Critical nitrogen dilution curve and nitrogen nutrition diagnosis of maize with drip irrigation
FU Jiang-Peng, HE Zheng, JIA Biao,*, LIU Hui-Fang, LI Zhen-Zhou, LIU ZhiSchool of Agriculture Ningxia University, Yinchuan 750021, Ningxia, China通讯作者:
收稿日期:2019-04-19接受日期:2019-08-9网络出版日期:2019-09-02
基金资助: |
Received:2019-04-19Accepted:2019-08-9Online:2019-09-02
Fund supported: |
作者简介 About authors
E-mail:fjp951208@126.com。
摘要
关键词:
Abstract
Keywords:
PDF (652KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
付江鹏, 贺正, 贾彪, 刘慧芳, 李振洲, 刘志. 滴灌玉米临界氮稀释曲线与氮素营养诊断研究[J]. 作物学报, 2020, 46(2): 290-299. doi:10.3724/SP.J.1006.2020.93027
FU Jiang-Peng, HE Zheng, JIA Biao, LIU Hui-Fang, LI Zhen-Zhou, LIU Zhi.
氮素是玉米生长过程中必不可少的营养元素之一, 也是提高产量和改善品质的重要限制因素之一。氮肥施用量对玉米形态建成、生长速度及干物质积累等有很大的影响。目前在玉米生产中, 氮素的过量施用和低效利用严重污染农田生态环境[1,2], 制约农业可持续发展[3]。因此, 明确滴灌玉米在不同生育时期的适宜施氮量, 对提高氮肥利用效率和保护环境具有重要的意义。
临界氮浓度是作物最大生长所需的最小氮浓度[4], 确定临界氮浓度值可以实现对作物氮素营养状况的快速诊断[5]。Greenwood等[6]提出了关于C3和C4作物的临界氮浓度通用模型, 后经Lemaire等[7]通过田间试验校正和完善。近年来, 相继有诸多国内外****分别构建了水稻[8,9]、小麦[10,11]、马铃薯[12]、棉花[13]、番茄[14]等作物临界氮曲线模型, 较好地描述了地上部干物质量与氮浓度的关系。国内外****分别在法国[15]、德国[16]、加拿大[17]、中国华北地区[18,19]、中国陕西关中地区[20,21]和中国豫中地区[22]构建并验证了玉米相关的临界氮浓度模型, 这些研究均表明利用临界氮浓度模型可以很好地预测本地区玉米临界氮含量。从前人构建临界氮浓度模型结果来看, 因地区、作物、土壤、品种和环境条件不同而存在一定的差异。宁夏引黄灌区玉米在氮肥管理方面, 由于多年采用大水漫灌模式, 难以实现追施氮肥, 习惯播种前和拔节期, 而灌浆期不施肥, 前重后轻的施肥方式往往使玉米生育前期植株发育过旺后期倒伏风险加大, 进而影响产量[23]。滴灌水肥一体化技术是宁夏地区近年来推广的一项农业生产新技术, 将施肥与灌水融合为一体。国内外****围绕水肥一体化条件下作物生长与养分运输、分配和产量等[24]方面进行了大量研究, 但是对玉米大田生育时期的需氮量动态变化及其临界氮浓度模型鲜有报道。因此, 构建宁夏引黄灌区滴灌玉米临界氮浓度稀释曲线模型及氮素营养诊断模型很有必要。
本研究通过2年田间定位试验, 构建了宁夏引黄灌区滴灌玉米临界氮变化曲线和氮营养指数诊断模型, 进而探讨是否可利用该模型来诊断滴灌玉米氮素营养, 以期为水肥一体化条件下优化玉米氮肥管理和精准评估氮素营养状况提供理论依据。
1 材料与方法
1.1 试验地概况
宁夏农垦平吉堡农场位于贺兰山东麓(38°N, 106°E)。海拔高度为1100 m, 多年平均温度、降水量和蒸发量分别为8.6℃、272.6 mm和2325 mm, 玉米生育期基本气象条件如图1所示。供试土壤为轻壤土, 基础土壤肥力状况如表1所示。图1
新窗口打开|下载原图ZIP|生成PPT图1玉米生育期气象条件
Fig. 1Meteorological conditions during the growth period of maize
Table 1
表1
表1试验地土壤基础肥力
Table 1
年份 Year | pH | 有机质 OM (g kg-1) | 全氮 Total N (g kg-1) | 全磷 Total P (g kg-1) | 碱解氮 Avail. N (mg kg-1) | 速效磷 Avail. P (mg kg-1) | 速效钾 Avail. K (mg kg-1) |
---|---|---|---|---|---|---|---|
2017 | 7.98 | 11.45 | 0.80 | 0.51 | 37.37 | 19.04 | 102.52 |
2018 | 7.65 | 12.82 | 0.75 | 0.48 | 36.82 | 17.37 | 95.31 |
新窗口打开|下载CSV
1.2 试验设计
供试玉米品种为“天赐19”。氮肥处理设6个, 分别为0、90、180、270、360、450 kg hm-2, 以N0、N90、N180、N270、N360、N450表示, 小区面积为67.5 m2, 重复3次, 随机区组排列。种植密度约为9万株 hm-2, 采用宽窄行种植, 宽行70 cm, 窄行40 cm。玉米全生育期内采用水肥一体化滴灌施肥技术。用潜水泵将水通过75 mm PE管抽送到试验小区, 于管接口处安装水表准确计量, 以32 mm PE管做支管连接到16 mm毛管。肥料由施肥罐随水施入, 窄行玉米中间设置1根滴灌带, 2行玉米由1根滴灌带控制, 滴灌带滴头间距为 30 cm, 滴头流量2.5 L h-1, 滴头工作压力0.1 MPa, 为保证灌水与施肥的均匀性, 采用横向供水方式。灌水以作物蒸发蒸腾量ETc为基础, ETc = Kc × ETo, ETo为参考作物蒸发蒸腾量, Kc为作物系数, 依据2006—2016年气象数据按Penman Monteith修正公式计算[25]取平均值。Kc前期为0.7 (苗期-拔节期), 中期为1.2 (吐丝期-灌浆期), 后期为0.6 (乳熟期)[25]。灌水总量为400 mm, 苗期、拔节至大喇叭口期、抽雄吐丝期、灌浆期和成熟期灌水量和次数分别为20 mm (1次)、100 mm (3次)、140 mm (2次)、120 mm (3次)和20 mm (1次)。
整个生育期共施肥8次, 分别为苗期1次、拔节至大喇叭口期3次、抽雄吐丝期1次、灌浆期3次, 每次施肥量占总施肥量的比例分别为苗期10%、拔节期45%、抽雄吐丝期20%和灌浆期25%。供试氮肥为尿素(含氮量≥46.4%), 磷钾肥为P2O5 138 kg hm-2和K2SO4 120 kg hm-2。2017年4月26日播种, 9月16收获; 2018年4月28日播种, 9月18日收获。
