Comprehensive identification and evaluation of foxtail millet for saline-alkaline tolerance during germination
CHEN Er-Ying,1, WANG Run-Feng1, QIN Ling1, YANG Yan-Bing1, LI Fei-Fei1, ZHANG Hua-Wen1, WANG Hai-Lian1, LIU Bin1, KONG Qing-Hua2, GUAN Yan-An,1,2,*通讯作者:
收稿日期:2020-03-12接受日期:2020-06-2网络出版日期:2020-07-01
基金资助: |
Received:2020-03-12Accepted:2020-06-2Online:2020-07-01
Fund supported: |
作者简介 About authors
E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (1238KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604. doi:10.3724/SP.J.1006.2020.04064
CHEN Er-Ying, WANG Run-Feng, QIN Ling, YANG Yan-Bing, LI Fei-Fei, ZHANG Hua-Wen, WANG Hai-Lian, LIU Bin, KONG Qing-Hua, GUAN Yan-An.
土壤盐碱化是影响作物生长发育和产量的重要限制因子[1,2,3]。全球约有30%左右的耕地受盐碱的影响[4]。我国具有大量的盐碱土地, 总面积约9913万公顷[5], 且呈逐年递增的趋势。芽期和苗期是作物受盐碱危害的敏感时期, 提高作物芽期和苗期的耐盐碱性是应对盐碱的重要途径, 筛选具有芽期和苗期强耐盐碱性的品种是重要的手段。景宇鹏等[6]利用主成分分析在玉米萌发和幼苗期进行了耐盐性品种的筛选和综合评价。信彩云等[7]在水稻苗期先通过主成分分析确定综合性状指标, 后通过回归方程确定了幼苗鲜重、叶绿素含量和SOD酶活作为单项耐盐性的鉴定指标。于莹等[8]研究发现, 模糊隶属函数在玉米萌发期可作为耐盐性分级评价的方法。高春华等[9]的研究指出, 主成分分析和模糊隶属函数在高粱芽期耐盐性的评价中存在一致性, 已在大豆[10]上共同用于苗期耐盐性品种的筛选和评价。
谷子[Setaria italica (L.) Beauv.]是起源于中国的传统粮食作物, 具有较强的抗旱、耐瘠薄的能力[11,12,13], 是典型的环境友好型作物。同时, 谷子具有较强的抗盐性[14,15,16], 培育耐盐碱性强的品种是应对盐碱灾害的重要途径。在中性盐NaCl胁迫下, 不同谷子品种发芽率、根长和芽长存在品种间差异[17], 在低盐胁迫下, 发芽率和发芽势无显著变化[18], 在高盐胁迫下, 根长和芽长均受到一定的抑制[19]; 在碱性盐胁迫下谷子发芽率和发芽势显著降低[20]。通过主成分分析确定, 发芽率、发芽指数和相对芽长可作为谷子芽期耐盐性评价的关键指标[21]。但前人研究多集中在单一的中性盐或碱性盐条件下, 而盐碱地实际生产中存在盐碱共同胁迫的问题, 有关谷子混合盐碱胁迫研究尚未见报道; 且谷子芽期耐盐性的鉴定方法较为单一, 缺乏评价的系统性和准确性。因此本研究以全国不同生态区主推谷子品种为材料, 在混合盐碱胁迫下通过主成分分析、模糊隶属函数、聚类分析和回归分析进行谷子芽期耐盐碱的综合评价, 以期为筛选芽期强耐盐碱的谷子品种和评价指标提供材料和方法。
1 材料与方法
1.1 试验材料
采用全国生产上主推的53个谷子品种为材料, 见表1。Table 1
表1
表1供试谷子品种及育成单位
Table 1
编号 No. | 品种 Cultivars | 育成单位 Breeding institutes | 编号 No. | 品种 Cultivars | 育成单位 Breeding institutes |
---|---|---|---|---|---|
1 | 鲁谷1号 Lugu 1 | 山东省农业科学院 SDAAS | 28 | 豫谷13 Yugu 13 | 安阳市农业科学院 AYAAS |
2 | 鲁谷10号 Lugu 10 | 山东省农业科学院 SDAAS | 29 | 豫谷17 Yugu 17 | 河南省农业科学院 HNAAS |
3 | 济谷13 Jigu 13 | 山东省农业科学院 SDAAS | 30 | 豫谷18 Yugu 18 | 安阳市农业科学院 AYAAS |
4 | 济谷16 Jigu 16 | 山东省农业科学院 SDAAS | 31 | 豫谷31 Yugu 31 | 安阳市农业科学院 AYAAS |
5 | 济谷17 Jigu 17 | 山东省农业科学院 SDAAS | 32 | 豫谷32 Yugu 32 | 安阳市农业科学院 AYAAS |
6 | 济谷18 Jigu 18 | 山东省农业科学院 SDAAS | 33 | 安13-5079 An 13-5079 | 安阳市农业科学院 AYAAS |
7 | 济谷19 Jigu 19 | 山东省农业科学院 SDAAS | 34 | 郑谷607 Zhenggu 607 | 河南省农业科学院 HNAAS |
8 | 济谷20 Jigu 20 | 山东省农业科学院 SDAAS | 35 | 衡谷16 Henggu 16 | 衡水市农业科学研究院 HSAAS |
9 | 济谷21 Jigu 21 | 山东省农业科学院 SDAAS | 36 | 衡谷17 Henggu 17 | 衡水市农业科学研究院 HSAAS |
10 | 济谷22 Jigu 22 | 山东省农业科学院 SDAAS | 37 | 保谷18 Baogu 18 | 保定市农业科学研究院 BDAAS |
11 | 中谷2号 Zhonggu 2 | 中国农业科学院 CAAS | 38 | 保谷23 Baogu 23 | 保定市农业科学研究院 BDAAS |
12 | 中谷6号 Zhonggu 6 | 中国农业科学院 CAAS | 39 | 邯谷2号 Hangu 2 | 邯郸市农业科学研究院 HDAAS |
13 | 中谷7号 Zhonggu 7 | 中国农业科学院 CAAS | 40 | 沧谷9号 Canggu 9 | 沧州市农林科学院 CZAFS |
14 | 冀谷19 Jigu 19 | 河北省农林科学院 HBAFS | 41 | 沧15-298 Cang 15-298 | 沧州市农林科学院 CZAFS |
15 | 冀谷20 Jigu 20 | 河北省农林科学院 HBAFS | 42 | 延谷2号 Yangu 2 | 延安市农业科学研究所 YAIAS |
16 | 冀谷26 Jigu 26 | 河北省农林科学院 HBAFS | 43 | 秦谷3号 Qingu 3 | 延安市农业科学研究所 YAIAS |
17 | 冀谷40 Jigu 40 | 河北省农林科学院 HBAFS | 44 | 晋谷45号 Jingu 45 | 山西省农业科学院 SXAAS |
18 | 冀谷41 Jigu 41 | 河北省农林科学院 HBAFS | 45 | 长谷4号 Changgu 4 | 山西省农业科学院 SXAAS |
19 | 冀谷42 Jigu 42 | 河北省农林科学院 HBAFS | 46 | 晋谷46号 Jingu 46 | 山西省农业科学院 SXAAS |
20 | 聊农1号 Liaonong 1 | 聊城市农业科学研究院 LCAAS | 47 | 陇谷10 Longgu 10 | 甘肃省农业科学院 GAAAS |
21 | 泰谷002 Taigu 002 | 泰安市农业科学研究院 TAAAS | 48 | 龙谷34 Longu 34 | 黑龙江省农业科学院 HLJAAS |
22 | 泰谷003 Taigu 003 | 聊城市农业科学研究院 LCAAS | 49 | 公矮8号 Gongai 8 | 吉林省农业科学院 JLAAS |
23 | C17 | 河南省农业科学院 HNAAS | 50 | 赤谷8号 Chigu 8 | 赤峰市农业科学研究院 CFAAS |
24 | 14H481 | 邯郸市农业科学院 HDAAS | 51 | 赤谷7号 Chigu 7 | 赤峰市农业科学研究院 CFAAS |
