删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于RNA-seq数据的栽培种花生SSR位点鉴定和标记开发

本站小编 Free考研考试/2021-12-26

徐志军1, 赵胜2, 徐磊1, 胡小文1, 安东升1, 刘洋,1 1 中国热带农业科学院湛江实验站/广东省旱作节水农业工程技术研发中心,广东湛江 524013
2 中国农业科学院农业基因组研究所, 广东深圳 518120

Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea)

XU ZhiJun1, ZHAO Sheng2, XU Lei1, HU XiaoWen1, AN DongSheng1, LIU Yang,1 1 Zhanjiang Experiment Station, Chinese Academy of Tropical Agricultural Sciences/Guangdong Engineering Technology Research Center for Dryland Water-saving Agriculture, Zhanjiang 524013, Guangdong
2 Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong

通讯作者: 刘洋,E-mail: lyfull@163.com

责任编辑: 李莉
收稿日期:2019-07-28接受日期:2019-10-21网络出版日期:2020-02-16
基金资助:中国热带农业科学院科技创新团队专项资金.1630102017002


Received:2019-07-28Accepted:2019-10-21Online:2020-02-16
作者简介 About authors
徐志军,E-mail:zhijunxu1990@163.com。








摘要
【目的】鉴定花生RNA-seq数据中的SSR位点,明确转录组中SSR位点的分布和结构特点,开发与花生基因相关联的SSR标记,为花生重要功能基因的挖掘、等位变异研究和分子标记辅助育种奠定基础。【方法】根据栽培种花生全生育期中22种不同类型的组织RNA-Seq数据,使用MISA软件分析SSR位点分布及特征,采用Primer 3设计基因关联的SSR引物,并利用电子PCR软件对引物的质量进行检测,随机合成38对引物,进行多态性检测。【结果】从52 280条转录本中共鉴定19 143个SSR位点,分布于14 084条转录本,发生频率为26.94%。重复单元类型为单核苷酸—五核苷酸,以单核苷酸和三核苷酸为重复单元的SSR位点数最多,分别占位点总数的39.24%和38.40%。各重复单元优势基序类型分别为A/T、AG/CT、AAG/CTT、AAAG/CTTT和AACAC/GTGTT,占所在重复单元中的比例分别为97.62%、72.01%、30.96%、24.59%和16.67%。重复单元的重复次数为5—47次,单个SSR位点的长度的分布范围为10—47 bp,基序长度主要集中在10—14 bp;复合SSR位点的长度范围为21—249 bp,以31—40 bp为主。鉴定的SSR位点中共有13 477个SSR位点可以进行引物设计,其中5 020条转录本序列对应到特定的基因,共包含5 859个可进行引物设计的SSR位点,这些SSR位点在A基因组和B基因组共20条染色体上不均匀分布,其中B03染色体上SSR位点最多,为484个。对特定基因SSR引物进行电子PCR检测,在A.duranensisA.ipaensisA.hypogaea基因组中有效扩增位点分别为4 468、4 929和10 188个,有效引物数分别为3 968(67.74%)、4 232(72.25%)和5 174(88.33%)对,在A. hypogaea基因组中,SSR引物扩增位点主要以2个位点为主,其中,有1 477对引物单位点扩增。根据SSR引物扩增位点在栽培种花生基因组中的位置信息绘制了SSR位点的物理图谱。在38对SSR引物中,共有35对(92.1%)SSR引物可以扩增出清晰的条带,其中,有11对(28.9%)SSR引物在2个品种间扩增出差异条带。【结论】鉴定了13 477个可进行标记开发的SSR位点,开发、检测了5 859个基因相关SSR标记,在栽培种花生基因组中具有较高的扩增效率,并构建了基因相关SSR位点的物理图谱。
关键词: 花生;RNA-seq数据;SSR位点;基因关联SSR标记;物理图谱

Abstract
【Objective】 This study aimed to identify SSRs in peanut RNA-seq data,clarify their distribution and structural characteristics,and develop gene-associated SSR markers. The study may lay the foundation for the excavation of important functional genes of peanut, the study of isometric variation and molecular markers assisted breeding. 【Method】From 22 different cultivated peanut tissue types and ontogenies that represent its full development, the reported RNA-Seq data, were used to analyze the distribution and characteristics of SSR using MISA software. Gene-associated SSR primers were designed by Primer 3.0 and its quality were detected by e-PCR 2.3.9. 38 pairs of primers were randomly synthesized for polymorphism testing. 【Result】A total of 19 143 SSRs were identified from 52 280 transcripts, distributed in 14 084 transcripts, with a frequency of 26.94%. The dominant SSR repeat unit types were mononucleotide and trinucleotide in mononucleotide to pentanucleotide, accounting for 39.24% and 38.40% of the total SSR locus. Dominant motif types of each repeat unit were A/T, AG/CT, AAG/CTT, AAAG/CTTT, AACAC/GTGTT, accounting for 97.62%, 72.01%, 30.96%, 24.59%, and 16.67% in the corresponding repeat units, respectively. The repetition of repeat units was 5-47 times, and the length distribution range of single SSR site was 10-47bp, mainly concentrated at 10-14 bp. The length range of compound SSR locus was 21-249 bp, mainly concentrated at 31-40 bp. Among all the SSR,13 477 SSR could be used to develop SSR markers, of which 5 020 transcript sequences were annotated to specific genes, containing 5 859 SSR markers locus. These SSRs were unevenly distributed on the 20 chromosomes of A and B genomes, and chromosomes B03 had the most SSR locus of 484. Using electronic PCR, 4 468, 4 929 and 10 188 effective loci were amplified in the genome of A. duranensis, A. ipaensis, A. hypogaea, with 3 968 (67.74%), 4 232 (72.25%) and 5 174 (88.33%) effective markers, respectively. In the genome of A. hypogaea, SSR primers amplified mainly with 2 loci, while 1 477 pairs of SSR primers were single-locus markers. And the physical map of amplified SSR loci was drawn according to the loci position in cultivated peanut genome. Among the randomly synthesized primers, 35 pairs (92.1%) of SSR primers amplified stable and clear bands in two peanut varieties, among which 11 pairs (28.9%) of SSR primers amplified different band. 【Conclusion】 In this study, 13 477 potential primer design SSRs were identified, 5 859 gene-associated SSR markers were developed and detected,with high amplification efficiency in cultivated peanut genome,and the physical map of gene-associated SSR were constructed.
Keywords:peanut;RNA-seq data;SSR loci;gene-associated SSR markers;physical map


