The root-layer regulation based on the depth of phosphate fertilizer application of summer maize improves soil nitrogen absorption and utilization
CHEN Xiao-Ying, LIU Peng,*, CHENG Yi, DONG Shu-Ting, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, HAN KunState Key Laboratory of Crop Biology / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China通讯作者:
收稿日期:2019-05-1接受日期:2019-09-26网络出版日期:2019-10-09
基金资助: |
Received:2019-05-1Accepted:2019-09-26Online:2019-10-09
Fund supported: |
作者简介 About authors
E-mail:15621567129@163.com。
摘要
关键词:
Abstract
Keywords:
PDF (769KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
陈晓影, 刘鹏, 程乙, 董树亭, 张吉旺, 赵斌, 任佰朝, 韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(2): 238-248. doi:10.3724/SP.J.1006.2020.93029
CHEN Xiao-Ying, LIU Peng, CHENG Yi, DONG Shu-Ting, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao, HAN Kun.
作物生产既要满足全球不断增长的人口对粮食生产日益增长的需求, 还要尽量高效利用资源、避免环境污染。优化肥料施用方式是实现作物高产高效的有效途径之一[1,2]。肥料用量及施用方式对根系具有较强的调控作用[3,4]。根层调控技术是挖掘根系生物学潜力、提高肥料的利用效率的有效途径[5,6]。根系对作物水分、养分获取有重要作用, 在发育过程中具有高度的可塑性[7,8,9]。良好的根系构型能够促进作物高效获取土壤养分。磷在土壤中的扩散能力较差, 其扩散系数仅为10-12~10-15 m2 s-1 [10], 土壤有效磷主要分布在土壤表层[11], 因此作物高效获取土壤“磷”资源的理想根系构型为“表层觅食型”[12,13]。而土壤中的硝态氮在作物生长季节随降水淋洗或水位下降而移动到深土层, 氮高效的理想根系构型为“Steep, cheap, deep型”[14,15], 该理想根构型通过增加深层土壤中的根系、提高硝态氮的吸收, 从而降低氮的淋洗并提高氮利用效率[16,17]。
土壤中氮、磷空间分布的异质性, 使高效利用二者的根系构型存在一定的矛盾, 如何协调这种矛盾, 实现土壤氮磷养分协调吸收成为促进作物增产增效的重要问题[18]。磷肥用量及施用方式对根系分布有重要调控作用, 可以促进合理根系构型的建成, 改变土壤中根系的时空分布[19,20,21], 可将根际养分供应强度与根系生长分布的平衡调整到最佳状态, 在时间和空间上充分发挥根系生物学潜力, 提高肥料的利用效率[22,23]。前人已就肥料施用方式对作物生产能力、养分利用效率和损失进行了广泛研究[24,25,26]。但基于磷肥施用深度的夏玉米根层调控对挖掘作物根系生物学潜力, 提高深层土壤氮素利用效率的机理研究相对较少。该研究对夏玉米根系时空分布及其与氮素供应空间匹配性的优化效应, 为建立有效的作物高产根系调控技术、实现以根系挖潜节肥增效为核心的玉米高产高效栽培提供理论与技术支撑。
1 材料与方法
1.1 试验时间地点
2017—2018年在泰安市岱岳区马庄镇(35°58′N, 116°58′E)进行试验, 试验点地处温带大陆性季风气候区, 作物种植体系为冬小麦/夏玉米一年两熟。试验田为壤土, 试验前0~20 cm、20~40 cm、40~60 cm土壤样品理化性质见表1。试验田夏玉米全生育期平均温度与日降水量见图1。Table 1
表1
表1试验田养分含量
Table 1
年份 Year | 土层 Soil layer (cm) | pH | 有机质 Soil organic matter (g kg-1) | 全氮 Total N (g kg-1) | 速效氮 Available N (mg kg-1) | 有效磷 Olsen P (mg kg-1) | 速效钾 Available K (mg kg-1) |
---|---|---|---|---|---|---|---|
2017 | 0-20 | 6.35 | 13.56 | 0.92 | 87.52 | 18.92 | 145.07 |
20-40 | 7.21 | 9.51 | 0.56 | 58.36 | 13.15 | 94.13 | |
40-60 | 7.42 | 5.70 | 0.21 | 42.68 | 5.38 | 57.56 | |
2018 | 0-20 | 6.24 | 14.17 | 0.96 | 89.02 | 19.38 | 158.86 |
20-40 | 7.04 | 10.37 | 0.61 | 60.67 | 12.21 | 98.24 | |
40-60 | 7.34 | 6.03 | 0.25 | 49.31 | 6.42 | 68.60 |
新窗口打开|下载CSV
图1
新窗口打开|下载原图ZIP|生成PPT图1试验田夏玉米生育期平均温度与降水量
Fig. 1Daily mean temperature and rainfall during the growth period of summer maize in the experimental site
1.2 试验设计
供试夏玉米品种为登海605 (DH605)。试验以不施磷肥处理为对照(CK), 磷肥用量为P2O5 105 kg hm-2, 共设置4个施肥深度, 分别为距离地表-5 cm (P5)、-10 cm (P10)、-15 cm (P15)和-20 cm (P20)深度处施肥。于小麦收获后表层撒施纯氮315 kg hm-2和K2O 270 kg hm-2, 然后结合小麦灭茬旋耕5 cm。利用经改造后的深松条带式施肥机深松20 cm, 同时将磷肥施用在设计深度。试验采用随机区组设计, 3次重复, 种植密度为67,500株 hm-2, 行距60 cm, 株距25 cm。小区面积180 m2 (长30 m、宽6 m)。试验所用肥料为缓控尿素(含纯N 42%)、过磷酸钙(含P2O5 11%)、硫酸钾(含K2O 50%), 均一次性施入。玉米生育期给予良好的管理并保证水分供应。1.3 测定项目与方法
1.3.1 植株干物质 于抽雄期(VT)、灌浆期(R2)、完熟期(R6), 从每小区选取有代表性的植株5株。将其分成叶片、茎(茎秆、叶鞘、雄穗)、苞叶、穗轴和籽粒, 105℃杀青30 min后80℃烘至恒重, 测定干物质积累量。1.3.2 根系取样与测定 于抽雄期(VT)对根系取样, 选择连续且生长均匀一致的植株5株, 以植株为中心, 行距方向半径取30 cm, 株距方向半径取10 cm, 每10 cm为一土层, 取样深度为60 cm。将每一土层挖出的根土混合物装入40目网袋, 在低水压下冲洗干净并挑出全部根系, 放入密封袋中1℃下保存。将根系样品用Epson Perfection V700 Photo扫描仪扫描, 然后使用WinRhizo 2016根系分析软件测定根系相关指标, 计算根长密度。将扫描完成的根系放在烘箱中烘至恒重并称干重。
1.3.3 产量及产量构成因素 于完熟期(R6)选取每小区18 m2(10.0 m×1.8 m)有代表性的玉米带, 将其全部果穗收获后晒干, 测定产量及产量构成因素。
1.3.4 植株与土壤全氮含量 将玉米植株与土壤样品研磨过筛后用H2SO4-H2O2联合消煮, 用BRAN+LUEBBE III型(德国)连续流动分析仪测定氮素含量。
1.4 数据处理与分析
植株氮素积累量(kg hm-2)=单株重×单株含氮量×公顷株数;营养器官氮素转运量(kg hm-2)=灌浆期营养器官氮素积累量-完熟期营养器官氮素积累量;
氮素转运效率(%)=营养器官氮素转运量/灌浆期营养器官氮素积累量×100;
氮素吸收效率(NAE, kg kg-1)=植株氮素积累量/施氮量;
氮素偏生产力(NPFP, kg kg-1)=籽粒产量/施氮量;
采用Microsoft Excel 2017和DPS 15.10统计软件LSD法进行方差分析, 用SigmaPlot l0.0作图。
2 结果与分析
2.1 磷肥深施对土壤根系分布的影响
磷肥适当深施显著促进夏玉米根系生长, 根干重(RDW)、根长密度(RLD)、根系表面积(RSA)以及根体积(RV)均显著增加, 整体表现为P15>P10>P20> P5>CK (图2)。与CK处理相比, P5、P10、P15和P20处理2年的平均RDW分别提高31.6%、41.6%、44.2%和36.7%, RLD分别提高42.9%、62.3%、72.9%和52.1%, RSA分别提高27.5%、46.6%、48.8%和33.5%, 而RV提高33.7%、44.8%、48.9%和42.3%。2年试验趋势一致, 年度间差异较大的原因是年际间降水量的差异。图2
新窗口打开|下载原图ZIP|生成PPT图2磷肥施用深度对夏玉米植株根系性状的影响
标以不同字母的柱值间差异达0.05显著水平。CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。
Fig. 2Effects of phosphorus application depth on biomass accumulation and distribution of summer maize roots
Bars superscripted by different letters are significantly different among treatments at the 0.05 probability level. CK: no P applied; P5: phosphorus application depth was -5 cm; P10: phosphorus application depth was -10 cm; P15: phosphorus application depth was -15 cm; P20: phosphorus application depth was -20 cm. RDW: root dry weight; RLD: root length density; RSA: root surface area; RV: root volume.
