)Vmax (g·d-1)(g·d-1) Tmax (d)
A1B11.86e27.71d6.71e12.03e0.3822a41.21d
A2B13.06d32.03b7.02b21.08d0.3754c43.66a
A3B13.29c29.60c6.96c22.43c0.3755b41.97c
A4B13.57b33.40a7.48a26.23b0.3741d43.02b
A5B16.15a26.89e6.77d41.26a0.3723e41.13e
平均 Mean3.5929.936.9924.610.375942.20
A1B21.79d27.64c6.56c11.31d0.3828b39.44d
A2 B20.51e20.28e6.80a2.65e0.4412a40.08c
A3 B23.00b25.33d6.13e17.92b0.3776c39.36e
A4 B21.91c41.79a6.36d11.86c0.3771d40.85b
A5 B25.32a38.66b6.72b35.40a0.3715e42.43a
平均 Mean2.5130.746.5115.830.390040.43
A1 B316.22a18.58e9.07c146.14a0.3703d35.64e
A2 B310.61b29.05b8.70e91.73b0.3703d37.36b
A3 B36.08e24.75d9.03d54.24e0.3728a37.49a
A4 B38.20d25.75c9.51b77.34d0.3714b37.31c
A5 B39.34c31.76a9.73a90.27c0.3704c37.11d
平均 Mean10.0925.989.2191.940.371436.98
R0:起始鼓粒值;Se:有效鼓粒持续期;Ymax:达到最大鼓粒速率时的百粒重;Vmax:最大鼓粒速率;:平均鼓粒速率;Tmax:达到最大速率所用天数
Se means effective filling duration; Ymax means the 100-grain weight when reaches the maximum grain filling rate; Vmax means maximum grain filling rate;means the average grain filling rate; Tmax means days to reach the maximum grain filling rate

新窗口打开|下载CSV

相同种间距下,品种间差异整体表现为南豆25号>桂夏3号>贡选1号,南豆25号的起始鼓粒值、鼓粒期和达到最大鼓粒速率时的百粒重显著高于桂夏3号、贡选1号。净作下,南豆25号显著优于其他品种;套作下,南豆25号的优势则主要体现在起始鼓粒值、达到最大鼓粒速率时的百粒重和达到最大速率所用天数。桂夏3号的平均鼓粒速率和达到最大速率所用天数优于贡选1号。

2.4 大豆干物质重量

大豆的干物质重量随着生育时期的推进,呈现出先增长后减少的规律(图2)。R3期后增长加快,净作R4期最高,套作则为R5期。V5期到R4期,净作大于套作,增长速率较快,优势明显;且R4期最大值高于R5期套作的最大值。品种之间相比,桂夏3号的干物质重量更高;从R3期开始,干物质重量增长迅速,种间距为60 cm时,各品种的干物质重量均在R5期高于净作;R2至R5期,种间距为60 cm时南豆25号的增长速率高于其他品种,且R5期到成熟期其干物质重量高于净作。整体而言,同一品种大豆在种间距为60 cm时干物质重量较高,种间距为30 cm时干物质重量最低;始荚期后,不同种间距下的差异逐渐显著,种间距为60 cm时与净作相比差异最小。

2.5 不同处理下大豆各营养器官的分配率

随着生育时期的推进,不同处理下根和茎的分配率整体表现为先增加再降低后增加,叶分配率逐渐降低,而荚果分配率则是不断增加(表6)。V5到R2期,根的分配率低于茎和叶,且变化最小;R5期,随着荚果分配率的增加,根、茎、叶的分配率下降,叶分配率下降程度最高;R8期,根和茎分配率较R5期有所增加,不同大豆品种的荚果分配率整体上表现为南豆25号>桂夏3号>贡选1号。V5期,各品种的根分配率在不同种间距下整体表现为差异不显著,茎、叶分配率在各处理下差异显著,且套作下的最大值整体表现为高于净作,种间距为45、60 cm时表现较好。R2期,桂夏3号的根分配率和南豆25号的茎分配率、桂夏3号的叶分配率,在各处理下差异显著,贡选1号和南豆25号的根、茎分配率套作下的最大值高于净作但差异并不显著,叶分配率的最大值则与净作相比差异不显著。R5期,南豆25号的荚分配率高于贡选1号和桂夏3号,种间距为60 cm时最高且高于净作;桂夏3号的茎和荚的分配率各处理间差异显著,贡选1号和桂夏3号的荚分配率在套作下的最大值高于净作。R8期,贡选1号和桂夏3号的荚果分配率在套作下的最大值均高于净作,南豆25号则显著高于净作。贡选1号的根分配率,桂夏3号的茎分配率,南豆25号的根、叶和荚分配率在不同种间距下均表现为差异显著,种间距为60、75 cm时分配率更高。

