删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

利用功能标记揭示新疆小麦改良品种与地方品种的遗传变异

本站小编 Free考研考试/2021-12-26

简大为1,2, 周阳2, 刘宏伟2, 杨丽2, 买春艳3, 于立强4, 韩新年5, 张宏军2,*,, 李洪杰2,*,
1新疆生产建设兵团第四师农业科学研究所, 新疆伊宁835000
2中国农业科学院作物科学研究所 / 农作物基因资源与基因改良国家重大科学工程, 北京100081
3新乡矮败小麦育种技术创新中心, 河南新乡453731
4石家庄市农林科学研究院赵县试验基地, 河北赵县051530
5谷物品质与遗传改良兵团重点实验室, 新疆石河子832000

Functional Markers Reveal Genetic Variations in Wheat Improved Cultivars and Landraces from Xinjiang

JIANDa-Wei1,2, ZHOUYang2, LIUHong-Wei2, YANGLi2, MAIChun-Yan3, YULi-Qiang4, HANXin-Nian5, ZHANGHong-Jun2,*,, LIHong-Jie2,*,
1Institute of Agricultural Science, the Fourth Division of Xinjiang Production and Construction Corps, Yining 835000, Xinjiang, China
2 Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
3 Xinxiang Innovation Center for Breeding Technology of Dwarf-male-sterile Wheat, Xinxiang 453731, Henan, China
4 Zhaoxian Experiment Station, Shijiazhuang Academy of Agriculture and Forestry Sciences, Zhaoxian 515300, Hebei, China
5 Key Laboratory of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, Shihezi 832000, Xinjiang, China
通讯作者:* 通信作者(Corresponding authors): 张宏军, E-mail: zhanghongjun01@caas.cn; 李洪杰, E-mail: lihongjie@caas.cn* 通信作者(Corresponding authors): 张宏军, E-mail: zhanghongjun01@caas.cn; 李洪杰, E-mail: lihongjie@caas.cn* 通信作者(Corresponding authors): 张宏军, E-mail: zhanghongjun01@caas.cn; 李洪杰, E-mail: lihongjie@caas.cn
收稿日期:2017-08-3
接受日期:2018-01-8
网络出版日期:2018-01-26
版权声明:2018作物学报编辑部作物学报编辑部
基金资助:本研究由国家自然科学基金项目(31771881, 31401468)和国家重点研发计划项目(2017YFD0101000, 2016YFD0101600, 2016YFD0101004, 2016YFD0100102)资助
作者简介:
-->第一作者联系方式: E-mail: 81809902@qq.com



展开

摘要
揭示新疆小麦改良品种与地方品种在主要农艺性状相关基因上的遗传变异对进一步改良和利用新疆育成品种具有重要意义。本研究利用52个功能标记对136份新疆小麦改良品种和地方品种分析发现, 与适应性相关的矮秆等位变异Rht-B1bRht-D1b、半冬性生长习性相关等位变异Vrn-D1b、T1BL·1RS易位系, 与品质相关的高脂肪氧化酶活性等位变异TaLox-B1a、低多酚氧化酶活性等位变异Ppo-D1a、低黄色素含量等位变异Psy-A1b以及与高粒重等位变异Hap-H (TaSus-2B)仅分布在改良品种中, 而且光周期不敏感等位变异Ppd-D1a (77.6%)、优质麦谷蛋白亚基Dx5+Dy10 (35.4%)和硬质等位变异Pin-D1b (25.0%), 以及高千粒重等位变异TaCwi-A1a (63.3%)、Hap-4A-T (Tacwi-4A) (33.8%)、Hap-5D-C (TaCWI-5D) (93.7%)、Hap-2 (TaGS1a) (77.9%)、TaGS-D1a (78.5%)、TaGS5-A1b (50.0%)和TaTGW6-A1a (92.1%)在改良品种中分布频率明显高于地方品种。大部分优异等位变异分布频率随着育种时期的推进呈现不连续性上升趋势。在适应性与品质相关基因方面, 春性改良品种的优异等位变异频率高于冬性改良品种。功能标记分析显示改良品种的遗传多样性高于地方品种。136份新疆小麦资源被聚为改良品种和地方品种两类, 改良品种被进一步聚为冬性和春性两类, 说明新疆改良品种与地方品种间存在明显的遗传差异。本研究鉴定的优异等位基因和等位基因组合为进一步改良新疆小麦品种提供了重要信息。

关键词:小麦;新疆;功能标记;农艺性状;遗传变异
Abstract
Illuminating genetic variations in the improved cultivars and landraces of wheat from Xinjiang is important for further improvement of wheat in this region. In this study, 52 functional markers were used to examine 136 Xinjiang wheat accessions. Compared with the improved cultivars, the semi-dwarfing alleles Rht-B1b and Rht-D1b, facultative allele Vrn-D1b, T1BL·1RS translocation, TaLox-B1a allele for high lipoxynase activity, Ppo-D1a allele for lower polyphenol oxidase activity, Psy-A1b allele for low yellow pigment content and Hap-H (TaSus-2B) allele for high kernel weight were absent in the landraces. Furthermore, the frequencies of photoperiod insensitivity allele Ppd-D1a (77.6%), strong gluten subunits Dx5+Dy10 (35.4%), Pin-D1ballele (25.0%) for hard grain texture, and TaCwi-A1a (63.3%), Hap-4A-T (Tacwi-4A) (33.8%), Hap-5D-C (TaCWI-5D) (93.7%), Hap-2 (TaGS1a) (77.9%), TaGS-D1a (78.5%), TaGS5-A1b (50.0%), and TaTGW6-A1a (92.1%) alleles associated with high kernel weight were higher in the improved cultivars than in the landraces. The frequencies of most favorable alleles displayed a discontinuously increasing trend over breeding periods. As for the favorable alleles associated with adaptation and quality, the spring cultivars had higher frequencies than the winter cultivars. Analysis of the functional markers showed that the improved cultivars had higher genetic diversity than the landraces. Based on the principle component analysis, the wheat accessions were clustered into two groups: improved cultivars and landraces, and the improved cultivars were further divided into two groups of winter and spring cultivars. There were significant genetic differences between the improved cultivars and the landraces. The favorable alleles and allele combinations identified in this study provide important information for further improvement of wheat cultivars in Xinjiang.

Keywords:Triticum aestivum;Xinjiang Uygur Autonomous Region;functional marker;agronomic traits;genetic variation

-->0
PDF (1336KB)元数据多维度评价相关文章收藏文章
本文引用格式导出EndNoteRisBibtex收藏本文-->
简大为, 周阳, 刘宏伟, 杨丽, 买春艳, 于立强, 韩新年, 张宏军, 李洪杰. 利用功能标记揭示新疆小麦改良品种与地方品种的遗传变异[J]. 作物学报, 2018, 44(5): 657-671 https://doi.org/10.3724/SP.J.1006.2018.00657
JIAN Da-Wei, ZHOU Yang, LIU Hong-Wei, YANG Li, MAI Chun-Yan, YU Li-Qiang, HAN Xin-Nian, ZHANG Hong-Jun, LI Hong-Jie. Functional Markers Reveal Genetic Variations in Wheat Improved Cultivars and Landraces from Xinjiang[J]. Acta Agronomica Sinica, 2018, 44(5): 657-671 https://doi.org/10.3724/SP.J.1006.2018.00657
小麦是新疆的主要粮食作物, 约占全省主要粮食作物种植面积的40%~60%[1]。经过几十年的努力, 新疆小麦的产量和品质在近七、八十年取得了突破性进展, 单产水平由1949年的870 kg hm-2 [2]提高到2016年的6488 kg hm-2 (http://www.feedtrade.com.cn/ yumi/yumi_china), 目前主推小麦品种大部分达到中筋水平[3]。品种推广也经历了几轮更换, 从20世纪50年代以地方品种为主[2], 到21世纪一大批优质、高产、广适性改良品种的推广, 小麦优良品种在不同时期对新疆小麦生产都发挥了重要的作用。育种是一个优异基因不断聚合和选择的过程, 这也是导致优异基因频率不断提高的原因[4]。随着育种和生产的发展, 新疆地方品种逐渐被改良品种取代, 这种品种演替是否与改良品种在主要农艺性状相关的基因上所经历的强选择压有关, 有待研究。因此, 有必要全面了解新疆改良品种与地方品种间在与适应性、品质和产量等性状相关基因上的遗传变异。
功能标记(functional marker)是依据基因序列的多态性开发的, 这些基因的不同等位变异与表型直接相关[5]。截至2012年, 已开发了96个小麦功能标记, 涉及30多个基因座93个等位变异[6]。抽穗期是小麦的重要农艺性状之一, 对小麦适应不同生态环境具有重要的作用。它主要受春化基因(vernalization, Vrn)、光周期基因(photoperiod, Ppd)和早熟性本身基因(earliness per se, Eps)[7]控制, 其中, Vrn-A1Vrn-B1Vrn-D1Vrn-B3Ppd-A1Ppd-B1Ppd-D1是决定春化和光周期反应的主要基因座[8,9,10,11]。“绿色革命”基因“Rht”主要包括Rht-B1Rht-D1, 其中, 矮秆等位变异Rht-B1aRht-D1a被广泛用于降低小麦株高, 提高抗倒伏能力和产量[12]。小麦-黑麦T1BL·1RS易位系广泛用于产量、适应性、抗病性和其他农艺性状改良, 在小麦生产上发挥了重要作用[5]。小麦的加工品质主要与高、低分子量麦谷蛋白亚基(high- and low-molecular weight glutenin subunits)、脂肪氧化酶(lipoxygenase, LOX)活性、籽粒硬度(puroindoline b, Pinb)基因、多酚氧化酶(polyphenol oxidase, PPO)活性和黄色素含量相关基因八氢番茄红素合酶(phytoene synthase, PSY)密切相关[13,14,15,16,17,18,19]。粒重是小麦籽粒产量重要构成因素之一, 由多基因控制, 细胞壁转化酶(cell wall invertase, CWI)基因、谷氨酰胺合酶(glutamine synthetase, GS)基因、籽粒大小(grain size, GS)基因、蔗糖合酶(sucrose synthase, Sus2)基因和粒重相关(IAA-glucose hydrolase gene, TaTGW6)基因是控制粒重和籽粒大小的重要基因, 目前已经从小麦上克隆了这些基因的同源基因, 而且已有相应的功能标记[20,21,22,23,24,25,26]
本研究比较了与适应性、品质和粒重相关基因等位变异在新疆改良品种和地方品种中的频率变化, 揭示了相关基因优异等位变异在不同育种时期频率变化趋势, 并且进行了改良品种和地方品种的遗传多样性和群体结构分析。研究结果不仅可以解释改良品种取代地方品种的原因, 而且可以为育种者提供理想的育种材料和聚合优异等位基因提供重要的参考信息。