PDF (1851KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
徐志军, 赵胜, 徐磊, 胡小文, 安东升, 刘洋. 基于RNA-seq数据的栽培种花生SSR位点鉴定和标记开发[J]. 中国农业科学, 2020, 53(4): 695-706 doi:10.3864/j.issn.0578-1752.2020.04.003
XU ZhiJun, ZHAO Sheng, XU Lei, HU XiaoWen, AN DongSheng, LIU Yang. Discovery of Microsatellite Markers from RNA-seq Data in Cultivated Peanut (Arachis hypogaea)[J]. Scientia Acricultura Sinica, 2020, 53(4): 695-706 doi:10.3864/j.issn.0578-1752.2020.04.003


0 引言

【研究意义】栽培种花生(Arachis hypogaea)是中国主要的油料与经济作物之一,在保证中国食用油和植物蛋白供给、促进农民增收方面具有重要作用。伴随花生基因组学和分子生物学的发展,大量基于分子标记的花生品种鉴定[1,2]、种质资源遗传多样性[3,4,5]、重要性状的QTL定位[6,7,8,9]、基因挖掘和育种研究[10,11,12,13,14]得以开展。然而,由于花生遗传基础狭窄,SSR标记多态性较低,基因组较大(约2.7 GB),且结构复杂,现有的SSR标记,特别是用于高密度遗传图谱构建和重要功能基因挖掘的标记还较为缺乏,限制了花生重要功能基因的解析和应用。【前人研究进展】近年来,SSR标记因其分布广泛、共显性、多态性好、分辨率高、重复性好等优点而被广泛应用于花生遗传研究和育种实践中。利用基因组文库(如BAC文库)[15,16,17,18,19,20,21,22,23,24]、表达序列标签(expressed sequence tags,EST)文库[25,26,27,28,29,30,31,32]、转录组数据[33,34,35]、全基因组数据[9, 36-37]和近缘物种(如大豆)[38]中的SSR序列进行花生SSR标记的开发,并应用于花生的研究。任小平等[2]利用筛选到的60对核心SSR标记构建了100份花生品种的指纹图谱;张照华等[39]在高油酸育种中利用62对SSR标记对10个BC4F2特定基因型株系进行遗传背景评估,筛选出与亲本中花16最优的近等基因系材料。除此之外,利用基于SSR标记的遗传连锁图谱和关联图谱,鉴定出与栽培种花重要农艺性状紧密连锁的QTL,如株高等株型相关性状[6,40-42]、荚果和种子相关性状[7-8,43-44]、抗旱[45]、叶斑病等抗病性[46,47]。在水稻、大豆、玉米等作物上的研究还表明,功能基因中的特异性SSR标记(或紧密连锁标记)还可以用于分析基因的等位变异和功能变异[48,49,50]。【本研究切入点】目前,尽管一批栽培种花生重要性状相关QTL被鉴定出来,但是进入育种应用的还较少,最主要的原因是构建的遗传图谱标记密度还不够高,鉴定的QTL的遗传距离还较大,标记与基因间的连锁还不够紧密,在实际运用中基因丢失的风险较高。因此,有必要利用现有资源开发更多SSR标记,对这些重要功能基因进行精细定位和图位克隆。利用野生花生基因组,JOSH等[51]对栽培种花生全生育期中22种不同类型的组织进行RNA-seq测序,组装了栽培种花生的转录组图谱,包含了花生正常生育条件下最多的基因转录本数据,这些转录本数据中包含了大量还未利用的SSR标记资源,且来自转录组的SSR直接与功能基因的表达相关,是开发功能基因特征标记的潜在资源。【拟解决的关键问题】本研究拟利用已发表的栽培种花生RNA-seq数据,鉴定SSR位点、开发与基因相关联的SSR标记,进一步丰富花生SSR标记,为花生重要功能基因的挖掘、等位变异研究和分子标记辅助育种奠定基础。

1 材料与方法

1.1 试验材料

栽培种花生的RNA-seq组装数据、注释信息来源于花生基因组数据库(https://peanutbase.org/)。

1.2 RNA-seq数据处理

根据转录组数据注释信息,将组装序列与基因名称、染色体定位、基因功能等信息进行一一对应。

1.3 SSR位点挖掘及基因SSR引物设计

使用MISA软件(microsatellite identification tool,http://pgrc.ipk-gatersleben.de/misa/)搜索栽培种花生转录组unigene中的简单重复序列,并对SSR重复基序类型进行特征分析。查找标准:单核苷酸基序至少重复次数为10,而2、3、4、5和6核苷酸基序最少重复次数分别为6、5、5、5和5。

使用Primer3.0软件对SSR位点进行引物设计,每个SSR位点分别设计3组引物,并且满足以下的特征:(1)长度在15—25 bp;(2)PCR扩增产物长度为100—400 bp;(3)退火温度(Tm值)在50℃—60℃;(4)GC的含量在40%—60%;(5)避免出现发夹结构及引物二聚体。

1.4 e-PCR引物质量检测

使用e-PCR Version: 2.3.9对设计的引物进行电子PCR检测,参数设置按照DENG等[52]方法进行。分别分析来源于栽培种花生转录组的SSR引物在A.duranensisA.ipaensis和栽培种花生(Tifrunner)全基因组(https://peanutbase.org/)中的扩增情况,统计并记录引物在基因组上的扩增次数,剔除扩增产物长度小于100 bp或大于500 bp及特异性不好的引物。使用Tbtools[53]软件对扩增位点在基因组上的位置进行可视化。

1.5 花生DNA提取及PCR检测

选取花生幼嫩叶片,采用改良CTAB法提取DNA,用1%的琼脂糖凝胶电泳检测DNA浓度与纯度,于-20℃保存备用。38对随机选取的基因SSR引物由生工生物工程(上海)股份有限公司合成(电子附表1)。PCR反应体系和PCR程序按照HUANG等[6]方法进行。