磷肥施用位置可以调控夏玉米根系在土层中的分布, 随着磷肥施用深度的增加, 深层玉米根系生长显著增加, 其所占整体根系的比例也增大(图3和图4)。以2018年为例, 在0~10 cm土层, 以P5处理的RDW所占比例最大。10~20 cm土层, P10处理所占比例最大, 为20.1%; 20~40 cm土层, P15和P20处理RDW所占比重分别为12.3%和12.1%; 40~60 cm土层, P15和P20处理RDW所占比重分别为6.7%和6.9%。与P5处理相比, P10、P15和P20处理在20~40 cm土层内, RLD分别增加20.2%、27.7%和14.0%, RSA分别增加24.4%、28.3%和10.2%, 而RV则增加27.8%、41.2%和33.0%; 在40~60 cm土层, RLD增加12.4%、26.6%和17.7%, RSA增加21.8%、24.9%和30.5%, 而RV则增加28.0%、53.2%和55.3%。
图3
新窗口打开|下载原图ZIP|生成PPT图3不同深度土层中根系干重占整体根干重的比例
P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。
Fig. 3Ratio of root dry weight to whole root dry weight in different soil layers
P5: phosphorus application depth was -5 cm; P10: phosphorus application depth was -10 cm; P15: phosphorus application depth was -15 cm; P20: phosphorus application depth was -20 cm.
图4
新窗口打开|下载原图ZIP|生成PPT图4不同深度土层中的根系分布(2018)
CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。
Fig. 4Distribution of roots in different soil layers (2018)
CK: no P applied; P5: phosphorus application depth was -5 cm; P10: Phosphorus application depth was -10 cm; P15: phosphorus application depth was -15 cm; P20: phosphorus application depth was -20 cm. RDW: root dry weight; RLD: root length density; RSA: root surface area; RV: root volume.
2.2 磷肥深施对植株干物质积累及籽粒产量的影响
与传统施磷相比, 深施磷肥处理显著增加了植株干物质积累, 趋势为P15>P10>P20>P5>CK (图5)。VT期单株干物质积累量P10、P15和P20处理较P5处理2年平均增加9.1%、13.6%和7.3%; R6期2年平均提高6.6%、14.5%和8.2%。磷肥适当深施增加了夏玉米籽粒产量, 各处理产量表现为P15>P10>P20>P5>CK, P10、P15、P20较P5两年平均增产8.2%、16.4%、9.0%。图5
新窗口打开|下载原图ZIP|生成PPT图5磷肥施用深度对夏玉米植株生物量与籽粒理论产量的影响
标以不同字母的柱值间差异达0.05显著水平。CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。
Fig. 5Effects of phosphorus application depth on biomass accumulation and grain theoretical yield of summer maize
Bars superscripted by different letters are significantly different among treatments at the 0.05 probability level. CK: no P applied; P5: phosphorus application depth was -5 cm; P10: phosphorus application depth was -10 cm; P15: phosphorus application depth was -15 cm; P20: phosphorus application depth was -20 cm.
植株生物量、籽粒重与根干重、根长密度均呈现显著线性正相关(P<0.001), 且相关系数较大, 说明玉米根系增殖有利于植株的干物质积累及产量形成(图6)。
图6
新窗口打开|下载原图ZIP|生成PPT图6单株生物量、籽粒重与根干重、根长密度的关系
Fig. 6Relationship of plant biomass and grain weight with root dry weight and root length density
RDW: root dry weight; RLD: root length density; ***P < 0.001.
2.3 磷肥深施对植株氮素吸收、积累及利用的影响
与传统施磷处理相比, 深施磷肥处理在各土层中尤其是20 cm以下土层中氮素含量显著降低(图7)。磷肥适当深施促进了土壤中根系的增殖, 增大了根系与土壤的接触面积, 提高了根系对氮素的吸收, 阻止氮素向深层土壤中运移。同时, 深层土壤根系的增加增大了根系对水分和养分的吸收利用空间, 促进了对深层土壤中氮素的吸收。图7
新窗口打开|下载原图ZIP|生成PPT图7不同土层氮素的分布
CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。
Fig. 7Distribution of total nitrogen in different soil layers
CK: no P applied; P5: phosphorus application depth was -5 cm; P10: phosphorus application depth was -10 cm; P15: phosphorus application depth was -15 cm; P20: phosphorus application depth was -20 cm; VT: tasseling; R6: physiological maturity.