图2

新窗口打开|下载原图ZIP|生成PPT
图2不同时期不同处理下的干物质重量

V5为5叶期,R1为始花期,R2为盛花期,R3为始荚期,R4为盛荚期,R5为始粒期,R6为鼓粒期,R8为完熟期
Fig. 2Dry matter weight at different stages with different treatments

V5 means fifth trifoliate stage; R1 means beginning flowering stage; R2 means full blooming stage; R3 means beginning pod stage; R4 means full pod stage; R5 means beginning seed stage; R6 means full seed stage; R8 means full maturity stage


Table 6
表6
表6不同处理下不同时期的大豆各营养器官的干物质分配率
Table 6The dry matter distribution rate of different vegetative organs in soybean under different treatments (%)
年份
Year
处理TreatmentV5R2R5R8

Root

Steam

Leaf

Root

Steam

Leaf

Root

Steam

Leaf

Pod

Root

Steam

Leaf

Pod
2016A1B114.86a36.53a49.61a12.68b41.83ab45.48a12.26b27.35a32.83a27.56b18.60a38.49a3.12c39.79b
A2B115.41a36.29a48.30a14.33a41.49ab44.18a13.48a26.41ab31.05ab29.06a16.59 ab30.36b9.97a43.08a
A3B114.78a35.59a49.62a14.27a40.51b45.22a13.36a25.64b31.60ab29.41a15.02b33.28b6.02b45.68a
A4B115.35a37.39a47.25a13.68a42.92a43.40a12.69a26.92ab30.07b30.32a14.28b37.28a5.63b42.81a
平均Mean15.10a36.45a48.70a13.74a41.69ab44.60a12.95a26.58a31.39ab29.09a16.12 ab34.85b6.18b42.84a
A1B214.21a31.08c54.71a12.15b36.48b51.37a11.67b23.74b36.96a27.63c13.85a45.80a4.61a35.74c
A2B215.24a38.48a46.27b14.30a43.66a42.03b13.20a27.24a28.97b30.59ab13.41a37.98a6.80a41.81c
A3B217.47a35.68b46.85b14.30a41.79a43.91b13.27a26.21b30.41b30.11b15.51a30.71b4.99a48.78b
A4B216.04a36.42ab47.54b14.30a41.96a43.83b12.84a25.63b29.58b31.95a12.96a29.17c5.39a52.48a
平均Mean15.74a35.41b48.84a13.74b40.97a45.29a12.75a25.71b31.48a30.07b13.98a35.92a5.45a44.70b
A1B319.75ab34.61ab45.63 bc14.42a41.69ab43.89ab13.27b25.94a30.19a30.60b11.16b46.74a4.60b37.50b
A2B317.10b33.05b49.85a15.44a38.29c46.27a14.38a24.12b32.18a29.32b16.77a30.12b7.37a45.74b
A3B317.74ab34.85ab47.41 ab14.36a40.99b44.64a13.31b25.69a30.91a30.09b16.10a22.36b6.90ab54.64ab
A4B320.81a36.01a43.18c14.36a43.62a41.85b12.80b25.95a27.50b33.76a14.20ab23.87b5.19ab56.74a
平均Mean18.85ab34.63ab46.52b14.69a41.15ab44.16a12.80b25.42a30.19a30.94b14.56ab30.77b6.01ab48.65b
2017A1B122.82a34.87b42.31 bc24.14a39.64b36.22ab8.87a43.70a21.29a26.14a10.57b25.42a15.25b48.76a
A2B116.21b37.60ab46.19a21.58ab45.33ab33.09ab7.42a36.87a27.15a28.55a7.69c26.85a26.02a39.44b
A3B115.11b40.20a44.69abc17.16b47.66a35.18ab8.60a37.57a23.41a30.42a8.31bc24.02a15.47b52.19a
A4B121.70a36.49b41.81c26.55a41.25ab32.20b7.89a40.69a24.07a27.35a8.69bc28.68a23.23a39.40b
A5B114.66b40.01a45.33ab21.09ab40.94ab37.97a7.38a39.99a22.67a29.97a13.23a27.79a17.27b41.71b
平均Mean18.10b37.84ab44.07abc22.10ab42.97ab34.93ab8.03a39.76a23.72a28.49a9.70b26.55a19.45b44.30b
A1B220.93a35.20c43.87a24.58a43.21a32.21c11.15a40.21a21.08a27.56c8.33ab29.00bc16.68c45.99ab
A2B216.35a38.68b44.97a14.61c44.49a40.90a5.01b30.70bc26.87a37.42ab7.15b23.77c23.20a45.88ab
A3B216.24a41.32b42.44a14.88c46.79a38.33ab5.72b37.60ab25.29a31.39bc8.35ab29.89ab20.78ab40.98b
A4B218.82a38.51bc42.67a23.34ab45.65a31.01c6.77b37.60ab21.25a34.38b10.16a30.53a12.92d46.39a
A5B29.39b47.60a43.01a17.87bc47.19a34.94bc6.57b27.41c24.43a41.59a8.83ab25.43bc18.36bc47.39a
平均Mean16.34a40.26b43.39a19.06b45.46a35.48ab7.04b34.70b23.78a34.47b8.56ab27.72bc18.39bc45.33ab
A1B320.28a36.25c43.47a16.00b44.88abc39.11a7.45ab40.49a15.36bc36.70b12.63ab27.97a16.46ab42.94c
A2B319.55a39.03bc41.42a15.45b49.83a34.73a6.62b27.75b24.47a41.16ab8.33c23.68ab19.15a48.85b
A3B318.37a40.18b41.45a19.56b41.86c38.59a8.85ab32.33ab18.37bc40.44ab10.71bc23.51ab14.53bc51.25b
A4B318.36a39.96b41.68a28.02a42.88bc29.10b9.61a30.54b13.37c46.47a11.39b21.62b9.35d57.64a
A5B311.62b44.50a43.88a14.10b48.87ab37.02a8.68ab30.62b21.12ab39.58b14.80a23.14b12.29cd49.78b
平均Mean17.64a39.98b42.38a18.63b45.66ab35.71a8.24ab32.35ab18.54bc40.87ab11.57b23.98ab14.36bc50.09b