2 结果

2.1 栽培种花生RNA-seq SSR位点分布及结构特点

栽培种花生22个组织RNA-seq深度测序共组装获得52 280条转录本(总长度75 821 219 bp),其中33 293条转录本注释到相应基因(注释到A基因组16 222个基因,B基因组17 071个基因)。利用MISA软件从全部转录本中共鉴定出19 143个SSR位点,其中有1 494个SSR位点以复合位点的形式存在。在全部转录本中共有14 084条转录本含有SSR位点,发生频率为26.94%,平均每3.96 kb出现一个SSR;3 606条(6.90%)转录本中含有≥2个SSR位点,大部分转录本含有2—4个位点,单条转录本中最多含7个SSR位点。在所有鉴定的SSR位点中,大部分SSR位点分布于转录本序列5′端300 bp或3′端300 bp的区域,包括UTR、内含子和CDS区域。

栽培种花生转录组重复单元类型丰富,单核苷酸到五核苷酸均存在,各重复单元组成的SSR数量上存在着较大差异(表1)。其中以单核苷酸和三核苷酸为重复单元的SSR位点数最多,分别占SSR位点总数的39.24%和38.40%,分布频率为14.37%和14.06%,其中以五核苷酸为重复单元的SSR位点数最少,仅为48个。在SSR位点基序种类方面,不同重复单元在基序种类上存在着丰富的多样性,单核苷酸到五核苷酸基序种类分别为4、12、60、87和39种,共202种,从单核苷酸到四核苷酸基序种类随着重复单元碱基数增加而增加(表1)。

Table 1
表1
表1栽培种花生RNA-seq SSR位点分布特征
Table 1Distribution of RNA-seq SSR locus characteristics in cultivated peanut
重复单元类型
Repeat unit type
基序种类
Motif
SSR位点数量
SSR number
比例
Ratio (%)
分布频率
Distribution frequency (%)
优势基序 Dominating motif
基序类型 Motif type数量 Number比例 Ratio (%)
单核苷酸 Mononucleotide4751339.2414.37A/T733497.62
二核苷酸 Dinucleotide12392620.517.51AG/CT282772.01
三核苷酸 Trinucleotide60735138.4014.06AAG/CTT227630.96
四核苷酸 Tetranucleotide873051.590.58AAAG/CTTT7524.59
五核苷酸 Pentanucleotide39480.250.09AACAC/GTGTT816.67
总计 Total2021914336.62

新窗口打开|下载CSV

各重复单元优势基序类型随着重复单元增加,在所属重复单元SSR位点中所占的比例呈下降趋势(表1)。在鉴定出的SSR位点中,单核苷酸重复单元中,优势基序类型为A/T,为7 334个,占所有以单核苷酸为重复单元的SSR位点的97.62%;二核苷酸重复单元中,优势基序类型为AG/CT,占该重复单元位点的72.01%;三核苷酸到五核苷酸重复单元中,优势基序类型依次为30.96%、24.59%和16.67%。

2.2 栽培种花生RNA-seq SSR重复次数和基序长度

鉴定的SSR位点各重复单元的重复次数和SSR位点长度存在着明显的差异(表2图1)。重复单元的重复次数为5—47(单核苷酸)次,随着重复次数的增加,同一重复单元类型的SSR位点数逐渐减少。其中,单核苷酸重复次数主要集中在10—12次;二核苷酸重复次数主要集中在6—8次;三核苷酸重复次数主要集中在5—6次;四核苷酸和五核苷酸重复次数主要集中在5次。从整体上看,重复单元的重复次数主要集中在5、6和10次,在所有SSR位点中的分布频率分别为24.24%、18.87%和17.37%。单个SSR位点的长度的分布范围为10—47 bp,基序长度主要集中在10—14 bp,其中,长度为10和12 bp的基序数量最多,分别为2 985和2 389个;复合SSR位点的长度范围为21—249 bp,其中,以长度为31—40 bp的复合位点最多,随着基序长度增加,复合SSR位点数呈逐步减少的趋势。

Table 2
表2
表2栽培种花生SSR各重复单元重复次数及分布频率
Table 2Repetition times and distribution frequency of each SSR repeat unit in cultivated peanut
重复单元类型
Repeat unit type
重复次数Repetition times
567891011121314≥15
单核苷酸Mononucleotide29851519943657468941
二核苷酸 Dinucleotide144689664047534011514
三核苷酸 Trinucleotide43522108761130
四核苷酸 Tetranucleotide24659
五核苷酸 Pentanucleotide48
总计 Total46463613165777047533251634957657468941
分布频率
Distribution frequency(%)
24.218.878.664.022.4817.378.545.003.432.444.92

新窗口打开|下载CSV

图1

新窗口打开|下载原图ZIP|生成PPT
图1SSR基序长度分布

Fig. 1Distribution of SSR motif length



2.3 栽培种花生SSR标记的开发

利用primer3.0软件,对14 084条转录本中的SSR位点进行引物设计,发现共有13 477个SSR位点可以进行引物设计,其中,可以进行引物设计的单个SSR 位点有12 515个,复合SSR位点962个。不能进行引物设计的SSR位点共4 172个,其中,单个SSR位点3 797个,复合SSR位点375个;这些SSR位点中共有1 771个SSR位点位于序列5′端50 bp以内,2 179个SSR位点位于3′端100 bp区域内,SSR位点位于序列起始端和末端,位点一端序列过短或无序列是造成这些位点不能进行引物设计的主要原因。在可以进行引物设计的序列中,共有5 661条转录本未注释到基因,这些序列中共包含7 305个SSR位点,有1 235条序列含有多个位点,单条序列最多含有7个SSR位点。