25 | 豫谷7号 Yugu 7 | 安阳市农业科学院 AYAAS | 52 | 公矮2号 Gongai 2 | 吉林省农业科学院 JLAAS |
26 | 豫谷8号 Yugu 8 | 河南省农业科学院 HNAAS | 53 | 龙谷31 Longgu 31 | 黑龙江省农业科学院 HLJAAS |
27 | 豫谷9号 Yugu 9 | 安阳市农业科学院 AYAAS |
新窗口打开|下载CSV
1.2 试验设计
2018年在山东省农业科学院人工气候室中进行培养, 每个品种挑选均匀、大小一致的50粒种子, 先用75%的酒精消毒15 min, 然后用去离子水冲洗3次, 吸水纸吸干后放入铺有2层滤纸的培养皿中培养。以济谷19、济谷20、冀谷41、豫谷18、保谷23、秦谷3号、晋谷46、龙谷31共8个品种进行预试验, 确定筛选的最适盐碱浓度。本试验根据滨海盐碱地的特征[22,23]确定筛选的盐碱比为4∶1 (NaCl∶NaHCO3), 以此盐碱比设定40、60、80、100、120、140、160、180和200 mmol L-1不同的盐碱浓度, 蒸馏水做对照, 各处理重复4次。根据发芽势、发芽率、根长和叶长确定各指标与对照差异最显著的100 mmol L-1盐碱浓度为筛选浓度。人工气候室设置昼夜温度28℃/22℃, 湿度65%, 昼夜时长各为12 h, 光照强度为240 μmol m-2 s-1。1.3 测定项目与方法
培养第4天和第10天统计各品种发芽率, 并在第10天测定根长、芽长和称取鲜重, 每培养皿称量10株, 求平均值。按以下公式进行各性状指标的计算:发芽势(%) = 第4天发芽种子数/种子总数×100%;发芽率(%) = 第10天发芽种子数/种子总数×100%;相对发芽势(%) = 处理发芽势/对照发芽势×100%;相对发芽率(%) = 处理发芽率/对照发芽率×100%;相对根长(%) = 处理根长/对照根长×100%;相对芽长(%) = 处理芽长/对照芽长×100%;相对根鲜重(%) = 处理根鲜重/对照根鲜重×100%;相对芽鲜重(%) = 处理芽鲜重/对照芽鲜重×100%;相对根冠比(%) = 相对根鲜重/相对芽鲜重×100%;发芽势盐害率(%) = (对照发芽势-处理发芽势)/对照发芽势×100%;发芽率盐害率(%) = (对照发芽率-处理发芽率)/对照发芽率×100%;根长盐害率(%) = (对照根长-处理根长)/对照根长×100%;芽长盐害率(%) = (对照芽长-处理芽长)/对照芽长×100%;根鲜重盐害率(%) = (对照根鲜重-处理根鲜重)/对照根鲜重×100%;芽鲜重盐害率(%) = (对照芽鲜重-处理芽鲜重)/对照芽鲜重×100%;根冠比盐害率(%) = (对照根冠比-处理根冠比)/对照根冠比×100%;1.4 数据处理与分析
采用Microsoft Excel 2007软件处理数据, 采用SPSS 18.0进行方差分析、主成分分析、相关性分析和聚类分析, 采用SPSS 18.0和R语言作图。采用隶属函数综合评价性状指标, 按以下公式进行计算:式中, μ(Xj)表示第j个综合指标的隶属函数值, Xj表示第j个综合指标值, Xmax表示第j个综合指标的最大值, Xmin表示第j个综合指标的最小值。
式中, Wj表示第j个综合指标在所有综合指标中权重, Pj为品种第j个综合指标的贡献率。
式中, D表示各品种耐盐碱能力的综合评价值。
2 结果与分析
2.1 盐碱胁迫对谷子萌发各性状的影响
谷子萌发期盐碱胁迫下, 除根冠比外, 各品种的发芽势、发芽率、根长、芽长、根鲜重和芽鲜重的相对值均小于1, 表明除根冠比外, 各性状值在盐碱胁迫下均降低(表2)。各性状的相对值以相对根长最小, 相对发芽势和相对发芽率较大。不同性状间以相对根长的变异最大, 变幅为8.7%~56.4%, 变异系数为45.8%; 相对发芽势的变异最低, 变幅为53.3%~97.9%, 变异系数为12.2%。在盐碱胁迫下各性状的盐害率与相对值表现相反的趋势, 以根长的盐害率最大, 均值为77.6%, 发芽势的盐害率最低, 均值为14.3%。各性状的盐害率在品种间的变异以根冠比盐害率的变异最大, 变幅为-88.9%~25.4%, 变异系数为-908.4%; 以根长盐害率的变异最小, 变幅为43.6%~91.3%, 变异系数为13.2%。Table 2
表2
表2不同谷子品种盐碱胁迫下的性状指标
Table 2
参数 Parameter | 范围 Range (%) | 均值 Mean (%) | 均方 Mean square | 变异系数 CV (%) |
---|---|---|---|---|
相对发芽势RGP (%) | 53.30-97.90 | 85.71 | 109.91 | 12.23 |
相对发芽率RGR (%) | 49.40-98.40 | 84.88 | 145.62 | 14.22 |
相对根长RRL (%) | 8.70-56.40 | 22.37 | 104.70 | 45.75 |
相对芽长RSL (%) | 38.00-99.70 | 73.37 | 162.88 | 17.39 |
相对根鲜重RRFW (%) | 50.90-96.30 | 77.58 | 109.66 | 13.50 |
相对芽鲜重RSFW (%) | 43.10-96.90 | 78.00 | 208.09 | 18.49 |
相对根冠比RRSR (%) | 74.60-188.90 | 102.35 | 454.61 | 20.83 |
发芽势盐害率 SIRGP (%) | 2.10-46.70 | 14.29 | 109.95 | 73.38 |
发芽率盐害率SIRGR (%) | 1.60-50.60 | 15.12 | 145.67 | 79.81 |
根长盐害率SIRRL (%) | 43.60-91.30 | 77.64 | 104.72 | 13.18 |
芽长盐害率SIRSL (%) | 0.30-62.00 | 26.63 | 162.88 | 47.92 |
根鲜重盐害率SIRRFW (%) | 3.70-49.10 | 22.42 | 109.65 | 46.71 |
芽鲜重盐害率SIRSFW (%) | 3.10-56.90 | 22.00 | 208.09 | 65.57 |
根冠比盐害率SIRSR (%) | -88.90-25.40 | -2.35 | 454.61 | -908.39 |
新窗口打开|下载CSV
2.2 盐碱胁迫下谷子各性状指标的频率分布
由图1 (a, b)可知, 相对发芽势和相对发芽率的分布范围分别为50%~100%和45%~100%, 两性状均主要分布在80%~90%和90%~100%, 频数分别为15、25和11、2, 分布频率分别为28.3%、47.2%和20.8%、49.1%。不同谷子品种相对根长和相对芽长的分布范围分别为5.0%~60.0%和35.0%~100.0% (图2-a, b), 相对根长主要集中分布在10%~20%和20%~30%, 分布频数和频率分别为27、16和50.9%、30.2%; 相对芽长主要集中分布在70%~80%和80%~90%, 分布频数和频率分别为18、13和34.0%、24.5%。相对根鲜重和相对芽鲜重的分布范围为50.0%~100.0%和40.0%~100.0% (图2-c, d), 相对根鲜重主要集中分布在70.0%~80.0%和80.0%~90.0%, 分布频数和频率分别为19、16和35.8%、35.2%; 相对芽鲜重主要集中分布在80.0%~90.0%和90.0%~100.0%, 分布频数和频率分别为17、12和32.1%、22.6%。图1
新窗口打开|下载原图ZIP|生成PPT图1不同谷子品种相对发芽性状频率分布图
a: 相对发芽势频率分布; b: 相对发芽率频率分布。
Fig. 1Frequency distribution diagram of relative germination traits of different foxtail millet cultivars
a: frequency distribution diagram of relative germination potential; b: frequency distribution diagram of relative germination rate.