适当深施磷肥有利于玉米植株氮素积累。2017年R6期P10、P15、P20处理与P5处理相比整株氮积累量分别提高了12.5%、25.8%、14.4%, 2018年相应提高了1.7%、12.7%、5.9% (表2)。
Table 2
表2
表2磷肥施用深度对植株中氮积累量、转运及吸收利用的影响
Table 2
年份 Year | 处理 Treatment | 氮素积累量 Accumulation amount (kg hm-2) | 营养器官向籽粒 的转运量 Translocation amount (kg hm-2) | 营养器官向 籽粒的转运率 Translocation rate (%) | 氮素吸收效率 NAE (kg kg-1) | 氮肥偏生产力 NPFP (kg kg-1) | |
---|---|---|---|---|---|---|---|
R2 | R6 | ||||||
2017 | CK | 144.59 e | 204.62 e | 34.71 d | 32.03 b | 64.96 e | 24.32 d |
P5 | 168.11 d | 225.28 d | 41.69 cd | 33.81 ab | 71.52 d | 26.33 cd | |
P10 | 209.55 b | 253.50 c | 57.87 ab | 37.04 ab | 80.48 c | 29.45 ab | |
P15 | 226.23 a | 283.34 a | 64.22 a | 38.74 a | 89.95 a | 31.82 a | |
P20 | 199.50 c | 264.56 b | 48.99 bc | 34.22 ab | 83.99 b | 28.34 bc | |
年份 Year | 处理 Treatment | 氮素积累量 Accumulation amount (kg hm-2) | 营养器官向籽粒 的转运量 Translocation amount (kg hm-2) | 营养器官向 籽粒的转运率 Translocation rate (%) | 氮素吸收效率 NAE (kg kg-1) | 氮肥偏生产力 NPFP (kg kg-1) | |
R2 | R6 | ||||||
2018 | CK | 164.71 e | 228.13 d | 46.91 c | 50.47 b | 72.42 d | 29.44 c |
P5 | 205.48 d | 278.45 c | 55.83 b | 51.76 ab | 88.40 c | 31.43 c | |
P10 | 209.86 c | 280.63 c | 56.34 b | 52.14 ab | 89.09 c | 35.12 b | |
P15 | 245.50 a | 311.45 a | 67.42 a | 53.49 a | 98.87 a | 38.66 a | |
P20 | 225.24 b | 295.08 b | 58.11 b | 51.84 ab | 93.68 b | 34.99 b |
新窗口打开|下载CSV
磷肥适当深施也促进营养器官中氮素向籽粒的转运, 2017年各处理的转运量为34.7~64.2 kg hm-2, 2018年为46.9~67.4 kg hm-2, 其中P15处理转运量及转运率显著高于其他处理(表2)。适当深施磷肥提高了夏玉米的氮素吸收效率及偏生产力。与P5处理相比, P10、P15、P20处理2年平均氮素吸收效率提高4.1、14.5 和8.9 kg kg-1; 氮肥偏生产力分别增加3.4、6.4和2.8 kg kg-1(表2)。籽粒氮积累量、氮素吸收效率、氮肥偏生产力与根干重、根长密度均呈现显著线性正相关(P<0.001), 且相关系数较大, 说明玉米根系的增殖有利于氮素吸收、积累与利用(图8)。
图8
新窗口打开|下载原图ZIP|生成PPT图8籽粒氮积累量(GNAA)、氮素吸收效率(NAE)、氮肥偏生产力(NPFP)与根干重(RDW)、根长密度(RLD)的关系
Fig. 8Relationship between grain N accumulation amount (GNAA), N absorption efficiency (NAE), N partial productivity (NPFP), root dry weight (RDW), and root length density (RLD)
***P < 0.001.
3 讨论
农田耕作方式、施肥及灌溉等田间管理措施的差异造成土壤中养分、水分分布的高度异质性。根系对土壤中养分资源的异质性在生理和形态上存在的一系列可塑性反应[22,27], 对养分斑块的响应一般包括根系的伸长, 总根长及侧根分支密度增大等一系列变化[12,28]。通过改变养分供应位置及强度, 可以有效刺激根系生长或增殖, 显著提高对土壤养分的吸收面积[19,29]。张福锁等[6]研究表明通过根层养分调控可以优化植物-土壤系统中的根区养分输入, 调节根系生长发育, 最大限度地提高根系养分获取效率, 以实现作物高产高效可持续生产。在本研究中, 通过调整磷肥施用深度对夏玉米进行根层调控, 改变磷素在土壤中的分布斑块, 对夏玉米根系生长与分布有显著的诱导效应。磷肥适当深施显著促进了土壤中根系的增殖, 增加了夏玉米根干重、根长密度和根系表面积(图2), 促进深层土壤根系的生长, 根系与土壤的接触面积显著增大。肥料运筹对土壤中肥力及养分分布影响显著[24,30-31]。肥料施用位置可以改变根系在土壤中的分布, 影响肥料养分在土壤中的运移、转化以及在作物体内的积累和分配[4,32-33], 提高作物产量和肥料利用效率。适度下移磷肥施用深度能够诱导玉米根系向下生长, 有利于提高磷素吸收效率、磷肥利用效率和籽粒产量; 随着磷肥施用深度的增加, 玉米收获期氮素吸收量呈现显著增加趋势[21,34]。在本试验中, 随着磷肥施用深度的增加, 玉米根系呈现向深层分布的趋势, 深层土壤中玉米根系比例显著增加, 提高了根系对土壤氮素的吸收, 阻止氮素向深层土壤迁移, 同时扩大根系的养分利用空间, 促进根系对深层土壤氮素的吸收(图7)。磷肥适当深施有利于生育后期氮素从营养器官向籽粒的转运, 增大氮素的转运率, 其中以P15处理转运量最大。磷肥深施促进植株氮素吸收的原因主要是促进根系的生长发育, 增强了根层土壤氮素与根系时空分布的匹配性, 尤其增加下层土壤中根系的比重, 扩大根系对氮素的吸收利用空间, 增强氮素吸收能力。
合理根系构型能够提高植株对水分与养分等资源的获取及利用效率[8,9], 促进植株生长及产量形成。Jing等[35,36]的研究表明局部施磷和铵态氮的养分调控能够促进根系的大量增生并强化根际过程, 促进玉米生育前期的生长及养分吸收。氮肥适量深施为根系向深层扩展提供了良好条件, 促使根系下移, 保证超高产春玉米较高的有效穗数、千粒重和穗粒数, 从而提高产量[29]。本试验结果表明, 磷肥适当深施同样促进了夏玉米植株的生长, 其生物量与籽粒产量显著增加(图5)。磷肥适当深施, 在增大根系与土壤磷肥接触面积的同时, 诱导根系下扎, 增加了根系对土壤氮素吸收利用的空间, 协调了氮磷高效利用根系构型之间的矛盾, 实现了根系对土壤氮磷养分的协调吸收利用, 最终促进植株生长及籽粒产量形成。
综上所述, 磷肥深施的根层调控技术可以有效挖掘作物根系生物学潜力, 在调节根系分布, 保证根系与磷肥较大接触面积的同时, 诱导夏玉米根系分布加深, 增加水分和氮素的吸收利用空间, 促进氮素的高效吸收与转运, 提高了对土壤氮素的利用效率和籽粒产量。
4 结论
磷肥适度深施能够显著促进夏玉米根系的生长, 改变根系在土壤中的分布。磷肥集中施用在-15 cm增加了20~60 cm土层中的根系干重比重及根长密度, 促进了根系对深层土壤氮素的吸收, 显著增加了植株氮素的积累及转运, 提高其物质生产能力, 最终籽粒产量比传统的磷肥撒施显著增产16.4%。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.1038/nature01014URLPMID:12167873 [本文引用: 1]
A doubling in global food demand projected for the next 50 years poses huge challenges for the sustainability both of food production and of terrestrial and aquatic ecosystems and the services they provide to society. Agriculturalists are the principal managers of global usable lands and will shape, perhaps irreversibly, the surface of the Earth in the coming decades. New incentives and policies for ensuring the sustainability of agriculture and ecosystem services will be crucial if we are to meet the demands of improving yields without compromising environmental integrity or public health.
