Research Progress of Omics Technologies in Cow Mastitis
LI GuangDong1, Lü DongYing1, TIAN XiuZhi2, JI PengYun1, GUO JiangPeng3, LU YongQiang3, LIU GuoShi,11 College of Animal Science and Technology,China Agriculture University,Beijing 100193 2 Institute of Animal Sciences,Chinese Academy of Agricultural Sciences,Beijing 100193 3 Beijing Animal Husbandry Station,Beijing 100101
Abstract Dairy mastitis, a common and complex disease with a high incidence, takes its toll on the development of world dairy industry, brings economic losses of billions of dollars per year. Clinical and subclinical mastitis, caused by pathogens such as Staphylococcus aureus, Escherichia coli and Streptococcus agalactiae, posed a huge security risk to milk industry. In recent years, with the continuous breakthrough of sequencing technology and decline of sequencing cost, the research of life science has entered into the Omics era. The traditional methods such as histopathological screening, somatic cell counting, milk PH value detection, detection of milk conductivity, enzyme activity test, infrared thermal imaging can be employed for clinical diagnosis of dairy cow mastitis, but these methods are not powerful enough to elucidate the pathogenesis in a cellular or molecular view. Omics technologies are mainly composed of genomics, proteomics and metabolomics. Genomics can not only reveal the phenotypic variation and genetic basis of the complex trait of dairy mastitis at the transcriptional level, but also reveal the molecular patterns of the mastitis from the aspects of transcriptional regulation (miRNAs, LncRNAs, etc.) and epigenetic modification (DNA methylation, histone modification, etc.). Genomic analysis of mastitis can also dig out the related changes of DNA, RNA and the rules of multi-molecule interaction, which accounts for a better understanding of the immune mechanism of the host against the pathogen, so as to screen and identify the signal pathways and key candidate genes of mastitis resistance, thus improving the accuracy of genome prediction or selection. Proteomics can not only compare milk protein type and abundance but also analyze protein interaction and post-translational modification in breast tissues under different states and environments. The differentially expressed proteins are annotated by COG (Cluster of Orthologous Groups of protein) function followed by database comparison, GO and Pathway enrichment analysis, which help bring to light the complex regulatory mechanism of mastitis occurrence and defense process at protein level. Proteomic analysis can also be used to find molecular marker of mastitis diagnosis, which will provide a potential precise target for the development of therapeutic drugs. Metabolomics, an important part of the system biology, can detect metabolites of low molecular weight (such as amino acids, lipids, carbohydrates, etc.) of the specific tissues or organs in specific environment or specific physiological