1 材料与方法

1.1 供试品种

包括新疆小麦资源136份, 其中79份改良品种(附表1), 57份地方品种(附表2)。前者包括35份春性品种和44份冬性品种, 都是1966年至2015年育成或审定的新疆主推品种。后者包括50份春性地方品种和7份冬性地方品种。
Supplementary table 1
附表1
附表179份新疆小麦育成品种基本信息
Supplementary table 1General information on 79 wheat improved cultivars from Xinjiang
编号
Code
名称
Name
系谱
Pedigree
冬/春性
Winter/
spring
来源
Origin
审定或
育成年份
Released/
bred year
1新冬2号热依木夏/亥恩·亥德新疆农业科学院粮食作物研究所1966
2新冬5号巴克甫克/北京7号新疆农业科学院粮食作物研究所1969
3新冬7号新冬2号/敖萨德3号新疆农业科学院粮食作物研究所1969
4新冬14热衣木夏/乌克兰83新疆农垦科学院作物研究所1984
5新冬15新冬2号/中引5号新疆农业科学院粮食作物研究所1989
6新冬16(巴克甫克/亥恩·亥德)/70-4新疆生产建设兵团农七师农业科学研究所1988
7新冬17新冬14/安选5号新疆农垦科学院作物研究所1994
8新冬18N.S11-33/新冬3号新疆农业科学院粮食作物研究所1994
9新冬19(170/阿夫乐尔)/H-矮82-6 F0种子辐照新疆农业科学院核技术生物技术研究所1995
10新冬20冀875018新疆农业科学院粮食作物研究所1995
11新冬21318/88122新疆农业科学院核技术生物技术研究所1997
12新冬22(诺斯塔/花春84-1)/(76-4/洛夫林13)新疆生产建设兵团农七师农业科学研究所1996
13新冬23美国引进F1分离群体/花培品系88-136新疆农业科学院核技术生物技术研究所2000
14新冬249245/冀6159新疆农业科学院粮食作物研究所2003
15新冬27从中国农业大学引进高代品系系谱选择新疆农垦科学院作物研究所2005
16新冬2892-45/新冬20新疆农业科学院粮食作物研究所2005
17新冬29PH82-2-2/鲁植79-1新疆生产建设兵团农四师农业科学研究所2005
18新冬30不详新疆农垦科学院作物研究所2007
19新冬31(4114/新冬14/丰收)/(新冬18/中引85)新疆农业科学院粮食作物研究所2007
20新冬3373-13-36/82-4009石河子农业科技开发研究中心粮食油料作物研究所2009
21新冬36(89(813)/新冬18)/晋农207新疆农垦科学院作物研究所2011
22新冬37京411/贵农15中国农业科学院作物科学研究所2012
23新冬38(矮秆916/9133)/伊农16新疆生产建设兵团农四师农业科学研究所2011
24新冬41石冬8号/新冬22石河子农业科学研究院2013
25新冬48(新冬22/M844)/石冬8号石河子农业科学研究院2015
26新冬51(藁城8901优/新冬18)/冀5473新疆农垦科学院作物研究所2015
27新冬52新冬17/95-7-13-2石河子农业科学研究院粮油作物研究所2015
28伊农16(白壳欧柔/72-829/K2-13)/ (72-629-7141-64/K2-13)新疆生产建设兵团农四师农业科学研究所1994
29伊农18[(77224/R2-13)/(7113-9/76-629)]/[(运动1号/00089)/(工农10-3/72-原78)]新疆生产建设兵团农四师农业科学研究所1999
30奎花1号京花1号/奎冬3号新疆生产建设兵团农七师农业科学研究所1991
31石冬7号87-5048/昌冬5号(76-165)石河子农业科技开发研究中心1999
32石冬8号昌冬5号(76-165)/82-4009石河子农业科技开发研究中心2003
33石冬9号轮回选择新疆农垦科学院作物研究所2003
34喀冬1号巴克甫克/亥恩·亥德喀什地区农业科学研究所1972
35喀冬4号华北187系选喀什农业学校1973
36新春3号西特·赛洛斯/奇春4号 F0种子辐照新疆农业科学院核技术生物技术研究所1985
37新春4号151/74-6//74-16/沃尔森新疆农业科学院粮食作物研究所/昌吉农业科学研究所1990
38新春5号繁6/6038新疆农垦科学院作物研究所1990
39新春6号中7906/新春2号新疆农业科学院核技术生物技术研究所1993
编号
Code
名称
Name
系谱
Pedigree
冬/春性
Winter/
spring
来源
Origin
审定或
育成年份
Released/
bred year
40新春7号中7906/新春2号新疆农业科学院核技术生物技术研究所1995
41新春8号CO7/21-23石河子大学农学院1997
42新春9号引进春麦品系NS-65新疆农业科学院核技术生物技术研究所1999
43新春10号9-3-3/新春4号新疆农业科学院粮食作物研究所2002
44新春11新春2号/86-7石河子大学农学院2002
45新春128021/77-13新疆农业科学院粮食作物研究所2003
46新春13不详不详2003
47新春14不详新疆农业科学院核技术生物技术研究所2004
48新春15F5繁24/85307新疆农业科学院粮食作物研究所2004
49新春1686-6B/93鉴9新疆农垦科学院作物研究所2004
50新春17新春6号/NS64新疆农业科学院核技术生物技术研究所2005
51新春18不详不详2005
52新春19不详石河子大学农学院2005
53新春20昌春6号/墨西哥M85-30新疆农业科学院粮食作物研究所2006
54新春21NS-23-3/青海946新疆生产建设兵团农五师农业科学研究所2006
55新春22Tal/永1265新疆农垦科学院作物研究所; 宁夏永宁县小麦育繁所2006
56新春23CIMMYT引进F2/88-136新疆农业科学院核技术生物技术研究所2006
57新春24不详不详2006
58新春25不详新疆农业科学院奇台春小麦试验场2006
59新春26新春9号/新春6号新疆农业科学院核技术生物技术研究所2007
60新春2791I82299/21-4新疆农业科学院粮食作物研究所2007
61新春28CIMMYT引进, 原代号为01-25新疆农垦科学院作物研究所2007
62新春2985-56/25-3新疆农业科学院粮食作物研究所2008
63新春30新春9号/新春6号新疆农业科学院核技术生物技术研究所2009
64新春3112-25/96-5石河子大学农学院2009
65新春3297-18/永良11新疆生产建设兵团农五师农业科学研究所2009
66新春33新春9号/新春6号新疆农业科学院核技术生物技术研究所2010
67新春3488(13)/5×44新疆农业科学院粮食作物研究所2011
68新春35巴96-4870/93鉴29新疆农垦科学院作物研究所2011
69新春3621-6/黑小麦新疆生产建设兵团农十三师农业科学研究所2011
70新春38原212/97-46-3新疆农垦科学院作物研究所与新疆九禾种业有限责任公司2012
71宁春23(宁春4号/中7906)/陕农7855宁夏农林科学院作物科学研究所1995
72宁春32建三江- 6918/高代品系1658宁夏农林科学院作物科学研究所2002
73宁春35宁春16/永A71宁夏农林科学院作物科学研究所2003
74宁春37从南非引进宁夏农林科学院作物科学研究所2005
75昌春6号(82A3/021)/(78A131/03312)新疆农业科学院奇台春小麦试验场1994
76抗旱1号H101/C8501新疆生产建设兵团农四师农业科学研究所2013
77青春5号阿勃/欧柔青海省农业科学研究院1969
78新曙光1号阿勃/欧柔黑龙江省农业科学研究院1971
79吐春9号(80B63/02126)/(77A7/834)新疆农业科学院奇台春小麦试验场1998


新窗口打开
Supplementary table 2
附表2
附表257份新疆小麦地方品种基本信息
Supplementary table 2General information on 57 wheat landraces from Xinjiang
编号
Code
名称
Name
冬/春性
Winter/spring
来源
Origin
编号
Code
名称
Name
冬/春性
Winter/spring
来源
Origin
80库车白冬麦新疆库车109直芒新疆焉耆
81白冬麦新疆呼图壁110佛手麦新疆库车
82小白冬麦新疆呼图壁111稻麦子新疆乌什
83阿克库孜盖新疆库尔勒112高拉山春麦新疆疏附
84热衣木夏新疆新和113白芒红麦新疆叶城
85长巴什曼新疆叶城114古玛尔汗新疆墨玉
86纳瓦提然新疆新和115克拉黑麦新疆墨玉
87阿克脱哈尔新疆哈巴河116阿及麦新疆墨玉
88其力克新疆洛浦117白吐里克新疆墨玉
89黑芒新疆米泉118西藏稻麦子新疆洛浦
90白光头新疆昌吉119其力克新疆洛浦
91红春麦新疆昌吉120买甚春麦新疆于田
92木锨棒新疆昌吉121古尔汗满新疆于田
93疙瘩头新疆昌吉122阿克禾孜干新疆于田
94金包银新疆昌吉123吐里克新疆和田
95兰麦新疆昌吉124克兹买克新疆和田
96黑芒春新疆米泉125米麦米尔新疆和田
97白春麦新疆玛纳斯126大头郞新疆哈密
98无芒麦新疆鄯善127小白芒(白)新疆青河
99分枝麦新疆哈密128小白芒(红)新疆青河
100大白麦新疆哈密129小红芒1新疆青河
101黄库班克新疆伊宁130小红芒2新疆青河
102比热巴沙尔新疆霍城131小红麦新疆巴里坤
103波兰麦新疆吐鲁番132托力克新疆和田
104黑头麦新疆塔城133金包银(红)新疆伊吾
105分枝黑芒新疆塔城134金包银(白)新疆伊吾
106良山麦子新疆阿勒泰135红穗无芒新疆阿勒泰
107黑库班克新疆阿勒泰136阿克贾克新疆和田
108兰壳兰芒新疆阿勒泰


新窗口打开

1.2 分子标记检测

取每份供试材料10粒种子放在带有湿润试纸的培养皿中发芽, 室温下生长5 d, 然后从每份材料各个植株上取等量叶片混合用于DNA提取[27]
利用52个与适应性、品质和粒重相关的功能标记对供试材料进行等位变异分析。适应性相关的基因包括Rht (Rht-B1Rht-D1)[12]VRN (Vrn-A1Vrn-B1Vrn-D1Vrn-B3)[8-9,28]Ppd (Ppd-A1Ppd-B1Ppd-D1)[10,11]和T1BL·1RS易位系(sec-1)[29]; 与品质相关的基因包括Glu-D1 (Dx5+Dy10)[13]Lox (TaLox-B1)[14]Pin (Pinb-D1)[15]Ppo (Ppo-A1)[17]Psy (Psy-A1Psy-B1)[18,19]; 粒重相关基因主要包括CWI (TaCwi-A1TaCWI-4ATaCWI-5D)[20,21]GS1 (TaGS1a)[22]GS3 (TaGS-D1)[23]GS5 (TaGS5-A1)[24]Sus-2 (TaSus2-2B)[25]TGW6 (TaTGW6-A1)[26]
PCR在Biometra Thermocycler (Germany)上进行, 总反应体系为20 μL, 包括2 × Taq PCR Master Mix 10 μL, 正反引物(10 μmol L-1)各1 μL, DNA模板(50~100 ng μL-1) 2 μL。PCR程序为94°C预变性5 min, 94°C变性30 s, 57~60°C退火30 s, 72°C延伸1~3 min, 72°C后延伸10 min。PCR扩增产物经2%琼脂糖凝胶电泳检测, 溴化乙锭染色后用凝胶成像系统观察电泳结果, 读取基因型。需要说明的是对于粒重相关基因座TaCWI-4ATaCWI-5DTaGS1aTaGS5-A1TaTGW6-A1在PCR扩增的基础上, 分别利用限制性内切酶Tai I、BstY I、EcoR I、Bbv I和Dpn II进行酶切, 用2%琼脂糖凝胶电泳检测酶切产物。

1.3 统计分析

采用PowerMarker v3.25软件[30]分析每个基因座等位基因数目、遗传多样性指数和多态性信息含量(PIC)。利用Arlequin v3.5软件[31]对亚组间(改良品种和地方品种)、亚组内个体间以及个体间进行分子方差分析(analysis of molecular variance, AMOVA)。通过NTSYS-pc v2.1软件[32]对供试材料进行基于主成分(PCA)的群体结构分析。
为了比较不同时期新疆小麦品种基因频率变化趋势, 按照品种的育成或审定时间将136个小麦资源分成6组, 即地方品种(57份)、1966—1990年(13份)、1991—2000年(18份)、2001—2005年(19份)、2006—2010年(17份)和2011—2015年(12份); 冬性品种和春性品种也分别按上述原则分为6组, 冬性品种各组依次为7、8、11、6、3和7份, 春性品种各组依次为50、5、7、13、14和5份。通过简单线性回归方程y = a + bx分析优异等位变异频率分别在所有供试品种、冬性和春性品种不同时期的变化趋势, 其中, y表示因变量, x表示自变量, a表示回归截距, b表示回归系数。用回归系数b的大小来反映变化趋势, 具体参考Meng等[4]的方法进行回归分析。