新窗口打开|下载CSV

2.6 不同处理下大豆营养器官(茎+叶)对籽粒的输出率和贡献率

不同种间距对贡选1号营养器官输出率的影响不显著,对桂夏3号和南豆25号则影响显著(表7)。种间距为30 cm时,桂夏3号输出率较高,且略高于净作;套作下南豆25号的最大值均高于净作。品种间相比,整体表现为贡选1号高于桂夏3号和南豆25号。

与其他品种相比,桂夏3号营养器官对荚果的贡献率最低。套作下,南豆25号在种间距为60 cm时最高,且与净作相比差异不显著;贡选1号的最大值高于净作,而桂夏3号营养器官对荚果的贡献率则在种间距为30、45 cm时较高。

Table 7
表7
表7营养器官(茎+叶)积累的干物质向荚果的转移及其对荚果的贡献率
Table 7Translocation and contribution of dry matter accumulation in vegetative organs (stem and leaf) (%)
年份
Year
种间距
Row spacing
输出率 Output ratio贡献率 Contribution ratio
B1B2B3平均 MeanB1B2B3平均 Mean
2016A148.19a37.82c35.35b40.46b43.98b41.47b53.42b46.29c
A250.81a49.15ab49.77a49.91a57.44a51.68a55.65ab54.92a
A350.03a43.68b46.54a46.75a50.01a46.97b55.74ab50.89b
A447.47a49.93a44.54a47.31a50.49a49.35a58.57a52.80ab
平均Mean49.13a45.15b44.05a50.50a47.34b55.85ab
2017A141.79a37.36a44.06a41.07a53.64ab53.70a57.77a55.04a
A240.82a38.84a24.21b34.62ab57.70a44.55b24.25b42.17b
A344.07a31.63ab34.73ab36.81a57.96a50.61ab33.48b47.35ab
A431.95ab34.25ab46.74a37.64a39.02bc37.93bc57.75a44.89b
A526.69b24.15b34.43ab28.43b32.56c23.80c38.33b31.56c
平均Mean37.06a33.25ab36.83ab48.17b42.12b42.31ab