states. Efficient qualitative and quantitative analysis will elucidate the relevant metabolic pathways. As the ultimate downstream of gene expression, metabolomics technology enables small changes in gene expression and protein synthesis to be amplified at metabolite levels to fully reflect cellular functions, whose application in dairy mastitis will be able to identify related biomarkers and reveal the physiological and pathological changes of dairy breasts. In conclusion, applying Omics or multi-Omics association analysis techniques to mastitis can further reveal the pathogenic defense mechanism, which will provide valuable reference for disease prediction, diagnosis and treatment. This paper reviews the latest research progress about application of Omics in the field of cow mastitis, aiming to provide solid theoretical bases and practical references for cow health and safety of dairy industry in China. Keywords:Omics;cow;mastitis
PDF (392KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 李广栋, 吕东颖, 田秀芝, 姬鹏云, 郭江鹏, 路永强, 刘国世. 组学技术在奶牛乳房炎上应用的相关研究进展[J]. 中国农业科学, 2019, 52(2): 350-358 doi:10.3864/j.issn.0578-1752.2019.02.013 LI GuangDong, Lü DongYing, TIAN XiuZhi, JI PengYun, GUO JiangPeng, LU YongQiang, LIU GuoShi. Research Progress of Omics Technologies in Cow Mastitis[J]. Scientia Acricultura Sinica, 2019, 52(2): 350-358 doi:10.3864/j.issn.0578-1752.2019.02.013
MANSOR等[37]利用毛细管电泳质谱法(CE-MS)对健康奶牛和患临床乳房炎的奶牛乳样进行了蛋白质组学分析,结果显示和对照组相比,患病组的β-乳球蛋白、αS1-酪蛋白、β-酪蛋白、乳过氧化物酶、骨桥蛋白、白细胞介素4受体、成纤维细胞生长因子结合蛋白和糖基化依赖性细胞粘附分子-1差异显著,另外还发现αS1-酪蛋白、β酪蛋白和微管α-1C链蛋白可以作为区分由革兰氏阴性菌(如大肠杆菌等)和革兰氏阳性菌(如金黄色葡萄球菌等)所致奶牛乳房炎的生物标记物。ZHAO等[38]则利用二维凝胶电泳和无标记定量分析技术对正常奶牛和由大肠杆菌诱导的患乳房炎的奶牛乳腺组织进行了比较蛋白质组分析,通过绘制差异蛋白互作网络发现了波形蛋白和α-烯醇化酶为蛋白调控网络的中心,进而成功揭示了机体在应对大肠杆菌入侵乳腺时的防御机制。JACOB等[39]则利用液相色谱-质谱联用(LC-MS)结合二维凝胶电泳和Western Blot技术对隐性乳房炎奶牛和健康奶牛的乳样中乳清蛋白成分进行了组学分析,结果发现在乳房炎早期?蛋白胨-3前体、胰蛋白酶前体、补体成分-c3、免疫球蛋白重链前体、C型凝集素等差异十分显著,并且确定了补体C3a可以作为诊断奶牛隐性乳房炎的潜在标记物。而HUANG等[40]利用同位素标记相对绝对定量(isobaric tags for relative and absolute quantification,iTRAQ)技术和二维液相色谱-串联质谱法(2D-LC- MS/MS)并结合生物信息学分析了由金黄色葡萄球菌导致的奶牛乳房炎感染盛期乳腺组织的蛋白组,结果发现和对照组相比,I型胶原-α1(COL1A1)和间α-球蛋白抑制剂H4(ITIH4)在感染后的乳腺组织中显著上调,并且最终通过免疫印迹和免疫组化得到了证实,这为奶牛乳房炎的精准医疗提供了新的靶点。综上所述,蛋白质作为中心法则的重要核心,无论是DNA还是RNA最终都要通过蛋白质来行使其功能,因此,在奶牛乳房炎中蛋白质组学的应用可以更加直观的描绘出相关的抗病机制。
THOMPSON-CRISPIK, ATALLAH, MIGLIORF, MALLARD BA . Bovine mastitis: frontiers in immunogenetics , 2014,5:493. [本文引用: 1]
GODDEN SM, ROYSTERE, KNAUERW, SORGJ, LOPEZ- BENAVIDESM, SCHUKKENY, LEIBOWITZS, FRENCH EA . Randomized noninferiority study evaluating the efficacy of a postmilking teat disinfectant for the prevention of naturally occurring intramammary infections , 2016,99(5):3675-3687. DOI:10.3168/jds.2015-10379URL [本文引用: 1]
DAHL MO, MAUNSELL FP, DE VRIESA, GALVAO KN, RISCO CA, HERNANDEZ JA . Evidence that mastitis can cause pregnancy loss in dairy cows: A systematic review of observational studies , 2017,100(10):8322-8329. DOI:10.3168/jds.2017-12711URL [本文引用: 1]