2 结果与分析

2.1 适应性、品质和粒重性状基因不同等位变异分布频率

利用52个功能标记对136份新疆小麦资源进行等位变异分型, 部分引物扩增结果见图1。从这些基因不同等位变异分布频率看, 无论是冬性或春性资源, 与适应性相关的矮秆等位变异Rht-B1bRht-D1b、光周期不敏感等位变异Ppd-D1a以及T1BL·1RS易位系在改良品种中的分布频率均高于地方品种(表1)。与冬性生长习性密切相关的隐性等位变异vrn-B1vrn-D1vrn-B3主要分布在改良品种中; 与春性生长习性相关的显性等位变异Vrn-A1在改良品种中分布频率也明显高于地方品种。矮秆等位基因组合Rht-B1b+Rht-D1b (5.1%)仅在改良品种中出现且在春性改良品种中分布频率更高。相反, 高秆等位变异组合Rht-B1a+Rht-D1a主要分布在地方品种中, 频率高达98.2%, 且这一等位变异组合在冬性地方品种频率高于春性地方品种(图2-A)。春性改良品种的Rht-D1bPpd-D1a等位变异以及T1BL·1RS易位系的分布频率高于冬性改良品种。相反, 冬性改良品种Rht-B1b等位变异分布频率高于春性改良品种。
显示原图|下载原图ZIP|生成PPT
图1部分适应性(A)、品质(B)和粒重(C)性状基因在12个新疆小麦品种中的扩增结果
1: 新春3号; 2: 新春4号; 3: 新春5号; 4: 新春6号; 5: 新春7号; 6: 新春8号; 7: 新春9号; 8: 新春10号; 9: 新春11; 10: 新春12; 11: 新春13; 12: 新春14。

-->Fig. 1PCR products of partial genes associated with adaptation (A), quality (B), and kernel weight (C) in 12 Xinjiang wheat cultivars
1: Xinchun 3; 2: Xinchun 4; 3: Xinchun 5; 4: Xinchun 6; 5: Xinchun 7; 6: Xinchun 8; 7: Xinchun 9; 8: Xinchun 10; 9: Xinchun 11; 10: Xinchun 12; 11: Xinchun 13; 12: Xinchun 14.

-->

Table 1
表1
表1新疆改良品种和地方品种与适应性、品质和粒重性状相关基因等位变异分布频率比较
Table 1Comparison of allele frequencies at the loci associated with adaptation, quality and kernel weight in the wheat cultivars and the landraces from Xinjiang
基因
Gene
基因座
Locus
等位基因
Allele
全部All冬性Winter春性Spring
改良品种
Improved cultivar
地方品种
Landrace
改良品种
Improved cultivar
地方品种
Landrace
改良品种
Improved cultivar
地方品种
Landrace
适应性 Adaptation
RhtRht-B1Rht-B1a20.3100.016.1100.023.3100.0
Rht-B1b79.7083.9076.70
Rht-D1Rht-D1a84.8100.091.4100.079.5100.0
Rht-D1b15.208.6020.50
VRNVrn-A1Vrn-A139.25.80070.593.3
vrn-A160.894.2100.0100.029.56.7
Vrn-B1Vrn-B139.244.00070.547.8
vrn-B160.856.0100.0100.029.552.2
Vrn-D1Vrn-D1a20.580.00.00.037.293.0
Vrn-D1b1.702.9000
vrn-D178.220.097.1100.062.87.0
Vrn-B3Vrn-B3000000
vrn-B3100.0100.0100.0100.0100.0100.0
PpdPpd-A1Ppd-A1a100.0100.0100.0100.0100.0100.0
Ppd-A1b000000
Ppd-B1Ppd-B1a000000
基因
Gene
基因座
Locus
等位基因
Allele
全部All冬性Winter春性Spring
改良品种
Improved cultivar
地方品种
Landrace
改良品种
Improved cultivar
地方品种
Landrace
改良品种
Improved cultivar
地方品种
Landrace
Ppd-B1b100.0100.0100.0100.0100.0100.0
Ppd-D1Ppd-D1a77.64.155.9095.14.8
Ppd-D1b22.495.944.1100.04.995.2
T1BL·1RSSec-1T1BL·1RS16.5011.4020.50
Non T1BL·1RS83.5100.088.6100.079.5100.0
品质 Quality
Glu-1Glu-D1Dx5+Dy1035.41.822.916.745.50
Dx2+Dy1264.698.277.183.354.5100.0
LoxTaLox-B1TaLox-B1a20.0037.105.00
TaLox-B1b80.0100.062.9100.095.0100.0
PinPinb-D1Pinb-D1a75.091.756.350.091.797.6
Pinb-D1b25.08.343.850.08.32.4
PpoPpo-A1Ppo-A1a78.148.660.950.088.148.5
Ppo-A1b21.951.439.150.011.951.5
Ppo-D1Ppo-D1a3.70006.70
Ppo-D1b96.3100.0100.0100.093.3100.0
PsyPsy-A1Psy-A1a89.6100.0100.0100.082.6100.0
Psy-A1b10.400017.40
Psy-B1Psy-B1c58.855.0100.0100.030.052.6
Psy-B1d41.245.00070.047.4
Psy1-D1Psy1-D1a84.455.680.0100.088.148.9
Psy1-D1g15.644.420.0011.951.1
粒重 Kernel weight
CWITaCwi-A1TaCwi-A1a63.322.840.014.381.824.0
TaCwi-A1b36.777.260.085.718.276.0
TaCWI-4AHap-4A-C66.283.754.566.777.186.0
Hap-4A-T33.816.345.533.322.914.0
TaCWI-5DHap-5D-C93.785.588.671.497.787.5
Hap-5D-G6.314.511.428.62.312.5
GS1TaGS1aHap-122.139.040.70.09.842.1
Hap-277.961.059.3100.090.257.9
GS3TaGS-D1TaGS-D1a78.564.080.057.177.365.1
TaGS-D1b21.536.020.042.922.734.9
GS5TaGS5-A1TaGS5-A1a50.088.739.383.358.389.4
TaGS5-A1b50.011.360.716.741.710.6
Sus-2TaSus2-2BHap-L86.8100.066.7100.0100.0100.0
Hap-H13.2033.3000
TGW6TaTGW6-A1TaTGW6-A1a92.155.187.920.095.359.1
TaTGW6-A1b7.944.912.180.04.740.9


新窗口打开
显示原图|下载原图ZIP|生成PPT
图2影响株高(A)、品质(B)和粒重(C)基因优异等位变异组合在新疆改良品种和地方品种中分布频率
-->Fig. 2Frequencies of favorable allele combinations at the loci associated with plant height (A), quality (B), and kernel weight (C) in the improved cultivars and the landraces from Xinjiang
-->

与品质相关的优质麦谷蛋白亚基Dx5+Dy10、面粉色泽相关的高脂肪氧化酶活性等位变异TaLox-B1a、硬质等位变异Pin-D1b、低多酚氧化酶活性等位变异Ppo-D1a和低黄色素含量等位变异Psy-A1b在全部、冬性和春性改良品种中的分布频率均高于相应的地方品种(表1), 而且只在改良品种中检测到优异等位变异组合Ppo-A1b+TaLox-B1aPpo-A1b+Pin-D1bTaLox-B1a+Pin-D1bTaLox- B1a+Dx5+Dy10。冬性改良品种TaLox-B1aPin-D1b的频率高于春性改良品种; 相反, 春性改良品种Dx5+Dy10、Ppo-D1aPsy-A1b等位变异的频率高于冬性改良品种, 而且只在春性改良品种中检测到Ppo-D1aPsy-A1b等位变异。值得注意的是, 除了TaLox-B1a+Dx5+Dy10外, 其他3个优异等位变异组合仅分布于冬性改良品种(图2-B)。
在粒重相关的8个基因座中, 高粒重等位变异TaCwi-A1aHap-4A-T (Tacwi-4A)、Hap-5D-C (TaCWI- 5D)、Hap-2 (TaGS1a)、TaGS-D1aTaGS5-A1bHap-H (TaSus-2B)和TaTGW6-A1a在改良品种中的分布频率均高于地方品种(表1)。在14对高粒重等位变异组合中, TaCWI-5D-C+TaTGW-A1aTaCWI-5D-C+ TaGS-D1aTaTGW6-A1a+TaGS1a-Hap2TaTGW6- A1a+TaGS-D1a在改良品种中频率明显高于地方品种, 分别达到82.3%、72.2%、63.3%和70.9% (图2-C)。冬性改良品种高粒重等位变异组合多于春性改良品种。

2.2 适应性、品质和粒重性状基因优异等位变异在不同育种时期的频率变化

在与适应性、品质和粒重性状相关的17个优异等位变异中, 有11个分布频率随育种时期推进呈现不连续性上升的趋势(图3)。矮秆等位变异Rht-B1b在地方品种1991—2000年期间呈现连续上升趋势, 2000年频率达到94.1%; 2001—2005年期间频率下降到73.9%, 2005年以后保持平稳(图3-A)。在冬性改良品种中, Rht-B1b分布频率在2001—2010年期间呈现下降趋势, 2011年后又出现上升趋势; 而春性改良品种变化趋势与所有品种的变化趋势一致。除了在2006—2010期间, 等位变异Rht-D1b分布频率随着育种时期推进呈明显上升趋势(图3-B)。T1BL·1RS易位系仅分布在改良品种中, 在地方品种1991—2000年期间无论是冬性或春性改良品种, 其易位系分布频率均随育种时期推进呈现上升趋势, 2000年以后呈现下降趋势(图3-C)。与面粉色泽相关的高脂肪氧化酶活性等位变异TaLox-B1a分布频率随育种时期推进显著提高, 特别是冬性改良品种呈直线上升趋势, 回归系数达到15.0 (P < 0.01), 且R2达到0.96 (P < 0.01)(图3-D)。优质麦谷蛋白亚基Dx5+Dy10分布频率随育种时期推进呈现不连续的上升趋势, 但在2011年以后的改良品种中出现下降趋势(图3-E)。高千粒重等位变异TaGS-D1a (图3-F)、hap-h (TaSus2-2B) (图3-G)、TaCwi-A1a (图3-H)、TaCWI-4A (图3-I)、TaCWI-5D (图3-J)和TaTGW6-A1a (图3-K)分布频率在地方品种-2000年期间均呈现直线上升趋势, 随着育种时期的推进在2001年以后分布频率呈现不连续上升, 其中, 等位变异TaTGW6-A1a的分布频率在2006年以后的改良品种中达到100%。随着育种时期推进, 6个等位变异在冬、春性改良品种中的分布频率呈现不同的变化趋势, 特别是等位变异hap-h在春性改良品种中没有出现, 而在冬性改良品种中于地方品种-2010年期间呈现直线上升趋势(图3-G)。
显示原图|下载原图ZIP|生成PPT
图3适应性、品质和粒重基因优异等位变异在不同育种时期频率变化
A: Rht-B1b等位变异; B: Rht-D1b等位变异; C: TlBL·1RS易位系; D: TaLox-B1a等位变异; E: Dx5+Dy10亚基; F: TaGS-D1a等位变异; G: TaSus2-2B (hap-h等位变异); H: TaCwi-A1a等位变异; I: TaCWI-4A等位变异; J: TaCWI-5D等位变异; K:TaTGW6-A1a等位变异。***分别表示R2在0.05和0.01概率水平显著。

-->Fig. 3Variation in the frequency of favorable alleles associated with adaptation, quality, and kernel weight in different breeding periods
A: Rht-B1b allele; B: Rht-D1b allele; C: TlBL·1RS translocation line; D: TaLox-B1a allele; E: Dx5+Dy10 subunits; F: TaGS-D1a allele; G: TaSus2-2B (hap-h allele); H: TaCwi-A1a allele; I: TaCWI-4A allele; J: TaCWI-5D allele; K: TaTGW6-A1a allele. * and ** indicate significance of R2 at the 0.05 and 0.01 probability levels, respectively.

