删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

滴灌模式和水分调控对夏玉米干物质和氮素积累与分配及水分利用的影响

本站小编 Free考研考试/2021-12-26

杨明达1, 关小康1, 刘影1, 崔静宇1, 丁超明1, 王静丽1, 韩静丽1, 王怀苹2, 康海平3, 王同朝,1,*1河南农业大学农学院 / 河南粮食作物协同创新中心, 河南郑州 450046
2浚县丰黎种业有限公司, 河南浚县456250
3社旗县农业局植保植检站, 河南社旗473300

Effects of drip irrigation pattern and water regulation on the accumulation and allocation of dry matter and nitrogen, and water use efficiency in summer maize

YANG Ming-Da1, GUAN Xiao-Kang1, LIU Ying1, CUI Jing-Yu1, DING Chao-Ming1, WANG Jing-Li1, HAN Jing-Li1, WANG Huai-Ping2, KANG Hai-Ping3, WANG Tong-Chao,1,* 1 Agronomy College, Henan Agricultural University / Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, Henan, China
2 Xun County Fengli Seed Industry Co., Ltd., Xunxian 456250, Henan, China
3 Sheqi County Bureau of Agricultural Plant Protection and Phytosanitary Station, Sheqi 473300, Henan, China

通讯作者: *王同朝, E-mail: wtcwrn@126.com, Tel: 0371-63558122

收稿日期:2018-03-29接受日期:2018-10-8网络出版日期:2018-11-09
基金资助:本研究由国家重点研发计划项目.2017YFD0301106
国家自然科学基金项目.31471452
国家自然科学基金项目资助.31601258


Received:2018-03-29Accepted:2018-10-8Online:2018-11-09
Fund supported: This study was supported by the National Key Research and Development Program of China.2017YFD0301106
the National Natural Science Foundation of China.31471452
the National Natural Science Foundation of China.31601258

作者简介 About authors
E-mail:yangmingda1020@163.com。












摘要
采用裂区试验设计探究了地下滴灌和地表滴灌(drip underground, DU; drip surface, DS)模式下土壤水分调控(分别为田间持水量的40%~50%、60%~70%和80%~90%, 记为W40、W60和W80)对夏玉米干物质和氮素积累与分配及水分利用效率的影响。结果表明, DU处理的吐丝后氮素积累量及水分利用效率分别较DS显著提高了6.18%和4.85%~8.61%。夏玉米的干物质、氮素指标及产量对滴灌模式的响应依赖于土壤水分调控水平, 在W40和W60处理条件下, DU处理显著增加夏玉米的净光合速率, 提高了吐丝后干物质和氮素的积累量及向籽粒的转运, 最终DU处理的干物质积累量、籽粒氮素积累量、产量及氮肥偏生产力分别提高了3.29%~19.94%、-1.10%~20.65%、3.29%~19.94%和3.31%~23.64%。而在W80处理条件下, DS处理的干物质积累量、吐丝后氮素积累量、产量及蒸散量比DU处理分别提高了6.80%~12.24%、5.93%、8.39%~14.91%和9.73%~14.57%。综上所述, 在限水灌溉条件下, 地下滴灌能够增加吐丝后干物质积累量、氮素积累量及其对籽粒氮素的贡献率, 最终增加产量。在充分供水条件下, 地表滴灌更有利于干物质及氮素的积累, 但由于消耗过多的水分, 因此水分利用效率未显著增加。
关键词: 地下滴灌;地表滴灌;干物质;氮素;水分利用效率

Abstract
A split-plot experiment was conducted to explore the dry matter and nitrogen accumulation and allocation characteristics, and water use efficiency of maize in response to different drip irrigation regimes. Drip underground (DU) and drip surface (DS) were applied with three levels of water treatment [W40, W60, and W80 referring to 40%-50% field water capacity (FWC), 60%-70% FWC, and 80%-90% FWC, respectively]. The nitrogen accumulation and water use efficiency of DU treatment has been significantly increased by 6.18% and 4.85%-8.61% respectively compared with DS treatment. The response of dry matter and nitrogen characteristics to drip irrigation patterns was depended on soil water regulation levels. Under W40 and W60 conditions, DU significantly increased the net photosynthetic rate of summer maize, improved dry matter and nitrogen accumulation after silking and their contribution to grains. At last, DU increased the dry matter accumulation, nitrogen accumulation in grains, yield and nitrogen partial factor productivity by 3.29% to 19.94%, -1.10% to 20.65%, 3.29% to 19.94%, and 3.31% to 23.64% respectively. While under W80 condition, dry matter and nitrogen accumulations, yield and crop evapotranspiration were 6.80% to 12.24%, 5.93%, 8.39% to 14.91%, and 9.73% to 14.57% respectively higher in DS than in DU. In conclusion, drip underground could improve dry matter and nitrogen translocated to grain, and increase yield under limited irrigated condition (W40 and W60), while under adequate water supply (W80), drip surface could enhance the dry matter and nitrogen accumulation with lower water use efficiency due to excessive water consumption.
Keywords:drip underground;drip surface;dry matter;nitrogen;water use efficiency


PDF (2479KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
杨明达, 关小康, 刘影, 崔静宇, 丁超明, 王静丽, 韩静丽, 王怀苹, 康海平, 王同朝. 滴灌模式和水分调控对夏玉米干物质和氮素积累与分配及水分利用的影响[J]. 作物学报, 2019, 45(3): 443-459. doi:10.3724/SP.J.1006.2019.83026
YANG Ming-Da, GUAN Xiao-Kang, LIU Ying, CUI Jing-Yu, DING Chao-Ming, WANG Jing-Li, HAN Jing-Li, WANG Huai-Ping, KANG Hai-Ping, WANG Tong-Chao. Effects of drip irrigation pattern and water regulation on the accumulation and allocation of dry matter and nitrogen, and water use efficiency in summer maize[J]. Acta Agronomica Sinica, 2019, 45(3): 443-459. doi:10.3724/SP.J.1006.2019.83026


冬小麦-夏玉米复种轮作是华北平原主要的种植制度。夏玉米生育期间虽然降雨量较多, 但时空分布不均, 在播种至拔节期极易缺水, 影响玉米的出苗及营养生长。2014年6月至7月, 河南省降雨量少且出现持续高温天气, 遭遇了63年来最严重旱情, 据统计, 河南全省秋粮受旱面积1.81×106 hm2, 其中重旱5.75×105 hm2, 导致驻马店、周口等多地夏玉米绝收[1]。季节性干旱严重影响玉米产量的稳定性[2], 保证夏玉米的产量水平主要依靠灌溉。但华北平原水资源匮乏, 严重制约本区域的粮食生产[3]。如何充分利用有限的水资源, 提高水分利用效率, 使“每滴水生产更多的粮食”, 是解决华北平原农业用水危机的必然选择。滴灌(地表滴灌和地下滴灌)可以实时将水、肥、药等精确、定量地输送于作物根区附近, 减少养分的淋失, 既能保证作物出苗和苗期较好的水分和养分条件, 又能避免生育中后期因植株较高造成施肥困难等问题, 有利于作物生长, 能够提高作物的产量和品质[4,5,6], 被认为是最高效的节水灌溉技术之一[4]。但对于滴灌系统来说, 合适的水分管理是作物产量和水分利用效率最大化的关键, 特别是对于地下滴灌系统。因为得当的水分管理不仅可以使地下滴灌系统根区水分分布均匀, 而且也能保持土壤表面干燥, 减少土面水分蒸发及抑制杂草的生长, 同时能够消除深层渗漏[7]。因此, 优化不同滴灌模式下的水分管理是推广应用滴灌技术, 解决华北平原农业用水危机的前提。

作物生产实质上就是光合生产及同化产物在植株体内的运输和分配过程。干物质积累是籽粒产量形成的物质基础, 获得高产的基本途径就是增加干物质积累量, 并使之尽可能多地分配到籽粒当中。地下滴灌和地表滴灌虽同属于局部灌溉, 但滴灌带位置的不同必然会引起土壤水分分布的差异[8,9,10]。杨明达等[8]对滴灌夏玉米的研究表明, 在滴灌量相同的条件下(450 m3 hm-2), 地下滴灌的垂直湿润土体范围(0~90 cm)远大于地表滴灌(0~60 cm)。田霄鸿等[9]采用模拟滴灌方法对夏玉米的研究认为, 深层供水使植株深层根系发达, 而地表供水根系主要集中在上层。不同的土壤水分分布状况影响根系在土壤中的空间构型[9], 影响根系对土壤水分及氮素营养的吸收, 进而影响干物质和氮素的积累与分配及最终产量。李凤民等[11]对小麦的研究认为, 深层供水(上干下湿的土壤水分状况)能够使小麦具有发达的根系, 特别是1 m以下, 提高旗叶和穗干重, 具有更高的产量潜力。深层供水及施肥提高玉米各器官及整株氮的含量及积累量[9]。前人对滴灌的研究, 大多集中在作物产量及水分利用对不同滴灌模式的响应[8,10,12-14], 而对不同滴灌模式下作物干物质及氮素积累与分配特征的研究还较少[9,11], 并且这些研究多以模拟滴灌法和柱栽相结合的方法为主, 在田间开放式环境下进行的研究还不多见。为此, 本研究采用小区控水试验(更接近生产实际状况), 探究了不同水分条件下滴灌模式对夏玉米干物质及氮素积累与分配的影响, 并将其产量和水分利用效率对比分析, 以求得到本区域较为适宜的节水灌溉策略。

1 材料与方法

1.1 试验地概况

试验于2014年6月至2015年9月在河南农业大学科教园区(113°38°3°°N, 34°47°51°°E)旱作棚下测坑内进行。测坑上口面积6.6 m2 (2.2 m × 3.0 m), 深1.6 m, 四周用13.5 cm的墙砖隔离防止水分侧渗, 底部用防水层隔离以防止水分上下移动。试验地(0~40 cm)含有机质12.82 g kg-1、速效氮53.48 mg kg-1、速效磷89.87 mg kg-1、速效钾91.13 mg kg-1。试验地0~100 cm土壤物理特性及夏玉米生育期内的气象数据如表1图1所示。

Table 1
表1
表1试验地土壤的主要物理特性
Table 1Main physical characteristics of soil in experimental plots
土层
Soil layer (cm)
田间持水量
Field water capacity (%)
容重
Bulk density (g cm-3)
土壤机械组成 Soil mechanical composition (%)
沙粒 Sand粉粒 Silt黏粒 Clay
0-2023.631.3155.8928.9715.14
20-4021.771.4653.6129.4016.99
40-6021.951.3150.7330.9218.35
60-8023.361.3659.0129.9411.05
80-10023.791.3166.4228.964.62