FRANCOZD, WELLEMANSV, DUPRé JP, ROY JP, LABELLEF, LACASSEP, DUFOURS . Invited review: A systematic review and qualitative analysis of treatments other than conventional antimicrobials for clinical mastitis in dairy cows , 2017,100(10):7751-7770. DOI:10.3168/jds.2016-12512URL [本文引用: 1]
PILLAR, MALVISIM, SNEL GG, SCHWARZD, K?NIGS, CZERNY CP, PICCININIR . Differential cell count as an alternative method to diagnose dairy cow mastitis , 2013,96(3):1653-1660. DOI:10.3168/jds.2012-6298URL [本文引用: 1]
HERTL JA, SCHUKKEN YH, WELCOME FL, TAUER LW, GR?HN YT . Pathogen-specific effects on milk yield in repeated clinical mastitis episodes in Holstein dairy cows , 2014,97(3):1465-1480. DOI:10.3168/jds.2013-7266URL [本文引用: 1]
REYESJ, CHAFFERM, SANCHEZJ, TORRESG, MACIASD, JARAMILLOM, DUQUE PC, CEBALLOSA, KEEFE GP . Targeting human pathogenic bacteria by siderophores A proteomics review , 2015,98(8):5294-5303. DOI:10.3168/jds.2014-9199URL [本文引用: 1]
ROWBOTHAM RF, RUEGG PL . Associations of selected bedding types with incidence rates of subclinical and clinical mastitis in primiparous Holstein dairy cows , 2016,99(6):4707-4717. DOI:10.3168/jds.2015-10675URL [本文引用: 1]
TAPONENS, LISKIE, HEIKKIL? AM, PY?R?L?S . Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci,Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli , 2017,100(1):493-503. [本文引用: 1]
GAOJ, BARKEMA HW, ZHANGL, LIUG, DENGZ, CAIL, SHANR, ZHANGS, ZOUJ, KASTELIC JP, HANB . Incidence of clinical mastitis and distribution of pathogens on large Chinese dairy farms , 2017,100(6):4797-4806. DOI:10.3168/jds.2016-12334URL [本文引用: 1]
HERRYV, GITTONC, TABOURETG, RéPéRANTM, FORGEL, TASCAC, GILBERT FB, GUITTONC, STAUBC, SMITH DG, GERMONP, FOUCRASG, RAINARDP 。 Local immunization impacts the response of dairy cows to Escherichia coli mastitis , 2017,7(1):3441. [本文引用: 1]
SANTOS RI, ZUNINO PM, GIL AD, LAPORTA, HIRIGOYEN DJ . Antibiotic resistance of Staphylococcus aureus associated with subclinical and clinical mastitis in Uruguay during an eight-year period , 2017,49(3):191-194. [本文引用: 1]
LEELAHAPONGSATHONK, SCHUKKEN YH, PINYOPUMMINTRT, SURIYASATHAPORNW . Comparison of transmission dynamics between Streptococcus uberis and Streptococcus agalactiae intramammary infections , 2016,99(2):1418-1426. [本文引用: 1]
FERREIRAD, SECA A MC G A D, SECA AM . Targeting human pathogenic bacteria by siderophores: A proteomics review , 2016,145:153-166. DOI:10.1016/j.jprot.2016.04.006URL [本文引用: 1]
TALWARD, TSENG TS, FOSTERM, XUL, CHEN LS . Genetics/genomics education for nongenetic health professionals: a systematic literature review , 2017,19(7):725-732. DOI:10.1038/gim.2016.156URL [本文引用: 1]
SUN YH, XU CC, LI CS, XIAC, XUC, WUL, ZHANG HY . 1H NMR-based serum Metabolomics analysis of dairy cows with milk fever Scientia Agricultura Sinica, 2015,48(2):362-369. (in Chinese) [本文引用: 1]
LI YJ, WANG DS, ZHANG SD, YAN ZT, YANG ZQ, DU YL, DONG SW, HE BX . Plasma metabolic profiling analysis of dairy cows with laminitis based on GC-MS Scientia Agricultura Sinica, 2016,49(21):4255-4264. (in Chinese) [本文引用: 1]