-->

2.3 改良品种和地方品种的遗传多样性比较

除了春性资源与粒重相关基因座的多态性信息含量(PIC)平均值外, 无论是全部、冬性还是春性资源, 改良品种所有基因座的平均等位基因数目和平均PIC均高于地方品种(表2)。春性改良品种在与适应性相关以及品质相关基因座的平均等位基因数目和平均PIC高于冬性改良品种。相反, 冬性改良品种与粒重相关基因座的平均PIC高于春性改良品种。在适应性相关基因的10个基因座中, 春性改良品种的平均等位基因数目(1.70)和PIC (0.20)均高于冬性改良品种(1.50和0.10)。在品质相关基因的8个基因座中, 春性改良品种平均等位基因数目(2.00)和平均PIC (0.23)亦高于冬性改良品种(1.63和0.21)。在粒重相关基因的8个基因座中, 春性和冬性改良品种的平均等位基因数目相等, 而春性改良品种的平均PIC高于冬性改良品种。
Table 2
表2
表2新疆改良品种与地方品种适应性、品质和粒重性状相关基因座等位基因数目和多态性信息含量比较
Table 2Comparison of number of alleles and polymorphic information content (PIC) at the loci associated with adaptation, quality and kernel weight in wheat cultivars and landraces from Xinjiang
基因座
Locus
等位基因数 No. of alleles多态性信息量 PIC
改良品种 Improved cultivar地方品种 Landrace改良品种 Improved cultivar地方品种 Landrace
全部
All
冬性
Winter
春性
Spring
全部
All
冬性
Winter
春性
Spring
全部
All
冬性
Winter
春性
Spring
全部
All
冬性
Winter
春性
Spring
适应性 Adaptation
Rht-B12221110.270.230.29000
Rht-D12221110.220.140.27000
Vrn-A12122120.3600.330.1000.11
Vrn-B12122120.3600.330.3700.37
Vrn-D13222120.290.050.360.2700.12
Vrn-B3111111000000
Ppd-A1111111000000
Ppd-B1111111000000
Ppd-D12222120.290.370.110.0900.10
T1BL·1RS2221110.240.180.27000
平均Mean1.801.501.701.401.001.400.200.100.200.0800.07
品质 Quality
Dx5+Dy102222210.350.300.370.050.280
TaLox-B12222220.280.350.150.070.240.04
Pinb-D12222220.320.370.230.150.380.07
Ppo-A12222220.290.360.210.370.380.37
Ppo-D12121110.0700.12000
Psy-A12121110.1700.25000
Psy-B12122120.3700.330.3700.37
Psy1-D12222120.230.270.190.3700.37
平均Mean2.001.632.001.751.501.630.260.210.230.170.160.15
粒重 Kernel weight
TaCwi-A12222220.360.360.250.290.210.30
TaCWI-4A2222220.350.370.320.280.350.26
TaCWI-5D2222220.110.180.040.230.320.21
TaGS1a2222220.290.370.170.360.190.37
TaGS-D12222220.280.360.370.350.240.19
TaGS5-A12222220.380.270.290.200.370.35
TaSus2-2B2211110.210.350000
TaTGW6-A12122220.140.190.100.370.270.37
平均Mean2.001.881.881.851.881.880.270.310.190.260.240.26
总平均
Total mean
1.921.671.861.651.461.630.240.200.210.170.130.16


新窗口打开

2.4 群体结构分析

对供试材料52个等位基因遗传多样性的分子检测结果分析发现, 改良品种和地方品种两类群体间、群体内个体间以及个体间差异都极显著(P < 0.01), 这三者分别解释总变异的23.9%、71.5%和4.7% (表3)。
Table 3
表3
表3遗传多样性分子方差分析
Table 3Analysis of molecular variance (AMOVA) based on genetic diversity
变异来源
Source of variance
自由度
df
平方和
Sum of square
方差分量
Variance component
变异百分比
Percentage of variation (%)
群体间Among populations196.70.70**23.9
群体内个体间Among individuals within populations134578.42.09**71.5
个体间Within individuals13618.50.14**4.7
总计Total271693.62.92

**表示在0.01水平上差异显著。** denotes significant difference at the 0.01 probability level.
新窗口打开
基于主成分的群体结构分析发现, 通过第1主成分(PC1)和第2主成分(PC2)聚类能够将136份资源划分为改良品种和地方品种两类, 其中冬性改良品种和春性改良品种也各自聚为一类(图4)。
显示原图|下载原图ZIP|生成PPT
图4136份新疆小麦资源主成分分析
1~79: 改良品种, 其中1~35为冬性品种, 36~79为春性品种; 80~136: 地方品种, 其中80~86为冬性地方品种, 87~136为春性地方品种。图中数字代表的资源名称参考附表1和附表2

-->Fig. 4Principal component (PC) analysis of 136 Xinjiang wheat accessions
1-79: improved cultivars, including winter (1-35) and spring (36-79) accesions; 80-136: landraces, including winter (80-86) and spring (87-136) accesions. Numbers represent germplasm names given in Supplementary Tables 1 and S2.

-->

3 讨论

新疆改良品种比地方品种含有更高的优异等位变异频率, 充分反映了育种是将优异等位基因不断选择和聚合的过程。矮秆等位变异Rht-B1bRht-D1b在我国小麦生产上发挥了重要的作用。Rht-B1bRht-D1b在新疆改良品种的分布频率分别为79.7%和15.2% (表1), 至少含有其中一个矮秆等位变异的频率达到85%, 表明这2个等位变异已经广泛应用于新疆小麦育成品种。杨松杰等[33]发现, Rht-B1b等位变异在新疆冬春小麦(8份)中的分布频率为62.5%, Rht-D1b等位基因分布频率为12.5%。Meng等[4]证明, 80%以上建国以来中国大面积推广品种(80份)至少含有两个矮秆等位变异中的一个。
光周期基因Ppd是影响抽穗期的一类重要基因[7]。在Ppd-A1Ppd-B1基因座, 新疆改良品种和地方品种没有差异, 都只含有一种等位变异(表1)。究其原因, 一是这2个基因座的功能标记是基于日本小麦品种开发的, 对中国品种可能不适用[10]; 二是引起抽穗期变化的可能是拷贝数, 目前这种推测在Ppd-B1基因座已经被证实[34]
20世纪80年代后我国育成的小麦品种中38%~43%含有T1RL·1BS [35,36]。新疆小麦品种也不例外, 特别是1990—2010年间, 有20%的新疆小麦育成品种中含有这个易位系。T1RL·1BS易位系在提高抗病性和丰产性的同时, 也可能降低小麦面包加工品质, 这可能是2010年以后新疆小麦改良品种中并没有检测到T1BL·1RS片段的原因之一。与品质相关的优质麦谷蛋白亚基Dx5+Dy10在新疆育种品种中达到33.6%, 相比之下, 在地方品种中仅为1.8% (表1)。与对360份新疆地方品种、育成品种和国内外引进小麦品种分析结果一致, 33.9%的改良品种含有Dx5+Dy10亚基[37], 但这一数值低于黄淮冬麦区的41.1%[38]。与面粉色泽相关的高脂肪氧化酶活性等位变异TaLox-B1a、低多酚氧化酶活性等位变异Ppo-D1a和低黄色素含量等位变异Psy-A1b在改良品种中分布频率均高于地方品种(表1)。尽管等位变异Ppo-D1a在改良品种的频率比地方品种高, 但明显低于王亮等[39]报道的86.9%。
现代育种实践使得重要农艺性状相关的优异等位变异逐渐累积。本研究中, 11个优异等位变异随着育种时期推进, 在新疆小麦改良品种中呈现不同程度的上升趋势(图3), 比如矮秆等位变异、优质相关的等位变异和高粒重等位变异, 这是不难理解的, 这些等位变异对新疆小麦生产是有利的, 因此被不断积累和保留下来。Meng等[4]通过对1949年以来80个大面积推广小麦品种研究同样发现, 与重要农艺性状相关的优异等位变异分布频率随育种时期推进呈现上升趋势。
新疆属于冬、春麦兼种区, 这一特殊生态区域要求北疆以春性品种为主, 而南疆以冬性或者抗寒性较好的弱冬性品种为主[40]。对春化基因的检测发现, 春性改良品种至少含有一个显性等位变异, 而冬性品种在所有春化基因座全部为隐性, 说明该地区小麦品种春化基因组成完全是为适应特定生态环境不断选择的结果[41]。光周期不敏感等位变异Ppd-D1a在新疆冬性地方品种和春性地方品种中分布频率很低, 而在春性和冬性改良品种中频率明显提高(表1), 表明Ppd-D1a可能经历了较强的选择压。值得注意的是, 该等位变异在春性改良品种中分布频率(95.1%)明显高于冬性改良品种(55.9%)。随着育种时期的推进Ppd-D1a分布频率在春性改良品种中呈现直线上升趋势, 而在冬性品种中2010年以前呈现直线上升, 2010年后呈现明显下降趋势, 进一步表明冬性和春性改良品种对该等位变异的选择是不一致的。其原因可能是春播春性品种要求生育期短, 光周期敏感品种会延长生育期, 不能满足生产需要, 这类品种在小麦生产实践过程中自然被淘汰; 而冬性品种在秋季播种需要经历漫长的冬季和春化过程, 这就需要冬性品种具有强的抗寒性, 光周期敏感品种能够延长营养生长过渡到生殖生长的时间, 在一定程度上避开冬季冻害, 增强抗寒性[42]
本研究发现改良品种的平均等位基因数目、遗传多样性指数和PIC均高于地方品种(表2), 与Rasheed等[43]对巴基斯坦小麦改良品种和地方品种比较结果一致, 但与Hao等[44]对中国小麦的研究有所不同。本研究利用的所有功能标记都是基于改良品种开发的, 这样的标记对地方品种或者野生近缘种的检测效率可能会有一定的影响, 导致在地方品种中检测不到某些稀有或新的等位变异, 这是可能导致地方品种遗传多样性低的一个原因。另外, 与改良品种比较, 供试新疆地方品种没有发现矮秆等位变异Rht-B1bRht-D1b、半冬性等位变异Vrn-D1b以及T1BL·1RS易位染色体, 也没有检测到低黄色素含量等位变异Psy-A1b和高千粒重等位变异Hap-H (TaSus2-2B), 这与实际情况是一致的, 比如, 广泛应用的矮秆等位变异Rht-B1bRht-D1b主要来自于日本品种农林10号; T1BL·1RS易位系在20世纪70年代才引入我国; 含有Vrn-D1b等位变异的新冬20实际上是从河北引进的品种, 因此, 在新疆地方品种中不可能检测到这些等位变异。由于这些基因对于提高新疆小麦品种适应性、品质和产量具有重要作用, 因此在改良品种中被保留下来, 这可能是导致新疆改良品种比地方品种遗传多样性高的另一个原因。当然, 本研究仅是基于功能标记分析, 如果采用SNP等高通量分子标记, 相信地方品种在遗传多样性上会有变化。
Rasheed等[43]利用功能标记对巴基斯坦228份小麦资源进行聚类分析, 发现改良品种和地方品种被分别聚为一类。同样, 本研究利用52对功能标记就能很好地将136个新疆小麦资源聚为改良品种和地方品种两类(图4)。这充分说明地方品种和改良品种存在巨大的遗传差异。