1.3 测定项目与方法
1.3.1 干物质量 于玉米拔节期(V7)、小喇叭口期(V10)、大喇叭口期(V13)、吐丝期(R1)、乳熟期(R3)、蜡熟期(R5)和成熟期(R6)(播种后45 d、55 d、65 d、85 d、95 d、105 d、115 d)共计破坏性取样7次, 从每个小区选取长势一致的3株, 分成为茎、叶和穗3个部分, 采用干燥法测定器官干物质量。1.3.2 植株氮浓度 将各处理的干样粉碎、研磨和过筛, 采用微量凯氏定氮法测定植株含氮量, 计算出植株氮浓度[9]。
1.3.3 产量 于玉米收获期从每小区随机选取植株完整的长方形地块(1 m × 3 m)进行样方取样, 把样方内的所有玉米果穗带回实验室脱粒, 折合为14%含水量的籽粒产量。
1.4 模型描述
1.4.1 临界氮浓度模型建立 根据Justes等[26]提出的临界氮浓度稀释曲线计算方法, 结合梁效贵等[19]针对华北地区玉米临界氮浓度的建模思路, 本研究建模步骤为: (1)对不同施氮处理下的地上部干物质积累量进行方差分析, 将其分为2类, 即限氮和非限氮; (2)对于玉米生长受氮素影响的氮素水平, 将其地上部干物质积累量与对应的氮浓度值进行曲线拟合; (3)对于玉米生长不受氮素影响的氮素水平, 其干物质量的均值代表最大干物质量; (4)采样日的临界氮浓度值为以上线性曲线与以最大干物质量为横坐标的垂线的交点的纵坐标决定。按Greenwood等[6]对临界氮浓度定义的描述:式中, Nc代表临界氮浓度值(g kg-1); DM代表干物质量的最大值(t hm-2), a和b均为模型的参数。
1.4.2 临界氮浓度模型验证 采用均方根误差RMSE (root mean square error)和标准化均方根误差(n-RMSE)[27,28]对模型验证。
式中, Pi、Oi分别为临界氮测定值和模拟值; n为样本量; S为实测数据的平均值。参照Jamiesom等[29]提出的标准来衡量模型稳定性, n-RMSE < 10%, 模型稳定性极好; 10% < n-RMSE < 20%, 模型稳定性较好; 20% < n-RMSE < 30%, 模型稳定性一般; n-RMSE > 30%, 模型稳定性较差。
1.4.3 氮营养指数模型 根据Lemaire等[30]描述的氮素营养指数(nitrogen nutrition index, NNI)模型,
NNI = Na/Nc (4)
式中, Na为实测氮浓度值(g kg-1), Nc为临界氮浓度值。若NNI<1, 表明氮素不足; NNI=1, 表明氮素恰好适量; NNI>1, 表明氮素过盛。
1.4.4 相对氮吸收量、相对地上部生物量和相对产量计算 相对吸氮量(RNupt) = 吸氮量/同一生育时期各处理吸氮量最大值; 相对地上部生物量(RDW) = 地上部生物量/同一生育时期各处理地上部生物量的最大值; 相对产量(RY) = 各处理实际产量/各处理产量的最大值。
1.5 数据处理
采用Microsoft Excel 2013数据整理与计算, 用SPSS 22.0进行单因素方差分析和多重比较, 采用Origin 2018软件绘图。采用2018年数据建立模型, 2017年数据验证。2 结果与分析
2.1 滴灌玉米地上部干物质积累量动态变化与筛选分组
如表2所示, 玉米干物质量随着生育进程呈逐渐上升趋势。不同年际、施氮水平和取样时期, 玉米植株地上部干物质积累量在1.24~16.08 t hm-2之间。同一生育时期随氮素水平的提高, 干物质量呈逐渐增加趋势, 施氮效果显著, 但同一取样时期N360和N450处理之间地上部干物质积累量基本没有显著差异, 说明施氮过量并不能提高地上部干物质积累量。Table 2
表2
表2滴灌玉米地上部干物质积累量动态变化
Table 2
年份 Year | 生育时期 Growing period | 地上部生物量Aboveground biomass (t hm-2) | |||||
---|---|---|---|---|---|---|---|
N0 | N90 | N180 | N270 | N360 | N450 | ||
2017 | V10 | 1.24±0.24 c | 1.31±0.18 bc | 1.52±0.76 bc | 1.75±0.56 abc | 2.19±0.11 ab | 2.53±0.57 a |
V13 | 3.05±0.80 d | 3.56±0.39 cd | 3.64±0.32 cd | 3.96±0.09 bc | 4.59±0.17 ab | 4.77±0.21 a | |
R1 | 4.43±0.89 c | 4.9±0.30 bc | 5.04±0.43 bc | 6.21±1.11 ab | 7.34±1.19 a | 7.66±0.88 a | |
R3 | 6.43±0.47 c | 6.58±0.36 c | 7.40±0.67 c | 8.95±0.64 b | 10.44±0.50 a | 11.02±0.84 a | |
R5 | 8.99±0.61 c | 9.75±0.12 c | 11.80±0.12 b | 12.08±0.93 b | 13.40±0.43 a | 13.12±0.55 a | |
R6 | 10.88±0.74 d | 12.93±0.32 c | 14.04±0.76 b | 15.11±0.09 a | 15.42±0.86 a | 15.14±0.14 a | |
2018 | V10 | 1.35±0.21 b | 1.50±0.29 b | 1.51±0.06 b | 1.57±0.17 b | 1.73±0.93 a | 1.74±0.32 a |
V13 | 1.89±0.29 c | 2.48±0.44 b | 2.53±0.10 b | 2.86±0.19 b | 3.26±0.06 a | 3.48±0.08 a | |
R1 | 4.95±0.40 d | 5.79±0.65 cd | 6.25±0.61 bc | 6.62±0.48 ab | 7.78±0.92 ab | 8.76±0.89 a | |
R3 | 6.27±0.61 d | 7.16±0.59 c | 8.80±0.17 b | 8.92±0.12 b | 10.91±0.46 a | 10.79±0.42 a | |
R5 | 8.92±0.91 c | 9.91±0.51 bc | 10.44±1.11 bc | 11.21±0.89 b | 13.26±1.08 a | 12.91±0.76 a | |
R6 | 10.03±0.52 e | 11.06±0.29 d | 12.55±0.73 c | 13.47±0.13 b | 16.08±0.47 a | 14.82±0.45 a |
新窗口打开|下载CSV