GOLDANSAZ SA, GUO AC, SAJEDT, STEELE MA, PLASTOW GS, WISHART DS . Livestock metabolomics and the livestock metabolome: A systematic review , 2017,12(5):e0177675. DOI:10.1371/journal.pone.0177675URL [本文引用: 1]
GUILLEMINN, HORVATI?A, KULE?J, GALANA, MRLJAKV, BHIDEM . Omics approaches to probe markers of disease resistance in animal sciences , 2016,12(7):2036-2046. DOI:10.1039/C6MB00220JURL [本文引用: 1]
XUC, ZHU KL, CHEN YY, YANGW, XIAC, ZHANG HY, WUL, SHUS, SHEN TY, YU HJ, XU QS, ZHANG ZY . Isolation identification and bioinformatics of differences protein in plasma of cows suffer from fatty liver with SELDI-TOF-MS techniques Scientia Agricultura Sinica, 2016,49(8):1585-1598. (in Chinese) [本文引用: 1]
THOMAS FC, MULLENW, TASSIR, RAMíREZ-TORRESA, MUDALIARM, MCNEILLY TN, ZADOKS RN, BURCHMORER, ECKERSALL PD . Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 1. High abundance proteins, acute phase proteins and peptidomics , 2016,12(9):2735-2747. [本文引用: 1]
MUDALIARM, TASSIR, THOMAS FC, MCNEILLY TN, WEIDT SK, MCLAUGHLINM, WILSOND, BURCHMORER, HERZYKP, ECKERSALL PD, ZADOKS RN . Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 2. Label-free relative quantitative proteomics , 2016,12(9):2748-2761. [本文引用: 1]
MANSORR, MULLENW, ALBALATA, ZEREFOSP, MISCHAKH, BARRETT DC, BIGGSA, ECKERSALL PD . A peptidomic approach to biomarker discovery for bovine mastitis , 2013,85:89-98. DOI:10.1016/j.jprot.2013.04.027URL [本文引用: 1]
ZHAO XW, YANG YX, HUANG DW, Cheng GL, Zhao HL . Comparative proteomic analysis of proteins expression changes in the mammary tissue of cows infected with Escherichia coli mastitis , 2015,16(3):253-263. [本文引用: 1]
JACOBT, SUBRAMANIG, SIVAPRAKASAMP, XAVIER AP, MUKHOPADHYAY HK . Immuno-detection of C3a, a C3 complement activated product in mastitis milk, a potential Diagnostic marker , 2017,4(1):13. [本文引用: 1]
HUANGJ, LUOG, ZHANGZ, WANGX, JUZ, QIC, ZHANGY, WANGC, LIR, LIJ, YINW, XUY, MOISá SJ, LOOR JJ , ZHONG J. iTRAQ-proteomics and bioinformatics analyses of mammary tissue from cows with clinical mastitis due to natural infection with Staphylococci aureus , 2014,15:839. DOI:10.1186/1471-2164-15-839URL [本文引用: 1]
LIPPOLIS JD, HOLMAN DB, BRUNELLE BW, THACKER TC, BEARSON BL, REINHARDT TA, SACCO1 RE, CASEY TA . Genomic and transcriptomic analysis ofEscherichia coli strains associated with persistent and transient bovine mastitis and the role of Colanic Acid , 2017,IAI: 00566-17. [本文引用: 1]
CAPRAE, CREMONESIP, PIETRELLIA, PUCCIOS, LUINIM, STELLAA, CASTIGLIONIB . Genomic and transcriptomic comparison between Staphylococcus aureus strains associated with high and low within herd prevalence of intra-mammary infection , 2017,17(1):21. [本文引用: 1]
TIEZZIF, PARKER-GADDIS KL, COLE JB, CLAY JS, MALTECCAC .A genome-wide association study for clinical mastitis in first parity US Holstein cows using single-step approach and genomic matrix re-weighting procedure , 2015,10(2):e114919. [本文引用: 1]