新窗口打开|下载CSV

图1

新窗口打开|下载原图ZIP|生成PPT
图1试验地夏玉米生育期间内的气象数据

Fig. 1Meteorological data at the experimental site in maize growth season from June to September of 2014 and 2015



1.2 试验设计与管理

采用双因素裂区设计, 主处理为地下滴灌(drip underground, DU)与地表滴灌(drip surface, DS); 副处理为3种土壤水分, 即40%~50% FWC (field water capacity)、60%~70% FWC和80%~90% FWC, 记为W40、W60和W80。共6个处理, 每个处理重复4次, 共24个试验小区。使用以色列Netafirm公司生产的滴灌带(毛管内径15.9 mm, 滴孔直径0.31 mm, 滴头距离30 cm, 滴头流量1.1 L h-1, 承压0.14 MPa)。地下滴灌带埋在距地表30 cm处, 地表滴灌带置于夏玉米行边, 滴灌带间距均为60 cm (每个池子放置4条)。为了防止外界雨水的干扰, 在可移动式旱作棚下进行试验(下雨时将棚关闭, 雨后打开)。

用时域反射仪[time domain reflectometry, TDR (TRIME-PICO IPH, Germany)] 定期测定土壤水分, 确定滴灌量。

$I=0.1\times\sum_{i=1}^{n}h_{i}d_{i}(w_{i}w_{0})$

式中, I为滴灌量(mm); hi为第i层土厚(cm); dii层土层容重(g cm-3); wiw0分别为设定的目标含水量和灌溉前实际的土壤体积含水量(%); 当土壤水分含水量低于灌水下限, 灌溉至灌水上限。灌水计划湿润层深度: 拔节前为0.4 m, 拔节至抽雄期间为0.6 m, 抽雄以后为0.8 m。各处理的灌溉时间相同, 2014年和2015年分别滴灌了11次(2014年6月11日、7月2日、7月12日、7月17日、7月22日、8月1日、8月6日、8月16日、8月22日、9月4日、9月14日)和10次(2015年7月1日、7月7日、7月17日、7月22日、7月26日、8月6日、8月13日、8月20日、8月26日、9月7日), 用水表记录各个小区的滴灌量。夏玉米生育期不同处理的滴灌量如表2所示。

Table 2
表2
表2不同处理夏玉米生育期的滴灌量
Table 2Drip irrigation amount in growing period of summer maize under different treatments (mm)
处理
Treatment
苗期-拔节期
Seedling-jointing stage
拔节期-
大喇叭口期
Jointing-flare
opening stage
大喇叭口期-
吐丝期
Flare opening-
silking stage
吐丝期-灌浆期
Silking-filling
stage
总滴灌量
Total drip irrigation amount
2014DU+W4042.1033.1345.6553.26174.15
DU+W6090.3773.7882.50107.53354.18
DU+W80134.5382.83122.34153.60493.30
DS+W4046.9051.2358.5524.18180.85
DS+W6087.1971.88100.6765.03324.77
DS+W80139.21114.93127.59150.56532.29
2015DU+W4030.1325.2447.0662.54164.97
DU+W6030.9243.0376.8499.47250.26
DU+W8028.4561.32106.05177.53373.36
DS+W4036.5440.3352.3055.12184.29
DS+W6046.6649.4485.61112.48294.19
DS+W8047.5669.23122.24172.51411.54
DU: drip underground; DS: drip surface; W40: keep soil water content in 40%-50% FWC; W60: keep soil water content in 60%-70% FWC; W80: keep soil water content in 80%-90% FWC.
DU: 地下滴灌; DS: 地表滴灌; W40: 土壤水分维持在40%~50% FWC; W60: 土壤水分维持在60%~70% FWC; W80: 土壤水分维持在80%~90% FWC。

新窗口打开|下载CSV

供试夏玉米品种为郑单958, 种植密度为75,000株 hm-2 (行距60 cm; 株距22 cm; 每个小区4行玉米, 每行13株), 前茬作物为冬小麦, 小麦收获后, 根据TDR测定的土壤水分, 用漫灌将各处理水分调至一致水平, 然后用点播器(新星牌2BD-11Y型多功能播种器, 辽宁省东港市新星电子播种器厂)分别于2014年6月7日和2015年6月4日直接播种夏玉米。采用压力差施肥器于夏玉米拔节期、大喇叭口期和水分同步施肥, 肥料为可溶解的尿素(含氮量为46.4%), 总施肥量为纯氮360 kg hm-2, 拔节期和大喇叭口期的追氮比例为3∶7。杂草和病虫害防治同一般大田管理。于2014年9月23日和2015年9月26日收获。

1.3 测定指标与方法

1.3.1 土壤水分 用时域反射仪分别于播种前、收获后、灌溉前及灌溉后测定不同土层的体积含水量(试验开始控水后测定时间间隔为5~7 d)。测定深度为160 cm, 间隔20 cm, 并以此为依据计算所需的滴灌量。

1.3.2 净光合速率 分别在夏玉米的拔节期(2014-07-15)、吐丝期(2014-08-01)、吐丝后10 d (2015-08-14)、吐丝后20 d (2015-08-24)和吐丝后30 d (2015-09-03)上午9:00—11:00, 用LI-6400便携式光合测定系统(LI-COR, Lincolon, USA)测定穗位叶(拔节期测自上而下第1片全展叶)的净光合速率, 设固定光源, 光强为1500 μmol m-2 s-1, 于每小区测定3片叶。

1.3.3 干物质积累 在苗期、拔节期、吐丝期、灌浆中期和成熟期每个小区边行(由于中间两行用于测产)随机选取一株样品, 105℃杀青30 min, 80℃烘干至恒重, 测定其干重。

1.3.4 全氮 将待测的植株样品粉碎过100目筛, 采用半微量凯氏定氮法测定氮含量。

1.3.5 测产及考种 夏玉米生理成熟后, 将试验小区内中间2行全部收获, 首先在收获的穗中随机选取15穗考种,随后将收获的全部穗脱粒晒干并折算为公顷产量(kg hm-2)(籽粒含水率折算为14%)。

1.4 指标计算

1.4.1 运转率 参照赵斌等[15]的取样方法, 于吐丝期和成熟期按叶、茎(除叶和籽粒外的地上部分植株)和籽粒取样, 80℃烘至恒重, 称干重。

营养器官干物质转运量(kg hm-2) = 开花期营养器官干重-成熟期营养器官干重;

花后干物质积累量(kg hm-2) = 成熟期植株干重-开花期植株干重

营养器官干物质转运量对籽粒贡献率(%) = 营养器官干物质转运量/成熟期籽粒干重×100;

花后干物质积累量对籽粒的贡献率(%) = 花后干物质积累量/成熟期籽粒干重×100。

1.4.2 氮素转运效率 营养器官氮素运转量(kg hm-2) = 开花期营养器官氮素积累量-成熟期营养器官氮素积累量;

花后氮素积累量(kg hm-2) = 成熟期植株氮素总量-开花期植株氮素总量;

营养器官氮素贡献率(%) = 营养器官氮素运转量/成熟期籽粒氮素积累量×100;

花后氮素积累量对籽粒贡献率(%) = 花后氮素积累量/成熟期籽粒氮素积累量×100;

植株总氮素积累量(kg hm-2) = 成熟期干物质量×成熟期植株含氮量;

氮素收获指数(%) = 籽粒氮素积累量/植株总氮素积累量×100;

氮肥偏生产力(kg kg-1) = 施氮区产量/施氮量。

1.4.3 蒸散量和水分利用 根据农田水分平衡方程计算夏玉米整个生育时期的蒸散量ET = I+P+F- R-DW, 式中, ET为蒸散量(mm), I为滴灌量(mm), P为降雨量(mm), F为地下水补给量(mm), R为地表径流量(mm), D为深层渗漏量(mm), ΔW为土壤贮水消耗量(播种前0~160 cm土层的土壤贮水量减去成熟期时0~160 cm土层的土壤贮水量)。本试验采用微区试验, 在可移动防雨棚内进行, 且小区池子底部密封, 因此PFRD均为零。方程可以简化为ET = IW

水分利用效率(WUE, kg hm-2 mm-1) = 籽粒产量(kg hm-2)/蒸散量(mm)

1.5 数据分析

用Microsoft Excel 2010处理数据, SigmaPlot 12.5和Surfer 10作图, SAS V8.0软件统计分析。首先对不同处理间的指标进行方差分析, 若差异显著, 再通过最小显著极差法(least significant difference, LSD)进行多重比较(P<0.05)。

2 结果与分析

2.1 夏玉米生育期间的气象数据

2014年和2015年夏玉米生育期间日均气温的变化范围分别为14.4~35.3℃和18.8~33.0℃, 2014年夏玉米生育期间日均气温的波动范围要高于2015年。从图1可以看出, 生育前期, 2014年夏玉米的日均气温高于2015年, 特别是在拔节至大喇叭口期间(7月1日至7月22日), 2014年日均气温达29.4℃, 比2015年(27.2℃)高2.2℃, 最高日均气温35.3℃, 加之期间降雨较少, 导致蒸发量较大, 因此2014年苗期、拔节期和大喇叭口期各处理的滴灌量较2015年高(表2)。而在灌浆期, 2014年日均气温低于2015年, 特别是在灌浆中后期(9月12日至9月18日), 日均气温为16.6℃, 比2015年(21.5℃)降低了4.9℃, 最低气温为14.4℃。另外, 2014年灌浆期降雨量较大, 低温高湿导致蒸发量较小, 因此, 灌浆期各处理的滴灌量小于2015年(表2)。2014年夏玉米生育前期的阶段性高温及灌浆期的低温可能对夏玉米营养生长及最终产量的形成不利。