由于2017—2018年玉米播种后45 d (七叶展时期)地上部干物质积累量小于1 t hm-2, 故舍弃此部分数据。从整个生育期来看, N0、N90、N180和N270地上部干物质积累量之间显著; N360和N450之间不显著, 说明玉米地上部干物质积累量并不随施氮水平的提高而增加。参照Justes等[26]建立临界氮浓度稀释曲线模型的方法, 对玉米植株地上部干物质积累量进行方差分析, 即每次取样日地上部干物质积累量呈显著差异的施氮处理为限氮组, 反之, 则为非限氮组。由表2可知, 限氮组数据为N0、N90、N180、N270处理的取样值, 而非限氮组数据为N360、N450处理的取样值。
2.2 滴灌玉米地上部植株氮浓度动态变化
如图2所示, 滴灌玉米植株氮浓度随着地上部干物质积累量的增加呈逐渐下降趋势。不同年际、同一取样时期植株氮浓度均随着施氮量的增加呈上升趋势, 但从整个生育期来看, 玉米植株氮浓度随生长进程和干物质量的增加均呈下降趋势。2017年和2018年植株氮浓度的变化范围分别为9.13~ 29.86 g kg-1和9.95~30.26 g kg-1。同一施氮水平下的植株氮浓度变化趋势基本一致。图2
新窗口打开|下载原图ZIP|生成PPT图2滴灌玉米植株氮浓度动态变化
缩写同
Fig. 2Dynamic changes of nitrogen concentration in maize plant widen drip irrigation
Abbreviations are the same as those given in
2.3 滴灌玉米临界氮浓度稀释曲线模型构建
由1.4.1模型构建方法, 得到每次取样日的临界氮浓度, 并与地上部干物质量拟合, 得到滴灌玉米临界氮浓度稀释曲线(图3)。模型的决定系数R2为0.982, 达到极显著水平, 说明该模型可以很好地解释滴灌玉米临界氮浓度与地上部干物质积累量之间的关系。图3
新窗口打开|下载原图ZIP|生成PPT图3滴灌玉米临界氮浓度稀释曲线
Fig. 3Dilution curve of critical nitrogen concentration in drip irrigation maize
从图3可以看出, 在相同地上部生物量的情况下, 氮浓度值变异性很大, 采用每个采样日最大(Nmax)和最小(Nmin)氮浓度值可拟合得到最高氮浓度稀释模型(Nmax = 40.516 DM-0.314, R2=0.907)和最低氮浓度稀释模型(Nmin = 22.108 DM-0.395, R2 = 0.918), 其结果也同样符合模型(1)。
2.4 滴灌玉米临界氮浓度稀释曲线模型验证
如图4所示, 利用2017年各取样时期地上部干物质量和植株氮浓度单独拟合来验证模型的精度和可靠性。将2017年干物质积累量实测值分别带入上述模型, 计算得到临界氮浓度模拟值, 比较模拟值与2018年的实测值, 均方根误差(RMSE)为1.13 g kg-1, 标准化均方根误差(n-RMSE)为6.20%, 小于10%, 说明模型稳定性极好, 进一步表明可用于滴灌玉米的氮营养估测。图4
新窗口打开|下载原图ZIP|生成PPT图4滴灌玉米临界氮浓度稀释曲线模型验证
Fig. 4Model verification of dilution curve of critical nitrogen concentration in drip irrigation maize
2.5 滴灌玉米氮营养指数模型的建立
如图5所示, 不同年际、同一取样时期, NNI随着施氮量的增加而增大。整体来看, N0、N90、N180处理在播种后55~115 d内NNI均小于1, 说明N0、N90和N180水平下出现了氮供应不足状况, 使玉米的生长受到了氮素的限制; N360和N450处理, NNI均大于1, 说明出现了氮肥供应充足甚至过量; N270处理的NNI在1附近波动, 说明在N270处理氮素供应达到最佳适宜量。因此, 由NNI可以判定出该地区在水肥一体化条件下玉米的施氮量以270 kg hm-2为宜。图5
新窗口打开|下载原图ZIP|生成PPT图5滴灌玉米氮营养指数动态变化
NNI: 氮营养指数。缩写同
Fig. 5Dynamic changes of nitrogen nutrition index in drip irrigation maize
NNI: nitrogen nutrition index. Abbreviations are the same as those given in
2.6 氮营养指数与相对吸氮量、相对地上部干物质量和相对产量之间的关系
2017—2018 2年分别研究了NNI与RNupt、RDW和RY的关系。从图6可以看出, 玉米不同生育时期的NNI-RNupt均表现为线性相关, RNupt随NNI的增加而增加, 各生育时期R2分别为0.836、0.768、0.846、0.811、0.804和0.861, 均达到极显著水平。从图7可以看出, 玉米不同生育时期的 NNI与RDW 均表现为线性相关, RDW随着NNI的增加而增加, 各生育时期方程决定系数分别为0.456、0.647、0.579、0.667、0.753和0.759, 均达到极显著水平。从图8可以看出, NNI与RY二者呈二次函数关系, 即相对产量随NNI 的增加先升高后降低, 决定系数0.796, 达到极显著水平。该试验条件下, NNI为0.990时, RY获得最大值, 为0.970。图6
新窗口打开|下载原图ZIP|生成PPT图6滴灌玉米氮营养指数与相对吸氮量的关系
NNI: 氮营养指数; RNupt: 相对吸氮量。缩写同
Fig. 6Relationship between NNI and relative nitrogen uptake RNupt in drip irrigation maize
NNI: nitrogen nutrition index; RNupt: relative nitrogen uptake. Abbreviations are the same as those given in
图7
新窗口打开|下载原图ZIP|生成PPT图7滴灌玉米氮营养指数与相对地上部生物量的关系
NNI: 氮营养指数; RDW: 相对地上部生物量。缩写同
Fig. 7Relationship between nitrogen nutrition index and relative dry matter of drip irrigation maize
NNI: nitrogen nutrition index; RDW: relative dry matter. Abbreviations are the same as those given in
图8
新窗口打开|下载原图ZIP|生成PPT图8滴灌玉米氮营养指数与相对产量的关系
NNI: 氮营养指数; RY: 相对产量。
Fig. 8Relationship between nitrogen nutrition index and relative yield of drip irrigation maize