4 结论

利用功能标记分析发现, 重要农艺性状相关的优异等位变异在新疆改良品种中频率明显高于地方品种, 而且随着育种时期的推进这些优异等位变异频率在改良品种中呈现上升趋势。在适应性和品质相关基因方面, 春性改良品种的优异等位变异频率比冬性改良品种更高。改良品种遗传多样性高于地方品种。136份新疆小麦资源被聚为改良品种和地方品种两类, 冬性和春性改良品种分别聚为一类。
The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]吴新元. 新疆优质小麦产业化进展
. 新疆农业科学, 2010, 47(增刊2): 1-2
[本文引用: 1]

Wu X Y.The industrializing progress of high-quality wheat in Xinjiang
.Xinjiang Agric Sci, 2010, 47(suppl-2): 1-2 (in Chinese)
[本文引用: 1]
[2]曹连莆, 艾尼瓦尔. 新疆小麦高产优质育种的进展与策略
. 石河子大学学报(自然科学版), 1998, 2(增刊): 1-7
[本文引用: 2]

Cao L P, Ainiwaer. The progress and strategy on high yield and superior quality about wheat breeding in Xinjiang
.J Shihezi Univ(Nat Sci Edn), 1998, 2(suppl): 1-7 (in Chinese with English abstract)
[本文引用: 2]
[3]马宏. 新疆小麦品质状况浅谈
. 粮食加工, 2009, 34(5): 87-88
https://doi.org/10.3969/j.issn.1007-6395.2009.05.029URL [本文引用: 1]摘要
新疆粮油质检站对全疆45个粮食主产县约40个小麦品种的品质指标进行检测分析,对其一致性和差异性进行研究.分析结论是:新疆产小麦均为中筋小麦和弱筋小麦,缺乏优质高筋小麦,品质指标不平衡,蛋白质含量偏低.
Ma H.Preliminary study on quality in Xjnjiang wheat
.Grain Proc, 2009, 34(5): 87-88 (in Chinese)
https://doi.org/10.3969/j.issn.1007-6395.2009.05.029URL [本文引用: 1]摘要
新疆粮油质检站对全疆45个粮食主产县约40个小麦品种的品质指标进行检测分析,对其一致性和差异性进行研究.分析结论是:新疆产小麦均为中筋小麦和弱筋小麦,缺乏优质高筋小麦,品质指标不平衡,蛋白质含量偏低.
[4]Meng L, Xiang C, Liu H, Yang L, Mai C, Yu L, Wei Y, Li H, Zhang H, Zhou Y.The impact of modern plant breeding on dominant Chinese wheat cultivars (Triticum aestivum L.) revealed by SSR and functional markers
. Genet Resour Crop Evol, 2018, 65: 55-65
https://doi.org/10.1007/s10722-017-0508-2URL [本文引用: 4]摘要
The modern plant breeding is generally considered to be a practice that leads to a narrowing in genetic diversity of crops. The objective of the present study was to assess whether this practice has l
[5]Andersen J R, Lübberstedt T.Functional markers in plants
.Trends Plant Sci, 2003, 8: 554-560
https://doi.org/10.1016/j.tplants.2003.09.010URL [本文引用: 2]
[6]Liu Y, He Z, Appels R, Xia X.Functional markers in wheat: current status and future prospects
.Theor Appl Genet, 2012, 125: 1-10
https://doi.org/10.1007/s00122-012-1829-3URLPMID:22366867 [本文引用: 1]摘要
Abstract Functional markers (FM) are developed from sequence polymorphisms present in allelic variants of a functional gene at a locus. FMs accurately discriminate alleles of a targeted gene, and are ideal molecular markers for marker-assisted selection in wheat breeding. In this paper, we summarize FMs developed and used in common wheat. To date, more than 30 wheat loci associated with processing quality, agronomic traits, and disease resistance, have been cloned, and 97 FMs were developed to identify 93 alleles based on the sequences of those genes. A general approach is described for isolation of wheat genes and development of FMs based on in silico cloning and comparative genomics. The divergence of DNA sequences of different alleles that affect gene function is summarized. In addition, 14 molecular markers specific for alien genes introduced from common wheat relatives were also described. This paper provides updated information on all FMs and gene-specific STS markers developed so far in wheat and should facilitate their application in wheat breeding programs.
[7]Worland A J, B?rner A, Korzun V, Li W M, Petrovíc S, Sayers E J.The influence of photoperiod genes on the adaptability of European winter wheats
.Euphytica, 1998, 100: 385-394
https://doi.org/10.1023/A:1018327700985URL [本文引用: 2]
[8]Fu D, Sz?cs P, Yan L, Helguera M, Skinner J S, Zitzewitz J V, Hayes P M, Dubcovsky J.Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat
. Mol Genet Genomics, 2005, 273: 54-65
https://doi.org/10.1007/s00438-004-1095-4URLPMID:15690172 [本文引用: 2]摘要
The broad adaptability of wheat and barley is in part attributable to their flexible growth habit, in that spring forms have recurrently evolved from the ancestral winter growth habit. In diploid wheat and barley growth habit is determined by allelic variation at the VRN-1 and/or VRN-2 loci, whereas in the polyploid wheat species it is determined primarily by allelic variation at VRN-1 . Dominant Vrn-A1 alleles for spring growth habit are frequently associated with mutations in the promoter region in diploid wheat and in the A genome of common wheat. However, several dominant Vrn-A1 , Vrn-B1 , Vrn-D1 (common wheat) and Vrn-H1 (barley) alleles show no polymorphisms in the promoter region relative to their respective recessive alleles. In this study, we sequenced the complete VRN-1 gene from these accessions and found that all of them have large deletions within the first intron, which overlap in a 4-kb region. Furthermore, a 2.8-kb segment within the 4-kb region showed high sequence conservation among the different recessive alleles. PCR markers for these deletions showed that similar deletions were present in all the accessions with known Vrn-B1 and Vrn-D1 alleles, and in 51 hexaploid spring wheat accessions previously shown to have no polymorphisms in the VRN-A1 promoter region. Twenty-four tetraploid wheat accessions had a similar deletion in VRN-A1 intron 1. We hypothesize that the 2.8-kb conserved region includes regulatory elements important for the vernalization requirement. Epistatic interactions between VRN-H2 and the VRN-H1 allele with the intron 1 deletion suggest that the deleted region may include a recognition site for the flowering repression mediated by the product of the VRN-H2 gene of barley.
[9]Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J.The wheat and barley vernalization gene VRN3 is an orthologue of FT
. Proc Natl Acad Sci USA, 2006, 103: 19581-19586
https://doi.org/10.1073/pnas.0607142103URLPMID:17158798 [本文引用: 2]摘要
Winter wheat and barley varieties require an extended exposure to low temperatures to accelerate flowering (vernalization), whereas spring varieties do not have this requirement. In this study, we show that in these species, the vernalization gene VRN3 is linked completely to a gene similar to Arabidopsis FLOWERING LOCUS T (FT). FT induction in the leaves results in a transmissible signal that promotes flowering. Transcript levels of the barley and wheat orthologues, designated as HvFT and TaFT, respectively, are significantly higher in plants homozygous for the dominant Vrn3 alleles (early flowering) than in plants homozygous for the recessive vrn3 alleles (late flowering). In wheat, the dominant Vrn3 allele is associated with the insertion of a retroelement in the TaFT promoter, whereas in barley, mutations in the HvFT first intron differentiate plants with dominant and recessive VRN3 alleles. Winter wheat plants transformed with the TaFT allele carrying the promoter retroelement insertion flowered significantly earlier than nontransgenic plants, supporting the identity between TaFT and VRN-B3. Statistical analyses of flowering times confirmed the presence of significant interactions between vernalization and FT allelic classes in both wheat and barley (P < 0.0001). These interactions were supported further by the observed up-regulation of HvFT transcript levels by vernalization in barley winter plants (P = 0.002). These results confirmed that the wheat and barley FT genes are responsible for natural allelic variation in vernalization requirement, providing additional sources of adaptive diversity to these economically important crops.
[10]Beales J, Turner A, Griffiths S, Snape J W, Laurie D A.A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat(Triticum aestivum L.)
. Theor Appl Genet, 2007, 115: 721-733
[本文引用: 3]
[11]Seki M, Chono M, Nishimura T, Sato M, Yoshimura Y, Matsunaka H, Fujita M, Oda S, Kubo K, Kiribuchi-Otobe C, Kojima H, Nishida H, Kato K.Distribution of photoperiod-insensitive allele Ppd-A1a and its effect on heading time in Japanese wheat cultivars
. Breed Sci, 2013, 63: 309-316
https://doi.org/10.1270/jsbbs.63.309URLPMID:3770558 [本文引用: 2]摘要
The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.9-9.8 days earlier in Kanto and 2.5 days earlier in Hokkaido than photoperiod-sensitive cultivars. The lower effect of photoperiod-insensitive alleles observed in Hokkaido could be due to the longer day-length at the spike formation stage compared with that in Kanto. Pedigree analysis showed that 'Purple Straw' and 'Tohoku 118' were donors of Ppd-A1a and Ppd-D1a in Hokkaido wheat cultivars, respectively. Wheat cultivars recently developed in Hokkaido carry photoperiod-insensitive alleles at a high frequency. For efficient utilization of Ppd-1 alleles in the Hokkaido wheat-breeding program, the effect of Ppd-1 on growth pattern and grain yield should be investigated. Ppd-A1a may be useful as a unique gene source for fine tuning the heading time in the Tohoku-Kyushu region since the effect of Ppd-A1a on photoperiod insensitivity appears to differ from the effect of Ppd-B1a and Ppd-D1a.
[12]Ellis M, Spielmeyer W, Gale K, Rebetzke G, Richards R.“Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat
. Theor Appl Genet, 2002, 105: 1038-1042
[本文引用: 2]
[13]Ishikawa G, Nakamura T.A new co-dominant PCR-based marker to identify the high-molecular-weight glutenin subunit combination ‘‘5+10’’ of common wheat
.Wheat Inf Serv, 2007, 103: 1-4
URL [本文引用: 2]
[14]Geng H W, He Z H, Zhang L P, Qu Y Y, Xia X C.Cloning the lipoxygenase gene on chromosome 4BS and development of functional markers in common wheat
.Crop Sci, 2012, 52: 568-576
[本文引用: 2]
[15]Giroux M J, Morris C F.A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin
.Theor Appl Genet, 1997, 95: 857-864
https://doi.org/10.1007/s001220050636URL [本文引用: 2]摘要
The quantitative level of friabilin 15-kDa protein present on the surface of water-washed starch is highly correlated with wheat grain softness. Friabilin is composed primarily, if not exclusively, of the proteins puroindoline a and b. The transcript levels of these two proteins are similar among hard and soft wheat varieties, and the expression of both is controlled by the short arm of chromosome 5D, also the chromosomal location of the Hardness gene. We report here a glycine to serine sequence change in puroindoline b associated with hard grain texture. This amino acid change results from a single nucleotide mutation and resides in a region thought to be important for the lipid-binding properties of puroindolines. No recombination was observed between the serine puroindoline-b mutation, hard grain texture and low levels of starch surface friabilin among a set of 83 homozygous 5D recombinant lines derived from the soft-textured variety ‘Chinese Spring’ and the substitution line ‘Chinese Spring’ containing the 5D chromosome of the hard-textured variety ‘Cheyenne’. The sequence change reported here may adversely affect the lipid-binding properties of puroindoline-b and so effect hard grain texture. The results suggest that grain hardness results from puroindoline-b functionality such that the Hardness gene is a direct manifestation of puroindoline structure. We are suggesting the tentative molecular marker loci designations of Pinb-D1a and Pinb-D1b for the glycine and serine puroindoline-b types, respectively.
[16]Sun D J, He Z H, Xia X C, Zhang L P, Morris C F, Appels, R, Ma W J, Wang H. A novel STS marker for polyphenol oxidase activity in bread wheat
.Mol Breed, 2005, 16: 209-218
https://doi.org/10.1007/s11032-005-6618-0URL [本文引用: 1]摘要
The enzyme activity of polyphenol oxidase (PPO) in grain has been related to undersirable brown discoloration of bread wheat ( Triticum aestivum L.) based end-products, particularly for Asian noodles. Breeding wheat cultivars with low PPO activity is the best approach to reduce the undesirable darkening. Molecular markers could greatly improve selection efficiency in breeding programs. Based on the sequences of PPO genes (GenBank Accession Numbers AY596268, AY596269 and AY596270) conditioning PPO activity during kernel development, 28 pairs of primers were designed using the software ‘DNAMAN’. One of the markers from AY596268, designated as PPO18 , can amplify a 685-bp and an 876-bp fragment in the cultivars with high and low PPO activity, respectively. The difference of 191-bp size was detected in the intron region of the PPO gene. The STS marker PPO18 was mapped to chromosome 2AL using a DH population derived from a cross Zhongyou 9507×02CA9632, a set of nulli-tetrasomic lines and ditelosomic line 2AS of Chinese Spring. QTL analysis indicated that the PPO gene co-segregated with the STS marker PPO18 and is closely linked to Xgwm312 and Xgwm294 on chromosome 2AL, explaining 28–43% of phenotypic variance for PPO activity across three environments. A total of 233 Chinese wheat cultivars and advanced lines were used to validate the correlation between the polymorphic fragments of PPO18 and grain PPO activity. The results showed that PPO18 is a co-dominant, efficient and reliable molecular marker for PPO activity and can be used in wheat breeding programs targeted for noodle quality improvement.
[17]He X Y, He Z H, Zhang L P, Sun D J, Morris C F, Fuerst E P, Xia X C.Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development offunctional markers for the PPO genes in common wheat
.Theor Appl Genet, 2007, 115: 47-58
https://doi.org/10.1007/s00122-007-0539-8URLPMID:17426955 [本文引用: 2]摘要
Polyphenol oxidase (PPO) activity is highly related to the undesirable browning of wheat-based end products, especially Asian noodles. Characterization of PPO genes and the development of their functional markers are of great importance for marker-assisted selection in wheat breeding. In the present study, complete genomic DNA sequences of two PPO genes, one each located on chromosomes 2A and 2D and their allelic variants were characterized by means of in silico cloning and experimental validation. Sequences were aligned at both DNA and protein levels. Two haplotypes on chromosome 2D showed 95.2% sequence identity at the DNA level, indicating much more sequence diversity than those on chromosome 2A with 99.6% sequence identity. Both of the PPO genes on chromosomes 2A and 2D contain an open reading frame (ORF) of 1,731 bp, encoding a PPO precursor peptide of 577 amino acids with a predicted molecular mass of 64 kD. Two complementary dominant STS markers, PPO16 and PPO29 , were developed based on the PPO gene haplotypes located on chromosome 2D; they amplify a 713-bp fragment in cultivars with low PPO activity and a 490-bp fragment in those with high PPO activity, respectively. The two markers were mapped on chromosome 2DL using a doubled haploid population derived from the cross Zhongyou 9507/CA9632, and a set of nullisomic etrasomic lines and ditelosomic line 2DS of Chinese Spring. QTL analysis indicated that the PPO gene co-segregated with the two STS markers and was closely linked to SSR marker Xwmc41 on chromosome 2DL, explaining from 9.6 to 24.4% of the phenotypic variance for PPO activity across three environments. In order to simultaneously detect PPO loci on chromosomes 2A and 2D, a multiplexed marker combination PPO33/PPO16 was developed and yielded distinguishable DNA patterns in a number of cultivars . The STS marker PPO33 for the PPO gene on chromosome 2A was developed from the same gene sequences as PPO18 that we reported previously, and can amplify a 481-bp and a 290-bp fragment from cultivars with low and high PPO activity, respectively. A total of 217 Chinese wheat cultivars and advanced lines were used to validate the association between the polymorphic fragments and grain PPO activity. The results showed that the marker combination PPO33/PPO16 is efficient and reliable for evaluating PPO activity and can be used in wheat breeding programs aimed for noodle and other end product quality improvement.