根据序列注释信息,共有5 020条转录本序列对应到特定的基因,共包含5 859个可进行引物设计的SSR位点(单一位点和复合位点),基因的平均SSR位点密度为1.17(表3),共设计出17 574对特定基因SSR引物(每个位点设计3对引物)。与基因对应的SSR位点在A基因组和B基因组共20条染色体上不均匀分布(表3),其中B03染色体上SSR位点最多,为484个;单一位点范围为170(A02)—451(B03),共5 533个;复合位点范围为9(A01)—33(B03),共326个。这些包含SSR位点的基因主要以单位点基因的形式存在(68.75%),单条染色体基因数目为160(A07)—430(B03),其中单位点基因范围为110(A07)—328(B03),多位点基因范围为13(A02)—49(B04)。

Table 3
表3
表3可进行引物设计的特异基因SSR位点统计
Table 3Statistics of primer design specific gene-associated SSR
染色体
Chromosome
SSR位点数Number of SSR loci对应基因数Number of genes平均SSR位点密度
Average density of SSR loci
单一位点
Single loci
复合位点
Compound loci
总计
Total
单位点基因
Gene contain single loci
多位点基因
Gene contain multiple loci
总计
Total
A012529261136372171.21
A0217015185145131721.08
A0338017397220533351.19
A0422218240160242121.13
A0531413327179482771.18
A0622911240160262131.13
A0717511186110241601.16
A0825513268146362251.19
A0926516281168352421.16
A1019818216148221931.12
B0127316289177342501.16
B0226415279157362361.18
B0345133484328484301.13
B0432321344169492811.22
B0529115306201332701.13
B0629316309152452531.22
B0728120301190312611.15
B0824915264135392191.21
B0933917356188522981.19
B1030917326182442761.18
全基因组
Whole genome
55333265859345172950201.17

新窗口打开|下载CSV

2.5 e-PCR引物质量检测分析

利用一组特定基因SSR引物(5 859对),分别以A.duranensisA.ipaensis和栽培种花生基因组为模板进行电子PCR。结果(表4)表明,栽培种花生特定基因SSR引物在A.duranensisA.ipaensis和栽培花生基因组中都具有较高的扩增效率,在3个基因组中的有效扩增位点分别为4 468、4 929和10 188个,有效引物数分别为3 968(67.74%)、4 232(72.25%)和5 174(88.33%)对。且这些SSR引物,在栽培种花生基因组中具有更高的多态性:在A.duranensisA.ipaensis基因组中,引物扩增位点主要以1个位点为主,在有效引物中的比例分别为93.75%和91.33%;而在栽培种花生基因组中,SSR引物扩增位点主要以2个位点为主(62.24%),其次是1个位点(28.54%),且扩增3个及以上位点的SSR引物数要显著高于A.duranensisA.ipaensis。在所有检测的引物中,共有3 250(55.47%)对引物在3个基因组中均可有效扩增,716(12.22%)对可在A.duranensis和栽培种花生基因组中扩增,978对可在A.ipaensis和栽培种花生基因组中扩增,231(3.94%)对仅在栽培种基因组中扩增(图2)。根据SSR标记在栽培种花生基因组中的扩增情况和扩增位点信息,绘制了SSR位点物理图谱(图3)。根据QTL两端标记在基因组上的位置,利用SSR位点物理图谱,可以为QTL精细定位提供SSR标记信息。如图4所示,80个基因关联SSR标记可用于QTL qBWRB02.1的区间加密。

Table 4
表4
表4基因关联SSR引物e-PCR扩增位点统计
Table 4Statistics of gene-associated SSR primer amplified in peanut genome by e-PCR
DNA模板
DNA template
扩增位点
Amplified loci
有效扩增位点
Effective amplified loci
引物扩增位点统计 Primer amplified loci statistics有效引物数
Number of effective primer pairs
123>3
A.duranensis47604468
(93.86%)
3721
(93.75%)
152
(3.83%)
47
(1.18%)
49
(1.23%)
3969
(67.74%)
A.ipaensis52644929
(93.64%)
3866
(91.33%)
249
(5.88%)
52
(1.23%)
66
(1.56%)
4233
(72.25%)
A.hypogaea1081810188
(94.17%)
1477
(28.54%)
3221
(62.24%)
252
(4.87%)
225
(4.35%)
5175
(88.33%)

新窗口打开|下载CSV

图2

新窗口打开|下载原图ZIP|生成PPT
图2基因关联SSR标记在基因组中的扩增分布

Fig. 2Amplification site distribution of gene-associated SSR markers in peanut genome



图3

新窗口打开|下载原图ZIP|生成PPT
图3花生SSR标记位点物理图谱

红线表示基因,蓝线表示正义链上的SSR位点,绿线表示负义链上的SSR位点
Fig. 3Physical map of SSR markers in peanut genome

The red line represents for peanut genes, the blue line represent for SSR locus located on the positive chain, the green line represent for SSR locus located on the negative chain


图4

新窗口打开|下载原图ZIP|生成PPT
图4花生青枯病抗性相关QTL定位

红线表示基因,蓝线表示正义链上的SSR位点,绿线表示负义链上的SSR位点
Fig. 4QTL analysis of bacteria wilt resistance in peanut

The red line represent for peanut genes, the blue line represent for SSR locus located on the positive chain, the green line represent for SSR locus located on the negative chain


2.6 SSR标记扩增及多态性分析

随机合成了38对SSR引物在栽培种花生基因组中进行扩增验证,在远杂9102和花育910基因组中共有35对(92.1%)SSR引物可以扩增出清晰的条带,其中有11对(28.9%)SSR引物在2个品种间扩增出差异条带,有3个SSR标记为显性标记,在2个花生品种中表现为条带有无的多态性(图5)。表明开发的基因关联SSR引物在花生基因组中具有较高的扩增效率和较好的多态性。

图5

新窗口打开|下载原图ZIP|生成PPT
图5随机SSR引物在花生品种远杂9102和花育910中的扩增情况(部分)

M:Marker;Y:远杂9102;H:花育910。13—24:SSR引物A05D8UNY-1-1、A0686JNN-1-1、A06R0Z7V-1-1、A06RB83Y-1-1、A076T298-1-1、A07F0Y1Z-1-1、A07F4DXF-1-1、A08648HW-2-1、A089H31H-1-1、A08A0WFX-1-1、A091GS41-1-1、A09D2340-1-1
Fig. 5Randomly SSR markers amplification in Yuanza 9102 and Huayu 910 (part)