图2
新窗口打开|下载原图ZIP|生成PPT图2不同谷子品种相对性状频率分布图
a: 相对根长频率分布; b: 相对芽长频率分布; c: 相对根鲜重频率分布; d: 相对芽鲜重频率分布。
Fig. 2Frequency distribution diagram of relative traits of different foxtail millet cultivars
a: frequency distribution diagram of relative root length; b: frequency distribution diagram of relative shoot length; c: frequency distribution diagram of relative root fresh weight; d: frequency distribution diagram of relative shoot fresh weight.
2.3 盐碱胁迫下各性状的相关性分析
由表3可知, 相对发芽势与相对发芽率呈极显著正相关, 相关系数为0.736 (P<0.01)。相对发芽势和相对发芽率与相对芽长、相对芽鲜重和相对根鲜重均呈显著或极显著正相关, 相关系数分别为0.281 (P<0.05)和0.409 (P<0.01)、0.287 (P<0.05)和0.470 (P<0.01)、0.430 (P<0.01)和0.590 (P<0.01), 与相对根冠比呈显著和极显著负相关, 相关系数分别为-0.320 (P<0.05)和-0.361 (P<0.01); 相对根长仅与相对发芽率呈显著正相关, 相关系数为0.347 (P<0.05), 与相对发芽势相关性不显著。相对芽长与相对根长和相对芽鲜重与相对根鲜重间均呈极显著正相关, 相关系数分别为0.451和0.458; 相对芽长与相对芽鲜重间呈极限著正相关, 相关系数为0.593, 而相对根长与相对根鲜重间相关性不显著。相对根冠比与相对根长、相对芽长和相对芽鲜重均呈显著或极显著负相关, 相关系数分别为-0.290 (P<0.01)、-0.475 (P<0.05)和-0.744 (P<0.05), 与相对根鲜重呈正相关, 但相关性不显著。各性状盐害率的相关性与各性状相对值间相关性表现出相反的趋势, 且两者之间呈极显著负相关。Table 3
表3
表3盐碱胁迫下谷子各性状的相关性分析
Table 3
性状 Trait | 相对 | 相对 | 相对 | 相对 | 相对 | 相对 | 相对 | 发芽势 | 发芽率 | 根长 | 芽长 | 根鲜重 | 芽鲜重 | 根冠比 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
发芽势 | 发芽率 | 根长 | 芽长 | 根鲜重 | 芽鲜重 | 根冠比 | 盐害率 | 盐害率 | 盐害率 | 盐害率 | 盐害率 | 盐害率 | 盐害率 | |
RGP | RGR | RRL | RSL | RRFW | RSFW | RRSR | SIRGP | SIRGR | SIRRL | SIRSL | SIRRFW | SIRRFW | SIRRS | |
相对发芽势RGP | ||||||||||||||
相对发芽率RGR | 0.736" | |||||||||||||
相对根长RRL | 0.123 | 0.347* | ||||||||||||
相对芽长RSL | 0.281* | 0.409** | 0.451" | |||||||||||
相对根鲜重RRFW | 0.287* | 0.470** | 0.160 | 0.269 | ||||||||||
相对芽鲜重RSFW | 0.430** | 0.590** | 0.380** | 0.593** | 0.458** | |||||||||
相对根冠比RRSR | -0.320* | -0.361** | -0.290* | -0.475** | 0.206 | -0.744" | ||||||||
发芽势盐害率SIRGP | -1.000** | -0.736** | -0.123 | -0.281* | -0.287* | -0.430** | 0.319* | |||||||
发芽率盐害率SIRGR | -0.735** | -1.000** | -0.347* | -0.409** | -0.470** | -0.590** | 0.361" | 0.736" | ||||||
根长盐害率SIRRL | -0.123 | -0.347* | -1.000** | -0.451** | -0.160 | -0.380** | 0.290* | 0.123 | 0.347* | |||||
芽长盐害率SIRSL | -0.281* | -0.409** | -0.451** | -1.000** | -0.269 | -0.593** | 0.475** | 0.281* | 0.409** | 0.45广 | ||||
根鲜重盐害率SIRRFW | -0.287* | -0.470** | -0.160 | -0.269 | -1.000** | -0.458** | -0.206 | 0.287* | 0.470** | 0.160 | 0.269 | |||
芽鲜重盐害率SIRSFW | -0.430** | -0.590** | -0.380** | -0.593** | -0.458** | -1.000** | 0.744** | 0.430** | 0.590** | 0.380" | 0.593** | 0.458** | ||
根冠比盐害率SIRRS | 0.320* | 0.361" | 0.290* | 0.475** | -0.206 | 0.744** | -1.000** | -0.319* | -0.361** | -0.290* | -0.475** | 0.206 | -0.744" |
新窗口打开|下载CSV
2.4 盐碱胁迫下谷子各性状的主成分分析
主成分分析结果显示(表4), 第I主成分的贡献率为48.4%, 主要与发芽率、芽长和芽鲜重的相对值和盐害率有关, 主要反映谷子的发芽率和地上部的盐害性状。第II主成分的贡献率为18.6%, 主要与根鲜重的相对值和盐害率有关, 主要反映根鲜重的盐害性状。第III主成分的贡献率为13.8%, 主要与发芽势有关, 主要反映谷子的萌发性状。第IV主成分的贡献率为9.5%, 主要与根长的相对值和盐害率有关, 主要反映根长的盐害性状。4个主成分的累积贡献率为90.4%, 能有效地反应数据的变化趋势, 符合主成分的分析要求。Table 4
表4
表4主成分的特征根值、贡献率和载荷矩阵
Table 4
主成分Principal component | I | II | III | IV | |
---|---|---|---|---|---|
特征根Eigen value | 6.78 | 2.61 | 1.94 | 1.32 | |
贡献率Contribution (%) | 48.43 | 18.64 | 13.82 | 9.45 | |
累计贡献率Cumulative contribution (%) | 48.43 | 67.07 | 80.89 | 90.35 | |
载荷因子Load factor | 相对发芽势RGP | 0.671 | 0.318 | -0.533 | 0.272 |
相对发芽率RGR | 0.821 | 0.326 | -0.215 | 0.230 | |
相对根长RRL | 0.544 | -0.227 | 0.579 | 0.529 | |
相对芽长RSL | 0.726 | -0.224 | 0.317 | -0.151 | |
相对根鲜重RRFW | 0.473 | 0.740 | 0.347 | -0.294 | |
相对芽鲜重RSFW | 0.886 | -0.128 | 0.013 | -0.352 | |
相对根冠比RRSR | -0.659 | 0.657 | 0.284 | 0.148 | |
发芽势盐害率 SIRGP | 0.671 | 0.319 | -0.533 | 0.272 | |
发芽率盐害率SIRGR | 0.821 | 0.326 | -0.215 | 0.229 | |
根长盐害率SIRRL | 0.543 | -0.227 | 0.579 | 0.530 | |
芽长盐害率SIRSL | 0.726 | -0.224 | 0.317 | -0.151 | |
根鲜重盐害率SIRRFW | 0.473 | 0.740 | 0.347 | -0.294 | |
芽鲜重盐害率SIRSFW | 0.886 | -0.128 | 0.013 | -0.352 | |
根冠比盐害率SIRRS | -0.659 | 0.657 | 0.284 | 0.148 |
新窗口打开|下载CSV
2.5 不同谷子芽期耐盐碱的综合评价
根据主成分的贡献率, 利用公式(2)计算出4个主成分的权重分别为0.536、0.206、0.153和0.105。Z1~Z4为各性状指标经主成分分析后的4个主成分的综合得分值, 利用主成分的综合性状得分值通过公式(1)计算出综合性状指标的隶属函数值, 根据各主成分的权重和综合性状的隶属函数值利用公式(3)计算出各品种的综合得分值并排序(表5)。根据各品种的综合得分值进行聚类分析(图3), 划分为6类不同类型的品种: 强耐盐碱型品种2个(编号2、 10), 耐盐碱型品种16个(编号1、4、5、6、7、9、11、12、14、19、25、27、40、41、50、51), 中间型品种17个(编号3、8、15、16、17、18、21、24、26、28、29、33、34、39、44、48、53), 盐碱敏感型品种6个(编号20、37、42、43、47、49), 不耐盐碱型品种9个(编号13、22、23、30、35、36、45、46、52)和极不耐盐碱型品种3个(编号31、32、38)。Table 5
表5
表5各品种的综合性状指标、权重、μ(X)及综合评价值
Table 5