2.2 滴灌模式和水分调控对夏玉米产量及水分利用效率的影响

滴灌模式对两年夏玉米的水分利用效率影响显著; 水分调控和两者的交互作用对百粒重、产量、蒸散量和水分利用效率影响显著(表3)。不考虑水分效应, DU处理2014的穗粒数和2015年百粒重显著高于DS处理, 但两年滴灌模式间产量的差异未达显著水平。DU处理的水分利用效率比DS处理显著提高了4.85%~8.61%。不考虑滴灌模式效应, 夏玉米的穗粒数、产量和蒸散量基本表现为随滴灌量的增加而增加, 而水分利用效率则呈相反趋势。对于DU处理, W60处理的穗粒数和产量与W80处理间差异未达显著水平, 但比W40处理分别提高了3.92%~ 8.11%和22.52%~33.54%。对于DS处理, 夏玉米的穗粒数、百粒重和产量随滴灌量的增加而增加。不同水分条件下, 产量和水分利用效率对滴灌模式的响应不同。在W40处理条件下, DU处理的产量和水分利用效率较DS处理分别显著提高了9.26%~ 19.94%和6.06%~22.75%; 在W60处理条件下, DU处理的产量比DS提高了3.29%~7.50%, 但处理间水分利用效率两年的变化趋势不一致; 在W80处理条件下, DS处理的产量及蒸散量则比DU处理分别显著提高了8.39%~14.91%和9.73%~14.57%, 但滴灌模式间水分利用效率的差异未达显著水平。与2015年相比, 2014年夏玉米的减产幅度为15.93%~ 29.09%, 主要是因为其百粒重显著降低, 这可能与2014年生育前期高温和灌浆后期低温高湿(图1)有关, 影响夏玉米营养生长及籽粒的灌浆。

Tab.3
表3
表3滴灌模式和水分调控对夏玉米产量和水分利用效率的影响
Tab.3Effects of drip irrigation patterns and water regulation on grain yield and water use efficiency
DU: drip underground; DS: drip surface; GNS: grain number per spike; GY: grain yield; ET: crop evapotranspiration; WUE: water use efficiency. Values within a column followed by different lowercase letters are significantly different at the 0.05 probability level among different treatments . *Significant at p < 0.05. ** Significant at p < 0.01. Other abbreviations are the same as those given in Table 2.
DU: 地下滴灌; DS: 地表滴灌。同列表以不同小写字母的值在不同处理间差异显著(p≤0.05)。*表示p<0.05,**表示p<0.01。其他缩写同表2

新窗口打开|下载CSV

因此, 在限水灌溉条件下(W40和W60), 与地表滴灌相比, 地下滴灌能够提高夏玉米的穗粒数、产量和水分利用效率, 并且干旱程度越重表现越显著。在充分供水条件下(W80), 地表滴灌能够获得更高的产量。

2.3 滴灌模式和水分调控对夏玉米干物质积累和转运的影响

2.3.1 夏玉米的地上部干物质积累量 两年夏玉米地上部干物质积累量如图2所示。除苗期外, 水分调控对夏玉米各生育期干物质积累影响显著; 两者交互作用对拔节期、灌浆期和成熟期夏玉米干物质积累影响显著。

图2

新窗口打开|下载原图ZIP|生成PPT
图2滴灌模式和水分调控对夏玉米干物质积累量的影响

缩写同表2。
Fig. 2Effects of drip irrigation patterns and water regulation on dry matter accumulation of summer maize

Abbreviations are the same as those given in Table 2.


不考虑滴灌模式效应, 除了苗期, 夏玉米的干物质积累量在各个生育时期均随着控水梯度的升高而显著增加。不考虑水分效应, 滴灌模式间干物质积累量的差异未达显著水平。在W40和W60处理条件下, 吐丝期、灌浆期和成熟期DU处理的干物质积累量比DS处理分别提高了16.44%~24.97%及8.24%~24.71%、12.31%~19.53%及9.50%~10.81%和8.03%~13.99%及7.11%~7.45%。在W80处理条件下, 吐丝期、灌浆期和成熟期DS处理比DU分别提高了1.90%~24.15%、8.21%~8.48%和6.80%~12.24%。可见, 在限水灌溉条件下(W40和W60), 地下滴灌能够增加干物质的积累, 而在充分供水条件下(W80), 地表滴灌获得较高的干物质积累量。

2.3.2 夏玉米营养器官干物质积累及转运 水分调控和两者的交互作用对吐丝前贮藏干物质转运量及其对籽粒贡献率和吐丝后干物质积累量及其对籽粒贡献率影响显著(表4)。

Table 4
表4
表4滴灌模式和水分调控对夏玉米花后营养器官干物质再分配量及干物质积累量的影响(2015)
Table 4Effects of drip irrigation patterns and water regulation on dry matter remobilization during grain filling and accumulated dry matter after silking of summer maize in 2015
处理
Treatment
吐丝前贮藏
干物质转运量
DMR (kg hm-2)
吐丝前贮藏干物质转运量对籽粒的贡献率
CDMR (%)
吐丝后干物质
积累量
ADM (kg hm-2)
吐丝后干物质积累量
对籽粒贡献率
CADM (%)
DUW401379.25 ab22.25 b4818.60 d77.75 c
W601229.28 b14.85 c7047.88 b85.15 ab
W801283.38 b15.20 c7161.48 b84.80 ab
平均值Mean1297.3016.986342.7083.02
DSW401450.75 a25.57 a4221.81 e74.43 d
W601355.37 ab17.25 c6499.70 c82.75 b
W801328.63 b14.52 c7824.87 a85.55 a
平均值Mean1344.9219.116182.1380.89
F
F-value
滴灌模式
Drip irrigation pattern
2.1210.50*4.7310.50*
水分调控
Water regulation
11.37**133.03**876.78**133.03**
交互作用
Interaction
17.86**44.81**106.89**44.81**
DU: drip underground; DS: drip surface; DMR: pre-silking dry matter remobilization during grain filling; CDMR: contribution of pre-silking dry matter remobilized to grain; ADM: accumulated dry matter after silking; CADM: contribution of post-silking dry matter to grain. Values within a column followed by different lowercase letters are significantly different at the 0.05 probability level among different treatments. * Significant at P < 0.05. ** Significant at P < 0.01. Other abbreviations are the same as those given in Table 2.
DU: 地下滴灌; DS: 地表滴灌。同列标以不同小写字母的值在不同处理间差异显著(P < 0.05)。*表示P < 0.05, **表示P < 0.01。其他缩写同表2

新窗口打开|下载CSV

不考虑滴灌模式效应, 随着控水梯度的升高, 吐丝后干物质积累量及对籽粒的贡献率显著增加, 而吐丝前贮藏干物质转运量及其对籽粒的贡献率表现为降低趋势。不考虑水分效应, DU处理吐丝后干物质积累量对籽粒的贡献率显著高于DS处理, 而DU处理吐丝前贮藏干物质转运量对籽粒的贡献率则显著低于DS处理。W40和W60处理条件下, DU处理花后干物质积累量及其对籽粒的贡献率比DS处理分别显著提高8.43%~14.14%及2.90%~4.46%。W80处理条件下, DU处理吐丝后干物质积累量则显著低于DS处理。可见, 干旱促进了吐丝前营养器官干物质向籽粒的转运, 但降低吐丝后干物质积累。在限水灌溉条件下(W40和W60), 地下滴灌能够增加夏玉米吐丝后干物质积累量, 提高吐丝后干物质积累量对籽粒的贡献率。

2.4 滴灌模式和水分调控对夏玉米光合速率的影响

图3-a所示, 在2014年夏玉米生长季, 相同滴灌模式下, 夏玉米在拔节期和吐丝期各水分处理净光合速率的变化趋势基本相同, W40处理的净光合速率显著低于W60和W80处理。与拔节期相比, DU和DS处理吐丝期净光合速率的下降幅度分别为6.02%~15.15%和16.63%~20.54%。

图3

新窗口打开|下载原图ZIP|生成PPT
图3滴灌模式和水分调控对夏玉米净光合速率的影响

标以不同小写字母的柱值在同一生育时期不同处理间差异显著(P < 0.05)。缩写同表2。
Fig. 3Effects of drip irrigation patterns and water regulation on net photosynthetic rate of summer maize

Bars represented by different lowercase letters in the same growing stage are significantly different at the 0.05 probability level among different treatments. Abbreviations are the same as those given in Table 2.


图3-b所示, 在2015年夏玉米生长季, 与吐丝后10 d相比, 各处理吐丝后20 d的净光合速率下降幅度为8.67%~31.00%; 与吐丝后20 d相比, 各处理吐丝后30 d的净光合速率下降幅度为40.6%~63.54%; W40处理的下降幅度最大, 说明干旱胁迫显著降低夏玉米的净光合速率, 加速叶片衰老。相同滴灌模式下, W40处理的净光合速率显著低于W60和W80处理。对于DU处理, 吐丝后30 d, W60处理的净光合速率显著高于W80处理; 吐丝后10 d及20 d, W60和W80处理间的差异未达显著水平。对于DS处理, 除吐丝后30 d, W60处理的净光合速率显著低于W80处理。在W40和W60处理条件下, DU在整个灌浆期的净光合速率高于DS处理。在W80处理条件下, 滴灌模式间净光合速率的差异未达显著水平。两者的交互作用对吐丝后夏玉米的净光合速率影响显著。可见, 在限水灌溉条件下(W40和W60), 地下滴灌有利于提高夏玉米的净光合速率。

2.5 夏玉米生育期内土壤水分的时空变化动态

两年不同处理的土壤水分变化动态趋势一致, 本文以2014年的数据分析和说明。2014年夏玉米生育期内不同处理的土壤水分变化动态如图4所示。从拔节期到抽雄期和从抽雄期到灌浆期, 对于地下滴灌, 在W40、W60和W80处理条件下, 土壤水分波动范围分别为45.1%~50.8% FWC、57.4%~ 63.2% FWC和75.3%~82.0% FWC及40.9%~52.0% FWC、59.8%~69.4% FWC和76.2%~88.1% FWC; 对于地表滴灌, 不同水分处理条件下, 土壤水分波动范围分别为45.6%~48.6% FWC、57.1%~64.1% FWC和74.8%~80.5% FWC及42.2%~52.9% FWC、58.8%~69.4% FWC和78.3%~88.8% FWC。拔节期到抽雄期, 不同水分处理的土壤水分波动范围低于其设计水平, 主要与期间出现阶段性高温(图1)导致蒸发量较大有关。相同控水条件下, 不同滴灌模式下土壤水分状况存在显著差异。在W40处理条件下, 拔节期以后(播种后30 d), DU处理<40 cm土层土壤含水量(变化范围为9.42%~12.95% cm3 cm-3)显著低于DS处理(土壤含水量变化范围为11.62%~15.23% cm3 cm-3), 而在40~80 cm土层, DU处理的土壤水分含量高于DS。在W60处理条件下, 播种50 d以后, DU处理>40 cm土层的土壤含水量均高于DS处理。在W80处理条件下, 播种50 d以后, 两种滴灌模式在40~80 cm土层均具有较高的土壤含水量, 但DU处理在>80 cm土层的土壤含水量仍较高, DU处理80~160 cm土层的平均土壤含水量比DS处理提高了3.10%~22.02%。

图4

新窗口打开|下载原图ZIP|生成PPT
图4不同处理夏玉米生育期内土壤水分的时空变化动态(2014)

缩写同表2。
Fig. 4Spatio-temporal dynamics of soil volumetric water content during the growing period of summer maize under different treatments (2014)

Abbreviations are the same as those given in Table 2.