[18]He X Y, Zhang Y L, He Z H, Wu Y P, Xiao Y G, Ma C X, Xia X C.Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker
. Theor Appl Genet, 2008, 116: 213-221
[本文引用: 2]
[19]He X Y, He Z H, Ma W, Appels R, Xia X C.Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for ?our colour
. Mol Breed, 2009, 23: 553-563
[本文引用: 2]
[20]Ma D, Yan J, He Z, Wu L, Xia X.Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers
. Mol Breed, 2012, 29: 43-52
https://doi.org/10.1007/s11032-010-9524-zURL [本文引用: 2]摘要
Cell wall invertase (CWI) is a critical enzyme for sink tissue development and carbon partition, and has a high association with kernel weight. Characterization of Cwi genes and development of functional markers are of importance for marker-assisted selection in wheat breeding. In the present study, the full-length genomic DNA sequence of a Cwi gene located on wheat chromosome 2A, designated TaCwi - A1 , was characterized by in silico cloning and experimental validation. TaCwi - A1 comprises seven exons and six introns, with 3,67602bp in total, and an open reading frame (ORF) of 1,76702bp. A pair of complementary dominant markers, CWI21 and CWI22, was developed based on allelic variations at the TaCwi - A1 locus. A 404-bp PCR fragment was amplified by CWI21 in varieties with lower kernel weights, whereas a 402-bp fragment was generated by CWI22 in the varieties with higher kernel weights. The markers CWI21 and CWI22 were located on chromosome 2AL using a F 2:3 population from a cross Doumai/Shi 4185, and a set of Chinese Spring nullisomic–tetrasomic lines. They were linked to the SSR locus Xbarc15 - 2AL with a genetic distance of 10.902cM. QTL analysis indicated that TaCwi - A1 could explain 4.8% of phenotypic variance for kernel weight over 202years. Two sets of Chinese landraces and two sets of commercial wheat varieties were used to validate the association of CWI21 and CWI22 with kernel weight. The results indicated that the functional markers CWI21 and CWI22 were closely related to kernel weight and could be used in wheat breeding for improving grain yield.
[21]Jiang Y, Jiang Q, Hao C, Hou J, Wang L, Zhang H, Zhang S, Chen X, Zhang X.A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis
. Theor Appl Genet, 2015, 128: 131-143
https://doi.org/10.1007/s00122-014-2417-5URL [本文引用: 2]摘要
Plant invertase hydrolyzes sucrose into glucose and fructose.Cell wall invertase(CWI),one of the three types of invertase,is essential for development of flowers,seeds,and fruits.Based on isolated TaCWIs on chromosomes 4A,5B and 5D,two SNPs were detected in the promoter region of TaCWI-4A,and four SNPs and two Indels were present in the TaCWISD gene.No polymorphism was detected in TaCWISB coding or promoter regions.CAPS markers caps4 A and caps5 D were developed to discriminate haplotypes of TaCWI-4A and TaCWI-SD,respectively.Marker/trait association analysis indicated that Hap-5D-C at TaCWISD was significantly associated with higher thousand kernel weight(TKW),lower plant height(PH),earlier heading date(HD) and earlier maturity date(MD) in 348 Chinese modern cultivars grown in multiple environments.Geographic distributions and changes over time of favored haplotypes showed that Hap-5D-C was the major haplotype in modern cultivars and was strongly positively selected in six major wheat production regions worldwide.However,selection for haplotypes at TaCWI-4A was not so evident,possibly due to balancing effects of the two haplotypes on TKW and grain number per spike(GN).In rainfed production regions,Hap-4A-C was favored because it brought more seeds,but in well irrigated conditions,Hap-4A-T was favored in modern breeding because of higher TKW.Evolutionary analysis among wheat and its relatives showed that genetic diversity of TaCWI genes on chromosomes 4A and 5D declined dramatically in progression from the diploid level to modern polyploid cultivars.There was strong allelic selection in polyplodization,domestication and breeding.
[22]Guo Y, Sun J, Zhang G, Wang Y, Kong F, Zhao Y, Li S.Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size ofTaGS1a in wheat
. Field Crops Res, 2013, 154: 119-125
https://doi.org/10.1016/j.fcr.2013.07.012URL [本文引用: 2]摘要
Glutamine synthetase (GS) is a key enzyme in the formation of the amino acid glutamine during N assimilation. The characterization of GS genes and the development of functional markers are important for marker-assisted selection (MAS) in wheat breeding programs. In the present study, the full-length genomic DNA (gDNA) sequence of TaGS1a was obtained from 60 wheat varieties. TaGS1a comprises 3415bp and has eleven exons and ten introns. Nine single nucleotide polymorphisms (SNPs) and two insertions and deletions of DNA segments (InDels) were detected in introns, resulting two haplotypes: Hap 1 and Hap 2. A cleaved amplified polymorphic sequence (CAPS) marker was developed to distinguish the two haplotypes. The TaGS1a-CAPS marker was located on chromosome 6D using Chinese Spring nullisomic鈥搕etrasomic lines, and mapped at 2.5 cM from the SSR marker barc1121b in a RIL population. The completely corresponding results between quantitative trait locus (QTL) analysis and association analysis suggested that the TaGS1a gene had functions for grain size traits, including thousand grain weight (TGW), grain width (GW), grain height (GH), GL/GW ratio (GLW), factor form density (FFD), grain area (GA) and grain volume (GV) during maturity stage, and for the ratio of root/shoot for dry weight and nitrogen, phosphorus, potassium contents (RSDW, RSNC, RSPC and RSKC) during seedling stage.
[23]Zhang Y, Liu J, Xia X, He Z.TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat
. Mol Breed, 2014, 34: 1097-1107
https://doi.org/10.1007/s11032-014-0102-7URL [本文引用: 2]摘要
The OsGS3 gene plays a principal role in controlling grain weight and grain length in rice. However, the function of an orthologous gene TaGS in wheat has not been analyzed to date. In the present study, we cloned the gDNA of TaGS gene, designated TaGS - D1 , with four exons and three introns on chromosome 7DS by a comparative genomics approach. The cDNA of TaGS - D1 is 255 bp, and it encodes 85 amino acids. We also found a plant-specific organ size regulation domain in the deduced polypeptide, indicating that TaGS - D1 , like OsGS3 , does not belong to the PEBP family. DNA sequencing of the TaGS - D1 locus revealed no diversity in the coding sequence of exons, but there was a single nucleotide polymorphism (SNP) in the first intron, and 30 SNPs, a 40-bp InDel and a 3-bp InDel were found in the second intron between genotypes with higher and lower thousand grain weights (TGW). Based on the 40-bp InDel, a co-dominant STS marker, designated GS7D, was developed to discriminate the two alleles. GS7D was 8.0 cM from Xbarc184 located on chromosome 7DS by linkage mapping. A QTL for TGW and grain length at GS7D locus explained up to 16.3 and 7.7 %, respectively, of the phenotypic variances in a RIL population derived from Doumai/Shi 4185 grown in Shijiazhuang and Beijing. One hundred and seventy-five Chinese wheat cultivars were genotyped with GS7D, indicating that TaGS - D1 was significantly associated with grain weight. The allelic distribution at the TaGS - D1 locus showed that the frequencies of TaGS - D1a were high in cultivars from Serbia, Japan, Australia, Canada, and the Northeastern Spring Wheat and Northern Winter Wheat Regions of China.
[24]Wang S, Zhang X, Cheng F, Cui D.A single-nucleotide polymorphism of TaGS5 gene revealed its association with kernel weight in Chinese bread wheat
. Front Plant Sci, 2015, 6: 1166
https://doi.org/10.3389/fpls.2015.01166URLPMID:4688388 [本文引用: 2]摘要
TaGS5 genes were cloned from bread wheat and were physically mapped on 3AS and 3DS. Sequencing results revealed that a SNP was found in the sixth exon of TaGS5-A1 gene. The SNP resulted in amino acid change from alanine to serine at the 303 bp position of TaGS5-A1. These two alleles were designated as TaGS5-A1a (alanine at the 303 bp position) and TaGS5-A1b genes (serine at the 303-bp position). Analysis of association of TaGS5-A1 alleles with agronomic traits indicated that cultivars with TaGS5-A1b possessed wider kernel width and higher thousand-kernel weight, as well as significantly lower plant height, spike length, and internode length below spike than those of cultivars with TaGS5-A1a over three years. These trait differences between TaGS5-A1a and TaGS5-A1b genotypes were larger in landraces than in modern cultivars. This finding suggested that TaGS5 gene played an important role in modulating yield-related traits in the landraces, which possibly resulted from numerous superior genes gathering in modern cultivars after strong artificial selection. The preferred TaGS5-A1b haplotype underwent very strong positive selection in Chinese modern wheat breeding, but not in Chinese landraces. Expression analysis of the TaGS5-A1 gene indicated that TaGS5-A1b allele possessed significantly higher expression level than TaGS5-A1b allele in differently developmental seeds. This study could provide relatively superior genotype in view of agronomic traits in wheat breeding programs. Likewise, this study could offer important information for the dissection of molecular and genetic basis of yield-related traits.
[25]Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X.The wheat (T. aestivum) sucrose synthase 2 gene(TaSus2) active in endosperm development is associated withyield traits
. Funct Integr Genomic, 2011, 11: 49-61
[本文引用: 2]
[26]Hanif M, Gao F, Liu J, Wen W, Zhang Y, Rasheed A, Xia X, He Z, Cao S. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat
. Mol Breed, 2016, 36: 1.
URL [本文引用: 2]
[27]Guo X, Wang Y, Meng L, Liu H, Yang L, Zhou Y, Zhang H.Distribution of the Vrn-D1b allele associated with facultative growth habit in Chinese wheat accessions
. Euphytica, 2015, 206: 1-10
https://doi.org/10.1007/s10681-015-1440-1URL [本文引用: 1]摘要
Vernalization requirement in wheat is determined by allelic variation mainly at three loci, Vrn - A1 , Vrn - B1 and Vrn - D1 . Up to 2011 only two alleles at the Vrn - D1 locus were known. The dominant allele, now designated as Vrn - D1a , confers spring growth habit, and the other, recessive allele, vrn - D1 , is associated with the winter growth habit. Recently, we found an additional dominant allele, Vrn - D1b , associated with the facultative growth habit. As facultative wheat cultivars play an important role in wheat production we screened 689 accessions from all over China, with a specific aim of determining the frequency and distribution of Vrn - D1b . The results showed that Vrn - D1a , Vrn - D1b and vrn - D1 were present in 27.3, 20.6 and 52.102% of all accessions, respectively. Vrn - D1a was mostly distributed in the autumn sown spring wheat zone, whereas Vrn - D1b was common in the autumn sown facultative wheat zone. One cultivar (Shiluan 02-1) was heterogeneous at the Vrn - D1 locus. A comparison between the Vrn - D1b genotype and the vrn - D1 genotype from the same cultivar showed that without vernalization the Vrn - D1b genotype reached the double ridge (DR) stage 2702days earlier than the vrn - D1 genotype. Vernalization responses, expressed as a reduction in the number of days to reach the DR stage following cold treatment, at 402°C for 20, 30 and 4002days, were 62, 67 and 7502days, respectively, for the Vrn - D1b genotype, and 74, 87 and 9802days, respectively, for the vrn - D1 genotype, confirming the effect of Vrn - D1b on facultative growth habit. Pedigree analysis indicates that the Vrn - D1b allele originated from Chinese landraces.
[28]Zhang J, Wang Y, Wu S, Yang J, Liu H, Zhou Y.A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response
. Theor Appl Genet, 2012, 125: 1697-1704
[本文引用: 1]
[29]Liu C, Yang Z J, Li G R, Zeng Z X, Zhang Y, Zhou J P, Liu Z H, Ren Z L.Isolation of a new repetitive DNA sequence from Secalea fricanum enables targeting of Secale chromatin in wheat background
. Euphytica, 2008, 159: 249-258
https://doi.org/10.1007/s10681-007-9484-5URL [本文引用: 1]摘要
A genome specific DNA sequence that detects Secale africanum chromatin incorporated into wheat was developed in this study. Random amplified polymorphic DNA (RAPD) analysis was used to search for genome specific DNA sequences of S. africanum in lines, R111, “mianyang11” (MY11) and wheat-rye 1RS/1BL translocations R25 and R57. A high copy rye-specific DNA segment pSaD15 940 of the S. africanum genome was obtained. The sequence of pSaD15 did not show any significant homology to other reported sequences in databases and it is therefore a new repetitive sequence of Secale . PCR primers were designed for pSaD15 940 , which amplify a clear 88702bp fragment in S. africanum but not in any wheat. The primers also amplified an 88702bp fragment in other accessions of rye, Chinese Spring-Imperial rye chromosome additions and a diverse range of material carrying different rye chromosomes or chromosomal segments. In02situ hybridization showed that probe pSaD15 940 was specifically hybridized throughout all rye chromosomes arms except for the terminal regions. The advantage of the rye-specific probe developed herein compared to those of previous reports is that it has been shown to be widely applicable to other Secale species. The probe will be useful as a molecular marker for the introgression of S. africanum and other rye chromosome segments into the wheat genome.
[30]Liu K, Muse S V.PowerMarker: An integrated analysis environment for genetic marker analysis
.Bioinformatics, 2005, 21: 2128-2129
https://doi.org/10.1093/bioinformatics/bti282URLPMID:15705655 [本文引用: 1]摘要
PowerMarker delivers a data-driven, integrated analysis environment (IAE) for genetic data. The IAE integrates data management, analysis and visualization in a user-friendly graphical user interface. It accelerates the analysis lifecycle and enables users to maintain data integrity throughout the process. An ever-growing list of more than 50 different statistical analyses for genetic markers has been implemented in PowerMarker.
[31]Excoffier L, Lischer H E L. Arlequin suite ver3.5: a new series of programs to perform population genetics analyses under Linux and Windows
.Mol Ecol Resour, 2010, 10: 564-567
https://doi.org/10.1111/men.2010.10.issue-3URL [本文引用: 1]
[32]Rohlf F J.NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.1. Exeter Software
. Setauket, New York, 2000
[本文引用: 1]
[33]杨松杰, 张晓科, 何中虎, 夏先春, 周阳. 用STS标记检测矮秆基因Rht-B1bRht-D1b在中国小麦中的分布
. 中国农业科学, 2006, 39: 1680-1688
[本文引用: 1]