NNI: nitrogen nutrition index; RY: relative yield.
3 讨论
3.1 宁夏引黄灌区滴灌玉米临界氮浓度稀释曲线特征
玉米是宁夏地区第一大粮食作物, 播种面积常达3×105 hm2以上[31], 而引黄灌区和扬黄灌区玉米总产量占宁夏玉米总产量60%以上[23]。目前在玉米生产中氮肥普遍过量施用和低效利用, 从而污染农业生态环境[1,2], 制约农业可持续发展[3]。因此, 建立快速有效的诊断滴灌玉米氮素营养状况的技术显得十分重要。本研究利用2年6个氮素水平的定位试验数据, 建立并验证了宁夏引黄灌区滴灌玉米临界氮浓度稀释曲线模型(图3和图4), 分析了不同施氮量下的NNI (图5), 研究了NNI与RNupt、RDW和RY的关系(图6、图7和图8)。模型的决定系数均达到显著水平, 在不同年际间也具有较好的稳定性, 可以作为宁夏引黄灌区滴灌玉米氮素营养快速诊断的方法之一。此外, 本研究进一步表明, 水肥一体化条件下NNI与RNupt (图6)、RGW (图7)和RY (图8)显著相关。因此, 基于Nc曲线的NNI可以用来评价玉米氮素营养状况。近年来, 梁效贵等[18]构建了华北地区夏玉米临界氮稀释曲线(Nc = 34.914 DM-0.413); 李正鹏等[20]构建了陕西关中地区夏玉米临界氮曲线(Nc = 22.5 DM-0.27), 研究均表明临界氮浓度稀释曲线模型可用于预测该地区夏玉米临界氮含量。本研究构建了宁夏引黄灌区滴灌玉米临界氮浓度稀释曲线模型(Nc = 35.504 DM-0.312), 其模型表达式均满足幂函数方程(图3)。从数学角度来讲, 参数a代表生物量为1 t hm-2时的植株氮浓度, 参数b描述的是随地上部生物量的增加植株氮含量递减关系, 与前人相比, 本研究参数a值偏高, 而b属于中间范畴, 其参数a值偏高的原因是: (1)与李正鹏等[20]构建模型相比可能受气候状况影响, 宁夏灌区以半干旱温带大陆性气候为主, 玉米生长季节光热资源丰富, 降水量少, 而关中地区属于亚热带季风气候, 夏季高温多雨。依据积温学说原理[32], 宁夏引黄灌区玉米生育期(143 d)远高于陕西关中地区(110 d), 生育期延长意味着植株吸氮量增加[33]; (2)与梁效贵等[18]构建模型相比, 其值也偏高, 原因主要与土壤因素有关, 华北地区供试玉米土壤为冲积型盐化潮土, 而宁夏引黄灌区供试玉米土壤为轻壤土, 土壤肥力比华北地区高, 这可能是导致宁夏引黄灌区玉米临界氮稀释曲线高于华北地区的主要原因。
利用2017年独立试验数据对2018年构建的模型进行验证, 发现此模型不受年际变化影响, 稳定性较好。本研究构建的临界氮浓度稀释曲线模型, 仅是在单一生态区域和品种下构建的, 今后需要通过不同区域和品种来进一步不断完善该模型, 从而实现模型预测的通用性。
3.2 滴灌玉米最佳施氮量的确定和氮营养指数的可行性
NNI是衡量作物氮营养状况的重要指标[34]。银敏华等[21]利用NNI对陕西关中地区玉米生育期内氮素营养状况诊断发现2种氮素(尿素和控释氮肥)的NNI 在0.74~1.12之间变化, 且随施氮水平的提高而增大。本研究表明, 滴灌玉米NNI 值随着氮肥施用量的增加不断增大, 在0.60~1.41之间变动(图5), 从而依据NNI确定的滴灌玉米最佳施氮量为270 kg hm-2。通过NNI确定的最佳施氮量与张富仓等[35]基于最小二乘法进行回归分析推荐的宁夏滴灌玉米适宜施氮量(210~325 kg hm-2)基本一致。由此可见, 基于临界氮稀释模型的NNI来评价植株氮营养状况是可靠的。4 结论
在一定氮素水平下, 滴灌玉米干物质量随施氮水平的提高而增加, 氮浓度随生长天数的增加而降低; 建立并验证了滴灌玉米临界氮浓度稀释曲线模型, 滴灌玉米各生育时期的最大生物量与临界氮浓度之间符合幂函数模型Nc = 35.504 DM-0.312, 模型稳定性高。基于临界氮浓度稀释曲线模型, 水肥一体化条件下, 玉米以270 kg hm-2为最佳施氮量。NNI与相对氮吸收量(RNupt)、相对干物质量(RDW)和相对产量(RY)等指标间存在极显著相关性。NNI可以直观地反映玉米不同生长阶段的氮素盈亏状况。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
DOI:10.1371/journal.pone.0199492URLPMID:29949626 [本文引用: 2]
Identifying maize inbred lines that are more efficient in nitrogen (N) use is an important strategy and a necessity in the context of environmental and economic impacts attributed to the excessive N fertilization. N-uptake efficiency (NUpE) and N-utilization efficiency (NUtE) are components of N-use efficiency (NUE). Despite the most maize breeding data have a multi-trait structure, they are often analyzed under a single-trait framework. We aimed to estimate the genetic parameters for NUpE and NUtE in contrasting N levels, in order to identify superior maize inbred lines, and to propose a Bayesian multi-trait multi-environment (MTME) model. Sixty-four tropical maize inbred lines were evaluated in two experiments: at high (HN) and low N (LN) levels. The MTME model was compared to single-trait multi-environment (STME) models. Based on deviance information criteria (DIC), both multi- and single-trait models revealed genotypes x environments (G x E) interaction. In the MTME model, NUpE was found to be weakly heritable with posterior modes of heritability of 0.016 and 0.023 under HN and LN, respectively. NUtE at HN was found to be highly heritable (0.490), whereas under LN condition it was moderately heritable (0.215). We adopted the MTME model, since combined analysis often presents more accurate breeding values than single models. Superior inbred lines for NUpE and NUtE were identified and this information can be used to plan crosses to obtain maize hybrids that have superior nitrogen use efficiency.