2.6 滴灌模式和水分调控对夏玉米氮素积累及转运的影响

2.6.1 夏玉米吐丝期和成熟期各器官氮素积累量、氮素转运量及其对籽粒的贡献率 在吐丝期和成熟期, 茎的氮素积累均高于叶片(表5)。不考虑滴灌模式效应, 吐丝期和成熟期各器官氮素积累量、吐丝后植株氮素积累量及其对籽粒氮素积累的贡献率随滴灌量的增加而增加, W40处理显著低于W60和W80处理, 说明干旱显著影响植株对氮素的吸收。不考虑水分效应, 与DS处理相比, DU处理吐丝期茎及成熟期叶和茎的氮素积累量、吐丝后植株氮素积累量显著增加。在W40和W60处理条件下, DU处理吐丝期和成熟期各器官氮素积累量、吐丝后植株氮素积累量及其对籽粒氮素积累的贡献率均高于DS处理, 且干旱程度越重表现越显著。在W80处理条件下, DS处理吐丝后氮素积累量则比DU处理显著提高了5.93%。从吐丝期到成熟期, 叶片的氮素转运量及其对籽粒氮素积累的贡献率高于茎(表6)。水分调控对叶和茎氮素转运量对籽粒氮素贡献率影响显著, 表现为W40处理显著高于W60和W80处理, 而W60和W80处理间的差异未达显著水平。而滴灌模式对叶和茎器官氮素转运量及其对籽粒氮素贡献率的影响均不显著。可见, 滴灌模式对夏玉米氮素积累与转运的影响主要体现在吐丝后, 并且在限水灌溉条件下(W40和W60), 地下滴灌增加各器官的氮素积累和吐丝后氮素积累对籽粒的贡献率。

Tab.5
表5
表5不同处理对夏玉米花前和花后氮素积累的影响
Tab.5drip irrigation patterns and water regulation on nitrogen uptake at pre and post-silking of summer smaize
Values within a column followed by different lowercase letters are significantly different at the 0.05 probability level among different treatments. DU: drip underground; DS: drip surface. *Significant at p < 0.05. ** Significant at p < 0.01. Other abbreviations are the same as those given in Table 2.
DU: 地下滴灌; DS: 地表滴灌。同列表以不同小写字母的值在不同处理间差异显著(p≤0.05)。*表示p<0.05,**表示p<0.01。其他缩写同表2

新窗口打开|下载CSV

Table 6
表6
表6滴灌模式和水分调控对夏玉米叶茎器官氮素转运量及其对籽粒氮素贡献率的影响(2015)
Table 6Effects of drip irrigation patterns and water regulation on nitrogen remobilization and its contribution to grain nitrogen of summer maize in 2015
处理
Treatment
氮素转运量
Nitrogen remobilization (kg hm-2)
氮素转运对籽粒氮素贡献率
Contribution to grain by nitrogen remobilization (%)
叶 Leaf茎 Stalk叶 Leaf茎Stalk
DUW4023.69 a10.54 a27.77 a12.35 b
W6023.27 a12.42 a22.30 b11.90 b
W8022.04 a12.43 a21.03 b11.86 b
平均值Mean23.0011.8023.7012.04
DSW4023.01 a12.63 a29.55 a16.22 a
W6023.94 a11.29 a23.82 b11.23 b
W8022.55 a9.91 a21.08 b9.26 b
平均值Mean23.1711.2824.8212.24
F
F-value
滴灌模式
Drip irrigation patterns
3.022.573.354.26
水分调控
Water regulation
4.443.9226.61**14.89**
交互作用
Interaction
3.160.8522.91**6.33*
Values within a column followed by different lowercase letters are significantly different at the 0.05 probability level among different treatments. DU: drip underground; DS: drip surface. *Significant at P < 0.05. **Significant at P < 0.01. Abbreviations are the same as those given in Table 2.
同列标以不同小写字母的值在不同处理间差异显著(P < 0.05)。DU: 地下滴灌; DS: 地表滴灌。*表示P < 0.05, **表示P < 0.01。字母缩写同表2

新窗口打开|下载CSV

2.6.2 夏玉米植株氮素积累量及氮肥偏生产力

水分调控及其与滴灌模式的交互效应均对两年夏玉米的植株及籽粒氮素积累量和氮肥偏生产力影响显著(表7)。

Tab.7
表7
表7滴灌模式和水分调控对夏玉米植株氮素积累及氮肥偏生产力的影响
Tab.7Effects of drip irrigation patterns and water regulation nitrogen accumulation and partial factor productivity from applied nitrogen of summer maize
DU: drip underground; DS: drip surface; NAP: nitrogen accumulation of plant; NAG: nitrogen accumulation of grain; PFP: partial factor productivity from applied nitrogen; NHI: nitrogen harvest index. Values within a column followed by different lowercase letters are significantly different at the 0.05 probability level among different treatments. *Significant at p < 0.05. ** Significant at p < 0.01. Other abbreviations are the same as those given in Table 2.
DU: 地下滴灌; DS: 地表滴灌。同列表以不同小写字母的值在不同处理间差异显著(p≤0.05)。*表示p<0.05,**表示p<0.01。其他缩写同表2

新窗口打开|下载CSV

夏玉米各处理氮肥偏生产力的变化范围为13.61~29.57 kg kg-1, 由于各处理总施氮量相同, 因此, 各处理氮肥偏生产力的变化趋势与产量的变化趋势相同。收获指数基本表现为随滴灌量的增加而降低, 各处理的氮素收获指数以DU+W40和DS+W40处理最高(2014年的DS+W40处理除外), 其他各处理间的差异未达显著水平。植株氮素积累量和籽粒氮素积累量均随滴灌量的增加而增加, W40处理显著低于W60和W80。W40处理条件下, DU处理夏玉米的植株及籽粒氮素积累量分别比DS处理显著提高了10.54%~11.53%和9.57%~20.65%, 而在W80处理条件下则表现相反。可见, 在限水灌溉条件下(W40和W60), 地下滴灌能够提高夏玉米植株及籽粒氮素积累量, 而在充分供水条件下(W80), 地表滴灌获得更高的植株及籽粒氮素积累量, 这主要与地表滴灌获得较高的干物质积累量有关。

3 讨论

3.1 滴灌模式和水分调控对夏玉米干物质积累与分配的影响

光合作用是干物质生产的基础[16], 灌浆期较高光合能力和较长的叶功能期是提高作物产量的重要途径[17]。W40处理在各生育期净光合速率最低, 花后净光合速率下降幅度最大(图3), 导致最低的干物质积累量(图2)。与地表滴灌相比, 地下滴灌较小净光合速率下降幅可能是其获得较高干物质积累量的主要原因。特别是在限水灌溉条件下, 地下滴灌显著提高了净光合速率, 获得更高的干物质积累量(图2图3)。地下滴灌条件下, W60和W80处理均获得较高的净光合速率。对地下滴灌夏玉米的研究表明, 轻旱处理(灌水下限为60% FWC)的叶面积指数最高[18], 而较高的有效光合面积是获得较高光合同化物的前提条件。花前干物质积累主要用于茎叶等营养器官的建立, 为产量奠定基础, 而花后的光合生产则是产量的关键[19]。本研究中, W40处理显著降低了吐丝后干物质积累量及其对籽粒的贡献率, 这可能是因为在营养生长阶段, 干旱影响光合器官叶片的生长, 到了生殖阶段, 干旱加速叶片衰老, 显著降低叶片的光合能力, 进而显著降低吐丝后干物质积累量。马玉平等[20]研究认为, 干旱在营养生长阶段使干物质更多地分配向茎秆, 导致叶面积扩展乏力, 在生殖生长阶段减少向贮存器官的分配。Liu和Li[21]对小麦的研究表明, 花前储藏干物质转运量不能弥补因光合下降造成的产量损失。本研究对夏玉米的研究得出相似的结论, 干旱提高了吐丝前贮藏干物质转运量, 但与轻旱和充分供水处理相比, 吐丝后干物质积累量的降低幅度更大。滴灌模式显著影响吐丝后干物质积累量及其对籽粒的贡献率, 这可能主要是因为灌溉方式影响土壤水分分布[22,23], 从而影响植株对水分的吸收。地下滴灌的土壤水分主要集中在30~70 cm, 地表滴灌的土壤水分主要集中在表层[22], 它们由于少量多次的灌溉方法可以使土壤水分波动较小[23], 但地表滴灌受大气蒸发的影响更大, 特别是在夏玉米生育中后期, 植株需水量大, 气温较高时, 地下滴灌较地表滴灌有较高及稳定的土壤水分环境(图4), 更有利于中后期作物的生长。本研究中, 在限水灌溉条件下(W40和W60), 与地表滴灌相比, 地下滴灌提高了吐丝后干物质的积累量及其向籽粒的分配比例(表4), 而较高花后干物质积累能力及其对籽粒的贡献率是作物获得高产的生理基础[24]。然而, 充分供水条件下(W80), 地下滴灌的花后干物质积累量和成熟期干物质积累量低于地表滴灌, 这可能是由于较大的滴灌量导致地下滴灌中下层土壤较高的土壤水分, 特别是在生育中后期(图4), 并且根区较高的土壤水分使其通透性变差, 降低根区氧气扩散率, 抑制根系及植株的生长[25]。因此, 适宜的水分管理是最大程度发挥地下滴灌优势的关键。