新窗口打开|下载CSV

3 讨论

光照量决定了作物物质积累量的高低,玉米-大豆套作模式下,处于优势生态位的玉米会对处于劣势生态位的大豆造成荫蔽,而不同的种间距则会引起光分配的差异。共生期间,种间距过低,荫蔽加重,会增加大豆花荚脱落,从而影响大豆产量。但玉米收获后,大豆随着光照恢复开始恢复性生长,营养器官的分配率随之发生改变,地上部干物质积累逐渐增加[29,30]。研究表明,在较宽的种植幅宽或与紧凑型玉米搭配时,光照恢复后大豆的光合能力接近或高出净作[9,31],有利于提高物质积累。本研究中,年际间相同指标的差异主要因受气象条件影响,但整体趋势保持一致。为营造有利环境,试验采用紧凑型玉米品种登海605,大豆均为耐荫性品种,主要区别在于套作下的结瘤特性,整个生育时期大豆的干物质重量表现为先增加后降低,生育前期净作显著优于套作,在R4期达到最大值;而套作的干物质重量从R3期后增长加快,在R5期有最大值且种间距为60 cm时甚至高于净作;至成熟期,种间距60 cm下贡选1号和桂夏3号的干物质重量高于净作,南豆25号虽略低于净作但优于其他品种,荚果的分配率也更高。说明套作下强结瘤大豆在共生期间适宜的种间距下受荫蔽影响更低,光照恢复后恢复能力也更强,能够通过调节营养器官的分配率,提高营养器官(茎+叶)对籽粒的输出率和贡献率来提高荚果分配率。

籽粒干物质积累量同时受到环境和栽培措施的影响,而籽粒产量主要是花后干物质的积累与鼓粒期间的运输分配共同起作用的结果[32,33] ,会直接影响最终的作物产量。套作下单株荚数、百粒重和单荚粒数是影响大豆产量最关键的3个因素[34],其中单株粒数和百粒重对荫蔽环境的变化更敏感。本研究中净作的优势体现在南豆25号有最大起始鼓粒值,贡选1号有最大平均鼓粒速率。净作大豆的单株荚数高于套作,但单荚粒数和百粒重都低于套作下的最大值;套作下种间距60 cm的单荚粒数最高,种间距75 cm的百粒重最高。这是因为套作下适宜的间距(60 cm)更有利于大豆在鼓粒过程中,通过调节物质的积累和转移获得高于净作的有效鼓粒期和平均速率,而强结瘤的南豆25号则是利用较高的百粒重在较短的有效鼓粒期内构成产量优势。本试验中,套作下种间距为60 cm时最有利于大豆产量的提高,贡选1号和桂夏3号在种间距为60 cm时的产量高于净作,而南豆25号的产量最高,其平均产量比桂夏3高出5.44%,比贡选1高出6.3%。

玉豆套作体系下,大豆的产量会因为荫蔽影响而降低,随玉豆种间距的扩大而提高[19]。紧凑型玉米的冠层结构特点有利于降低大豆所受的弱光胁迫程度[35],通过提高光能利用率促进大豆幼苗期的干物质积累向籽粒的转移,优化产量构成因素。而本试验结果表明,套作下玉豆种间距过大或过小都不利于大豆产量的增加。这是因为在保持2 m带宽的前提下,玉豆种间距设置为30 cm和75 cm时,所形成的群体光环境差异更大,对处于荫蔽环境下大豆的物质积累和产量形成所产生的影响也更大。强结瘤品种大豆由于其遗传特性,在套作环境下仍有较多的侧根和根瘤[23],能利用较强的固氮能力,促进能量的转移和吸收,使地上部各器官的干物质积累迅速增加。本研究中,强结瘤品种和合理的种间距能够弥补荫蔽引起的劣势,种间距设置为60 cm时,强结瘤的南豆25号能够利用自身特性,在有效鼓粒持续期短的情况下仍能够保持较大的平均鼓粒速率,提高荚果分配率和百粒重,弥补单株荚数和单荚粒数的劣势,获得了与净作相比差异不显著的产量。但强结瘤特性的大豆如何调控物质积累和转移,并最终影响产量形成的具体原因仍有待进一步研究。