M: Marker; Y: Yuanza 9102; H: Huayu 910. 13-24: SSR marker A05D8UNY-1-1, A0686JNN-1-1, A06R0Z7V-1-1, A06RB83Y-1-1, A076T298-1-1, A07F0Y1Z-1-1, A07F4DXF-1-1, A08648HW-2-1, A089H31H-1-1, A08A0WFX-1-1, A091GS41-1-1, A09D2340-1-1


3 讨论

栽培种花生(2n=AABB)来源于数百万年前野生花生A.duranensis(2n=AA)和A. ipaensis(2n=BB)间的自然杂交、加倍事件,已有研究表明野生花生A基因组和B基因组具有高度的共线性和一致性[54]。本研究开发的基因关联SSR引物中,共有62.24%(3 221对)的有效引物具有2个有效扩增位点,且大部分引物扩增的位点分别分布于栽培种花生A基因组和B基因组的同源染色体上,如引物A0101UKP-1-1的2个扩增位点,定位到A01和B01染色体上的一对等位基因Aradu.01UKP.1Araip.K30076.1的基因序列上;且这些引物可以同时在野生花生A、B基因组上有效扩增。栽培种花生SSR标记的这些特性也进一步印证了花生A、B基因组的高度同源性。

SSR标记已广泛的应用于作物的遗传多样性分析、指纹图谱构建、杂种鉴定、遗传图谱构建、基因挖掘和育种实践中。来源于转录组的SSR直接与功能基因的表达相关,鉴定转录组中与基因直接关联的SSR位点,开发与基因关联的SSR标记,对于研究基因的等位变异及变异对功能的影响、重要性状关联的基因挖掘和精细定位具有重要意义[55]。本研究鉴定了13 477个可进行引物设计的SSR位点,并对5 020条基因转录本中5 859个SSR位点进行了引物设计和电子PCR检测,进一步丰富了花生SSR标记,为基于分子标记的花生研究提供了可利用的资源。其中有1 147个基因关联SSR标记e-PCR检测只有一个扩增位点,具有一定的特异性,这些SSR标记经进一步鉴定,有可能开发成基因的特征标记,应用于基因在不同种质中的等位变异研究和基因的功能变异研究。

当前,尽管一批栽培种花生重要性状相关QTL被鉴定出来,为花生分子标记辅助育种奠定了基础;但实际上,进入育种应用分子标记的还较少,最主要的原因是鉴定的QTL的遗传距离还较大,标记与基因间的连锁还不够紧密,在实际运用中存在目标性状丢失的风险[36]。利用SSR位点物理图谱和QTL两端标记在基因上的位置,可以获得对区间加密的SSR标记信息。作者前期利用花生抗、感青枯病亲本远杂9102×徐州68-4构建的RIL群体,在B02连锁群上鉴定出一个稳定的QTL qBWRB02.1(或qBWRB02.4,标记区间为AGGS1592-AHTE0775),表型变异解释率为6.91%—18.68%[56]。根据标记AGGS1592、GM2196(AHTE0775相邻连锁标记)在基因组上的位置信息,将qBWRB02.1定位于B02染色体5.53 Mb区域(包含402个基因),根据SSR位点物理图谱,在此区间包含80个基因关联的SSR标记(图4)。利用这些SSR标记可对该位点区间进行加密,对花生青枯病抗性基因的进行精细定位,从而大大减少候选基因的数量,为目的基因的图位克隆奠定基础。

4 结论

鉴定了13 477个可进行标记开发的SSR位点,开发、检测了5 859个基因相关SSR标记,在栽培种花生基因组中具有较高的扩增效率,并构建了基因相关SSR位点的物理图谱。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

尹亮, 李双铃, 任艳, 石延茂, 袁美 . 42个花生品种的SSR标记指纹图谱构建
花生学报, 2017,46(1):8-13.

[本文引用: 1]

YIN L, LI S L, REN Y, SHI Y M, YUAN M . Construction of molecular fingerprint for 42 peanut varieties using SSR markers
Journal of Peanut Science, 2017,46(1):8-13. (in Chinese)

[本文引用: 1]

任小平, 郑艳丽, 黄莉, 陈玉宁, 周小静, 陈伟刚, 雷永, 晏立英, 万丽云, 廖伯寿, 姜慧芳 . 花生SSR核心引物筛选及育成品种DNA指纹图谱构建
中国油料作物学报, 2016,38(5):563-571.

[本文引用: 2]

REN X P, ZHENG Y L, HUANG L, CHEN Y N, ZHOU X J, CHEN W G, LEI y, YAN L Y, WAN L Y, LIAO B S, JIANG H F . Selection of core SSR markers and identification of fingerprint on peanut cultivars
Chinese Journal of Oil Crop Sciences, 2016,38(5):563-571. (in Chinese)

[本文引用: 2]

REN X P, JIANG H F, YAN Z, CHEN Y, ZHOU X, HUANG L, LEI Y, HUANG J, YAN L, QI Y, WEI W, LIAO B S . Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers
PLoS ONE, 2014,9(2):e88091.

[本文引用: 1]

JIANG H F, REN X P, CHEN Y N, HUANG L, ZHOU X J, HUANG J, FROENICKE L, YU J, GUO B, LIAO B S . Phenotypic evaluation of the Chinese mini-mini core collection of peanut (Arachis hypogaea L.) and assessment for resistance to bacterial wilt disease caused by Ralstonia solanacearum
Plant Genetic Resources, 2013,11(1):77-83.

[本文引用: 1]

JIANG H F, HUANG L, REN X P, CHEN Y N, ZHOU X, XIA Y, HUANG J, LEI Y, YAN L Y, WAN L, LIAO B S . Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) mini‐core collection
Journal of Integrative Plant Biology, 2014,56(2):159-169.

[本文引用: 1]

HUANG L, REN X P, WU B, LI X, CHEN W, ZHOU X, CHEN Y, PANDEY M K, JIAO Y, LUO H, LEI Y, VARSHNEY R K, LIAO B S, JIANG H F . Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.)
Scientific Reports, 2016,6:39478.