,
DOI:10.1146/annurev.energy.28.040202.122858URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 2]
【目的】探明磷肥施用深度对夏玉米产量和养分吸收的影响。【方法】采用桶栽和大田试验相结合的方法,研究不同磷肥施用深度(5 cm、15 cm、5/15 cm)对夏玉米产量及氮、磷、钾吸收和分配的影响。【结果】不同磷肥施用深度处理的玉米籽粒产量和植株养分吸收量由高到低依次为T15>T5/15>T5>CK,其中,施用磷肥可以使夏玉米籽粒产量增加8.5%—20.0%;磷肥集中深施比浅施和分层施籽粒产量增加5.9%—10.6%,植株氮、磷、钾吸收量分别增加6.9%—14.7%、7.5%—17.1%、5.0%—13.4%,氮、磷、钾转移率分别降低10.4%—17.3%、8.4%—12.9%、12.9%—19.6%,磷素农学效率和表观利用率分别提高55.8%—88.0%和40.4%—181.4%。【结论】夏玉米施用磷肥增产效果显著,磷肥集中深施效果优于分层施,分层施效果优于浅施,且以磷肥集中深施在15 cm土层时效果最好。
URL [本文引用: 2]
【目的】探明磷肥施用深度对夏玉米产量和养分吸收的影响。【方法】采用桶栽和大田试验相结合的方法,研究不同磷肥施用深度(5 cm、15 cm、5/15 cm)对夏玉米产量及氮、磷、钾吸收和分配的影响。【结果】不同磷肥施用深度处理的玉米籽粒产量和植株养分吸收量由高到低依次为T15>T5/15>T5>CK,其中,施用磷肥可以使夏玉米籽粒产量增加8.5%—20.0%;磷肥集中深施比浅施和分层施籽粒产量增加5.9%—10.6%,植株氮、磷、钾吸收量分别增加6.9%—14.7%、7.5%—17.1%、5.0%—13.4%,氮、磷、钾转移率分别降低10.4%—17.3%、8.4%—12.9%、12.9%—19.6%,磷素农学效率和表观利用率分别提高55.8%—88.0%和40.4%—181.4%。【结论】夏玉米施用磷肥增产效果显著,磷肥集中深施效果优于分层施,分层施效果优于浅施,且以磷肥集中深施在15 cm土层时效果最好。
,
DOI:10.1073/pnas.1101419108URLPMID:21444818 [本文引用: 1]
China and other rapidly developing economies face the dual challenge of substantially increasing yields of cereal grains while at the same time reducing the very substantial environmental impacts of intensive agriculture. We used a model-driven integrated soil-crop system management approach to develop a maize production system that achieved mean maize yields of 13.0 t ha(-1) on 66 on-farm experimental plots--nearly twice the yield of current farmers' practices--with no increase in N fertilizer use. Such integrated soil-crop system management systems represent a priority for agricultural research and implementation, especially in rapidly growing economies.
,
DOI:10.1093/aobpla/plz033URLPMID:31285818 [本文引用: 2]
Neighbouring plants can affect plant growth through altering root morphological and physiological traits, but how exactly root systems respond to neighbouring plants with varied density, determining nutrient uptake and shoot growth is poorly understood. In a pot-based experiment, rapeseed was grown alone (single rapeseed), or mixed with 3, 6, or 15 Chinese milk vetch plants. As controls, monocropped Chinese milk vetch was grown at the same planting density, 3, 6, or 15 plants per pot. Root interaction between rapeseed and Chinese milk vetch facilitated phosphorus (P) uptake in rapeseed grown with 3 plants of Chinese milk vetch. As the planting density of Chinese milk vetch in mixture increased, there was a decrease in citrate concentration and acid phosphatase activity but an increase in the total root length of Chinese milk vetch per pot, resulting in decreases in rapeseed root biomass, total root length and P uptake when rapeseed was grown with 6 or 15 Chinese milk vetch plants relative to rapeseed grown with 3 plants. These results demonstrate that the enhanced nutrient utilization induced by root interaction at low planting densities was eliminated by the increased planting density of the legume species in rapeseed/Chinese milk vetch mixed cropping system, suggesting that root/rhizosphere management through optimizing legume planting density is important for improving crop productivity and nutrient-use efficiency.
,
DOI:10.1104/pp.126.2.875URLPMID:11402214 [本文引用: 1]
Plant root systems are highly plastic in their development and can adapt their architecture in response to the prevailing environmental conditions. One important parameter is the availability of phosphate, which is highly immobile in soil such that the arrangement of roots within the soil will profoundly affect the ability of the plant to acquire this essential nutrient. Consistent with this, the availability of phosphate was found to have a marked effect on the root system architecture of Arabidopsis. Low phosphate availability favored lateral root growth over primary root growth, through increased lateral root density and length, and reduced primary root growth mediated by reduced cell elongation. The ability of the root system to respond to phosphate availability was found to be independent of sucrose supply and auxin signaling. In contrast, shoot phosphate status was found to influence the root system architecture response to phosphate availability.
,
DOI:10.1016/j.plantsci.2004.10.017URL [本文引用: 2]
,
DOI:10.1080/01904160601118075URL [本文引用: 2]
,
DOI:10.1104/pp.116.2.447URLPMID:9490752 [本文引用: 1]
,
DOI:10.1023/B:FRES.0000025286.30243.c0URL [本文引用: 1]
The impact of long-term fertilization with inorganic P was studied in soil profiles (0–100 cm) from five sites in Sweden. Accumulation of P was studied by comparing P extracted with ammonium lactate/acetic acid (P-AL) and NaHCO3 (Olsen-P) in non-fertilized and fertilized soil profiles. The fertilized soils had received 42–49 kg P ha–1y–1 for more than 30 years. P-AL and Olsen-P were significantly higher in the fertilized than in the non-fertilized profiles down to 40 cm depth. The P sorption index (PSI2) based on a single-point P addition of 50 mmol P kg–1 soil was used to estimate P sorption capacity in the soils. The variation in PSI2 with depth was not consistent between the five soil profiles. PSI2 did not vary with depth in one soil, while it decreased in one and increased in the other three, and it was weakly but significantly correlated with the sum of Fe and Al extracted with ammonium oxalate (Feox +Alox) (r = 0.65**) and with clay content (r = 0.69***). To estimate P release in the soils, P was extracted with CaCl2 (CaCl2-P) and water (Pw). CaCl2-P and Pw were significantly higher in the fertilized treatment than in the non-fertilized treatment in the top 20 cm. Below 30 cm depth, CaCl2-P was very low in all soils, while Pw was relatively high in two soils and low in the other three soils. To estimate the degree of P saturation, the ratio of P-AL/PSI2 and Olsen-P/PSI2 was calculated. P-AL/PSI2 was significantly higher in the fertilized treatment in the 0–20 cm layer, while Olsen-P/PSI2 was significantly higher in the fertilized treatment in the 0–40 cm layer. P-AL/PSI2 was correlated with CaCl2-P and Pw when all soils and horizons were included (r0.78***), but the correlation increased markedly when only 0–40 cm was included (r0.94***). Olsen-P/PSI2 was well correlated with CaCl2-P and Pw (r0.94***) for all soils and depths. Thus the two indices, P-AL/PSI2 and Olsen-P/PSI2, were comparable in their ability to predict P release in the top 40 cm, whereas Olsen-P/PSI2 was better when all depths were included. The overall conclusion was that P fertilization had an impact on P properties down to 40 cm depth, while the effects were small below this depth.
,
DOI:10.1104/pp.111.175414URLPMID:21610180 [本文引用: 2]
,
DOI:10.1007/s11104-011-0950-4URL [本文引用: 1]
Agricultural production is often limited by low phosphorus (P) availability. In developing countries, which have limited access to P fertiliser, there is a need to develop plants that are more efficient at low soil P. In fertilised and intensive systems, P-efficient plants are required to minimise inefficient use of P-inputs and to reduce potential for loss of P to the environment.