4 结论

在玉米-大豆带状套作模式下,适宜的玉豆种间距(60 cm)更有利于大豆优化地上部和地下部的物质分配和鼓粒,促进籽粒发育从而获得更高的产量。强结瘤的南豆25号环境适应性更强,能够通过较高的干物质积累来保障物质运输和对籽粒的转运,以增加百粒重,弥补荚数不足,实现套作与净作产量相当的目的。

(责任编辑 杨鑫浩)

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

国家统计局农村社会经济调查总队. 中国农村统计年鉴2017. 北京: 中国统计出版社, 2017.
[本文引用: 1]

Rural Socio-Economic Survey Detachment of the National Bureau of Statistics. China Rural Statistical Yearbook 2017. Beijing: Statistics Press of China, 2017. (in Chinese)
[本文引用: 1]

LI L, LI S M, SUN J H, ZHOU L L, ZHANG F S . Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils
Proceedings of the National Academy of Science of the United States of America, 2007,104(27):1192-1196.

[本文引用: 1]

LITHOURGIDIS A S, DORDAS C A, DAMALAS C A, VLACHOSTERGIOS D N, VLACHOSTERGIOS D N . Annual intercrops: An alternative pathway for sustainable agriculture
Australian Journal of Crop Science, 2011,5(4):396-410.

Magsci [本文引用: 1]
Intercropping, the agricultural practice of cultivating two or more crops in the same space at the same time, is an old and commonly used cropping practice which aims to match efficiently crop demands to the available growth resources and labor. The most common advantage of intercropping is the production of greater yield on a given piece of land by making more efficient use of the available growth resources using a mixture of crops of different rooting ability, canopy structure, height, and nutrient requirements based on the complementary utilization of growth resources by the component crops. Moreover, intercropping improves soil fertility through biological nitrogen fixation with the use of legumes, increases soil conservation through greater ground cover than sole cropping, and provides better lodging resistance for crops susceptible to lodging than when grown in monoculture. Intercrops often reduce pest incidence and improve forage quality by increasing crude protein yield of forage. Intercropping provides insurance against crop failure or against unstable market prices for a given commodity, especially in areas subject to extreme weather conditions such as frost, drought, and flood. Thus, it offers greater financial stability than sole cropping, which makes the system particularly suitable for labor-intensive small farms. Besides, intercropping allows lower inputs through reduced fertilizer and pesticide requirements, thus minimizing environmental impacts of agriculture. However, intercropping has some disadvantages such as the selection of the appropriate crop species and the appropriate sowing densities, including extra work in preparing and planting the seed mixture and also extra work during crop management practices, including harvest. The selection of an appropriate intercropping system for each case is quite complex as the success of intercropping systems depend much on the interactions between the component species, the available management practices, and the environmental conditions. Plant breeding can contribute determinedly to increase of productivity of intercropping systems by investigating and exploiting the genetic variability to intercrop adaptation. This paper provides an overall view and evaluation of annual intercropping, summarizing its main advantages supported by a number of key examples from the literature which point out its great value in the context of sustainable agriculture.

HENRIK H N, MIKE J G, PER A, GUENAELLE C H, YVES C, DAHLMANN C, AUDREY D, PETER V F, AURELIO P, MICHELE M, ERIK S J . Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and use of other nutrients in European organic cropping systems
Field Crops Research, 2009,113(1):64-71.

[本文引用: 1]

MARIANNE K M, REINHOLD S . Biomass yield and nitrogen fixation of legumes mono-cropped and intercropped with rye and rotation effects on a subsequent maize crop
Plant and Soil, 2000,218(1/2):215-232.

[本文引用: 1]

CHU G X, SHEN Q R, CAO J L . Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility
Plant and Soil, 2004,263(1/2):17-27.

[本文引用: 1]

高阳, 段爱旺, 刘祖贵, 孙景生, 陈金平, 王和洲 . 间作种植模式对玉米和大豆干物质积累与产量组成的影响
中国农学通报, 2009,25(2):214-221.