编号 No. | 品种 Variety | Z1 | Z2 | Z3 | Z4 | μ(X1) | μ(X2) | μ(X3) | μ(X4) | 综合得分值 Comprehensive assessment values (D) | 排名 Rank | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 鲁谷1号Lugu 1 | 1.271 | -1.367 | 1.084 | 0.551 | 1.000 | 0.175 | 0.703 | 0.596 | 0.742 | 6 | |||||||||||||
2 | 鲁谷 lOLugu 10 | 1.233 | -1.001 | 2.395 | 1.398 | 0.992 | 0.251 | 1.000 | 0.773 | 0.817 | 1 | |||||||||||||
3 | 济谷 13 Jigu 13 | 0.177 | 0.247 | 0.224 | 0.434 | 0.760 | 0.511 | 0.509 | 0.572 | 0.651 | 23 | |||||||||||||
4 | 济谷 16 Jigu 16 | 0.182 | -0.281 | 2.202 | -0.192 | 0.761 | 0.401 | 0.956 | 0.441 | 0.683 | 17 | |||||||||||||
5 | 济谷 17 Jigu 17 | 0.516 | -0.621 | 1.162 | 1.385 | 0.835 | 0.330 | 0.721 | 0.771 | 0.706 | 11 | |||||||||||||
6 | 济谷 18 Jigu 18 | 0.400 | -0.659 | 1.178 | 0.944 | 0.809 | 0.322 | 0.724 | 0.678 | 0.682 | 18 | |||||||||||||
7 | 济谷 19 Jigu 19 | 0.805 | 1.282 | 0.446 | -0.777 | 0.898 | 0.726 | 0.559 | 0.319 | 0.750 | 4 | |||||||||||||
8 | 济谷 20 Jigu 20 | -0.313 | 1.377 | 0.145 | 1.436 | 0.653 | 0.746 | 0.491 | 0.781 | 0.661 | 20 | |||||||||||||
9 | 济谷 21 Jigu 21 | 1.198 | -0.138 | 0.371 | 0.915 | 0.984 | 0.431 | 0.542 | 0.672 | 0.770 | 3 | |||||||||||||
10 | 济谷 22 Jigu 22 | 0.906 | 0.933 | 0.795 | 0.885 | 0.920 | 0.653 | 0.638 | 0.666 | 0.795 | 2 | |||||||||||||
11 | 中谷2号Zhonggu 2 | 1.204 | -0.573 | -0.411 | -0.601 | 0.985 | 0.340 | 0.365 | 0.355 | 0.691 | 13 | |||||||||||||
12 | 中谷6号Zhonggu 6 | 0.931 | -0.062 | -0.070 | 0.832 | 0.926 | 0.447 | 0.442 | 0.655 | 0.724 | 8 | |||||||||||||
13 | 中谷7号Zhonggu 7 | -0.425 | -2.210 | 1.844 | -2.302 | 0.629 | 0.000 | 0.875 | 0.000 | 0.471 | 42 | |||||||||||||
14 | 冀谷 19 Jigu 19 | 1.075 | -0.004 | 0.359 | 0.089 | 0.957 | 0.458 | 0.539 | 0.500 | 0.742 | 5 | |||||||||||||
15 | 冀谷 20 Jigu 20 | 0.579 | 0.016 | -0.018 | -1.365 | 0.848 | 0.463 | 0.454 | 0.196 | 0.640 | 27 | |||||||||||||
16 | 冀谷 26 Jigu 26 | 0.495 | 0.936 | -0.612 | -0.508 | 0.830 | 0.654 | 0.319 | 0.375 | 0.668 | 19 | |||||||||||||
17 | 冀谷 40 Jigu 40 | 0.161 | 1.588 | -0.992 | 0.239 | 0.757 | 0.789 | 0.233 | 0.531 | 0.660 | 21 | |||||||||||||
18 | 冀谷 41 Jigu 41 | -0.307 | 2.258 | -0.669 | -0.042 | 0.654 | 0.929 | 0.306 | 0.472 | 0.639 | 28 | |||||||||||||
19 | 冀谷 42 Jigu 42 | 0.654 | 1.114 | 0.200 | -0.432 | 0.865 | 0.691 | 0.503 | 0.391 | 0.724 | 9 | |||||||||||||
20 | 聊农 1 号 Liaonong 1 | 0.336 | -0.090 | -2.022 | -0.957 | 0.795 | 0.441 | 0.000 | 0.281 | 0.547 | 40 | |||||||||||||
21 | 泰谷 0〇2 Taigu 002 | 0.448 | 0.427 | -0.952 | -0.168 | 0.820 | 0.548 | 0.242 | 0.446 | 0.636 | 29 | |||||||||||||
22 | 泰谷 003 Taigu 003 | -1.615 | -0.043 | -1.647 | 1.923 | 0.368 | 0.450 | 0.085 | 0.883 | 0.396 | 49 | |||||||||||||
23 | C17 | -0.675 | -0.980 | -1.039 | -1.137 | 0.574 | 0.256 | 0.222 | 0.243 | 0.420 | 46 | |||||||||||||
24 | 14H481 | 0.051 | 0.327 | 0.009 | -1.227 | 0.733 | 0.527 | 0.460 | 0.225 | 0.595 | 34 | |||||||||||||
25 | 豫谷7号Yugu 7 | 0.933 | -0.178 | -0.378 | -0.234 | 0.926 | 0.422 | 0.372 | 0.432 | 0.686 | 15 | |||||||||||||
26 | 豫谷8号Yugu 8 | 0.058 | 1.402 | -0.242 | -0.259 | 0.734 | 0.751 | 0.403 | 0.427 | 0.655 | 22 | |||||||||||||
27 | 豫谷9号Yugu 9 | 0.710 | 0.040 | -0.294 | 0.595 | 0.877 | 0.468 | 0.391 | 0.605 | 0.690 | 14 | |||||||||||||
28 | 豫谷 13 Yugu 13 | 0.165 | 0.116 | -0.521 | 0.952 | 0.758 | 0.483 | 0.340 | 0.680 | 0.629 | 30 | |||||||||||||
29 | 豫谷 17 Yugu 17 | 0.260 | -0.186 | -1.092 | -0.201 | 0.779 | 0.421 | 0.210 | 0.439 | 0.582 | 35 | |||||||||||||
30 | 豫谷 18 Yugu 18 | -1.141 | -0.762 | -0.809 | -0.668 | 0.472 | 0.301 | 0.275 | 0.341 | 0.393 | 50 | |||||||||||||
编号 No. | 品种 Variety | Z1 | Z2 | Z3 | Z4 | μ(X1) | μ(X2) | μ(X3) | μ(X4) | 综合得分值 Comprehensive assessment values (D) | 排名 Rank | |||||||||||||
31 | 豫谷 31 Yugu31 | -2.607 | -0.433 | 0.321 | 0.217 | 0.151 | 0.369 | 0.530 | 0.526 | 0.293 | 52 | |||||||||||||
32 | 豫谷 32 Yugu 32 | -3.295 | 0.714 | 1.230 | -0.520 | 0.000 | 0.608 | 0.736 | 0.372 | 0.277 | 53 | |||||||||||||
33 | 安 13-5079 An 13-5079 | 0.829 | -0.439 | -1.288 | -0.774 | 0.903 | 0.368 | 0.166 | 0.319 | 0.619 | 31 | |||||||||||||
34 | 郑谷 607 Zhenggu 607 | 0.719 | 0.180 | -0.841 | -0.866 | 0.879 | 0.497 | 0.267 | 0.300 | 0.646 | 25 | |||||||||||||
35 | 衡谷 16Henggu 16 | -0.705 | -2.002 | -0.553 | -0.798 | 0.567 | 0.043 | 0.333 | 0.314 | 0.397 | 48 | |||||||||||||
36 | 衡谷 17Henggu 17 | -1.589 | -0.660 | 0.689 | -0.319 | 0.374 | 0.322 | 0.614 | 0.414 | 0.404 | 47 | |||||||||||||