[本文引用: 3]

LUO H, PANDEY M K, KHAN A W, GUO J, WU B, CAI Y, HUANG L, ZHOU X, CHEN Y, CHEN W, LIU N, LEI Y, LIAO B, VARSHNEY R K, JIANG H . Discovery of genomic regions and candidate genes controlling shelling percentage using QTL‐seq approach in cultivated peanut (Arachis hypogaea L.)
Plant Biotechnology Journal, 2019,17(7):1248-1260.

[本文引用: 2]

LUO H, REN X, LI Z, XU Z, LI X, HUANG L, ZHOU X, CHEN Y, CHEN W, LEI Y, LIAO B, PANDEY M K, VARSHNEY R K, GUO B, JIANG X, LIU F, JIANG H F . Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.)
BMC Genomics, 2017,18(1):58.

[本文引用: 2]

LUO H, XU Z, LI Z, LI X, LV J, REN X, HUANG L, ZHOU X, CHEN Y, YU J, CHEN W, LEI Y, LIAO B, JIANG H . Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut( Arachis hypogaea L.)
Theoretical and Applied Genetics, 2017,130(8):1635-1648.

[本文引用: 2]

VARSHNEY R K, THUNDI M, MAY G D, JACKSON S A . Legume genomics and breeding
Plant Breeding Reviews, 2010,33:257-304.

[本文引用: 1]

VARSHNEY R K, PANDEY M K, JANILA P, NIGAM S N, SUDINI H, GOWDA M V, SRISWATHI M, RADHAKRISHNAN T, MANOHAR S S, NAGESH P . Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.)
Theoretical and Applied Genetics, 2014,127(8):1771-1781.

[本文引用: 1]

CHU Y, WU C L, HOLBROOK C C, TILLMAN B L, PERSON G, OZIAS-AKINS P . Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut
The Plant Genome, 2011,4(2):110-117.

[本文引用: 1]

SUKRUTH M, PARATWAGH S A, SUJAY V, KUMARIM V, GOWDA M V C, NADAF H L, MOTAGI B N, LINGARAJU S, PANDEY M K, VARSHNEY R K, BHAT R S . Validation of markers linked to late leaf spot and rust resistance, and selection of superior genotypes among diverse recombinant inbred lines and backcross lines in peanut (Arachis hypogaea L.)
Euphytica, 2015,204(2):343-351.

[本文引用: 1]

JANILA P, VARIATH M T, PANDEY M K, DESMAE H, MOTAGI B N, OKORI P, MANOHAR S S, RATHNAKUMAR A L, RADHAKRISHNAN T, LIAO B, VARSHNEY R K . Genomic tools in groundnut breeding program: Status and perspectives
Frontiers in Plant Science, 2016,7:289.

[本文引用: 1]

HOPKINS M S, CASA A M, WANG T, MITCHELL S E, DEAN R E, KOCHERT G D, KRESOVICH S . Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut
Crop Science, 1999,39(4):1243-1247.

[本文引用: 1]

HE G, MENG R, NEWMAN M, GAO G, PITTMAN R N, PRAKASH C S . Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.)
BMC Plant Biology, 2003,3(1):3.

[本文引用: 1]

FERGUSON M E, BUROW M D, SCHULZE S R, BRAMEL P J, PATERSON A H, KRESOVICH S, MITCHELL S . Microsatellite identification and characterization in peanut (Arachis hypogaea L.)
Theoretical and Applied Genetics, 2004,108(6):1064-1070.

[本文引用: 1]

MORETZSOHN M D C, HOPKINS M S, MITCHELL S E, KRESOVICH S, VALLS J F M, FERREIRA M E . Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome
BMC Plant Biology, 2004,4(1):11.

[本文引用: 1]

MORETZSOHN M C, LEOI L, PROITE K GUIMAR?ES P M, LEAL-BERTIOLI S C M, GIMENES M A, MARTINS W S, VALLS J F M, GRATTAPAGLIA D, BERTIOLI D J . A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae)
Theoretical and Applied Genetics, 2005,111(6):1060-1071.

[本文引用: 1]

CUC L M, MACE E S, CROUCH J H, QUANG V D, LONG T D, VARSHNEY R K . Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea)
BMC Plant Biology, 2008,8(1):55.

[本文引用: 1]

YUAN M, GONG L, MENG R, LI S, DANG P, GUO B, HE G . Development of trinucleotide (GGC)n SSR markers in peanut (Arachis hypogaea L.)
Electronic Journal of Biotechnology, 2010,13(6):5-6.

[本文引用: 1]

SHIRASAWA K, KOILKONDA P, AOKI K, HIRAKAWA H, TABATA S, WATANABE M, HASEGAWA M, KIYOSHIMA H, SUZUKI S, KUWATA C, NAITO Y, KUBOYAMA T, NAKAYA A, SASAMOTO S, WATANABE A, KATO M, KAWASHIMA K, KISHIDA Y, KOHARA M, KURABAYASHI A, TAKAHASHI C, TSURUOKA H, WADA T, ISOBE S . In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut
BMC Plant Biology, 2012,12(1):80.

[本文引用: 1]

MACEDO S E, MORETZSOHN M C, M LEAL-BERTIOLI S C, ALVES D M, GOUVEA E G, AZEVEDO V C, BERTIOLI D J . Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut
BMC Research Notes, 2012,5(1):86.

[本文引用: 1]

WANG H, PENMETSA R V, YUAN M, GONG L, ZHAO Y, GUO B, FARMER A D, ROSEN B D, GAO J, ISOBE S, BERTIOLI D J, VARSHNEY R K, COOK D R, HE G . Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.)
BMC Plant Biology, 2012,12(1):10.

[本文引用: 1]

LUO M, DANG P, GUO B Z, HE G, HOLBROOK C C, BAUSHER M G, LEE R D . Generation of expressed sequence tags (ESTs) for gene discovery and marker development in cultivated peanut
Crop Science, 2005,45(1):346-353.

[本文引用: 1]

PROITE K, LEAL-BERTIOLI S C, BERTIOLI D J, MORETZSOHN M C, SILVA F R D, MARTINS N F, GUIMAR?ES P M . ESTs from a wild Arachis species for gene discovery and marker development
BMC Plant Biology, 2007,7(1):7.