,
DOI:10.2136/sssaj2007.0374URL [本文引用: 2]
,
DOI:10.1126/science.1182570URLPMID:20150447 [本文引用: 2]
Soil acidification is a major problem in soils of intensive Chinese agricultural systems. We used two nationwide surveys, paired comparisons in numerous individual sites, and several long-term monitoring-field data sets to evaluate changes in soil acidity. Soil pH declined significantly (P &lt; 0.001) from the 1980s to the 2000s in the major Chinese crop-production areas. Processes related to nitrogen cycling released 20 to 221 kilomoles of hydrogen ion (H+) per hectare per year, and base cations uptake contributed a further 15 to 20 kilomoles of H+ per hectare per year to soil acidification in four widespread cropping systems. In comparison, acid deposition (0.4 to 2.0 kilomoles of H+ per hectare per year) made a small contribution to the acidification of agricultural soils across China.
,
DOI:10.2134/agronj2007.0059URL [本文引用: 1]
,
DOI:10.1093/oxfordjournals.aob.a088118URL [本文引用: 1]
,
DOI:10.1093/oxfordjournals.aob.a088044URL [本文引用: 2]
In: Scaife A ed. ,
[本文引用: 1]
,
URL [本文引用: 1]
In-season diagnosis of crop nitrogen (N) status is crucial for precision N management. Critical N (Nc) dilution curve and N nutrition index (NNI) have been proposed as effective methods to diagnose N status of different crops. The Nc dilution curves have been developed for indica rice in the tropical and temperate zones and japonica rice in the subtropical-temperate zone, but they have not been evaluated for short-season japonica rice in Northeast China. The objectives of this study were to evaluate the previously developed Nc dilution curves for rice in Northeast China and to develop a more suitable Nc dilution curve in this region. A total of 17 N rate experiments were conducted in Sanjiang Plain, Heilongjiang Province in Northeast China from 2008 to 2013. The results indicated that none of the two previously developed Nc dilution curves was suitable to diagnose N status of the short-season japonica rice in Northeast China. A new Nc dilution curve was developed and can be described by the equation Nc=27.7W-0.34 if W ≥ 1 Mg dry matter (DM) ha-1 or Nc=27.7 g kg-1 DM if W< 1 Mg DM ha-1, where W is the aboveground biomass. This new curve was lower than the previous curves. It was validated using a separate dataset, and it could discriminate non-N-limiting and N-limiting nutritional conditions. Additional studies are needed to further evaluate it for diagnosing N status of different rice cultivars in Northeast China and develop efficient non-destructive methods to estimate NNI for practical applications.