37 | 保谷 18Baogu 18 | -1.905 | 2.601 | 1.583 | 0.890 | 0.304 | 1.000 | 0.816 | 0.667 | 0.564 | 38 | |||||||||||||
38 | 保谷 23 Baogu 23 | -1.312 | -1.750 | -1.464 | 0.278 | 0.434 | 0.096 | 0.126 | 0.539 | 0.328 | 51 | |||||||||||||
39 | 邯谷2号Hangu 2 | 0.404 | -0.135 | -0.704 | -0.238 | 0.810 | 0.431 | 0.298 | 0.431 | 0.614 | 32 | |||||||||||||
40 | 沧谷9号Canggu 9 | -0.015 | 0.650 | 2.115 | -0.730 | 0.718 | 0.594 | 0.937 | 0.329 | 0.685 | 16 | |||||||||||||
41 | 沧 15-298 Cang 15-298 | 0.761 | -1.101 | 0.349 | 2.314 | 0.888 | 0.231 | 0.537 | 0.965 | 0.707 | 10 | |||||||||||||
42 | 延谷2号Yangu 2 | -0.011 | -1.133 | -1.054 | 2.483 | 0.719 | 0.224 | 0.219 | 1.000 | 0.570 | 36 | |||||||||||||
43 | 秦谷3号Qingu 3 | 0.325 | -1.580 | -0.037 | -0.371 | 0.793 | 0.131 | 0.449 | 0.403 | 0.563 | 39 | |||||||||||||
44 | 晋谷 45 Jingu 45 | 0.302 | -0.101 | 0.572 | -1.838 | 0.788 | 0.438 | 0.587 | 0.097 | 0.613 | 33 | |||||||||||||
45 | 长谷4号Changgu 4 | -1.177 | -0.663 | 1.023 | -0.315 | 0.464 | 0.322 | 0.689 | 0.415 | 0.464 | 43 | |||||||||||||
46 | 晋谷 46 Jingu 46 | -1.198 | 0.086 | -0.009 | -0.741 | 0.459 | 0.477 | 0.456 | 0.326 | 0.448 | 44 | |||||||||||||
47 | 陇谷 10 Longgu 10 | -0.565 | 0.158 | -0.020 | 1.113 | 0.598 | 0.492 | 0.453 | 0.714 | 0.566 | 37 | |||||||||||||
48 | 龙谷 34 Longgu 34 | 0.140 | 0.969 | 0.179 | -0.756 | 0.752 | 0.661 | 0.498 | 0.323 | 0.650 | 24 | |||||||||||||
49 | 公矮8号Gong’ai 8 | -0.207 | -0.069 | -1.157 | 0.327 | 0.676 | 0.445 | 0.196 | 0.549 | 0.542 | 41 | |||||||||||||
50 | 赤谷8号Chigu 8 | 0.829 | 0.527 | 0.207 | -1.224 | 0.903 | 0.569 | 0.505 | 0.225 | 0.702 | 12 | |||||||||||||
51 | 赤谷7号Chigu 7 | 0.685 | 1.563 | -0.188 | -0.478 | 0.872 | 0.784 | 0.415 | 0.381 | 0.732 | 7 | |||||||||||||
52 | 公矮2号Gong’ai2 | -1.256 | -0.355 | -0.858 | 1.068 | 0.447 | 0.386 | 0.264 | 0.704 | 0.433 | 45 | |||||||||||||
53 | 龙谷 31 Longgu 31 | 0.573 | 0.064 | -0.737 | -0.231 | 0.847 | 0.473 | 0.291 | 0.433 | 0.641 | 26 | |||||||||||||
权重 Index weight (%) | 0.536 | 0.206 | 0.153 | 0.105 |
新窗口打开|下载CSV
图3
新窗口打开|下载原图ZIP|生成PPT图3不同谷子品种D值聚类分析图
Fig. 3Cluster analysis of D-values of different millet cultivars
以综合得分值D值为因变量, 各单项性状指标为自变量进行逐步回归分析, 得到回归分析方程D° =0.298+0.037X2+0.144X3+0.018X6+0.209X7-0.183X9+0.115X11-0.201X12+0.112X13-0.101X14+0.284X15, 方程的决定系数为R2=1.000, P<0.01。对综合得分值和回归值进行检测, 回归值和观测值的估计精度均在99%以上(表6), 证明该方程对谷子的耐盐碱性的评价可靠, 可用于耐盐碱性的评价。在14个性状指标中, 该方程包含的10个性状指标中的相对发芽率(X3)、根长盐害率(X11)、芽长盐害率(X12)和根冠比盐害率(X13) 4个性状指标均达显著性的水平(P<0.01), 可以作为谷子芽期耐盐碱的评价指标。
Table 6
表6
表6回归方程的精度分析
Table 6
编号 No. | 品种 Cultivar | 回归值 Regression value | 原始值 Primary value | 差值 Difference | 估计精度 Evaluation accuracy (%) |
---|---|---|---|---|---|
1 | 鲁谷1号 Lugu 1 | 0.7420 | 0.7422 | -0.00017 | 99.98 |
2 | 鲁谷10 Lugu 10 | 0.8172 | 0.8173 | -0.00017 | 99.98 |
3 | 济谷13 Jigu 13 | 0.6504 | 0.6506 | -0.00022 | 99.98 |
4 | 济谷16 Jigu 16 | 0.6831 | 0.6833 | -0.00022 | 99.98 |
5 | 济谷17 Jigu 17 | 0.7062 | 0.7064 | -0.00018 | 99.98 |
6 | 济谷18 Jigu 18 | 0.6821 | 0.6821 | 0.00004 | 100.00 |
7 | 济谷19 Jigu 19 | 0.7498 | 0.7499 | -0.00004 | 100.00 |
8 | 济谷20 Jigu 20 | 0.6608 | 0.6607 | 0.00006 | 99.99 |
9 | 济谷21 Jigu 21 | 0.7695 | 0.7695 | 0.00003 | 100.00 |
10 | 济谷22 Jigu 22 | 0.7952 | 0.7952 | -0.00002 | 100.00 |
11 | 中谷2号 Zhonggu 2 | 0.6912 | 0.6913 | -0.00014 | 99.99 |
12 | 中谷6号 Zhonggu 6 | 0.7246 | 0.7244 | 0.00012 | 99.99 |
13 | 中谷7号 Zhonggu 7 | 0.4706 | 0.4708 | -0.00017 | 99.98 |
14 | 冀谷19 Jigu 19 | 0.7422 | 0.7424 | -0.00016 | 99.98 |
15 | 冀谷20 Jigu 20 | 0.6399 | 0.6401 | -0.00022 | 99.98 |
16 | 冀谷26 Jigu 26 | 0.6680 | 0.6679 | 0.00006 | 99.99 |
17 | 冀谷40 Jigu 40 | 0.6600 | 0.6598 | 0.00021 | 99.98 |
编号 No. | 品种 Cultivar | 回归值 Regression value | 原始值 Primary value | 差值 Difference | 估计精度 Evaluation accuracy (%) |
18 | 冀谷41 Jigu 41 | 0.6388 | 0.6386 | 0.00016 | 99.98 |
19 | 冀谷42 Jigu 42 | 0.7239 | 0.7240 | -0.00010 | 99.99 |
20 | 聊农1号 Liaonong 1 | 0.5469 | 0.5465 | 0.00032 | 99.97 |
21 | 泰谷002 Taigu 002 | 0.6362 | 0.6361 | 0.00004 | 100.00 |
22 | 泰谷003 Taigu 003 | 0.3958 | 0.3955 | 0.00022 | 99.98 |
23 | C17 | 0.4201 | 0.4199 | 0.00024 | 99.98 |
24 | 14H481 | 0.5954 | 0.5955 | -0.00001 | 100.00 |
25 | 豫谷7号 Yugu 7 | 0.6856 | 0.6857 | -0.00003 | 100.00 |
26 | 豫谷8号 Yugu 8 | 0.6548 | 0.6548 | -0.00005 | 100.00 |
27 | 豫谷9号 Yugu 9 | 0.6899 | 0.6899 | 0.00005 | 100.00 |
28 | 豫谷13 Yugu 13 | 0.6291 | 0.6290 | 0.00005 | 100.00 |
29 | 豫谷17 Yugu 17 | 0.5824 | 0.5823 | 0.00014 | 99.99 |