Yang S J, Zhang X K, He Z H, Xia X C, Zhou Y.Distribution of dwarfing genes Rht-B1b and Rht-D1b in Chinese bread wheats detected by STS marker
. Sci Agric Sin, 2006, 39: 1680-1688 (in Chinese with English abstract)
[本文引用: 1]
[34]Díaz A, Zikhali M, Turner A S, Isaac P, Laurie D A.Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat(Triticum aestivum)
. PLoS One, 2012, 7: e33234
[本文引用: 1]
[35]周阳, 何中虎, 张改生, 夏兰琴, 陈新民, 高永超, 井赵斌, 于广军. 1BL/1RS易位系在我国小麦育种中的应用
. 作物学报, 2004, 30: 531-535
[本文引用: 1]

Zhou Y, He Z H, Zhang G S, Xia L Q, Chen X M, Gao Y C, Jing Z B, Yu G J.Utilization of 1BL/1RS translation in wheat breeding in China
.Acta Agron Sin, 2004, 30: 531-535 (in Chinese with English abstract)
[本文引用: 1]
[36]李洪杰, 王晓鸣, 宋凤景, 伍翠平, 武小菲, 张宁, 周阳, 张学勇. 中国小麦品种对白粉病的抗性反应与抗病基因检测
. 作物学报, 2011, 37: 943-954
[本文引用: 1]

Li H J, Wang X M, Song F J, Wu C P, Wu X F, Zhang N, Zhou Y, Zhang X Y.Response to powdery mildew and detection of resistance genes in wheat cultivars from China
.Acta Agron Sin, 2011, 37: 943-954 (in Chinese with English abstract)
[本文引用: 1]
[37]王亮, 穆培源, 徐红军, 刘丽, 何中虎, 夏先春, 庄丽, 桑伟, 韩新年, 聂迎彬. 新疆小麦品种高分子量麦谷蛋白亚基组成分析
. 麦类作物学报, 2008, 28: 430-435
https://doi.org/10.7606/j.issn.1009-1041.2008.03.100URL [本文引用: 1]摘要
为全面了解新疆冬、春麦兼种区小麦品种高分子量麦谷蛋白亚基(HMW-GS)组成与分布情况,给优质小麦品种选育提供理论依据,采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)方法对360份新疆农家品种、育成品种(系)及国内外引进品种的HMW-Gs组成进行了分析。结果表明,新疆小麦品种HMW-GS组成存在广泛变异,亚基类型以2、Null、7+8和2+12为主,其频率分别为40.0%、35.3%、51.4%和61.9%。此外,还发现了单亚基2和稀有亚基7、21、7+8、6.1+22、2.2+12,其中2.2+12亚基主要分布在南疆麦区。优质亚基频率偏低是新疆小麦品质差的重要原因。新疆冬、春小麦品种的HMW-GS组成也存在差异,冬小麦品种有17种变异类型,以Null/7+8/2+12为主;春小麦品种有13种变异类型,以2/7+8/2+12为主。育成品种中1、7+9和5+10亚基(对)的频率较农家品种有很大的提高,其中优质亚基5+10的频率呈明显上升趋势,由农家品种的。增加至2000年以后育成品种的33.9%,说明引进并利用外来优异种质有利于提高新疆小麦品种的加工品质。
Wang L, Mu P Y, Xu H J, Liu L, He Z H, Xia X C, Zhuang L, Sang W, Han X N, Nie Y B.Compositions of HMW-GS in wheat varieties and advanced lines from Xinjiang
.J Triticeae Crops, 2008, 28: 430-435 (in Chinese with English abstract)
https://doi.org/10.7606/j.issn.1009-1041.2008.03.100URL [本文引用: 1]摘要
为全面了解新疆冬、春麦兼种区小麦品种高分子量麦谷蛋白亚基(HMW-GS)组成与分布情况,给优质小麦品种选育提供理论依据,采用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)方法对360份新疆农家品种、育成品种(系)及国内外引进品种的HMW-Gs组成进行了分析。结果表明,新疆小麦品种HMW-GS组成存在广泛变异,亚基类型以2、Null、7+8和2+12为主,其频率分别为40.0%、35.3%、51.4%和61.9%。此外,还发现了单亚基2和稀有亚基7、21、7+8、6.1+22、2.2+12,其中2.2+12亚基主要分布在南疆麦区。优质亚基频率偏低是新疆小麦品质差的重要原因。新疆冬、春小麦品种的HMW-GS组成也存在差异,冬小麦品种有17种变异类型,以Null/7+8/2+12为主;春小麦品种有13种变异类型,以2/7+8/2+12为主。育成品种中1、7+9和5+10亚基(对)的频率较农家品种有很大的提高,其中优质亚基5+10的频率呈明显上升趋势,由农家品种的。增加至2000年以后育成品种的33.9%,说明引进并利用外来优异种质有利于提高新疆小麦品种的加工品质。
[38]Yang F P, Wang L H, Wang J W, He X Y, Zhang X K, Shang X W, Yang W X, Xia X C, He Z H.Characterisation of high- and low-molecular-weight glutenin subunit genes in Chinese winter wheat cultivars and advanced lines using allele-specific markers and SDS-PAGE
.Crop Pasture Sci, 2010, 61: 84-91
https://doi.org/10.1071/CP09164URL [本文引用: 1]摘要
Wheat end-use product quality is highly influenced by the composition and quantity of high- and low-molecular-weight glutenin subunits (HMW-GS and LMW-GS). In the present study, 224 Chinese wheat cultivars and advanced lines were characterised for the HMW-GS and LMW-GS with allele-specific PCR markers and sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The results showed that 56 cultivars (25.0%) carried the allele Glu-D1-1d (Dx5), while 80 cultivars (35.7%) with the allele Glu-B1-2a (By8) produced a 527-bp specific band. Fourteen genotypes (6.3%) with the allele Glu-B1e (Bx20) yielded a 701-bp amplicon with the marker Mar and a 753-bp specific PCR fragment with the marker ZSBy9aF1/R3. Glu-B1h (Bx14+By15) was present in only 1 genotype, and 2 cultivars contained the allele Glu-B1f (Bx13+By16) identified with the marker ZSBy9F2/R2. Four genotypes (1.8%) with the allele Glu-B1-1d (Bx6) gave 695-bp and 830-bp bands, and 5 genotypes (2.2%) with the allele Glu-B1i (Bx17+By18) amplified a 659-bp fragment using the marker Bx. One hundred and six cultivars (47.3%) had the allele Glu-B1-2b (By9), amplifying a 663-bp fragment with the marker ZSBy9aF1/R3; 34 genotypes (15.8%) contained the allele Glu-B3d, generating a 662-bp PCR fragment with the marker gluB3d. Fifteen cultivars (7.0%) with the allele Glu-B3b yielded 1570-bp and 750-bp PCR amplicons with the markers gluB3b and gluB3bef, respectively. The allele Glu-B3h was found in 7 cultivars, generating a 1022-bp PCR fragment with the marker gluB3h. The genotypes detected by SDS-PAGE were mostly consistent with those identified by molecular markers, confirming the utility of the molecular markers. The information for the HMW-GS and LMW-GS in Chinese wheat cultivars will be useful in wheat breeding programs.
[39]王亮, 穆培源, 徐红军, 庄丽, 桑伟, 韩新年, 聂迎彬, 夏先春, 何中虎. 新疆小麦品种中多酚氧化酶(PPO)活性基因等位变异的分布
. 麦类作物学报, 2008, 28: 766-771
[本文引用: 1]