[本文引用: 1]

GAO Y, DUAN A W, LIU Z G, SUN J S, CHEN J P, WANG H Z . Effect of intercropping patterns on dry matter accumulation and yield components of maize and soybean
Chinese Agricultural Science Bulletin, 2009,25(2):214-221. (in Chinese)

[本文引用: 1]

崔亮, 苏本营, 杨峰, 杨文钰 . 不同玉米-大豆带状套作组合条件下光合有效辐射强度分布特征对大豆光合特性和产量的影响
中国农业科学, 2014,47(8):1489-150.

[本文引用: 1]

CUI L, SU B Y, YANG F, YANG W Y . Effects of photo-synthetically active radiation on photosynthetic characteristics and yield of soybean in different maize-soybean relay strip intercropping systems
Scientia Agricultura Sinica, 2014,47(8):1489-1501. (in Chinese)

[本文引用: 1]

王竹, 杨文钰, 吴其林 . 玉-豆套作荫蔽对大豆光合特性与产量的影响
作物学报, 2007,33(9):1502-1507.

[本文引用: 2]

WANG Z, YANG W Y, WU Q L . Effects of shading in maize-soybean relay-cropping system on the photosynthetic characteristics and yield of soybean
Acta Agronomica Sinica, 2007,33(9):1502-1507. (in Chinese)

[本文引用: 2]

童平, 杨世民, 马均, 吴合洲, 傅泰露, 李敏, 王明田 . 不同水稻品种在不同光照条件下的光合特性及干物质积累
应用生态学报, 2008,19(3):505-511 .

[本文引用: 1]

TONG P, YANG S M, MA J, WU H Z, FU T L, LI M, WANG M T . Photosynthetic characteristics and dry matter accumulation of hybrid rice varieties under different light conditions
Chinese Journal of Applied Ecology, 2008,19(3):505-511. (in Chinese)

[本文引用: 1]

陈小林, 杨文钰, 陈忠群, 王晶晶 . 不同施氮水平下净、套作大豆茎秆特征比较研究
大豆科学, 2011,30(1):101-104.

[本文引用: 1]

CHEN X L, YANG W Y, CHEN Z Q, WANG J J . Characteristics of stem between sole-cropping and relay-cropping soybean under different nitrogen applied levels
Soybean Science, 2011,30(1):101-104. (in Chinese)

[本文引用: 1]

于晓波, 张明荣, 吴海英, 杨文钰 . 净套作下不同耐荫性大豆品种农艺性状及产量分布的研究
大豆科学, 2012,31(5):757-761.

[本文引用: 1]

YU X B, ZHANG M R, WU H Y, YANG W Y . Agronomic characters and yield distribution of different shade tolerance soybean under monoculture and relay strip intercropping systems
Soybean Science, 2012,31(5):757-761. (in Chinese)

[本文引用: 1]

YANG F, HUANG S, GAO R C, LIU W G, YONG T W, WANG X C, WU X L, YANG W Y . Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio
Field Crops Research, 2014,155:245-253.

[本文引用: 1]

宋艳霞, 杨文钰, 李卓玺, 于晓波, 郭凯, 向达兵 . 不同大豆品种幼苗叶片光合及叶绿素荧光特性对套作遮荫的响应
中国油料作物学报, 2009,31(4):474-479.

[本文引用: 1]

SONG Y X, YANG W Y, LI Z X, YU X B, GUO K, XIANG D B . The effects of shading on photosynthetic and fluorescent characteristics of soybean seedlings under maize-soybean relay cropping
Chinese Journal of Oil Crop Sciences, 2009,31(4):474-479. (in Chinese)

[本文引用: 1]

王竹, 杨文钰, 伍晓燕, 吴其林 . 玉米株型和幅宽对套作大豆初花期形态建成及产量的影响
应用生态学报, 2008,19(2):323-329.

[本文引用: 1]

WANG Z, YANG W Y, WU X Y, WU Q L . Effects of maize plant type and planting width on the early morphological characters and yield of relay planted soybean
Chinese Journal of Applied Ecology, 2008,19(2):323-329. (in Chinese)

[本文引用: 1]

张昆, 万勇善, 刘风珍 . 苗期弱光对花生光合特性的影响
中国农业科学, 2010,43(1):65-71.