WANGX, MAP, LIUJ, ZHANGQ, ZHANGY, DINGX, JIANGL, WANGY, ZHANGY, SUND, ZHANGS, SUG, YUY . Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility , 2015,16(1):111. [本文引用: 1]
BRANDB, HARTMANNA, REPSILBERD, GRIESBECK-ZILCHB, WELLNITZO, KüHNC, PONSUKSILIS, MEYER HH, SCHWERINM . Comparative expression profiling of E. coli and S. aureus inoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score , 2011,43(1):24. [本文引用: 1]
IMJ, LEET, JEON JH, BAIK JE, KIM KW, KANG SS, YUN CH, KIMH, HAN SH . Gene expression profiling of bovine mammary gland epithelial cells stimulated with lipoteichoic acid plus peptidoglycan from Staphylococcus aureus , 2014,21(1):231-240. [本文引用: 1]
XIUL, FU YB, DENGY, SHIXJ, BIANZY, RUHANA, WANGX . Deep sequencing-based analysis of gene expression in bovine mammary epithelial cells afterStaphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae infection , 2015,14(4):16948-16965. [本文引用: 1]
WANG XG, JU ZH, HOU MH, JIANGQ, YANG CH, ZHANGY, SUNY, LI RL, WANG CF, ZHONG JF, HUANG JM . Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected with Staphylococcus aureus Mastitis , 2016,11(7):e159719. [本文引用: 1]
WANGX, XIUL, HUQ, CUIX, LIUB, TAOL, WANGT, WUJ, CHENY, CHENY . Deep sequencing-based transcriptional analysis of bovine mammary epithelial cells gene expression in response to in vitro infection with Staphylococcus aureus stains , 2013,8(12):e82117. [本文引用: 1]
PUJ, LIR, ZHANGC, CHEND, LIAOX, ZHUY, GENGX, JID, MAOY, GONGY, YANGZ . Expression profiles of miRNAs from bovine mammary glands in response to Streptococcus agalactiae- induced mastitis , 2017,84(3):300-308. DOI:10.1017/S0022029917000437URL [本文引用: 1]
FANGL, HOUY, ANJ, LIB, SONGM, WANGX, S?RENSENP, DONGY, LIUC, WANGY, ZHUH, ZHANGS, YUY . Genome-eide transcriptional and post-transcriptional regulation of iInnate immune and defense responses of bovine mammary gland to Staphylococcus aureus , 2016,6:193. [本文引用: 1]
FANGL, SAHANAG, SUG, YUY, ZHANGS, LUND MS, S?RENSENP . Integrating sequence-based GWAS and RNA-Seq provides novel insights into the genetic basis of mastitis and milk production in dairy cattle , 2017,7:45560. DOI:10.1038/srep45560URL [本文引用: 1]
JINWIBEAGHA-AWEMU EMLIANGGBEAUDOINFZHAOXGUAN LL . Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles , 2014,15(1):181. [本文引用: 1]
VANSELOWJ, YANGW, HERRMANNJ, ZERBEH, SCHUBERTH HJ, PETZLW, TOMEKW, SEYFERT HM . DNA-remethylation around a STAT5-binding enhancer in the S1-casein promoter is associated with abrupt shutdown of S1-casein synthesis during acute mastitis , 2006,37(3):463-477. DOI:10.1677/jme.1.02131URL [本文引用: 1]
WANG XS, ZHANGY, HE YH, MA PP, FAN LJ, WANG YC, ZHANG YI, SUN DX, ZHANG SL, WANG CD, SONG JZ, YUY . Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitis dairy cows , 2013,12(4):6228-6239. DOI:10.4238/2013.December.4.10URL [本文引用: 1]
SONGM, HEY, ZHOUH, ZHANGY, LIX, YUY . Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis , 2016,6(1):29390. [本文引用: 1]
HEY, SONGM, ZHANGY, LIX, SONGJ, ZHANGY, YUY . Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus , 2016,17(1):565. [本文引用: 1]