,
[本文引用: 2]
[本文引用: 2]
,
DOI:10.2134/agronj2009.0266URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1007/s12230-011-9226-zURL [本文引用: 1]
For processing potato, a new algorithm has been developed to determine nitrogen (N) requirement (NR) applying critical N dilution curve (Nc). The objectives of this work were i) to determine the Nc for processing potato under the growing conditions of the Argentinean Humid Pampas; ii) to compare the parameters of the Nc with those of the Nc obtained by other authors, and iii) to establish the crop NR. The experiments were carried out during four growing seasons. The cultivar Innovator was planted in a randomized complete block design with four N treatments. Dry matter yield and N concentration of shoots and tubers were measured during the growing season. The Nc was determined by selecting data points for which the highest total biomass (W), comprised of shoots and tubers, was obtained and by expressing N concentration as function of W. The N nutrition index (NNI) was determined as the ratio between the actual N concentration (Na) and the Nc. The NR was determined as the difference between actual N uptake and the critical N uptake, divided the N utilization efficiency. A fitted Nc (Nc = 5.30 W-0.42, R-2 = 0.92) presented similar values than a published reference Nc. The relation between relative tuber yield (RY) and NNI was expressed by a linear-plateau function and accounted for 69% of the variation. For a NNI a parts per thousand yenaEuro parts per thousand 1 the RY was near 98.7%. With decreasing NNI below 1 the RY decreased. The relation between RY and NR was expressed by a linear-plateau function and accounted for 66% of the variation. For a NR a parts per thousand yenaEuro parts per thousand 0 the RY was near 98%. With decreasing NR, below 0, the RY decreased. Furthermore, the NNI increased linearly with increasing NR, which indicates that the NNI was 0.99 when NR was zero. This study has shown that Nc can be applied in potato crop systems. The NNI calculated from that curve is a reliable indicator of the N stress level during potato's growing season. The critical N uptake and the actual N uptake enable the calculation of crop NR.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1023/A:1004783431055URL [本文引用: 1]
,
DOI:10.2134/agronj2004.1131URL [本文引用: 1]
,
DOI:10.2134/agronj2007.0059URL [本文引用: 1]
,
URL [本文引用: 3]
The concept of critical N concentration (N-c) has been widely used in agronomy as the basis for diagnosis of crop N status, and allows discrimination between field situations of sub-optimal and supra-optimal N supply. A critical N dilution curve of N-c = 34.0W(-0.37), where W is the aboveground biomass (Mg DM ha(-1)) and Nc the critical N concentration in aboveground dry matter (g kg(-1) DM), was developed for spring maize in Europe. Our objectives were to validate whether this European critical N dilution curve was appropriate for summer maize production in the North China Plain (NCP) and to develop a critical N dilution curve especially for summer maize production in this region. In total 231 data points from 16 experiments were used to test the European critical N dilution curve. These observations showed that the European critical N dilution curve was unsuitable for summer maize in the NCP, especially at the early growth stage. From the data obtained, a critical N dilution curve for summer maize in the NCP was described by the equation of N-c = 27.2W(-0.27), when aboveground biomass was between 0.64 and 11.17 Mg DM ha(-1). Based on this curve, more than 90% of the data for the N deficiency supply treatments had an N nutrition index (NNI) < 1 and 92% of the data for the N excess supply treatments had an NNI > 1.
,
DOI:10.3724/SP.J.1006.2013.00292URL [本文引用: 2]
为了验证玉米临界氮稀释曲线在我国华北地区的适用性,探讨以氮营养指数评价玉米氮营养状况的可行性,以郑单958为材料,设置5个氮肥处理(0、60、120、180和240 kg N hm-2),利用2年定位试验数据研究了夏玉米临界氮稀释曲线和氮营养指数。结果表明,一定范围内随着施氮量增加,地上部生物量(W)显著增长。玉米各生育时期不同氮肥处理的生物量和氮浓度数据可经统计分析分为限氮和非限氮两组,据此计算各生育时期临界氮浓度(Nc)并建立了夏玉米临界氮稀释曲线模型(Nc = 34.914W-0.4134),模型参数与已有报道具有较好的相似性。根据模型推算的氮营养指数与相对氮累积量、相对地上部生物量和相对产量均具显著相关性。因此,利用临界氮稀释曲线和氮营养指数可以预测华北地区夏玉米植株临界氮含量和表征植株氮营养状况。
DOI:10.3724/SP.J.1006.2013.00292URL [本文引用: 2]
为了验证玉米临界氮稀释曲线在我国华北地区的适用性,探讨以氮营养指数评价玉米氮营养状况的可行性,以郑单958为材料,设置5个氮肥处理(0、60、120、180和240 kg N hm-2),利用2年定位试验数据研究了夏玉米临界氮稀释曲线和氮营养指数。结果表明,一定范围内随着施氮量增加,地上部生物量(W)显著增长。玉米各生育时期不同氮肥处理的生物量和氮浓度数据可经统计分析分为限氮和非限氮两组,据此计算各生育时期临界氮浓度(Nc)并建立了夏玉米临界氮稀释曲线模型(Nc = 34.914W-0.4134),模型参数与已有报道具有较好的相似性。根据模型推算的氮营养指数与相对氮累积量、相对地上部生物量和相对产量均具显著相关性。因此,利用临界氮稀释曲线和氮营养指数可以预测华北地区夏玉米植株临界氮含量和表征植株氮营养状况。