[本文引用: 1]

ZHANG K, WAN Y S, LIU F Z . Effects of weak Light on photosynthetic characteristics of peanut seedlings
Scientia Agricultura Sinica, 2010,43(1):65-71. (in Chinese)

[本文引用: 1]

于显枫, 张绪成 . 高CO2 浓度和遮荫对小麦叶片光能利用特性及产量构成因子的影响
中国生态农业学报, 2012,20(7):895-900.

[本文引用: 1]

YU X F, ZHANG X C . Effects of elevated atmospheric CO2 concentration and shading on leaf light utilization and yield of wheat
Chinese Journal of Eco-Agriculture, 2012,20(7):895-900. (in Chinese)

[本文引用: 1]

吴雨珊, 龚万灼, 廖敦平, 武晓玲, 杨峰, 刘卫国, 雍太文, 杨文钰 . 带状套作荫蔽及复光对不同大豆品种(系)生长及产量的影响
作物学报, 2015,41(11):1740-1747.

[本文引用: 1]

WU Y S, GONG W Z, LIAO D P, WU X L, YANG F, LIU W G, YONG T W, YANG W Y . Effects of shade and light recovery on soybean cultivars(lines) and its relationship with yield in relay strip intercropping system
Acta Agronomica Sinica, 2015,41(11):1740-1747. (in Chinese)

[本文引用: 1]

杨峰, 娄莹, 廖敦平, 高仁才, 雍太文, 王小春, 刘卫国, 杨文钰 . 玉米-大豆带状套作行距配置对作物生物量、根系形态及产量的影响
作物学报, 2015,41(4):642-650.

[本文引用: 2]

YANG F, LOU Y, LIAO D P, GAO R C, YONG T W, WANG X C, LIU W G, YANG W Y . Effects of row spacing on crop biomass, root morphology and yield in maize-soybean relay strip intercropping system
Acta Agronomica Sinica, 2015,41(4):642-650. (in Chinese)

[本文引用: 2]

苏本营, 陈圣宾, 李永庚, 杨文钰 . 间套作种植提升农田生态系统服务功能
生态学报, 2013,33(14):4505-4514.

[本文引用: 1]

SU B Y, CHEN S B, LI Y G, YANG W Y . Intercropping enhances the farmland ecosystem services
Acta Ecologica Sinica, 2013,33(14):4505-4514. (in Chinese)

[本文引用: 1]

ERENA G Q, ESTíBALIZ L, AMAIA S, JUAN L D, JOSEFA M A, MANUEL W, CESAR A L, STEFANIE W, ESTHER M G. Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean
Journal of Experimental Botany, 2013,64(8):2172-2182.

[本文引用: 1]

于晓波, 苏本营, 龚万灼, 罗玲, 刘卫国, 杨文钰, 张明荣, 吴海英, 曾宪堂 . 玉米-大豆带状套作对大豆根瘤性状和固氮能力的影响
中国农业科学, 2014,47(9):1743-1753.

[本文引用: 1]

YU X B, SU B Y, GONG W Z, LUO L, LIU W G, YANG W Y, ZHANG M R, WU H Y, ZENG X T . The nodule characteristics and nitrogen fixation of soybean in maize-soybean relay strip intercropping
Scientia Agricultura Sinica, 2014,47(9):1743-1753. (in Chinese).

[本文引用: 1]

CARROLL B, MCNEIL D, GRESSHOFF P . Isolation and properties of soybean [Glycine max(L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations
Proceeding of National Academy of Sciences of the United States of America, 1985,82(12):4162-4166.

[本文引用: 2]

邱丽娟, 王署明 . 中国大豆品种志1993-2004 . 北京: 中国农业出版社, 2007: 12.
[本文引用: 1]

QIU L J, WANG S M. Chinese Soybean Variety 1993-2004. Beijing: China Agricultural Press, 2007: 12. (in Chinese)
[本文引用: 1]

陈渊, 梁江, 韦清源 . 优质夏大豆新品种——桂夏3号的选育
作物杂志, 2008(8):417-418.