30 | 豫谷18 Yugu 18 | 0.3929 | 0.3927 | 0.00016 | 99.98 |
31 | 豫谷31 Yugu 31 | 0.2932 | 0.2932 | 0.00005 | 100.00 |
32 | 豫谷32 Yugu 32 | 0.2770 | 0.2770 | 0.00003 | 100.00 |
33 | 安13-5079 An 13-5079 | 0.6190 | 0.6189 | 0.00005 | 99.99 |
34 | 郑谷607 Zhenggu 607 | 0.6460 | 0.6460 | 0.00005 | 100.00 |
35 | 衡谷16 Henggu 16 | 0.3968 | 0.3968 | 0.00005 | 99.99 |
36 | 衡谷17 Henggu 17 | 0.4040 | 0.4040 | 0.00002 | 100.00 |
37 | 保谷18 Baogu 18 | 0.5640 | 0.5642 | -0.00019 | 99.98 |
38 | 保谷23 Baogu 23 | 0.3284 | 0.3282 | 0.00014 | 99.99 |
39 | 邯谷2号 Hangu 2 | 0.6140 | 0.6140 | -0.00002 | 100.00 |
40 | 沧谷9号 Canggu 9 | 0.6851 | 0.6853 | -0.00023 | 99.98 |
41 | 沧15-298 Cang 15-298 | 0.7068 | 0.7068 | -0.00001 | 100.00 |
42 | 延谷2号 Yangu 2 | 0.5700 | 0.5699 | 0.00002 | 100.00 |
43 | 秦谷3号 Qingu 3 | 0.5629 | 0.5630 | -0.00003 | 100.00 |
44 | 晋谷45 Jingu 45 | 0.6126 | 0.6127 | -0.00010 | 99.99 |
45 | 长谷4 Changgu 4 | 0.4639 | 0.4639 | -0.00003 | 100.00 |
46 | 晋谷46 Jingu 46 | 0.4486 | 0.4485 | 0.00010 | 99.99 |
47 | 陇谷10 Longgu 10 | 0.5660 | 0.5660 | 0.00001 | 100.00 |
48 | 龙谷34 Longgu 34 | 0.6496 | 0.6496 | 0.00000 | 100.00 |
49 | 公矮8号 Gong’ai 8 | 0.5420 | 0.5418 | 0.00011 | 99.99 |
50 | 赤谷8号 Chigu 8 | 0.7022 | 0.7023 | -0.00003 | 100.00 |
51 | 赤谷7号 Chigu 7 | 0.7324 | 0.7325 | -0.00006 | 99.99 |
52 | 公矮2号 Gong’ai 2 | 0.4328 | 0.4329 | -0.00011 | 99.99 |
53 | 龙谷31 Longgu 31 | 0.6411 | 0.6413 | -0.00021 | 99.98 |
新窗口打开|下载CSV
3 讨论
3.1 盐碱胁迫下各性状的变化及频率分布
实际生产中, 盐碱地存在盐碱共同胁迫, 通过单一中性盐[17,21]或碱性盐[20]筛选的品种不能满足实际生产的需求, 需要在混合盐碱胁迫下进行谷子耐盐碱品种的筛选。本研究表明, 在混合盐碱胁迫下谷子发芽势、发芽率、根长、芽长、根鲜重和芽鲜重均降低, 但存在品种间的差异, 这与前人研究结果基本一致[24]。另有研究指出盐碱胁迫下地下部根受抑制的程度大于地上部[8], 这与本研究谷子相对根长显著小于相对芽长的研究结果一致。同时本研究结果还表明不同谷子品种相对发芽势、相对发芽率和相对根长的分布比较集中, 相对芽长、相对根鲜重和相对芽鲜重的分布比较分散, 且各性状相对值超过80%的品种数分别为0、16、40、37、13和29, 表明盐碱胁迫对谷子的根长影响最大, 根鲜重、芽长和芽鲜重次之, 对发芽势和发芽率的影响最小。3.2 谷子盐碱胁迫下的相关性、主成分分析和综合评价
韩飞等[21]研究表明, 在盐胁迫下谷子相对芽长和相对根长呈显著正相关, 盐害率与相对芽长和根长均呈极显著负相关。田伯红等[17]研究表明, 在盐胁迫下谷子相对根长和相对芽长呈显著正相关, 但与盐害率无显著相关性。本研究表明, 在混合盐碱胁迫下, 谷子的相对根长与相对芽长及相对根鲜重与相对芽鲜重均呈显著正相关, 这与前人研究结果一致; 且相对发芽率与相对根长、相对芽长、相对根鲜重和相对芽鲜重均呈显著正相关, 表明盐碱胁迫对谷子地上部和地下部的影响存在协同性, 且均对发芽率有着显著的作用。这与于菘等[25]认为在盐碱胁迫下绿豆各性状均存在协同性的研究一致。作物的耐盐性是一个综合性状, 通过单一性状或少量性状的评价不能真实有效地反映作物的耐盐性, 需要进行多项指标的综合评价[26,27]。主成分分析是一项重要的降维评价方法, 可将多个因素合成为一个或几个因素(主成分)进行分析, 在作物的性状综合分析中[28,29,30]得到了广泛的应用。隶属函数是一项重要的等级评价方法, 已在作物的耐盐性评价[5,21]中进行应用。隶属函数侧重于评价结果, 对每个因素进行等级评价, 但缺乏考虑对每个因素的贡献率, 所以需要两者结合进行综合的分析和评价。本研究在盐碱胁迫下通过主成分分析选取了特征根和贡献率较大的4个主成分, 累计贡献率为90.35%, 符合主成分分析的要求。同时以4个主成分的得分值及其权重通过隶属函数获得综合得分值, 并进行聚类分析, 获得6种不同耐盐碱类型的品种。关于作物耐盐性指标的鉴定, 前人多利用主成分分析及相关性进行确定[21,27], 但仅获得综合性状指标, 因此需要通过建立回归方程进行回归分析从而获得单项鉴定指标[26,31]。本研究以综合得分值和各单项指标值进行回归分析, 建立了回归方程, 回归精度均在99.0%以上, 该方程具有有效性(P<0.01)。同时利用回归方程确定相对发芽率(P<0.01)、根长盐害率(P<0.01)、芽长盐害率(P<0.01)和根冠比盐害率(P<0.01)可以作为谷子芽期耐盐碱性的关键鉴定指标。
3.3 谷子耐盐碱性的预期及研究方向
本研究确定了谷子芽期耐盐碱的鉴定方法和指标, 过表达谷子耐盐性基因SiANT1对水稻萌发期和成株期的耐盐性是存在差异的[11], 因此谷子芽期和幼苗期的耐盐性和成株期的耐盐性是否存在一致性, 仍需进一步研究。前人在水稻上建立了耐盐性的回归方程, 并指出地上部的生物量、叶片光合速率和蒸腾速率可以作为水稻成株期的耐盐性的鉴定指标[32], 且鉴定指标随着环境而变化[33]。本研究团队前期在大田条件下进行了谷子成株期耐盐碱性的筛选和鉴定, 指出地上部生物量、单穗重和地上部含水量可以作为耐盐碱性的鉴定指标[34], 与在水稻上的研究结果相似。但由于受田间试验品种的数量的限制, 仍需进一步选择不同代表类型的品种在田间进行谷子成株期耐盐碱性的鉴定, 从而获得更有代表型的鉴定指标和方法, 同时应明确成株期是否与芽期或苗期耐盐碱性存在一致性。近年来, 谷子在分子水平上的研究已取得重要进展, 在水稻和拟南芥中通过转录或过表达谷子的耐盐性基因[11,14,16], 均能提高转录作物的耐盐性。随着谷子转化水平的提高, 应进一步加强在谷子中转化和应用研究, 在分子水平上提高谷子的耐盐性, 为谷子抗盐性的育种提供材料和方法。4 结论
对生产中主要推广的53个谷子品种进行芽期耐盐碱综合鉴定, 各性状均受到不同程度的抑制, 以根长受到的抑制性最大, 相对发芽势的影响最小; 相对发芽率、根长盐害率、芽长盐害率和根冠比盐害率可以作为谷子芽期耐盐碱鉴定的评价指标。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.1016/j.bbrc.2017.11.043URLPMID:29128358 [本文引用: 1]
Almost all crops that are important to humans are sensitive to high salt concentration in the soil. The presence of salt in soil is one of the most significant abiotic stresses in farming. Therefore, improving plant salt tolerance and increasing the yield and quality of crops in salty land is vital. Transgenic technology is a fast and effective method to obtain salt-tolerant varieties. At present, many scholars have studied salt damage to plant and plant salt-tolerance mechanism. These scholars have cloned a number of salt-related genes and achieved high salt tolerance for transgenic plants, thereby showing attractive prospects. In this paper, the salt-tolerance mechanism of plants is described from four aspects: plant osmotic stress, ion toxicity, oxidative stress, and salt tolerance genes. This review may help in studies to reveal the mechanism of plant salt tolerance, screen high efficiency and quality salt tolerance crops.