,
URL [本文引用: 3]
基于临界氮浓度稀释曲线推导的氮素营养指数既可以诊断出氮素供应不足也可以诊断出氮肥供应过量。该文在整理分析关中平原8 a氮肥大田试验的基础上,分别构建了关中灌区夏玉米和渭北旱塬春玉米的地上部生物量的临界氮浓度稀释曲线模型。结果表明,关中玉米地上部临界氮浓度与生物量符合幂函数关系。利用独立试验资料对建立的临界氮稀释曲线模型进行检验,结果表明:该模型能准确诊断该区玉米植株的氮营养状况,施肥量和施肥时期对玉米植株的氮素营养状况影响较大,一般随着施氮量的增加氮素营养指数值会增大,只基施氮肥或前期施氮过多都会使玉米在生长过程中营养失衡。该研究建立的关中地区玉米的临界氮稀释模型为该区玉米氮素营养诊断和优化管理提供了较好的技术途径和理论参考。
URL [本文引用: 3]
基于临界氮浓度稀释曲线推导的氮素营养指数既可以诊断出氮素供应不足也可以诊断出氮肥供应过量。该文在整理分析关中平原8 a氮肥大田试验的基础上,分别构建了关中灌区夏玉米和渭北旱塬春玉米的地上部生物量的临界氮浓度稀释曲线模型。结果表明,关中玉米地上部临界氮浓度与生物量符合幂函数关系。利用独立试验资料对建立的临界氮稀释曲线模型进行检验,结果表明:该模型能准确诊断该区玉米植株的氮营养状况,施肥量和施肥时期对玉米植株的氮素营养状况影响较大,一般随着施氮量的增加氮素营养指数值会增大,只基施氮肥或前期施氮过多都会使玉米在生长过程中营养失衡。该研究建立的关中地区玉米的临界氮稀释模型为该区玉米氮素营养诊断和优化管理提供了较好的技术途径和理论参考。
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
[本文引用: 2]
[本文引用: 2]
,
DOI:10.1016/S0167-8809(03)00067-7URL [本文引用: 1]
,
DOI:10.1016/S0022-1694(99)00194-8URL [本文引用: 2]
,
DOI:10.3389/fpls.2017.01517URLPMID:28928757 [本文引用: 2]
Precise quantification of plant nitrogen (N) nutrition status is essential for crop N management. The concept of critical N concentration (Nc) has been widely used for assessment of plant N status. This study aimed to develop a new winter wheat Nc dilution curve based on leaf area duration (LAD). Four field experiments were performed on different cultivars with different N fertilization modes in the Yangtze River basin and Yellow River basin in China. Results showed that the increase in LAD with increasing cumulative thermal time took the shape of an "S" type curve; whereas shoot N concentration decreased with increasing LAD, according to a power function. Both LAD and shoot N concentration increased with increasing N application. The new LAD based Nc dilution curve was determined and described as Nc = 1.6774 LAD-0.37 when LAD > 0.13. However, when LAD ≤ 0.13, Nc was constant and can be calculated by the equation when LAD = 0.13. The validation of Nc dilution curve with dataset acquired from independent experiments confirmed that N nutrition index (NNI) predictions based on the newly established Nc dilution curve could precisely diagnose N deficiency at different plant growth stages. The integrated N nutrition index (NNIinte), which was obtained by the weighted mean of NNI, was used to estimate shoot N concentration, shoot dry matter, LAD, and yield using regression functions. The linear relationships between NNIinte and these growth variables were well correlated. These results provided enough evidence that the new LAD-based Nc dilution curve could effectively and precisely diagnoses N deficiency in winter wheat crops.
,
DOI:10.1016/j.jsurg.2019.06.012URLPMID:31281109 [本文引用: 1]
Practice-Based Learning and Improvement is a Core Competency for surgical residents. Self-regulated learning (SRL) skills are an important component of this competency, yet are rarely taught in surgical training. Before we can teach SRL skills to residents we must understand the attributes that are essential. The purpose of this study was to develop a framework for SRL for surgical trainees.
,
DOI:10.1016/S0308-521X(00)00010-XURL [本文引用: 1]
,
DOI:10.1016/0378-4290(91)90040-3URL [本文引用: 1]
,
DOI:10.1093/oxfordjournals.aob.a088286URL [本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.2134/agronj2013.0404URL [本文引用: 1]
Film mulching is a very common technique in agriculture worldwide, but few studies have focused on the dry matter (DM) and N accumulation of mulched crops. Understanding the grain yield (GY) associated with DM and N accumulation is essential for improving crop production. We conducted a 3-yr field experiment with six N fertilizer rates (0, 100, 200, 250, 300, and 400 kg ha(-1)) in the semiarid climate of northwest China to determine the GY and DM and N accumulation of film-mulched maize (Zea mays L.). The results showed that relatively high GYs (13.1-15.1 Mg ha-1) were obtained using N fertilizer rates of 200 to 400 kg ha(-1) in the 3 yr despite large year-to-year differences in rainfall. When the N rate was below 250 kg ha(-1), the GY, DM, and N accumulation increased significantly as the N fertilizer rate increased. A linear-plateau model best described the relationship between the GY and the DM and N accumulation during the pre-silking stage and a linear model the relationship during the post-silking stage. We conclude that optimizing N management to improve DM and N accumulation (especially post-silking) is the key to ensuring a high yield of film-mulched maize.