3.2 滴灌模式和水分调控对夏玉米氮素积累及转运的影响

本研究中, 吐丝后氮素积累量对籽粒氮素贡献率的变化范围为54.23%~69.22%, 这与周培禄等[26]对相同品种研究报道的吐丝后氮素积累量对籽粒氮素贡献率波动范围为40.8%~66.6%的结果相似。水分是影响土壤中的氮素有效性及氮素吸收、运转和同化的重要限制因子。玉米营养生长时期缺水会阻碍硝态氮的吸收, 不利于作物氮素的积累, 从而影响到后期氮素向籽粒的转移[27]。本研究中, 干旱处理显著降低吐丝期和成熟期各器官氮素积累量, 显著影响吐丝后氮素向籽粒的转运, 最终显著降低了植株及籽粒氮素积累量(表5表6表7)。灌溉虽然促进植株对氮素的吸收[28], 但灌浆期较高的土壤水分条件会影响穗部氮素的同化吸收[27]。本研究得出相似的结论, 与轻旱处理(W60)相比, 充分供水处理(W80)的花后氮素积累量及其对籽粒氮素贡献率和籽粒氮素积累量未显著增加(表5)。植物利用氮素是阻止氮素向深层迁移、提高其生物有效性的有效途径, 而根系发育直接影响氮素的吸收[29]。因此, 通过优化灌溉方式及水分管理进而优化根系空间构建可以促进对土壤水分和养分的吸收和利用, 提高水分和养分的利用效率。本研究中, 滴灌模式显著影响吐丝后氮素的积累与分配, 这可能是因为随着生育期的推进, 玉米根系不断向纵深发展, 地下滴灌更有利于促进根系在较深土壤中的发育[9], 增强对深层水分和养分的吸收利用, 促进地上部的生长[30], 在生育中后期(吐丝期、灌浆期和成熟期), 地下滴灌的地上部干物质积累量高于地表滴灌也可以间接说明这点(图2), 而较高干物质积累量是获得较高氮素积累的基础。本研究还发现, 不同水分条件下, 氮素积累与分配对滴灌模式的响应不同。在限水灌溉条件下(W40和W60), 地下滴灌吐丝后氮素积累量及其对籽粒氮素的贡献率显著高于地表滴灌, 最终获得更高的籽粒氮素积累量及氮肥偏生产力(表5表7)。而在充分供水条件下(W80), 与地表滴灌相比, 地下滴灌较大的滴灌量导致大量的氮素淋失到深层土壤, 不利于作物生长及对氮素的吸收, 降低吐丝后氮素积累对籽粒氮素的贡献率及植株氮素积累量, 导致较低的氮肥偏生产力(表5表7)。因此, 在适当的灌溉条件下, 地下滴灌更有利于较深层根系的生长, 促进根系对氮的吸收利用, 进而有利于地上部植株的生长及氮素的积累。

3.3 滴灌模式和水分调控对夏玉米产量及水分利用效率的影响

本研究中, 地下滴灌夏玉米两年产量的变化范围为6058.42~9819.60 kg hm-2, 产量变异系数为0.19, 地表滴灌夏玉米产量的变化范围为5050.95~ 10,643.60 kg hm-2, 产量变异系数为0.25, 地下滴灌产量的变异系数低于地表滴灌, 说明, 相对于地表滴灌, 地下滴灌更有助于夏玉米的稳产。滴灌模式显著影响作物的产量[8,12-13]。地下滴灌青椒的产量比地表滴灌平均提高了4%~13%, 主要是因为地下滴灌提高对氮的吸收, 促进根系发育[13]。在其他条件相同的条件下(滴灌量和密度), 地下滴灌夏玉米的产量显著高于地表滴灌[8]。但是, 本研究中, 滴灌模式对产量的影响不显著。这主要是因为水分调控对夏玉米的产量影响显著(表3), 并且水分对滴灌模式的响应不同, 这可能削弱了滴灌模式对产量的影响。Hassanli等[31]对玉米的研究也得出相似的结果, 地下滴灌的产量高于地表滴灌, 但处理间的差异未达显著水平。在地下滴灌条件下, W60处理产量最高, 与W80处理间的产量差异未达显著水平, 但两者均显著高于W40处理, 而在地表滴灌条件下, 夏玉米的产量随着滴灌量的增加而显著增加。邹慧等[18]的研究表明, 地下滴灌条件下, 丰水处理(灌水下限为75% FWC)夏玉米的产量与轻度水分亏缺处理(灌水下限为60% FWC)的产量差异不显著, 这与本文的研究结果相似。地表滴灌条件下, 玉米的产量基本上随滴灌量的增加而增加[32,33]。但张明智等[14]对陕西的夏玉米研究得出, 在地表滴灌条件下, 丰水处理(土壤水分含量维持在80%~90% FWC)夏玉米的产量显著低于轻度水分胁迫处理, 这与本研究结果不同, 这可能与当地气候条件及土壤类型结构不同有关, 其内在原因还有待进一步深入研究。另外, 本研究结果还表明, 在限水灌溉条件下, 地下滴灌的穗粒数和产量高于地表滴灌, 其原因是, 地下滴灌在抽雄和灌浆期维持了较好的土壤水分(图4), 促进开花授粉, 提高结实率; 并且提高了叶片的净光合速率(图3), 增加花后干物质向籽粒的分配比例(表4), 获得了更高的花后干物质积累量和地上部干物质积累量(图3表4)。何华等[30]对管栽夏玉米的研究认为, 与地下供水相比, 地表灌溉蒸发量大, 更容易发生水分胁迫, 并且其较大的根冠比占用较多资源, 抑制了地上部生长及籽粒产量形成。本研究与王建东等[12]对冬小麦的研究结果相似, 在非充分供水条件下, 地下滴灌的产量显著高于地表滴灌。

产量与水分利用效率不具有同步性, 较高的产量往往需要有更多的水分消耗, 干旱可以获得较高的水分利用效率, 但对产量提高不利[34]。这均与本研究的结果一致(表3)。W60处理的水分利用效率显著高于W80处理(表3), 主要是因为W60处理在水分消耗大幅度降低的情况下产量降幅较小(W60处理蒸散量平均降低29.63%, 产量平均降低5.81%)。前人对玉米的研究也表明, 中度水分胁迫(土壤相对湿度60%~70%)能够提高水分利用效率, 因为它能够通过根源信号ABA产生、运输和分配, 优化根系对水分的利用[34]。本研究中, 滴灌模式显著影响夏玉米的水分利用效率, 主要是因为在滴灌模式间产量差异不显著的情况下, 地下滴灌较大幅度减少了滴灌量(表2), 进而降低了蒸散量(表3), 特别是在2015年。在限水灌溉条件下(W40和W60), 地下滴灌处理的水分利用效率显著高于地表滴灌, 这得益于限水灌溉条件下地下滴灌处理夏玉米的产量显著提高, 并且地下滴灌可以有效抑制土壤蒸发[35], 地下滴灌更大的地上部干物质积累量并未造成更多的水分消耗。充分供水时, 地下滴灌相对较多的水分贮存在深层土壤(图4), 而深层相对较少的根系不利于水分的吸收利用, 另外, 较大的滴灌量使土壤水分上移至地表(图4), 增加土面蒸发, 这也不能充分发挥地下滴灌的节水优势。因此, 与地表滴灌相比, 地下滴灌未能增加水分利用效率。

本试验采用池栽试验, 小区底部密封, 与大田环境还存在一定的差异。从图4可以看出, 充分灌溉时, 虽然地下滴灌80~160 cm土层土壤含水量较高, 但未达到该土层的田间持水量。另一方面, 从整体来看, 整个剖面含水量最高土层为40~80 cm土层, 说明滴灌量较大时, 地下滴灌会存在部分土壤水分向深层移动的风险。邹慧等[18]等通过大田试验对地下滴灌夏玉米的研究认为, 丰水处理显著促进土壤水分向深层运移, 然而, 文中并未探究丰水处理是否存在渗漏。因此, 为了更好地指导生产实践, 在大田开放式环境下, 较大的滴灌量是否会引起深层渗漏以及产生渗漏的灌溉阈值是多少等一系列问题都需要通过大田试验进一步探究及验证。

4 结论

W40和W60处理条件下, 地下滴灌提高吐丝后干物质积累量及其对籽粒的贡献率和吐丝后氮素积累量及其对籽粒氮素的贡献率, 增加夏玉米干物质及植株氮素积累量。W80处理条件下, 地表滴灌显著提高了吐丝后干物质积累量、吐丝后氮素积累量及氮肥偏生产力。与地表滴灌相比, 地下滴灌降低了滴灌量, 水分利用效率显著提高了4.85%~8.61%。产量和水分利用效率对滴灌模式的响应依赖于土壤水分调控水平。限水灌溉条件下, 地下滴灌能够提高夏玉米的产量, 且干旱程度越重, 表现越显著。充分供水条件下, 地下滴灌夏玉米产量与蒸散量显著降低, 但滴灌模式间水分利用效率的差异未达显著水平。大田夏玉米生产应用地下滴灌使土壤保持适度干旱(全生育期滴灌量为250~350 mm)能够获得较高产量及水分利用效率。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

王浩成 . 河南旱灾大量人畜吃水难致损失40亿凸显“水危机”. [ 2014-08-11].
URL [本文引用: 1]

Wang H C. The drought disaster in Henan Province caused a large number of people and livestock drinking water difficulty, resulting a loss of 4 billion yuan, which highlighted the “water crisis”. ,[ 2014-08-11].
URL [本文引用: 1]

薛昌颖, 刘荣花, 马志红 . 黄淮海地区夏玉米干旱等级划分
. 农业工程学报, 2014, 30(2): 147-156.