Three strategies by which plants and microorganisms may improve P-use efficiency are outlined: (i) Root-foraging strategies that improve P acquisition by lowering the critical P requirement of plant growth and allowing agriculture to operate at lower levels of soil P; (ii) P-mining strategies to enhance the desorption, solubilisation or mineralisation of P from sparingly-available sources in soil using root exudates (organic anions, phosphatases), and (iii) improving internal P-utilisation efficiency through the use of plants that yield more per unit of P uptake.
We critically review evidence that more P-efficient plants can be developed by modifying root growth and architecture, through manipulation of root exudates or by managing plant-microbial associations such as arbuscular mycorrhizal fungi and microbial inoculants. Opportunities to develop P-efficient plants through breeding or genetic modification are described and issues that may limit success including potential trade-offs and trait interactions are discussed. Whilst demonstrable progress has been made by selecting plants for root morphological traits, the potential for manipulating root physiological traits or selecting plants for low internal P concentration has yet to be realised.
,
DOI:10.1046/j.1365-3040.2003.01015.xURLPMID:12803611 [本文引用: 1]
Little is known about root architectural attributes that aid the capture of nitrate from coarse-textured soil profiles of high leaching potential. In this study, a range of root architectures from the herringbone to the dichotomous structure were simulated, and their capacity to take up nitrate leaching through a sandy profile was recorded. All root systems had equal total volume at each point in time, and so were considered cost equivalent. These simulations showed that the root architecture likely to maximize nitrate capture from sandy soils (under the Mediterranean rainfall pattern experienced in Western Australia) is one that quickly produces a high density of roots in the top-soil early in the season, thereby reducing total nitrate leached with opening season rains, but also has vigorous taproot growth, enabling access to deep-stored water and leached nitrate later in the season. This is the first published, spatially explicit attempt to assess the ability of different root architectures equivalent in cost, to capture nitrate from a spatially and temporally heterogeneous soil environment.
,
DOI:10.1093/aob/mcs293URLPMID:23328767 [本文引用: 1]
A hypothetical ideotype is presented to optimize water and N acquisition by maize root systems. The overall premise is that soil resource acquisition is optimized by the coincidence of root foraging and resource availability in time and space. Since water and nitrate enter deeper soil strata over time and are initially depleted in surface soil strata, root systems with rapid exploitation of deep soil would optimize water and N capture in most maize production environments. ? THE IDEOTYPE: Specific phenes that may contribute to rooting depth in maize include (a) a large diameter primary root with few but long laterals and tolerance of cold soil temperatures, (b) many seminal roots with shallow growth angles, small diameter, many laterals, and long root hairs, or as an alternative, an intermediate number of seminal roots with steep growth angles, large diameter, and few laterals coupled with abundant lateral branching of the initial crown roots, (c) an intermediate number of crown roots with steep growth angles, and few but long laterals, (d) one whorl of brace roots of high occupancy, having a growth angle that is slightly shallower than the growth angle for crown roots, with few but long laterals, (e) low cortical respiratory burden created by abundant cortical aerenchyma, large cortical cell size, an optimal number of cells per cortical file, and accelerated cortical senescence, (f) unresponsiveness of lateral branching to localized resource availability, and (g) low K(m) and high Vmax for nitrate uptake. Some elements of this ideotype have experimental support, others are hypothetical. Despite differences in N distribution between low-input and commercial maize production, this ideotype is applicable to low-input systems because of the importance of deep rooting for water acquisition. Many features of this ideotype are relevant to other cereal root systems and more generally to root systems of dicotyledonous crops.
,
DOI:10.1016/j.biotechadv.2013.08.019URL [本文引用: 1]
In recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant-plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome. (C) 2013 Elsevier Inc.
,
DOI:10.1093/jxb/eru508URLPMID:25582451 [本文引用: 1]
Greater exploitation of subsoil resources by annual crops would afford multiple benefits, including greater water and N acquisition in most agroecosystems, and greater sequestration of atmospheric C. Constraints to root growth in the subsoil include soil acidity (an edaphic stress complex consisting of toxic levels of Al, inadequate levels of P and Ca, and often toxic levels of Mn), soil compaction, hypoxia, and suboptimal temperature. Multiple root phenes under genetic control are associated with adaptation to these constraints, opening up the possibility of breeding annual crops with root traits improving subsoil exploration. Adaptation to Al toxicity, hypoxia, and P deficiency are intensively researched, adaptation to soil hardness and suboptimal temperature less so, and adaptations to Ca deficiency and Mn toxicity are poorly understood. The utility of specific phene states may vary among soil taxa and management scenarios, interactions which in general are poorly understood. These traits and issues merit research because of their potential value in developing more productive, sustainable, benign, and resilient agricultural systems.
,
DOI:10.1111/nph.15738URLPMID:30746704 [本文引用: 1]
Nutrient-efficient crops are a solution to the two grand challenges of modern agriculture: improving food security while reducing environmental impacts. The primary challenges are (1) nitrogen (N) and phosphorus (P) efficiency; (2) potassium (K), calcium (Ca), and magnesium (Mg) efficiency for acid soils; and (3) iron (Fe) and zinc (Zn) efficiency for alkaline soils. Root phenotypes are promising breeding targets for each of these. The Topsoil Foraging ideotype is beneficial for P capture and should also be useful for capture of K, Ca, and Mg in acid soils. The Steep, Cheap, and Deep ideotype for subsoil foraging is beneficial for N and water capture. Fe and Zn capture can be improved by targeting mechanisms of metal mobilization in the rhizosphere. Root hairs and phenes that reduce the metabolic cost of soil exploration should be prioritized in breeding programs. Nutrient-efficient crops should provide benefits at all input levels. Although our current understanding is sufficient to deploy root phenotypes for improved nutrient capture in crop breeding, this complex topic does not receive the resources it merits in either applied or basic plant biology. Renewed emphasis on these topics is needed in order to develop the nutrient-efficient crops urgently needed in global agriculture.