,
DOI:10.1016/j.cj.2018.11.002URL [本文引用: 1]
,
DOI:10.1016/j.cj.2018.01.003URL [本文引用: 1]
,
DOI:10.1016/j.sjbs.2014.12.001URLPMID:25737642 [本文引用: 1]
Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction - somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants.
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 3]
[本文引用: 3]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3724/SP.J.1006.2015.00066URL [本文引用: 2]
BrRUB1基因的表达特性,本研究克隆了津田芜菁RUB1基因的全长cDNA序列,命名为BrRUB1,GenBank登录号为KF501173。其ORF全长471 bp,编码156个氨基酸;亚细胞定位结果显示,BrRUB1-GFP定位于细胞核,表明BrRUB1蛋白可能在细胞核中发挥其功能。荧光定量PCR检测BrRUB1的表达表明,该基因表达量在花蕾中最高,花瓣中次之,具有组织特异性。而且Br RUB1在芜菁根皮中的表达受长波紫外线[UV-A)诱导。]]>
[本文引用: 2]
,
DOI:10.3724/SP.J.1006.2016.01787URL [本文引用: 1]
核转录因子Y (nuclear transcription factor Y,NF-Y)类转录因子在植物生长发育和非生物胁迫响应基因表达调控中发挥重要的作用,NF-Y由3种亚基(NF-YA、NF-YB、NF-YC)组成。本研究从抗逆性强的谷子品种龙谷25中克隆1个新的NF-Y类转录因子基因SiNF-YA5。该基因序列为924 bp,编码307个氨基酸,分子量为33.76 kD,等电点为9.19。SiNF-YA5在149~210位氨基酸之间含有CBF保守结构域。亚细胞定位分析表明,SiNF-YA5定位于细胞膜和细胞核。基因功能分析显示,在不同浓度高盐处理下,和野生型拟南芥(WT)相比SiNF-YA5转基因拟南芥种子萌发率更高;苗期SiNF-YA5转基因拟南芥根表面积和植株鲜重显著高于WT,证明过表达SiNF-YA5基因可以显著提高植物耐盐性。基因表达分析结果显示,在SiNF-YA5转基因拟南芥中参与盐胁迫响应的基因NHX1和LEA7的表达量明显高于WT。另一方面,SiNF-YA5转基因拟南芥与WT相比对于ABA的敏感性差异不显著,以上结果证明SiNF-YA5主要通过ABA非依赖途径提高转基因植物对高盐胁迫的耐性。
[本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2016.17.003URL [本文引用: 2]
-1的MS培养基上,转基因拟南芥萌发率显著高于WT,在90 mmol·L-1 NaCl处理条件下,转基因拟南芥的绿化率显著高于WT;在ABA浓度为0.5、1和2 μmol·L-1的MS培养基上,转基因拟南芥的绿化率显著低于WT;下游基因检测结果表明,HIS1-3、RD29B和RAB18等ABA胁迫响应相关基因以及脱水响应相关基因AtPIP2A在转基因植株中表达量显著高于在WT中的表达,表明SibZIP42可能通过ABA信号途径提高植物对高盐胁迫的耐性。【结论】与WT相比,SibZIP42转基因拟南芥株系在种子萌发时期耐盐性显著提高。同时,在种子萌发后期SibZIP42转基因株系相比于WT对ABA处理的敏感性增强,SibZIP42可能通过ABA信号途径正向调控植物的耐盐性。]]>
[本文引用: 2]
,
[本文引用: 3]
[本文引用: 3]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
为探索谷子地方品种发芽期和苗期的耐盐性,为谷子耐盐机制研究和新品种耐盐培育提供依据,采取NaCl浓度0、50、150、300 mmol·L-1处理沧344、冀谷31、安04-4783、206058、沧555、200131、200152、安06-6082、济0404、济0515、06766-7、郑06-3、长生08、冀谷19共14个夏谷种子,对种子萌发和幼苗生长的变化进行了研究.结果表明:低浓度NaCl处理(50 mmol·L-1)能促进谷子种子萌发,提高种子的相对发芽率,并促进幼苗胚根和胚芽的伸长,增加相对根长和相对芽长;NaCl处理浓度超过150 mmol·L-1时抑制谷子种子萌发和幼苗生长,而且对幼苗胚根的抑制作用大于胚芽,表现为相对根长的降低大于相对芽长的降低.