[本文引用: 1]

LIANG X, CHEN X, HONG Y, LIU H, ZHOU G, LI S, GUO B . Utility of EST-derived SSR in cultivated peanut (Arachis hypogaea L.) and Arachis wild species
BMC Plant Biology, 2009,9(1):35.

[本文引用: 1]

WANG J, PAN L, YANG Q, YU S . Development and characterization of EST-SSR markers from NCBI and cDNA library in cultivated peanut ( Arachis hypogaea L.)
Legume Genomics and Genetics, 2010,1(6):30-33.

[本文引用: 1]

KOILKONDA P, SATO S, TABATA S, SHIRASAWA K, HIRAKAWA H, SAKAI H, SASAMOTO S, WATANABE A, WADA T, KISHIDA Y, TSURUOKA H, FUJISHIRO T, YAMADA M, KOHARA M, SUZUKI S, HASEGAWA M, KIYOSHIMA H, ISOBE S . Large-scale development of expressed sequence tag-derived simple sequence repeat markers and diversity analysis in Arachis spp
Molecular Breeding, 2012,30(1):125-138.

[本文引用: 1]

GUO Y, KHANAL S, TANG S, BOWERS J E, HEESACKER A F, KHALILIAN N, NAGY E D, ZHANG D, TAYLOR C A, STALKER H T, OZIAS-AKINS P, KNAPP S J . Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A-and B-genome diploid species of peanut
BMC Genomics, 2012,13(1):608.

[本文引用: 1]

BOSAMIA T C, MISHRA G P, THANKAPPAN R, DOBARIA J R . Novel and stress relevant EST derived SSR markers developed and validated in peanut
PLoS ONE, 2015,10(6):e0129127.

[本文引用: 1]

HUANG L, WU B, ZHAO J, LI H, CHEN W, ZHENG Y, REN X, CHEN Y, ZHOU X, LEI Y, LIAO B, JIANG H . Characterization and transferable utility of microsatellite markers in the wild and cultivated Arachis species
PLoS ONE, 2016,11(5):e0156633.

[本文引用: 1]

ZHANG J, LIANG S, DUAN J, WANG J, CHEN S, CHENG Z, ZHANG Q, LIANG X, LI Y . De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut ( Arachis hypogaea L.)
BMC Genomics, 2012,13(1):90.

[本文引用: 1]

PENG Z, GALLO M, TILLMAN B L, ROWLAND D, WANG J . Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut ( Arachis hypogaea L.)
Molecular Genetics and Genomics, 2016,291(1):363-381.

[本文引用: 1]

WANG H M, LEI Y, YAN L Y, WAN L Y, CAI Y, YANG Z F, Lü J W, ZHANG X J, XU C W, LIAO B S . Development and validation of simple sequence repeat markers from Arachis hypogaea transcript sequences
The Crop Journal, 2018,2(6):172-180.

[本文引用: 1]

ZHAO C, QIU J, AGARWAL G, WANG J, REN X, XIA H, GUO B, MA C, WAN S, BERTIOLI D J, VARSHNEY R K, PANDEY M K, WANG X . Genome-wide discovery of microsatellite markers from diploid progenitor species,Arachis duranensis and A. ipaensis, and their application in cultivated peanut(A. hypogaea)
Frontiers in Plant Science, 2017,8:1209.

[本文引用: 2]

王玉龙, 黄冰艳, 王思雨, 杜培, 齐飞艳, 房元瑾, 孙子淇, 郑峥, 董文召, 张新友 . 四倍体野生种花生A.monticola全基因组SSR的开发与特征分析
中国农业科学, 2019,52(15):2567-2580.

URL [本文引用: 1]

WANG Y L, HUANG B Y, WANG S Y, DU P, QI F Y, FANG Y J, SUN Z Q, ZHENG Z, DONG W Z, ZHANG X Y . Development and characterization of whole genome SSR in tetraploid wild peanut (Arachis monticola).
Scientia Agricultura Sinica, 2019,52(15):2567-2580. (in Chinese)

URL [本文引用: 1]

HE G, WOULLARD F E, MARONG I, GUO B Z . Transferability of soybean SSR markers in peanut ( Arachis hypogaea L.)
Peanut Science, 2006,33(1):22-28.

[本文引用: 1]

张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿 . 利用回交和标记辅助选择快速培育高油酸花生品种及其评价
中国农业科学, 2018,51(9):1641-1652.

URL [本文引用: 1]

ZHANG Z H, WANG Z H, HUAI D X, TAN J Z, CHEN J H, YAN L Y, WANG X J, WAN L Y, CHEN A, KANG Y P, JIANG H F, LEI Y, LIAO B S . Fast development of high oleate peanut cultivars by using marker-assisted backcrossing and their evaluation
Scientia Agricultura Sinica, 2018,51(9):1641-1652. (in Chinese)

URL [本文引用: 1]

J, LIU N, GUO J, XU Z, LI X, LI Z, LUO H, REN X, HUANG L, ZHOU X, CHEN Y, CHEN W, LEI Y, TU J, JIANG H, LIAO B . Stable QTLs for plant height on chromosome A09 identified from two mapping populations in peanut ( Arachis hypogaea L.)
Frontiers in Plant Science, 2018,9:684.

[本文引用: 1]

HUANG L, HE H, CHEN W, REN X, CHEN Y, ZHOU X, XIA Y, WANG X, JIANG X, LIAO B, JIANG H . Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut ( Arachis hypogaea L.)
Theoretical and Applied Genetics, 2015,128(6):1103-1115.



PANDEY M K, UPADHYAYA H D, RATHORE A, VADEZ V, SHESHSHAYEE M S, SRISWATHI M, GOVIL M, KUMAR A, GOWDA M V, SHARMA S, HAMIDOU F, KUMAR V A, KHERA P, BHAT R S, KHAN A W, SINGH S, LI H, MONYO E, NADAF H L, MUKRI G, JACKSON S A, GUO B, LIANG X, VARSHNEY R K . Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world
PLoS ONE, 2014,9(8):e105228.