,
DOI:10.11674/zwyf.2012.11303URL [本文引用: 2]
以金山27为供试品种,研究了超高产栽培下不同施磷量(P2O5 0、100、150和200 kg/hm2)和施用方式(传统施磷和分层施磷)对春玉米根系特征及产量的影响。结果表明,根重、40—60 cm土层根幅及根系活力均随施磷量的增加而增加,根系SOD和POD活性随施磷量的增加而提高,MDA含量则随施磷量的提高而降低。同一施磷水平下,分层施磷不仅能促进春玉米根重的增加和下层土壤中根条数的增多; 同时能延缓生育后期不同土层中根系活力下降,提高根系SOD和POD活性,降低MDA含量。在100 kg/hm2施磷量下,分层施磷较传统施磷增产7.1%,产量差异达到5%显著水平; 在150 kg/hm2和200 kg/hm2施磷量条件下,分层施磷与传统施磷的产量差异不显著。
DOI:10.11674/zwyf.2012.11303URL [本文引用: 2]
以金山27为供试品种,研究了超高产栽培下不同施磷量(P2O5 0、100、150和200 kg/hm2)和施用方式(传统施磷和分层施磷)对春玉米根系特征及产量的影响。结果表明,根重、40—60 cm土层根幅及根系活力均随施磷量的增加而增加,根系SOD和POD活性随施磷量的增加而提高,MDA含量则随施磷量的提高而降低。同一施磷水平下,分层施磷不仅能促进春玉米根重的增加和下层土壤中根条数的增多; 同时能延缓生育后期不同土层中根系活力下降,提高根系SOD和POD活性,降低MDA含量。在100 kg/hm2施磷量下,分层施磷较传统施磷增产7.1%,产量差异达到5%显著水平; 在150 kg/hm2和200 kg/hm2施磷量条件下,分层施磷与传统施磷的产量差异不显著。
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2018.08.009URL [本文引用: 2]
【目的】探明华北平原区磷肥施用深度对夏玉米产量及根系分布的影响。【方法】采用大田试验和土柱试验方法。大田试验设不施肥(CK)、常规垄侧施磷(T-side)、8 cm土层施磷(T-8)、16 cm土层施磷(T-16)、24 cm土层施磷(T-24)以及3层(8、16、24 cm土层)均匀施磷(T-all)处理,研究其对夏玉米产量、养分吸收量的影响。土柱试验,研究8 cm施磷(P 8)、16 cm施磷(P 16)、24 cm施磷(P 24)以及3层均匀施磷(P-all)对夏玉米根系分布的影响。【结果】大田试验结果表明,磷肥不同施用深度显著影响夏玉米产量,玉米籽粒产量依次为T-24处理>T-all处理>T-16处理> T-side处理>T-8处理>CK,T-24处理玉米产量较T-side处理提高了10%,差异显著。玉米地上部磷素累积量在八叶期、吐丝期、收获期分别以T-side处理、T-8处理、T-all处理最高。随着磷肥施用深度的增加,玉米收获期氮素吸收量呈现显著增加趋势。土柱试验结果表明,玉米根系长度以P 24处理最高,与CK、P-all和P 8处理相比分别提高了68%、18%、17%,差异均达显著水平。玉米根系在磷肥施用点处集中生长,磷肥深施有利于玉米根系向土壤深层生长。【结论】磷肥深施能够诱导根系向深层生长,显著提高夏玉米产量。本试验条件下以磷肥集中施在24 cm土层最好。
DOI:10.3864/j.issn.0578-1752.2018.08.009URL [本文引用: 2]
【目的】探明华北平原区磷肥施用深度对夏玉米产量及根系分布的影响。【方法】采用大田试验和土柱试验方法。大田试验设不施肥(CK)、常规垄侧施磷(T-side)、8 cm土层施磷(T-8)、16 cm土层施磷(T-16)、24 cm土层施磷(T-24)以及3层(8、16、24 cm土层)均匀施磷(T-all)处理,研究其对夏玉米产量、养分吸收量的影响。土柱试验,研究8 cm施磷(P 8)、16 cm施磷(P 16)、24 cm施磷(P 24)以及3层均匀施磷(P-all)对夏玉米根系分布的影响。【结果】大田试验结果表明,磷肥不同施用深度显著影响夏玉米产量,玉米籽粒产量依次为T-24处理>T-all处理>T-16处理> T-side处理>T-8处理>CK,T-24处理玉米产量较T-side处理提高了10%,差异显著。玉米地上部磷素累积量在八叶期、吐丝期、收获期分别以T-side处理、T-8处理、T-all处理最高。随着磷肥施用深度的增加,玉米收获期氮素吸收量呈现显著增加趋势。土柱试验结果表明,玉米根系长度以P 24处理最高,与CK、P-all和P 8处理相比分别提高了68%、18%、17%,差异均达显著水平。玉米根系在磷肥施用点处集中生长,磷肥深施有利于玉米根系向土壤深层生长。【结论】磷肥深施能够诱导根系向深层生长,显著提高夏玉米产量。本试验条件下以磷肥集中施在24 cm土层最好。
,
DOI:10.1111/nph.2004.162.issue-1URL [本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.2136/sssaj2001.652376xURL [本文引用: 2]
,
DOI:10.1007/s11104-013-1735-8URL [本文引用: 1]
Localized supply of P plus ammonium improves root-proliferation and nutrient-uptake by maize (Zea mays L.) at seedling stage, but it is largely unknown how localized supply of nutrients at both early and late stages influences maize-growth, nutrient-uptake and grain-yield.
A 2-year field experimentation with maize was conducted with localized application of P plus ammonium as diammonium phosphate (LDAP) or ammonium sulfate plus P (LASP) at sowing or jointing stage, with broadcast urea and P (BURP) or no nitrogen (F0) as controls.
Localized supply of P plus ammonium significantly increased root-proliferation, shoot dry-weight and nutrient-uptake at seedling stage. The positive effect disappeared at 53 days after sowing. However, plant-growth and nutrient-uptake increased again after the second localized application of P plus ammonium at jointing. The density and average length of the first-order lateral roots in local patches increased by 50 % in LDAP and LASP compared with F0 and BURP. Maize-yield increased by 8-10 % compared with BURP. Agronomic N efficiency and N-use efficiency increased by 41-48 % and 25-57 % compared with the BURP.
It is suggested that enhanced root-proliferation in the nutrient-rich patches with localized supply of ammonium and P at sowing and jointing stages is essential for improving nutrient-uptake and ultimately grain-yield.
,
DOI:10.2134/agronj2012.0338URL [本文引用: 1]
,
DOI:10.3724/SP.J.1258.2012.01184URL [本文引用: 1]
为了更有效地从土壤中获取养分, 植物根系在长期的进化与适应中产生了一系列塑性反应, 以响应自然界中广泛存在的时空异质性。同时, 植物根系的养分吸收也要面对来自种内和种间的竞争。多种因素都会影响植物根竞争的结果, 包括养分条件、养分异质性的程度、根系塑性的表达等。竞争会改变植物根系的塑性反应, 比如影响植物根系的空间分布; 植物根系塑性程度差异也会影响竞争。已有研究发现根系具有高形态塑性和高生理塑性的植物在长期竞争过程中会占据优势。由于不同物种根系塑性的差异, 固定的对待竞争的反应模式在植物根系中可能并不存在, 其响应随竞争物种以及土壤环境因素的变化而变化。此外, 随着时间变化, 根系塑性的反应及其重要性也会随之改变。植物对竞争的反应可能与竞争个体之间的亲缘关系有关, 有研究表明亲缘关系近的植物可能倾向于减小彼此之间的竞争。根竞争对植物的生存非常重要, 但目前还没有研究综合考虑植物的各种塑性在根竞争中的作用。另外根竞争对群落结构的影响尚待深入的研究。
DOI:10.3724/SP.J.1258.2012.01184URL [本文引用: 1]
为了更有效地从土壤中获取养分, 植物根系在长期的进化与适应中产生了一系列塑性反应, 以响应自然界中广泛存在的时空异质性。同时, 植物根系的养分吸收也要面对来自种内和种间的竞争。多种因素都会影响植物根竞争的结果, 包括养分条件、养分异质性的程度、根系塑性的表达等。竞争会改变植物根系的塑性反应, 比如影响植物根系的空间分布; 植物根系塑性程度差异也会影响竞争。已有研究发现根系具有高形态塑性和高生理塑性的植物在长期竞争过程中会占据优势。由于不同物种根系塑性的差异, 固定的对待竞争的反应模式在植物根系中可能并不存在, 其响应随竞争物种以及土壤环境因素的变化而变化。此外, 随着时间变化, 根系塑性的反应及其重要性也会随之改变。植物对竞争的反应可能与竞争个体之间的亲缘关系有关, 有研究表明亲缘关系近的植物可能倾向于减小彼此之间的竞争。根竞争对植物的生存非常重要, 但目前还没有研究综合考虑植物的各种塑性在根竞争中的作用。另外根竞争对群落结构的影响尚待深入的研究。
,
DOI:10.1007/s11104-013-1965-9URL [本文引用: 1]
Roots have morphological plasticity to adapt to heterogeneous nutrient distribution in soil, but little is known about crop differences in root plasticity. The objective of this study was to evaluate root morphological strategies of four crop species in response to soil zones enriched with different nutrients.