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 5]
[本文引用: 5]
,
[本文引用: 1]
[本文引用: 1]
中国林业科学研究院博士学位论文, ,
[本文引用: 1]
PhD Dissertation of Graduate School of Chinese Academy of Forestry,
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3724/SP.J.1006.2018.00137URL [本文引用: 2]
本研究旨在探讨冬小麦–夏玉米周年生产条件下黄淮海区夏玉米的适宜熟期与积温需求特性。选用郑单958 (ZD958)、先玉335 (XY335)、登海605 (DH605)、登海618 (DH618)和登海661 (DH661),设置5月21日、5月31日、6月10日和6月20日4个播期,研究表明,播期对夏玉米生理成熟所需积温无显著影响,各品种生理成熟所需要的积温主要取决于品种自身的特性,DH618、XY335、ZD958、DH605、DH661的生育期和生理成熟所需要积温分别为110、112、116、116、121 d和2800、2880、2945、2950、3025°C d。冬小麦夏玉米周年生产条件下,夏玉米最大可能的生长期约107~112 d (自6月15日至10月1~5日),积温约2800°C d,难以满足现有品种的生产需要。夏玉米直播晚收、冬小麦适期晚播有利于周年产量提高,但目前广泛推广的夏玉米品种生育期过长(约120 d),适时晚收仍难以完全生理成熟,机收籽粒损伤严重。可见,冬小麦–夏玉米周年生产条件下夏玉米最大可能的生长期和有效积温不能满足目前广泛推广的夏玉米品种所需生育持续期和积温,且适时晚收仍难以完全生理成熟,黄淮海区亟需生育期适宜(生育期≤107 d)的高产夏玉米新品种。
[本文引用: 2]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2014.07.005URL [本文引用: 1]
【目的】棉花(Gossypium hirsutum)虽是较耐盐碱的作物,但不同品种间耐盐性差异较大。本研究旨在探讨新疆各年代不同基因型棉花苗期耐盐特性,挖掘棉花本身耐盐遗传资源,筛选耐盐性快速鉴定指标并建立可靠的棉花耐盐性数学评价模型,为棉花耐盐新品种选育及大规模品种耐盐性评价奠定基础。【方法】以17个棉花品种为试验材料,按NaCl盐与草炭、蛭石复合基质重量比设置0(CK)、0.6%两个处理水平,棉种经消毒、催芽后播于复合基质,通过苗期盐土栽培持续胁迫的方式,可反映棉株在大田条件中的实际胁迫环境及真实抗逆机制。对各处理下各品种出苗率(ER)、幼苗鲜重(FW)、干重(DW)、植株含水量(PWC)、第一片真叶面积(LA)、叶片净光合速率(Pn)、叶绿素含量(Chl)和相对电导率(REC)等11个生理指标进行测定,以各单项指标的耐盐系数作为衡量耐盐性的依据,运用主成分分析、聚类分析和逐步回归等方法对其耐盐性进行综合评价及分类,并分析各耐盐类型棉花品种生理表现特征。【结果】通过主成分分析,本试验将盐胁迫处理下棉花幼苗叶片的11个单项指标转换成6个彼此独立的综合指标;通过隶属函数分析,得到不同棉花基因型幼苗耐盐性综合评价值(D值),并通过聚类分析,将17个棉花品种划分为4种耐盐类型,其中盐敏感型3个品种,弱耐盐及中度耐盐型各6个,高度耐盐型2个;进一步利用逐步回归方法建立了可靠的棉花幼苗耐盐性评价回归模型D=-1.192+ 0.402REC+0.119LA+0.274FW+0.086Pn+1.019Chl,方程决定系数R2= 0.9921,同时筛选出显著影响棉花幼苗耐盐能力的5个单项指标,即Pn、Chl、LA、FW和REC,对回归方程的估计精度进行评价,各品种估计精度均大于94.44%,表明所筛选鉴定指标对棉花耐盐性影响明显,该方程可用于棉花耐盐性评价。本研究对逐步回归与聚类结果进行相互验证,得到各耐盐类型棉花幼苗的生理表现特征。结果发现,与盐敏感品种相比,强耐盐棉花品种幼苗在盐胁迫下REC较低,Pn、Chl、LA和FW则能保持较高水平,且其幼苗真叶面积可达其它类别品种近2倍。【结论】强耐盐棉花品种幼苗叶片在盐碱环境中受到伤害较轻,能保持较高的真叶面积和光合能力,有利于提高植株耐盐能力和光合产物积累,降低土壤中离子毒害,增强植株耐盐性。在相同逆境中,通过测定REC、Pn、Chl、LA和FW等5个鉴定指标,可进行品种耐盐性强弱的快速鉴定和预测。
[本文引用: 1]
,
DOI:10.1016/j.fcr.2017.05.001URLPMID:29725160 [本文引用: 1]
Rice is the staple food for almost half of the world population. In South and South East Asia, about 40% of rice production is from deltaic regions that are vulnerable to salt stress. A quantitative approach was developed for characterizing genotypic variability in biomass production, leaf transpiration rate and leaf net photosynthesis responses to salinity during the vegetative stage, with the aim of developing efficient screening protocols to accelerate breeding varieties adapted to salt-affected areas. Three varieties were evaluated in pots under greenhouse conditions and in the field, with average soil salinity ranging from 2 to 12 dS m(-1). Plant biomass, net photosynthesis rate, leaf transpiration rate and leaf conductance were measured at regular intervals. Crop responses were fitted using a logistic function with three parameters: 1) maximum rate under control conditions (Ymax), 2) salinity level for 50% of reduction (b), and 3) rate of reduction (a). Variation in the three parameters correlated significantly with variation in plant biomass production under increasing salinity. Salt stress levels that caused 50% reduction in net leaf photosynthesis and transpiration rates were higher in the tolerant genotype BRRI Dhan47 (16.5 dS m(-1) and 14.3 dS m(-1), respectively) than the sensitive genotype IR29 (11.1 dS m(-1) and 6.8 dS m(-1)). In BRRI Dhan47, the threshold beyond which growth was significantly reduced was above 5 dS m(-1) and the rate of growth reduction beyond this threshold was as low as 4% per unit increase in salinity. This quantitative approach to screening for salinity tolerance in rice offers a means to better understand rice growth under salt stress and, using simulation modelling, can provide an improved tool for varietal characterization.
,
DOI:10.1016/j.fcr.2017.03.009URLPMID:29725161 [本文引用: 1]
Rice is the staple food and provides livelihood for smallholder farmers in the coastal delta regions of South and Southeast Asia. However, its productivity is often low because of several abiotic stresses including high soil salinity and waterlogging during the wet (monsoon) season and high soil and water salinity during the dry season. Development and dissemination of suitable rice varieties tolerant of these multiple stresses encountered in coastal zones are of prime importance for increasing and stabilizing rice productivity, however adoption of new varieties has been slow in this region. Here we implemented participatory varietal selection (PVS) processes to identify and understand smallholder farmers' criteria for selection and adoption of new rice varieties in coastal zones. New breeding lines together with released rice varieties were evaluated in on-station and on-farm trials (researcher-managed) during the wet and dry seasons of 2008-2014 in the Indian Sundarbans region. Significant correlations between preferences of male and female farmers in most trials indicated that both groups have similar criteria for selection of rice varieties. However, farmers' preference criteria were different from researchers' criteria. Grain yield was important, but not the sole reason for variety selection by farmers. Several other factors also governed preferences and were strikingly different when compared across wet and dry seasons. For the wet season, farmers preferred tall (140-170 cm), long duration (160-170 d), lodging resistant and high yielding rice varieties because these traits are required in lowlands where water stagnates in the field for about four months (July to October). For the dry season, farmers' preferences were for high yielding, salt tolerant, early maturing (115-130 d) varieties with long slender grains and good quality for better market value. Pest and disease resistance was important in both seasons but did not rank high. When farmers ranked the two most preferred varieties, the ranking order was sometimes variable between locations and years, but when the top four varieties that consistently ranked high were considered, the variability was low. This indicates that at least 3-4 of the best-performing entries should be considered in succeeding multi-location and multi-year trials, thereby increasing the chances that the most stable varieties are selected. These findings will help improve breeding programs by providing information on critical traits. Selected varieties through PVS are also more likely to be adopted by farmers and will ensure higher and more stable productivity in the salt- and flood-affected coastal deltas of South and Southeast Asia.
,
DOI:10.3864/j.issn.0578-1752.2019.22.010URL [本文引用: 1]
R=-0.937)、单穗粒重(R=-0.933)、干物质重(R=-0.895)、花前同化物质转运量(R=-0.935)、花前同化物质转运率(R=-0.880)、花前转运同化物质对籽粒贡献率(R=-0.859)、花后同化物质积累量(R=-0.909)和开花期地上部含水量(R=-0.834)均呈显著负相关,与花后同化物质积累量对籽粒贡献率(R=0.859)呈极显著正相关,而与出谷率和千粒重间无显著相关性。通过主成分分析,确定了单穗重、单穗粒重、干物质重和地上部含水量可以作为耐盐碱性鉴定指标,且通过主成分分析和隶属函数进行了谷子耐盐碱性的综合评价,济谷22和济谷21的综合得分值最高。【结论】 在盐碱地条件下,不同谷子品种存在耐盐碱性差异,单穗重、单穗粒重、干物质重和地上部含水量可以作为大田耐盐碱性的鉴定指标,济谷22和济谷21为耐盐碱性品种;在盐碱地条件下,不同谷子品种花前同化物质的转运量提高,且花前转运同化物质对籽粒的贡献率和开花期地上部含水量均与盐害率呈显著负相关,因此,提高开花期地上部各器官的含水量和花前转运同化物对籽粒的贡献率是提高盐碱地条件下谷子产量的重要手段。]]>
[本文引用: 1]