[本文引用: 1]

ZHAO J, HUANG L, REN X, PANDEY M K, WU B, CHEN Y, ZHOU X, CHEN W, XIA Y, LI Z, LUO H, LEI Y, VARSHNEY R K, LIAO B, JIANG H . Genetic variation and association mapping of seed-related traits in cultivated peanut ( Arachis hypogaea L.) using single-locus simple sequence repeat markers
Frontiers in Plant Science, 2017,8:2105.

[本文引用: 1]

SHIRASAWA K, KOILKONDA P, AOKI K, HIRAKAWA H, TABATA S, WATANABE M, HASEGAWA M, KIYOSHIMA H, SUZUKI S, KUWATA C, NAITO Y, KUBOYAMA T, NAKAYA A, SASAMOTO S, WATANABE A, KATO M, KAWASHIMA K, KISHIDA Y, KOHARA M, KURABAYASHI A, TAKAHASHI C, TSURUOKA H, WADA T, ISOBE S . In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut
BMC Plant Biology, 2012,12(1):80.

[本文引用: 1]

RAVI K, VADEZ V, ISOBE S, MIR R R, GUO Y, NIGAM S N, GOWDA M V, RADHAKRISHNAN T, BERTIOLI D J, KNAPP S J, VARSHNEY R K . Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut ( Arachis hypogaea L.)
Theoretical and Applied Genetics, 2011,122(6):1119-1132.

[本文引用: 1]

KHEDIKAR Y P, GOWDA M V, SARVAMANGALA C, PATGAR K V, UPADHYAYA H D, VARSHNEY R K . A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut ( Arachis hypogaea L.)
Theoretical and Applied Genetics, 2010,121(5):971-984.

[本文引用: 1]

洪彦彬, 温世杰, 钟旎, 李杏瑜, 朱方何, 梁炫强 . SSR标记与花生青枯病、锈病抗性的相关性研究
广东农业科学, 2011(s1):61-63.

[本文引用: 1]

HONG Y B, WEN S J, ZHONG N, LI X Y, ZHU F H, LIANG X Q . Correlation analysis of SSR markers with bacterial wilt and rust resistance of peanut(Arachis hypogaea L.). Guangdong Agricultural Sciences, 2011(s1):61-63. (in Chinese)
[本文引用: 1]

王韵, 徐正进, 陈温福, 赵明辉, 方萍 . 辽宁水稻直立穗型基因位点SSR标记变异分析
沈阳农业大学学报, 2007,38(3):395-397.

[本文引用: 1]

WANG Y, XU Z J, CHEN W F, ZHAO M H, FANG P . Characteristic of alleles at RM5833-11 locus associated with erect panicle gene of Liaoning rice accesions
Journal of Shengyang Agricultural University, 2007,38(3):395-397. (in Chinese)

[本文引用: 1]

王文辉, 邱丽娟, 常汝镇, 马凤鸣, 谢华, 林凡云 . 中国大豆种质抗SCN基因rhg1位点SSR标记等位变异特点分析
大豆科学, 2003,22(4):246-250.

[本文引用: 1]

WANG W H, QIU L J, CHANG R Z, MA F M, XIE H, LIN F Y . Characteristics of alleles at satt309 locus associated with rhg1 gene resistant to SCN for Chinese soybean germplasm
Soybean Science, 2003,22(4):246-250. (in Chinese)

[本文引用: 1]

杨留启, 杨文鹏, 牛素贞, 王明春 . 玉米O2和Wx基因内及O16基因连锁SSR位点的等位变异研究
玉米科学, 2009,17(3):10-14.

[本文引用: 1]

YANG L Q, YANG W P, NIU S Z, WANG M C . Allelic variations of SSR sites within opaque-2 and Wx gene and linkage opaque-16 gene in maize
Journal of Maize Sciences, 2009,17(3):10-14. (in Chinese)

[本文引用: 1]

JOSH C, CHU Y, SCHEFFLER B, OZIAS-AKINS P . A developmental transcriptome map for allotetraploid Arachis hypogaea
Frontiers in Plant Science, 2016,7:1446.

[本文引用: 1]

DENG P, WANG M, FENG K, CUI L, TONG W, SONG W, NIE X . Genome-wide characterization of microsatellites in Triticeae species: Abundance, distribution and evolution
Scientific Reports, 2016,6:32224.

[本文引用: 1]

CHEN C, XIA R, CHEN H, HE Y . TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface
BioRxiv, 2018: 289660.

[本文引用: 1]

BERTIOLI D J, CANNON S B, FROENICKE L, HUANG G, FARMER A D, CANNON E K, LIU X, GAO D, CLEVENGER J, DASH S, REN L, MORETZSOHN M C, SHIRASAWA K, HUANG W, VIDIGAL B, ABERNATHY B, CHU Y, NIEDERHUTH C E, UMALE P ARAúJO A C, KOZIK A, KIM K D, BUROW M D, VARSHNEY R K, WANG X, ZHANG X, BARKLEY N, GUIMAR?ES P M, ISOBE S, GUO B, LIAO B, STALKER H T, SCHMITZ R J, SCHEFFLER B E, LEAL-BERTIOLI S C, XUN X, JACKSON S A, MICHELMORE R, OZIAS-AKINS P . The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut
Nature Genetics, 2016,48(4):438.

[本文引用: 1]

陈竟男, 马晓兰, 王振, 李仕金, 谢皓, 叶兴国, 林志珊 . 基于簇毛麦No.1026转录组的SSR序列分析及其PCR标记开发
中国农业科学, 2019,52(1):1-10.

URL [本文引用: 1]

CHEN J N, MA X L, WANG Z, LI S J, XIE H, YE X G, LIN Z S . SSR sequences and development of PCR markers based on transcriptome of Dasypyrum villosum No.1026.
Scientia Agricultura Sinica, 2019,52(1):1-10. (in Chinese)

URL [本文引用: 1]

徐志军 . 花生青枯病抗性相关的QTL分析
[D]. 北京: 中国农业科学院, 2016.

[本文引用: 1]

XU Z J . Quantitative trait locus analysis of bacterial wilt resistance in peanut (Arachis hypogaea)
Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)

[本文引用: 1]

相关话题/基因 鉴定 设计 序列 数据