Four crop species that are common in intercropping systems [maize (Zea mays L.), wheat (Triticum aestivum L.), faba bean (Vicia faba L.), and chickpea (Cicer arietinum L.)] and have contrasting root morphological traits were grown for 45 days under uniform or localized nitrogen and phosphorus supply.
For each species tested, the nutrient supply patterns had no effect on shoot biomass and specific root length. However, localized supply of ammonium plus phosphorus induced maize and wheat root proliferation in the nutrient-rich zone. Localized supply of ammonium alone suppressed the whole root growth of chickpea and maize, whereas localized phosphorus plus ammonium reversed (maize and chickpea ) the negative effect of ammonium. The localized root proliferation of chickpea in a nutrient-rich zone did not increase the whole root length and root surface area. Faba bean had no significant response to localized nutrient supply.
The root morphological plasticity is influenced by nutrient-specific and species-specific responses, with the greater plasticity in graminaceous (eg. maize) than leguminous species (eg. faba bean and chickpea).
,
[本文引用: 2]
[本文引用: 2]
,
DOI:10.2134/agronj2005.0050URL [本文引用: 1]
,
DOI:10.11674/zwyf.2014.0406URL [本文引用: 1]
【目的】研究不同氮效率夏玉米根系的时空分布、 植株氮素吸收利用特性及其对氮素用量的响应,探讨玉米氮素高效利用的生理基础,以期探明通过采用氮高效品种、 促进根土互作、 提高根系与水肥时空耦合、 提高玉米氮素利用效率,强化环境友好型生产的有效途径。【方法】试验于2011-2012年在山东农业大学黄淮海玉米技术创新中心(N36°18′,E117°12′)和作物生物学国家重点实验室进行,以氮高效玉米品种郑单958(ZD958)和氮低效品种玉米秀青73-1(XQ73-1)为试验材料,在大田条件下设置两个氮素水平(0和315 kg/hm2),采用土壤剖面取样法和系统取样法分别进行根系相关指标、 干物质及氮素积累与分配的测定。【结果】ZD958整个生育期根系相关指标(根系干重、 根长密度、 根系TTC还原量、 根系吸收面积及活跃吸收面积)及其在深层土壤(60-100 cm)中所占的比例、 单株生物量、 单株绿叶面积、 植株氮素积累量、 单株籽粒产量均显著高于XQ73-1(P<0.05),抽雄期和完熟期根系干重、 根长密度、 根系TTC还原量、 根系吸收面积、 根系活跃吸收面积、 单株绿叶面积分别比XQ73-1高12.02%、 8.39%、 25.34%、 34.48%、 29.22%、 7.76%和36.74%、 24.21%、 36.29%、 29.94%、 32.83%、 13.73%,完熟期单株生物量、 植株氮素积累量、 籽粒产量分别比XQ73-1高11.65%、 11.78%、 15.16%。施氮后两品种各指标均显著提高,ZD958和XQ73-1根系干重、 根长密度、 根系TTC还原量、 根系吸收面积、 根系活跃吸收面积、 单株绿叶面积抽雄期分别提高8.13%、 6.12%、 18.08%、 15.10%、 24.71%、 12.06%和7.19%、 4.59%、 10.47%、 10.82%、 13.02%、 7.15%,而完熟期分别提高16.48%、 22.43%、 19.26%、 15.03%、 27.45%、 14.97%和15.02%、 14.59%、 13.01%、 12.81%、 21.95%、 11.06%; 单株生物量、 植株氮素积累量、 单株籽粒产量完熟期分别提高9.40%、 10.08%、 13.43%和5.20%、 8.56%、 9.69%。相关分析表明,植株吸氮量与根长密度、 根系干重、 根系活跃吸收面积呈显著线性正相关(相关系数均在0.8以上)。 ZD958花前根系对氮素的响应度高于XQ73-1,花后则低于XQ73-1。【结论】氮高效玉米品种ZD958根系总量大、 深层土壤根系多、 根系活力高、 氮素吸收能力强; 施氮条件下优势更加明显,对ZD958作用大于XQ73-1,说明氮高效玉米品种发达且分布合理的根系保证了植株对氮素的吸收,有利于进行光合生产、 获得较高籽粒产量。两品种对氮素的响应不同,氮高效品种花前对氮素的响应度高于氮低效品种,花后则相反。因此,可过适度减少氮高效品种花前施氮量、 增加花后施氮量,而适度增加氮低效品种花前施氮量、 降低花后施氮量来促进根系发育,提高氮素利用效率。
DOI:10.11674/zwyf.2014.0406URL [本文引用: 1]
【目的】研究不同氮效率夏玉米根系的时空分布、 植株氮素吸收利用特性及其对氮素用量的响应,探讨玉米氮素高效利用的生理基础,以期探明通过采用氮高效品种、 促进根土互作、 提高根系与水肥时空耦合、 提高玉米氮素利用效率,强化环境友好型生产的有效途径。【方法】试验于2011-2012年在山东农业大学黄淮海玉米技术创新中心(N36°18′,E117°12′)和作物生物学国家重点实验室进行,以氮高效玉米品种郑单958(ZD958)和氮低效品种玉米秀青73-1(XQ73-1)为试验材料,在大田条件下设置两个氮素水平(0和315 kg/hm2),采用土壤剖面取样法和系统取样法分别进行根系相关指标、 干物质及氮素积累与分配的测定。【结果】ZD958整个生育期根系相关指标(根系干重、 根长密度、 根系TTC还原量、 根系吸收面积及活跃吸收面积)及其在深层土壤(60-100 cm)中所占的比例、 单株生物量、 单株绿叶面积、 植株氮素积累量、 单株籽粒产量均显著高于XQ73-1(P<0.05),抽雄期和完熟期根系干重、 根长密度、 根系TTC还原量、 根系吸收面积、 根系活跃吸收面积、 单株绿叶面积分别比XQ73-1高12.02%、 8.39%、 25.34%、 34.48%、 29.22%、 7.76%和36.74%、 24.21%、 36.29%、 29.94%、 32.83%、 13.73%,完熟期单株生物量、 植株氮素积累量、 籽粒产量分别比XQ73-1高11.65%、 11.78%、 15.16%。施氮后两品种各指标均显著提高,ZD958和XQ73-1根系干重、 根长密度、 根系TTC还原量、 根系吸收面积、 根系活跃吸收面积、 单株绿叶面积抽雄期分别提高8.13%、 6.12%、 18.08%、 15.10%、 24.71%、 12.06%和7.19%、 4.59%、 10.47%、 10.82%、 13.02%、 7.15%,而完熟期分别提高16.48%、 22.43%、 19.26%、 15.03%、 27.45%、 14.97%和15.02%、 14.59%、 13.01%、 12.81%、 21.95%、 11.06%; 单株生物量、 植株氮素积累量、 单株籽粒产量完熟期分别提高9.40%、 10.08%、 13.43%和5.20%、 8.56%、 9.69%。相关分析表明,植株吸氮量与根长密度、 根系干重、 根系活跃吸收面积呈显著线性正相关(相关系数均在0.8以上)。 ZD958花前根系对氮素的响应度高于XQ73-1,花后则低于XQ73-1。【结论】氮高效玉米品种ZD958根系总量大、 深层土壤根系多、 根系活力高、 氮素吸收能力强; 施氮条件下优势更加明显,对ZD958作用大于XQ73-1,说明氮高效玉米品种发达且分布合理的根系保证了植株对氮素的吸收,有利于进行光合生产、 获得较高籽粒产量。两品种对氮素的响应不同,氮高效品种花前对氮素的响应度高于氮低效品种,花后则相反。因此,可过适度减少氮高效品种花前施氮量、 增加花后施氮量,而适度增加氮低效品种花前施氮量、 降低花后施氮量来促进根系发育,提高氮素利用效率。