DOI:10.3969/j.issn.1002-6819.2014.16.020URL [本文引用: 1]
干旱是影响黄淮海地区夏玉米产量稳定性的主要农业气象灾害。建立夏玉米干旱灾害指标,开展夏玉米干旱灾害的监测及评估,对农业防灾减灾意义重大。该文根据夏玉米生长发育过程,选择土壤相对湿度和作物水分亏缺指数分别建立夏玉米不同生育阶段的干旱等级指标。首先在综合分析有关夏玉米土壤水分指标研究成果的基础上,确定了夏玉米各生育阶段不同干旱等级的土壤相对湿度指标。在此基础上,利用河南省农业气象观测站多年观测资料,建立水分亏缺指数与土壤相对湿度之间的关系模型,利用已确定的土壤相对湿度指标计算得出夏玉米不同生育阶段不同干旱等级的水分亏缺指数干旱指标。根据土壤相对湿度指标,夏玉米播种-出苗、出苗-拔节、拔节-抽雄、抽雄-乳熟和乳熟-成熟5个生育阶段发生轻旱的临界值分别为65%、60%、70%、75%和70%,发生重旱的临界值分别为45%、40%、50%、55%和50%,发生特旱的临界值分别为40%、35%、45%、50%和45%;而根据水分亏缺指数指标,5个生育阶段发生轻旱的水分亏缺指数的临界值分别为35%、40%、20%、10%和35%,发生重旱水分亏缺指数临界值分别为50%、65%、55%、45%和65%,发生特旱的临界值分别为55%、75%、65%、55%和75%。在黄淮海夏玉米区选择代表站点对确定的干旱等级指标进行了验证,土壤相对湿度和水分亏缺指数判定的干旱等级相同及相差一个等级的百分率变化在71%~91%,表明2套指标对干旱发生情况的判别具有较好的一致性;通过与历史典型干旱年份灾情对比,2套指标能够较好的判定出历史年份夏玉米生长季干旱发生情况,能够用于夏玉米干旱的监测、评估等方面的科研及业务服务中。
Xue C Y, Liu R H ,Ma Z H. Drought grade classification of summer maize in Huang-Huai-Hai area
Trans CSAE, 2014, 30(2): 147-156(in Chinese with English abstract).

DOI:10.3969/j.issn.1002-6819.2014.16.020URL [本文引用: 1]
干旱是影响黄淮海地区夏玉米产量稳定性的主要农业气象灾害。建立夏玉米干旱灾害指标,开展夏玉米干旱灾害的监测及评估,对农业防灾减灾意义重大。该文根据夏玉米生长发育过程,选择土壤相对湿度和作物水分亏缺指数分别建立夏玉米不同生育阶段的干旱等级指标。首先在综合分析有关夏玉米土壤水分指标研究成果的基础上,确定了夏玉米各生育阶段不同干旱等级的土壤相对湿度指标。在此基础上,利用河南省农业气象观测站多年观测资料,建立水分亏缺指数与土壤相对湿度之间的关系模型,利用已确定的土壤相对湿度指标计算得出夏玉米不同生育阶段不同干旱等级的水分亏缺指数干旱指标。根据土壤相对湿度指标,夏玉米播种-出苗、出苗-拔节、拔节-抽雄、抽雄-乳熟和乳熟-成熟5个生育阶段发生轻旱的临界值分别为65%、60%、70%、75%和70%,发生重旱的临界值分别为45%、40%、50%、55%和50%,发生特旱的临界值分别为40%、35%、45%、50%和45%;而根据水分亏缺指数指标,5个生育阶段发生轻旱的水分亏缺指数的临界值分别为35%、40%、20%、10%和35%,发生重旱水分亏缺指数临界值分别为50%、65%、55%、45%和65%,发生特旱的临界值分别为55%、75%、65%、55%和75%。在黄淮海夏玉米区选择代表站点对确定的干旱等级指标进行了验证,土壤相对湿度和水分亏缺指数判定的干旱等级相同及相差一个等级的百分率变化在71%~91%,表明2套指标对干旱发生情况的判别具有较好的一致性;通过与历史典型干旱年份灾情对比,2套指标能够较好的判定出历史年份夏玉米生长季干旱发生情况,能够用于夏玉米干旱的监测、评估等方面的科研及业务服务中。

Liu H, Yu L, Luo Y, Wang X, Huang G. Responses of winter wheat ( Triticum aestivum L.) evapotranspiration and yield to sprinkler irrigation regimes
Agric Water Manage, 2011, 98: 483-492.

DOI:10.1016/j.agwat.2010.09.006URL [本文引用: 1]
The North China Plain (NCP) is one of the main productive regions for winter wheat ( Triticum aestivum L.) and summer maize ( Zea mays L.) in China. However, water-saving irrigation technologies (WSITs), such as sprinkler irrigation technology and improved surface irrigation technology, and water management practices, such as irrigation scheduling have been adopted to improve field-level water use efficiency especially in winter wheat growing season, due to the water scarcity and continuous increase of water in industry and domestic life in the NCP. As one of the WSITs, sprinkler irrigation has been increasingly used in the NCP during the past 20 years. In this paper, a three-year field experiment was conducted to investigate the responses of volumetric soil water content (SWC), winter wheat yield, evapotranspiration (ET), water use efficiency (WUE) and irrigation water use efficiency (IWUE) to sprinkler irrigation regimes based on the evaporation from an uncovered, 20-cm diameter pan located 0–5 cm above the crop canopy in order to develop an appropriate sprinkler irrigation scheduling for winter wheat in the NCP. Results indicated that the temporal variations in SWC for irrigation treatments in the 0–60-cm soil layer were considerably larger than what occurred at deeper depths, whereas temporal variations in SWC for non-irrigation treatments were large throughout the 0–120-cm soil layer. Crop leaf area index, dry biomass, 1000-grains weight and yield were negatively affected by water stress for those treatments with irrigation depth less than 0.50 E, where E is the net evaporation (which includes rainfall) from the 20-cm diameter pan. While irrigation with a depth over 1.0 E also had negative effect on 1000-grains weight and yield. The seasonal ET of winter wheat was in a range of 206–499 mm during the three years experiments. Relatively high yield, WUE and IWUE were found for the irrigation depth of 0.63 E. Therefore, for winter wheat in the NCP the recommended amount of irrigation to apply for each event is the total 0.63 E that occurred after the previous irrigation provided total E is in a range of 30–40 mm.

Lenoner R S, María G, Raúl S ,Javier B. Evaluation of drip and subsurface drip irrigation in a uniform loamy soil
Soil Sci, 2012, 177: 147-152.

DOI:10.1097/SS.0b013e3182411317 [本文引用: 2]
ABSTRACT Drip irrigation DI is considered one of the most efficient irrigation methods. Subsurface DI (SDI) is also a localized irrigation method, but laterals are deployed underneath the soil surface, leading to a higher potential efficiency. Among other factors, water distribution in SDI is affected by soil hydraulic properties, initial water content, emitter discharge, and irrigation frequency. However, complexity arising from soil water and profile characteristics means that these are often not properly considered in the design and management of these systems. In this article, irrigation uniformity in DI and SDI laterals was determined by field evaluations in a loamy soil at different inlet head pressures. Water application uniformity was very good for both irrigation methods, and differences between them were negligible. Thus, both methods may be suitable for this soil within the pressure range evaluated. The wetting pattern dimensions after infiltration for both methods were simulated with Hydrus-2D under field conditions. Wetting bulb size for DI was smaller than SDI; thus, it requires higher irrigation times to wet the same root zone. For the loamy soil, an emitter depth greater than 10 cm is advisable to prevent soil surface wetting for irrigation times higher than 30 min. Differences observed for 0.2- and 0.3-m depths were negligible. Simulations for different scenarios are depicted in graphs that might aid at the selection of proper design variables (emitter depth) and/or operation variables (inlet head and irrigation time) in the studied soil. Similar graphs could also be developed for other soils.

刘洋, 栗岩峰, 李久生, 严海军 . 东北半湿润区膜下滴灌对农田水热和玉米产量的影响
. 农业机械学报, 2015, 46(10): 93-104.

DOI:10.6041/j.issn.1000-1298.2015.10.014URL [本文引用: 1]
为从农田土壤水、热循环角度揭示玉米膜下滴灌节水增产机理,于2011—2013年在东北半湿润区开展了玉米田间试验,对膜下滴灌、不覆膜滴灌和地面灌玉米田进行了土壤温度、含水率、田间小气候、作物生长、养分积累及产量的观测和分析。结果表明:与不覆膜滴灌和地面灌相比,膜下滴灌提高了玉米生育前期的土壤温度,苗期5~25 cm的日均土壤温度增加2.3℃,土壤积温增加87℃;整个生育期土壤积温增加115~150℃。覆膜减少了土壤蒸发,膜下滴灌玉米生育期的土壤蒸发量比不覆膜滴灌降低53%,提高了玉米生育前期的土壤含水率。膜下滴灌提高了典型日的冠层空气温度并降低了冠层空气湿度,可能导致作物蒸腾量的增加。膜下滴灌明显增加了玉米生育前期的氮素吸收量,促进了玉米的营养生长,为生育后期的生殖生长积累了更多的营养物质,成熟期的地上部分干物质质量分别比不覆膜滴灌和地面灌增加14%和23%,氮素吸收量分别增加16%和28%。膜下滴灌营造了有利于玉米生长的土壤水、热环境,平均产量分别比不覆膜滴灌和地面灌处理提高11%和21%,水分利用效率分别提高9%和18%。
Liu Y, Li Y F, Li J S, Yan H J. Effects of mulched drip irrigation on water and heat conditions in field and maize yield in sub- humid region of northeast China
Trans CSAM, 2015, 46(10): 93-104(in Chinese with English abstract).

DOI:10.6041/j.issn.1000-1298.2015.10.014URL [本文引用: 1]
为从农田土壤水、热循环角度揭示玉米膜下滴灌节水增产机理,于2011—2013年在东北半湿润区开展了玉米田间试验,对膜下滴灌、不覆膜滴灌和地面灌玉米田进行了土壤温度、含水率、田间小气候、作物生长、养分积累及产量的观测和分析。结果表明:与不覆膜滴灌和地面灌相比,膜下滴灌提高了玉米生育前期的土壤温度,苗期5~25 cm的日均土壤温度增加2.3℃,土壤积温增加87℃;整个生育期土壤积温增加115~150℃。覆膜减少了土壤蒸发,膜下滴灌玉米生育期的土壤蒸发量比不覆膜滴灌降低53%,提高了玉米生育前期的土壤含水率。膜下滴灌提高了典型日的冠层空气温度并降低了冠层空气湿度,可能导致作物蒸腾量的增加。膜下滴灌明显增加了玉米生育前期的氮素吸收量,促进了玉米的营养生长,为生育后期的生殖生长积累了更多的营养物质,成熟期的地上部分干物质质量分别比不覆膜滴灌和地面灌增加14%和23%,氮素吸收量分别增加16%和28%。膜下滴灌营造了有利于玉米生长的土壤水、热环境,平均产量分别比不覆膜滴灌和地面灌处理提高11%和21%,水分利用效率分别提高9%和18%。

Meshkat M, Warner R C ,Workman S R. Evaporation reduction potential in an undisturbed so irrigated with surface drip and sand tube irrigation
Trans ASAE, 2000, 43: 79-86.