Wang L, Mu P Y, Xu H J, Zhuang L, Sang W, Han X N, Nie Y B, Xia X C, He Z H.Distribution of allelic variations of polyphenol oxidase genes in Xinjiang wheat cultivars
.J Triticeae Crops, 2008, 28: 766-771 (in Chinese with English abstract)
[本文引用: 1]
[40]王荣栋, 孔军, 陈荣毅, 张伟. 新疆小麦品质生态区划
. 新疆农业科学, 2005, 42: 309-314
https://doi.org/10.3969/j.issn.1001-4330.2005.05.005URL [本文引用: 1]摘要
对新疆小麦品质区划研究工作进行了总结.简述了新疆小麦品质生态区划的原则、方法、步骤以及命名方式.通过对比分析不同生态区小麦品质的表现,确定了小麦品质的区划方案.将新疆小麦品质生态区划分为3个主区和7个亚区,并对不同生态区的范围、生态环境状况、小麦品质的形成特点和适宜种植的品种类型进行了评述.
Wang R D, Kong J, Chen R Y, Zhang W.Classification on Xinjiang wheat regions based on ecological quality
.Xinjiang Agric Sci, 2005, 42: 309-314 (in Chinese with English abstract)
https://doi.org/10.3969/j.issn.1001-4330.2005.05.005URL [本文引用: 1]摘要
对新疆小麦品质区划研究工作进行了总结.简述了新疆小麦品质生态区划的原则、方法、步骤以及命名方式.通过对比分析不同生态区小麦品质的表现,确定了小麦品质的区划方案.将新疆小麦品质生态区划分为3个主区和7个亚区,并对不同生态区的范围、生态环境状况、小麦品质的形成特点和适宜种植的品种类型进行了评述.
[41]曹霞, 王亮, 冯毅, 徐红军, 穆培源, 张晓科, 张影全. 新疆小麦品种春化和光周期主要基因的组成分析
. 麦类作物学报, 2010, 30: 601-606
https://doi.org/10.7606/j.issn.1009-1041.2010.04.003URL [本文引用: 1]摘要
为了明确新疆冬春麦区小麦春化和光周期基因的分布特点,利用 STS标记对185份品种(系)的重要春化基因Vrn-A1、Vrn-B1、Vrn-D1、Vrn-B3和光周期基因Ppd-D1住点的等位变异组成进行 了检测和分析.结果表明,在新疆小麦品种中,春化和光周期基因位点显性等位变异分布频率不同.含有春化显性等位变异Vrn-A1的品种47个,占供试品种 (系)的25.4%;Vrn-B1为43个,占23.3%;Vrn-D1为38个,占20.5%;Vrn-B3位点不存在显性等位变异.春化显性等位变异 Vrn-A1、Vrn-B1和Vrn-D1在冬、春性小麦内的分布比例也不同.在春性小麦品种(系)中,显性等位变异Vrn-A1出现的频率较高 (55.3%);其次为Vrn-B1,占50.6%;Vrn-D1占44.7%.在冬性小麦中,仅有显性等位变异Vrn-B1出现,占2.0%.在光周期 基因Ppd-D1位点,80.0%的品种(系)携带光不教感显性等位变异Ppd-D1a;其中在春性和冬性小麦品种(系)中,Ppd-D1a出现的频率分 别为83.5%和77.0%.新疆小麦品种(系)中,存在11种春化和光周期基因显性等位变异组合.
Cao X, Wang L, Feng Y, Xu H J, Mu P Y, Zhang X K, Zhang Y Q.Combination of vernalization and photoperiod main genes in Xinjiang wheat
.J Triticeae Crops, 2010, 30: 601-606 (in Chinese with English abstract)
https://doi.org/10.7606/j.issn.1009-1041.2010.04.003URL [本文引用: 1]摘要
为了明确新疆冬春麦区小麦春化和光周期基因的分布特点,利用 STS标记对185份品种(系)的重要春化基因Vrn-A1、Vrn-B1、Vrn-D1、Vrn-B3和光周期基因Ppd-D1住点的等位变异组成进行 了检测和分析.结果表明,在新疆小麦品种中,春化和光周期基因位点显性等位变异分布频率不同.含有春化显性等位变异Vrn-A1的品种47个,占供试品种 (系)的25.4%;Vrn-B1为43个,占23.3%;Vrn-D1为38个,占20.5%;Vrn-B3位点不存在显性等位变异.春化显性等位变异 Vrn-A1、Vrn-B1和Vrn-D1在冬、春性小麦内的分布比例也不同.在春性小麦品种(系)中,显性等位变异Vrn-A1出现的频率较高 (55.3%);其次为Vrn-B1,占50.6%;Vrn-D1占44.7%.在冬性小麦中,仅有显性等位变异Vrn-B1出现,占2.0%.在光周期 基因Ppd-D1位点,80.0%的品种(系)携带光不教感显性等位变异Ppd-D1a;其中在春性和冬性小麦品种(系)中,Ppd-D1a出现的频率分 别为83.5%和77.0%.新疆小麦品种(系)中,存在11种春化和光周期基因显性等位变异组合.
[42]Mahfoozi S, Limin A E, Hayes P M, Hucl P, Fowler, D B.Influence of photoperiod response on the expression of cold hardiness in wheat and barley
.Can J Plant Sci, 2000, 80: 721-724
https://doi.org/10.4141/P00-031URL [本文引用: 1]摘要
Vernalization and photoperiod requirements regulate the timing of the vegetative/reproductive transition in plants. Cereals adapted to cold winter climates regulate this developmental transition mainly through vernalization requirements, which delay transition from the vegetative to the reproductive growth stage. Recent research indicates that vernalization requirements also influence the expression of low-temperature (LT) tolerance genes in cereals exposed to acclimating temperatures. The objective of the present study was to determine if LT tolerance expression was also developmentally regulated by photoperiod response. The nonhardy, short day (SD) sensitive, wheat (Triticum aestivum L. em Thell) cultivar AC Minto, the LT tolerant, highly SD sensitive barley (Hordeum vulgare L.) cultivar Dicktoo, and a barley selection with very low sensitivity to SD were subjected to 8-h (SD) and 20-h (LD) days at cold acclimating temperatures over a period of 98 d. Final leaf number (FLN) was used to measure photoperiod sensitivity and determine the vegetative/reproductive transition point. The LT tolerance of the less SD sensitive barley genotype was similar for LD and SD treatments. In contrast, a delay in the transition from the vegetative to the reproductive stage in AC Minto and Dicktoo grown under SD resulted in an increased level and/or longer retention of LT tolerance. These results support the hypothesis that not only the level, but also the duration of gene expression determines the degree of LT tolerance in cereals. Consequently, any factor that lengthens the vegetative stage, such as vernalization or photoperiod sensitivity, also increases the duration of expression of LT tolerance genes. [References: 11]
[43]Rasheed A, Xia X, Mahmood T, Ouraishi U M, Aziz A, Bux H, Mahmood Z, Mirza J I, Mujeeb-Kazi A, He Z.Comparison of economically important loci in landraces and improved wheat cultivars from Pakistan
.Crop Sci, 2016, 56: 287-301
https://doi.org/10.2135/cropsci2015.01.0015URL [本文引用: 2]摘要
We investigated alleles at 31 loci associated with adaptability, yield, and end-use quality in 107 wheat (Triticum aestivum L.) landraces (WLRs) and 121 improved historical wheat cultivars (HWCs) from Pakistan. The WLRs were categorized into two further subgroups: 36 pre-Green-Revolution landraces released as cultivars and 71 geographically spread landraces from all over Pakistan. Alleles Vrn-A1a, TaGW2-6A-A, TaCKX6-D1b, Pinb-D1b, Psy-A1b, and Wx-D1b were absent in WLRs, whereas ample diversity was observed at all other loci. In HWCs, only Wx-D1b and Glu-A3e were absent among the alleles tested, whereas the alleles Ppd-D1a (90%), Rht-B1b or Rht-D1b (83.4%), TaCwi-A1a (95%), TaGW2-6A-G (76%), TaCKX6-D1a (77.3%), Glu-A1b (66.1%), Glu-D1d (61.3%), Pina-D1b (88.2%), Pinb-D1a (90%), Psy-A1a (66.1%), Psy-B1b (81.8%), Psy-D1a (86.5%), Ppo-A1a (70%), TaZds-D1b (73.9%), TaLox-B1b (80.1%), and Wx-D1a (100%) predominated,ndicating significant improvement in adaptability, yield potential, and end-use quality and unconscious selection for favored alleles. Higher frequencies of favored alleles at the TaCwi-A1 and TaCKX6-D1 loci influencing 1000-kernel weight (TKW) in HWCs indicated that selection pressure on these alleles during breeding successfully contributed to cultivar improvement. Wright pairwise fixation index (Fst) statistics indicated greater genetic divergence between HWC and WLR collections (0.16)than HWC and WLR cultivars (0.14). Population structure based on functional markers (FMs) using principal component analysis partitioned the germplasm into two distinct groups. High genetic divergence and low admixture between HWCs and WLRs indicated limited use of landraces in wheat breeding in Pakistan. Our results suggested these collections as rich reservoirsof alleles and haplotype combinations that may be useful in future breeding programs.
[44]Hao C, Wang L, Ge H, Dong Y, Zhang X.Genetic diversity and linkage disequilibrium in 407 Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers
. PLoS One, 2011, 6: e17279
[本文引用: 1]
相关话题/新疆 基因 研究所 农业 作物