,
DOI:10.1007/s11104-005-2950-8URL [本文引用: 1]
To evaluate the impact of N placement depth and no-till (NT) practice on the emissions of NO, N2O, CH4 and CO2 from soils, we conducted two N placement experiments in a long-term tillage experiment site in northeastern Colorado in 2004. Trace gas flux measurements were made 2–3times per week, in zero-N fertilizer plots that were cropped continuously to corn (Zea mays L.) under conventional-till (CT) and NT. Three N placement depths, replicated four times (5, 10 and 15cm in Exp. 1 and 0, 5 and 10cm in Exp. 2, respectively) were used. Liquid urea–ammonium nitrate (UAN, 224kgNha−1) was injected to the desired depth in the CT- or NT-soils in each experiment. Mean flux rates of NO, N2O, CH4 and CO2 ranged from 3.9 to 5.2μgNm−2h−1, 60.5 to 92.4μgNm−2h−1, −0.8 to 0.5μgCm−2h−1, and 42.1 to 81.7mgCm−2h−1 in both experiments, respectively. Deep N placement (10 and 15cm) resulted in lower NO and N2O emissions compared with shallow N placement (0 and 5cm) while CH4 and CO2 emissions were not affected by N placement in either experiment. Compared with N placement at 5cm, for instance, averaged N2O emissions from N placement at 10cm were reduced by more than 50% in both experiments. Generally, NT decreased NO emission and CH4 oxidation but increased N2O emissions compared with CT irrespective of N placement depths. Total net global warming potential (GWP) for N2O, CH4 and CO2 was reduced by deep N placement only in Exp. 1 but was increased by NT in both experiments. The study results suggest that deep N placement (e.g., 10cm) will be an effective option for reducing N oxide emissions and GWP from both fertilized CT- and NT-soils.
,
URL [本文引用: 1]
为探明施肥深度对生土地玉米(Zea mays L.)地上部生产力、根系及根际土壤肥力的影响, 连续2年以黄土母质生土为供试土壤, 采用根管土柱法, 以不施肥为对照, 研究不同深度(0~20 cm、60~80 cm、100~120 cm、140~160 cm和180~200 cm)施用生物有机肥对玉米地上部生产力及根重、根际土壤酶活性、根际土壤养分含量垂直分布的影响。结果表明: 1)在0~200 cm土层范围内, 随施肥深度的加深, 玉米地上部生产力、总根重等指标均呈先增加后减少的规律。施肥深度在100~120 cm处的玉米总根重(52.3 g)及地上部生产力(361.0 g)最大。2)所有施肥深度的根重垂直分布均呈“T”型, 以0~20 cm耕层根重最大, 占总根重的50%左右, 随根系下延, 根重明显递减(P<0.05)。施肥深度100~120 cm可以获得最大总根重和0~40 cm耕层根重(27.19 g)。根系N、P和K养分积累适中, 平均分别为6.60 gkg-1、2.38 gkg-1和8.16 gkg-1。3)施肥明显提高根际土壤酶活性和养分含量。施肥深度为60~80 cm, 0~200 cm土层根际土壤脲酶活性较高, 介于0.108~0.354 mg(NH3-N)g-1(soil)24h-1; 施肥深度为140~160 cm时, 0~200 cm土层根际土壤蔗糖酶活性和速效磷含量较高, 分别为12.9~19.6 mg(glucose)g-1(soil)24h-1和4.31~6.02 mgkg-1; 施肥深度180~200 cm, 0~200 cm土层根际土壤有机质含量较高, 介于5.55~7.14 gkg-1; 施肥深度小于100 cm或大于120 cm, 0~20 cm土层根际土壤碱性磷酸酶活性和碱解氮含量较高, 分别>0.497 mg(phenol)g-1(soil)24h-1和>25.4 mgkg-1。4)相关分析表明, 在生土地上, 不同施肥深度处理下, 玉米根重、根系NPK营养、根际土壤酶活性及根际土壤NPK营养密切相关。5)根据FACTOR过程和CLUSTER聚类分析, 优化得出改良黄土母质生土地玉米冠根土系统的适合施肥深度范围为60~160 cm。本研究结果为通过施肥加快生土熟化提供了新的思路。
URL [本文引用: 1]
为探明施肥深度对生土地玉米(Zea mays L.)地上部生产力、根系及根际土壤肥力的影响, 连续2年以黄土母质生土为供试土壤, 采用根管土柱法, 以不施肥为对照, 研究不同深度(0~20 cm、60~80 cm、100~120 cm、140~160 cm和180~200 cm)施用生物有机肥对玉米地上部生产力及根重、根际土壤酶活性、根际土壤养分含量垂直分布的影响。结果表明: 1)在0~200 cm土层范围内, 随施肥深度的加深, 玉米地上部生产力、总根重等指标均呈先增加后减少的规律。施肥深度在100~120 cm处的玉米总根重(52.3 g)及地上部生产力(361.0 g)最大。2)所有施肥深度的根重垂直分布均呈“T”型, 以0~20 cm耕层根重最大, 占总根重的50%左右, 随根系下延, 根重明显递减(P<0.05)。施肥深度100~120 cm可以获得最大总根重和0~40 cm耕层根重(27.19 g)。根系N、P和K养分积累适中, 平均分别为6.60 gkg-1、2.38 gkg-1和8.16 gkg-1。3)施肥明显提高根际土壤酶活性和养分含量。施肥深度为60~80 cm, 0~200 cm土层根际土壤脲酶活性较高, 介于0.108~0.354 mg(NH3-N)g-1(soil)24h-1; 施肥深度为140~160 cm时, 0~200 cm土层根际土壤蔗糖酶活性和速效磷含量较高, 分别为12.9~19.6 mg(glucose)g-1(soil)24h-1和4.31~6.02 mgkg-1; 施肥深度180~200 cm, 0~200 cm土层根际土壤有机质含量较高, 介于5.55~7.14 gkg-1; 施肥深度小于100 cm或大于120 cm, 0~20 cm土层根际土壤碱性磷酸酶活性和碱解氮含量较高, 分别>0.497 mg(phenol)g-1(soil)24h-1和>25.4 mgkg-1。4)相关分析表明, 在生土地上, 不同施肥深度处理下, 玉米根重、根系NPK营养、根际土壤酶活性及根际土壤NPK营养密切相关。5)根据FACTOR过程和CLUSTER聚类分析, 优化得出改良黄土母质生土地玉米冠根土系统的适合施肥深度范围为60~160 cm。本研究结果为通过施肥加快生土熟化提供了新的思路。
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1016/j.fcr.2010.08.005URL [本文引用: 1]
,
DOI:10.1016/j.fcr.2012.04.009URL [本文引用: 1]