DOI:10.13031/2013.2690URL [本文引用: 1]
The efficiency of drip irrigation is highly dependent on evaporation losses occurring from the constantlysaturated soil beneath emitters. Advent of subsurface drip irrigation is in part an approach to curb this inefficiency. Anirrigation method, Sand Tube Irrigation (STI), is proposed to increase the efficiency of ormal surface applied dripIrrigation (NI method) on permanent tree crops without the need for burying the irrigation tubing. The sand tube consistsof removing a soil core beneath the emitter and filling the void with coarse sand. A weighing lysimeter was constructed inthe laboratory and instrumented to directly measure temporal evaporation from large, undisturbed soil columns, 0.7 m indiameter and 0.8 m in height. Experiments were performed on six replicated soil monoliths to compare the two methods.The results indicated that, for four consecutive days after irrigation, there was a significant difference at the 95%confidence level between evaporation occurring from the NI and STI methods. After four days of evaporation, comparisonof water contents indicated that a higher amount of water existed between the depths of 0.2 to 0.55 m in the STI versus theNI method. Although drainage occurred from the macropore structure of the undisturbed soil monoliths, the STI methodshowed potential in retaining more water in the micropore structure of the lower depths, that would be available for plantuse rather than potential evaporation.

?olak Y B, Yazar A, Sesveren S, ?olak ?. Evaluation of yield and leaf water potantial (LWP) for eggplant under varying irrigation regimes using surface and subsurface drip systems
Sci Hortic, 2017, 219: 10-21.

DOI:10.1016/j.scienta.2017.02.051URL [本文引用: 1]
This research was carried out to evaluate the effect of various irrigation regimes applied with subsurface and surface drip systems on yield, quality and midday leaf water potential (LWP) on eggplant in the Mediterranean Region of Turkey. The field experiments were carried out during the growing seasons of 2013–2014, in the experimental fields of Soil and Water Resources Research Unit in Tarsus. In the study, two irrigation systems namely surface drip (DI) and subsurface drip systems (SDI); two irrigation intervals (IF 3 : 3-day; IF 6 : 6-day) and four irrigation regimes (Full irrigation, FI; deficit irrigations, DI-50; DI-75); and Partial Root-zone Drying PRD-50, which received, respectively 50, 75, and 50% of FI were tested in split-split plot design with four replications. Leaf water potential were measured throughout the growing season with a pressure chamber. Irrigation methods, irrigation intervals and irrigation levels resulted in significantly different yields. Surface drip performed slightly better than the subsurface drip considering yield and quality of eggplants. The highest yield values were obtained from the full irrigation treatments DI IF 3 FI and SDI IF 3 FI with 3-day interval. In both trial years PRD-50 treatment in subsurface drip with 6-day interval plots resulted in the lowest yield. The highest water use efficiency (WUE) was found in subsurface drip 6-day interval deficit irrigation (SDI IF 6 DI-50) (21.9 and 24.502kg02m 613 in 2013 and 2014) and the lowest in subsurface drip 6-day interval PRD-50 (SDIIF 6 PRD50) (12.2 and 16.602kg02m 613 ). LWP values in the surface drip irrigation treatments ranged between 611.11 and 611.5502MPa in 2013, and ranged between 610.98 and 611.4802MPa in the 2014 growing season. In subsurface drip irrigation treatments LWP values ranged between 611.0 and 611.5102MPa in 2013 and ranged between 610.91 and 611.4302MPa in the 2014. The LWP values decreased with increasing water stress. A significant linear relationship between LWP and yield was obtained. The results revealed that eggplant should be irrigated at LWP values between 610.95 and 611.0502MPa (619.5 ile 6110.502bar) for high and good quality yields. Thus, LWP can be used for irrigation scheduling for eggplant.

杨明达, 关小康, 白田田, 张鹏钰, 韩静丽, 王静丽, 王同朝 . 不同滴灌模式对土壤水分空间变异及夏玉米生长的影响
. 河南农业大学学报, 2016, 50(1): 1-7.

URL [本文引用: 5]
通过田间大区试验探究了地下滴灌(SDI)和地表滴灌(DI)土壤水分空间变异、夏玉米植株性状及产量的影响。结果表明,从不同滴灌方式下夏玉米的株高、穗位高、穗长的变异系数及灌水后0~30 cm土层土壤水分的均匀度来看,地下滴灌(SDI)和地表滴灌(DI)处理均有较好的灌水均匀度。在相似的密度条件下,SDI处理的产量显著高于DI处理。相同灌溉量(450 m3·hm-2)的情况下,SDI处理的垂直湿润土体范围为10~90 cm,DI处理垂直湿润土层深度小于60 cm,SDI处理形成地表10 cm干土层,保持土面干燥,并且避免了深层渗漏;SDI处理水平湿润土体半径小于40 cm,DI处理水平湿润土体半径大于40 cm。其他条件相同的情况下,滴头流速与产量呈显著的正线性相关,保证滴头流速及均匀度是增产的关键。
Yang M D, Guan X K, Bai T T, Zhang P Y, Han J L, Wang J L ,Wang T C. Effect of different drip irrigation modes on spatial distribution variance of soil water and summer maize growth
J Henan Agric Univ, 2016, 50(1): 1-7 (in Chinese with English abstract).

URL [本文引用: 5]
通过田间大区试验探究了地下滴灌(SDI)和地表滴灌(DI)土壤水分空间变异、夏玉米植株性状及产量的影响。结果表明,从不同滴灌方式下夏玉米的株高、穗位高、穗长的变异系数及灌水后0~30 cm土层土壤水分的均匀度来看,地下滴灌(SDI)和地表滴灌(DI)处理均有较好的灌水均匀度。在相似的密度条件下,SDI处理的产量显著高于DI处理。相同灌溉量(450 m3·hm-2)的情况下,SDI处理的垂直湿润土体范围为10~90 cm,DI处理垂直湿润土层深度小于60 cm,SDI处理形成地表10 cm干土层,保持土面干燥,并且避免了深层渗漏;SDI处理水平湿润土体半径小于40 cm,DI处理水平湿润土体半径大于40 cm。其他条件相同的情况下,滴头流速与产量呈显著的正线性相关,保证滴头流速及均匀度是增产的关键。

田霄鸿, 聂刚, 李生秀 . 不同土壤层次供应水分和养分对玉米幼苗生长和吸收养分的影响
. 土壤通报, 2002, 33: 263-267.

DOI:10.3321/j.issn:0564-3945.2002.04.006URL [本文引用: 6]
本试验模拟滴灌方法 ,在不同土壤层次进行灌水和施用氮磷养分的盆栽玉米试验 ,旨在探讨在不同土壤层次供应水分和养分对夏玉米幼苗生长、根系空间构型及玉米对养分吸收的影响。试验表明 :在土壤深层进行滴灌可以有效降低土面蒸发 ,提高水分和养分的利用效率 ,从而显著提高玉米幼苗的生长量 ;在不同层次施肥灌水 ,对玉米根系在土壤中的空间构型影响很大 ,进行深层滴灌可以极大促进根系在较深土壤中的发育 ;在不同土层施肥灌水对玉米幼苗吸收N、P、K三种养分的能力也有影响 ,深层施肥灌水提高了玉米对 3种养分的吸收量
Tian X H, Nie G , Li S X. Effect of water and nutrients supplying in different soil layers on growth and nutrition absorption of corn seedlings
Chin J Soil Sci, 2002, 33: 263-267 (in Chinese with English abstract).

DOI:10.3321/j.issn:0564-3945.2002.04.006URL [本文引用: 6]
本试验模拟滴灌方法 ,在不同土壤层次进行灌水和施用氮磷养分的盆栽玉米试验 ,旨在探讨在不同土壤层次供应水分和养分对夏玉米幼苗生长、根系空间构型及玉米对养分吸收的影响。试验表明 :在土壤深层进行滴灌可以有效降低土面蒸发 ,提高水分和养分的利用效率 ,从而显著提高玉米幼苗的生长量 ;在不同层次施肥灌水 ,对玉米根系在土壤中的空间构型影响很大 ,进行深层滴灌可以极大促进根系在较深土壤中的发育 ;在不同土层施肥灌水对玉米幼苗吸收N、P、K三种养分的能力也有影响 ,深层施肥灌水提高了玉米对 3种养分的吸收量

李蓓, 李久生 . 滴灌带埋深对田间土壤水氮分布及春玉米产量的影响
. 中国水利水电科学研究院学报, 2009, 7: 222-226.

DOI:10.3969/j.issn.1672-3031.2009.03.011URL [本文引用: 2]
Based on the development of drip irrigation, Subsurface Drip Irrigat ion ( SDI) is a new type of high-efficient water saving irrigation technique. An experiment on SDI for spring maize was conducted in two plots of sand soil f ield with three placement depths of 0cm, 15cm and 30cm below the soil surface. Two fertilizing devices used for the two plots were pressure-type fertilizer tank and piston fertilizer pump. This paper discussed the effect of placement depth of drip-tape on distribution of soil water & nitrogen and spring maize yields. The study indicated that placement depths of drip-tape affect the distribution of soil water& nitrogen in vertical profiles of soil. After several runs of drip irrigation, the soil water and NO-3- N content of soil layer at 70cm below the soil surface in case of irrigation with 0cm placement was higher than those with 15cm and 30cm deep drip-tape placement. The placement depth of drip-tape would affect both the grain yield and fresh ear yield of spring maize significantly. The grain yields of spring maize in plot T with 15cm and 30cm deep placement were 10. 1%, 11. 6% higher that with 0cm placement, respectively. The fresh ear yields of spring maize with 15cm and 30cm deep placement were 5.6% , 6.6% higher than that with surface drip irrigation, respectively.
Li B , Li J S. Effects of drip irrigation placement depth on distribution of soil water & nitrogen and spring maize yield
J China Inst Water Resour Hydropower Res, 2009, 7: 222-226 (in Chinese with English abstract).

DOI:10.3969/j.issn.1672-3031.2009.03.011URL [本文引用: 2]
Based on the development of drip irrigation, Subsurface Drip Irrigat ion ( SDI) is a new type of high-efficient water saving irrigation technique. An experiment on SDI for spring maize was conducted in two plots of sand soil f ield with three placement depths of 0cm, 15cm and 30cm below the soil surface. Two fertilizing devices used for the two plots were pressure-type fertilizer tank and piston fertilizer pump. This paper discussed the effect of placement depth of drip-tape on distribution of soil water & nitrogen and spring maize yields. The study indicated that placement depths of drip-tape affect the distribution of soil water& nitrogen in vertical profiles of soil. After several runs of drip irrigation, the soil water and NO-3- N content of soil layer at 70cm below the soil surface in case of irrigation with 0cm placement was higher than those with 15cm and 30cm deep drip-tape placement. The placement depth of drip-tape would affect both the grain yield and fresh ear yield of spring maize significantly. The grain yields of spring maize in plot T with 15cm and 30cm deep placement were 10. 1%, 11. 6% higher that with 0cm placement, respectively. The fresh ear yields of spring maize with 15cm and 30cm deep placement were 5.6% , 6.6% higher than that with surface drip irrigation, respectively.