,
URL [本文引用: 1]
The concept of critical N concentration (N-c) has been widely used in agronomy as the basis for diagnosis of crop N status, and allows discrimination between field situations of sub-optimal and supra-optimal N supply. A critical N dilution curve of N-c = 34.0W(-0.37), where W is the aboveground biomass (Mg DM ha(-1)) and Nc the critical N concentration in aboveground dry matter (g kg(-1) DM), was developed for spring maize in Europe. Our objectives were to validate whether this European critical N dilution curve was appropriate for summer maize production in the North China Plain (NCP) and to develop a critical N dilution curve especially for summer maize production in this region. In total 231 data points from 16 experiments were used to test the European critical N dilution curve. These observations showed that the European critical N dilution curve was unsuitable for summer maize in the NCP, especially at the early growth stage. From the data obtained, a critical N dilution curve for summer maize in the NCP was described by the equation of N-c = 27.2W(-0.27), when aboveground biomass was between 0.64 and 11.17 Mg DM ha(-1). Based on this curve, more than 90% of the data for the N deficiency supply treatments had an N nutrition index (NNI) < 1 and 92% of the data for the N excess supply treatments had an NNI > 1.
,
[本文引用: 1]
,
URL [本文引用: 1]
为探讨不同滴灌施肥水平对春玉米产量及水肥利用效率的影响,应用滴灌施肥技术于2016和2017年在宁夏旱作节水科技园区试验站开展大田春玉米小区试验。以"先玉335"为试验材料,设置4个灌水水平(D75:75%ETc、D90:90%ETc、D105:105%ETc、D120:120%ETc,ETc为玉米需水量)和4个N-P2O5-K2O施肥水平:2016年为60-30-30 kg/hm2(F60)、120-60-60 kg/hm2(F120)、180-90-90 kg/hm2(F180)、240-120-120 kg/hm2(F240),2017年为150-70-70 kg/hm2(F150)、225-110-110 kg/hm2(F225)、300-150-150 kg/hm2(F300)、375-180-180 kg/hm2(F375),以1个充分灌水(120%ETc)无肥为对照(CK),共17个处理。研究不同水肥供应对春玉米株高、茎粗、叶面积指数(leaf area index,LAI)、地上部干物质累积量和产量的影响,并分析其水肥利用效率。2 a试验结果表明:灌水量和施肥量单因素对玉米株高、茎粗、LAI都有显著或极显著的影响,灌水量和施肥量耦合效应对玉米株高有极显著的影响;灌水量和施肥量对玉米成熟期地上部干物质的影响随着2 a施肥梯度的不同而有所差异,在低肥梯度的2016年,灌水量和施肥量对地上部干物质累积有显著的影响,其中D120F180处理籽粒地上部干物质最大,为12 691 kg/hm2,在高肥梯度的2017年,随着灌水量和施肥量的增加,75%ETc和105%ETc处理的地上部干物质累积量有先增加后减小的趋势,D90F300处理下籽粒地上部干物质累积量最大,为14 912 kg/hm2;在低肥梯度的2016年,灌水施肥量对春玉米产量有显著影响,D120F240处理产量最高,为14 400 kg/hm2,而在高肥梯度的2017年,D90F300处理玉米产量最高,为16 884 kg/hm2;2 a试验结果表明灌水量和施肥量对春玉米水分利用效率和肥料偏生产力都有极显著影响。基于春玉米产量和水分利用效率最大值的95%为置信区间优化水肥管理方案,兼顾节水节肥,推荐灌水量在323~446 mm、N-P2O5-K2O施肥量在210-104-104~325-163-163 kg/hm2。该研究结果对宁夏春玉米滴灌施肥管理具有重要指导意义。
URL [本文引用: 1]
为探讨不同滴灌施肥水平对春玉米产量及水肥利用效率的影响,应用滴灌施肥技术于2016和2017年在宁夏旱作节水科技园区试验站开展大田春玉米小区试验。以"先玉335"为试验材料,设置4个灌水水平(D75:75%ETc、D90:90%ETc、D105:105%ETc、D120:120%ETc,ETc为玉米需水量)和4个N-P2O5-K2O施肥水平:2016年为60-30-30 kg/hm2(F60)、120-60-60 kg/hm2(F120)、180-90-90 kg/hm2(F180)、240-120-120 kg/hm2(F240),2017年为150-70-70 kg/hm2(F150)、225-110-110 kg/hm2(F225)、300-150-150 kg/hm2(F300)、375-180-180 kg/hm2(F375),以1个充分灌水(120%ETc)无肥为对照(CK),共17个处理。研究不同水肥供应对春玉米株高、茎粗、叶面积指数(leaf area index,LAI)、地上部干物质累积量和产量的影响,并分析其水肥利用效率。2 a试验结果表明:灌水量和施肥量单因素对玉米株高、茎粗、LAI都有显著或极显著的影响,灌水量和施肥量耦合效应对玉米株高有极显著的影响;灌水量和施肥量对玉米成熟期地上部干物质的影响随着2 a施肥梯度的不同而有所差异,在低肥梯度的2016年,灌水量和施肥量对地上部干物质累积有显著的影响,其中D120F180处理籽粒地上部干物质最大,为12 691 kg/hm2,在高肥梯度的2017年,随着灌水量和施肥量的增加,75%ETc和105%ETc处理的地上部干物质累积量有先增加后减小的趋势,D90F300处理下籽粒地上部干物质累积量最大,为14 912 kg/hm2;在低肥梯度的2016年,灌水施肥量对春玉米产量有显著影响,D120F240处理产量最高,为14 400 kg/hm2,而在高肥梯度的2017年,D90F300处理玉米产量最高,为16 884 kg/hm2;2 a试验结果表明灌水量和施肥量对春玉米水分利用效率和肥料偏生产力都有极显著影响。基于春玉米产量和水分利用效率最大值的95%为置信区间优化水肥管理方案,兼顾节水节肥,推荐灌水量在323~446 mm、N-P2O5-K2O施肥量在210-104-104~325-163-163 kg/hm2。该研究结果对宁夏春玉米滴灌施肥管理具有重要指导意义。