[本文引用: 1]

CHEN Y, LIANG J, WEI Q Y . Breeding of a new high quality summer soybean variety, Guixia No.3.Crops, 2008(8):417-418. (in Chinese)
[本文引用: 1]

吴海英, 梁建秋, 于晓波, 杨鹏, 张明荣 . 大豆新品种南夏豆25的选育及配套高产栽培技术研究
大豆科技, 2015(2):23-26.

[本文引用: 1]

WU H Y, LIANG J Q, YU X B, YANG P, ZHANG M R . Breeding of a new soybean variety Nanxiadou 25 and its supporting high-yield cultivation techniques.
Soybean Science & Technology. 2015(2):23-26. (in Chinese)

[本文引用: 1]

雍太文, 刘小明, 刘文钰, 苏本营, 宋春, 杨峰, 王小春, 杨文钰 . 减量施氮对玉米-大豆套作体系中作物产量及养分吸收利用的影响
应用生态学报, 2014,25(2):474-482.

[本文引用: 1]

YONG T W, LIU X M, LIU W Y, SU B Y, SONG C, YANG F, WANG X C, YANG W Y . Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system
Chinese Journal of Applied Ecology, 2014,25(2):474-482 .(in Chinese)

[本文引用: 1]

YANG J, ZHANG J, WANG Z, ZHU Q, WANG W . Hormonal changes in the grains of rice subjected to water stress during grain filling
Plant Physiology, 2001,127(1):315-323.

[本文引用: 1]

JIANG H, EGLI D B . Soybean seed number and crop growth rate during flowering
Agronomy Journal, 1995,87(2):264-267.

[本文引用: 1]

陈忠群 . 钼肥对净套作大豆固氮特性、光合生理及产量品质的影响
[D]. 雅安: 四川农业大学, 2011.

[本文引用: 1]

CHEN Z Q . Effects of molybdenum on nitrogen fixation, character of photosynthesis, yield and quality of soybean in sole-cropping and relay strip inter-cropping system
[D]. Ya’an: Sichuan Agricultural University, 2011. ( in Chinese)

[本文引用: 1]

伍晓燕, 王竹, 张含彬, 杨文钰 . 玉-豆套作对大豆开花后光合生产的影响
作物杂志, 2006(3):30-33.

[本文引用: 1]

WU X Y, WANG Z, ZHANG H B, YANG W Y . Effect of maize- soybean relay strip intercropping system on photosynthetic production of soybean after anthesis
Crops, 2006(3):30-33. (in Chinese)

[本文引用: 1]

杨继芝 . 播期和品种对套作大豆生长发育特性和产量及品质的影响
[D]. 雅安: 四川农业大学, 2006.

[本文引用: 1]

YANG J Z . Effects of sowing date and Variety on growth and development characteristics, yield and quality of intercropping soybean
[D]. Ya’an: Sichuan Agricultural University, 2006. ( in Chinese)

[本文引用: 1]

闫艳红, 杨文钰, 张新全, 陈小林, 陈忠群 . 施氮量对套作大豆花后光合特性、干物质积累及产量的影响
草业学报, 2011,20(3):233-238.

[本文引用: 1]

YAN Y H, YANG W Y, ZHANG X Q, CHEN X L, CHEN Z Q . Effects of different nitrogen levels on photosynthetic characteristics, dry matter accumulation and yield of relay strip intercropping Glycine max after blooming
Acta Prataculturae Sinica, 2011,20(3):233-238. (in Chinese)

[本文引用: 1]

张正翼 . 不同密度与田间配置对套作大豆产量和品质的影响
[D]. 雅安: 四川农业大学, 2008.

[本文引用: 1]

ZHANG Z Y . Effects of different densities and field configurations on yield and quality of intercropping soybean
[D]. Ya’an: Sichuan Agricultural University, 2008. ( in Chinese)

[本文引用: 1]

陈雨海, 余松烈, 于振文 . 小麦生长后期群体光截获量及其分布与产量的关系
作物学报, 2003,29(5):730-734.

[本文引用: 1]

CHEN Y H, YU S L, YU Z W . Relationship between amount or distribution of PAR interception and grain output of wheat communities
Acta Agronomica Sinica, 2003,29(5):730-734. (in Chinese)

[本文引用: 1]

相关话题/物质 营养 作物 环境 大豆