李凤民, 郭安红, 雒梅, 赵松岭 . 土壤深层供水对冬小麦干物质生产的影响
. 应用生态学报, 1997, 8: 575-579.

DOI:10.1007/BF02951625URL [本文引用: 2]
Aroot growth device was used to study the effect of water supply from deep soil on dry matter production of winter wheat. The results show that soil with high moisture in deeper layer and low moisture in upper layer (treatment LH) still maintains a higher water content both in soil and in plant leaf during the milking stage of wheat growth. This treatment gives the highest dry weight of roots, flag leaves and spikes, and hence, a maximum yield potential. It seems that such a soil moisture status is beneficial to promoting root development in deeper soil, balancing water utilization, and improving crop yield.
Li F M, Guo A H, Luo M , Zhao S L. Effect of water supply from deep soil on dry matter production of winter wheat
Chin J Appl Ecol, 1997, 8: 575-579 (in Chinese with English abstract).

DOI:10.1007/BF02951625URL [本文引用: 2]
Aroot growth device was used to study the effect of water supply from deep soil on dry matter production of winter wheat. The results show that soil with high moisture in deeper layer and low moisture in upper layer (treatment LH) still maintains a higher water content both in soil and in plant leaf during the milking stage of wheat growth. This treatment gives the highest dry weight of roots, flag leaves and spikes, and hence, a maximum yield potential. It seems that such a soil moisture status is beneficial to promoting root development in deeper soil, balancing water utilization, and improving crop yield.

王建东, 龚时宏, 高占义, 邹慧, 于颖多 . 滴灌模式对农田土壤水氮空间分布及冬小麦产量的影响
. 农业工程学保, 2009, 25(11): 68-73.

DOI:10.3969/j.issn.1002-6819.2009.11.013URL [本文引用: 3]
大田作物最优滴灌模式的研究是滴灌技术深入推广应用过程中的重要研究内容,通过田间试验,选取地表滴灌和地下滴灌两种滴灌类型,研究其在4种不同灌溉制度下农田水、氮空间分布规律以及冬小麦产量的差异。试验结果表明,在土壤水分控制范围相同时,不同滴灌类型下冬小麦生育期内所需的灌水总量和灌水频率不存在显著差异;在施肥量和灌水定额基本相同时,地下滴灌较地表滴灌促使硝态氮向深层土壤运移的几率更大。但总体而言,不同滴灌类型相同灌溉制度下,硝态氮运移规律基本相似;同种滴灌类型不同滴灌制度下的各处理冬小麦产量存在显著差异。而且,在充分灌时,不同滴灌模式下的冬小麦产量差异性不显著;非充分灌时,滴灌模式对冬小麦产量存在显著影响。
Wang J D, Gong S H, Gao Z Y, Zou H , Yu Y D. Effects of drip irrigation mode on spatial distribution of soil water and nitrogen and winter wheat yield
Trans CSAE, 2009, 25(11): 68-73 (in Chinese with English abstract).

DOI:10.3969/j.issn.1002-6819.2009.11.013URL [本文引用: 3]
大田作物最优滴灌模式的研究是滴灌技术深入推广应用过程中的重要研究内容,通过田间试验,选取地表滴灌和地下滴灌两种滴灌类型,研究其在4种不同灌溉制度下农田水、氮空间分布规律以及冬小麦产量的差异。试验结果表明,在土壤水分控制范围相同时,不同滴灌类型下冬小麦生育期内所需的灌水总量和灌水频率不存在显著差异;在施肥量和灌水定额基本相同时,地下滴灌较地表滴灌促使硝态氮向深层土壤运移的几率更大。但总体而言,不同滴灌类型相同灌溉制度下,硝态氮运移规律基本相似;同种滴灌类型不同滴灌制度下的各处理冬小麦产量存在显著差异。而且,在充分灌时,不同滴灌模式下的冬小麦产量差异性不显著;非充分灌时,滴灌模式对冬小麦产量存在显著影响。

孔清华, 李光永, 王永红, 温义刚 . 不同施肥条件和滴灌方式对青椒生长的影响
. 农业工程学报, 2010, 26(7): 21-25.

DOI:10.3969/j.issn.1002-6819.2010.07.004URLMagsci [本文引用: 2]
该文通过大田试验,比较了地下滴灌与地表滴灌及其不同施肥量对青椒生长的响应。试验设置地下滴灌和地表滴灌2个灌水处理和0、75、150、300 kg/hm2 4个施肥水平,灌水周期为4 d。另外设1个畦灌对照处理。结果表明,2 a中地下滴灌产量均高于地表滴灌,2007年平均高4%,2008年平均高13%。而地下滴灌耗水量低于地表滴灌,2007年平均低6.7%,2008年平均低7.3%。地下滴灌和地表滴灌0~40 cm土层的根系总根长分别是畦灌的2.44和1.46倍,且地下滴灌10 cm以下各层的根长占总根长的百分比,比地表滴灌高7%,这说明地下滴灌不仅促进作物根系的生长,而且使根系更多的扎入较深土层。地下滴灌150 kg/hm2施氮量为青椒的最优灌溉施肥策略。
Kong Q H, Li G Y, Wang Y H ,Wen Y G. Influences of subsurface drip irrigation and surface drip irrigation on bell pepper growth under different fertilization conditions
Trans CSAE, 2010, 26(7): 21-25 (in Chinese with English abstract).

DOI:10.3969/j.issn.1002-6819.2010.07.004URLMagsci [本文引用: 2]
该文通过大田试验,比较了地下滴灌与地表滴灌及其不同施肥量对青椒生长的响应。试验设置地下滴灌和地表滴灌2个灌水处理和0、75、150、300 kg/hm2 4个施肥水平,灌水周期为4 d。另外设1个畦灌对照处理。结果表明,2 a中地下滴灌产量均高于地表滴灌,2007年平均高4%,2008年平均高13%。而地下滴灌耗水量低于地表滴灌,2007年平均低6.7%,2008年平均低7.3%。地下滴灌和地表滴灌0~40 cm土层的根系总根长分别是畦灌的2.44和1.46倍,且地下滴灌10 cm以下各层的根长占总根长的百分比,比地表滴灌高7%,这说明地下滴灌不仅促进作物根系的生长,而且使根系更多的扎入较深土层。地下滴灌150 kg/hm2施氮量为青椒的最优灌溉施肥策略。

张明智, 牛文全, 许健, 李元 . 微灌与播前深松对根际土壤梅活性和夏玉米产量的影响
应用生态学报, 2016, 27: 1925-1935.

DOI:10.13287/j.1001-9332.201606.035URL [本文引用: 2]
为探明微灌与播前深松耕作对夏玉米根际土壤酶活性和产量的影响,以大田夏玉米为研究对象,设计微灌灌溉方式(地表滴灌、地下滴灌和微润灌)、灌水量(分别控制土壤含水量下限为田间持水率的50%、65%和80%)和深松深度(20、40、60 cm)3因素、3水平正交田间试验.结果表明:夏玉米全生育期内,土壤过氧化氢酶和脲酶活性均呈先增加后减小趋势,磷酸酶活性则呈先减小后增加趋势.地下滴灌0-80 cm生育期平均土壤含水率比地表滴灌和微润灌高6.3%和1.8%,且显著提高土壤脲酶活性、夏玉米根系体积和产量;随着灌水量的增加,土壤磷酸酶活性呈先减小后增加趋势,脲酶活性和产量均呈先增加后减小趋势,生育期平均土壤含水率与根系体积均呈增加趋势;深松40 cm比20 cm的产量和根系体积增加量大于深松60 cm比40 cm的增加量,深松40 cm土壤酶活性较高.从提高水资源、氮肥利用率及作物产量角度考虑,该地区夏玉米种植的最优组合应为地下滴灌、灌水下限为田间持水率的65%与播前深松40 cm.
Zhang M Z, Niu W Q, Xu J, Li Y . Influences of micro-irrigation and subsoiling before planting on enzyme activity in soil rhizosphere and summer maize yield
Chin J Appl Ecol, 2016, 27: 1925-1935 (in Chinese with English abstract).

DOI:10.13287/j.1001-9332.201606.035URL [本文引用: 2]
为探明微灌与播前深松耕作对夏玉米根际土壤酶活性和产量的影响,以大田夏玉米为研究对象,设计微灌灌溉方式(地表滴灌、地下滴灌和微润灌)、灌水量(分别控制土壤含水量下限为田间持水率的50%、65%和80%)和深松深度(20、40、60 cm)3因素、3水平正交田间试验.结果表明:夏玉米全生育期内,土壤过氧化氢酶和脲酶活性均呈先增加后减小趋势,磷酸酶活性则呈先减小后增加趋势.地下滴灌0-80 cm生育期平均土壤含水率比地表滴灌和微润灌高6.3%和1.8%,且显著提高土壤脲酶活性、夏玉米根系体积和产量;随着灌水量的增加,土壤磷酸酶活性呈先减小后增加趋势,脲酶活性和产量均呈先增加后减小趋势,生育期平均土壤含水率与根系体积均呈增加趋势;深松40 cm比20 cm的产量和根系体积增加量大于深松60 cm比40 cm的增加量,深松40 cm土壤酶活性较高.从提高水资源、氮肥利用率及作物产量角度考虑,该地区夏玉米种植的最优组合应为地下滴灌、灌水下限为田间持水率的65%与播前深松40 cm.

赵斌, 董树亭, 张吉旺, 刘鹏 . 控释肥对夏玉米产量和氮素积累与分配的影响
作物学报, 2010,36:1760-1768.

DOI:10.3724/SP.J.1006.2010.01760URL [本文引用: 1]
The field experiment was conducted to investigate the effects of controlled-release fertilizers (including one kind of fertilizer enveloped by colophony, CRF, and the other kind of fertilizer enveloped by sulfur, SCF) on accumulation and distribution of photosynthate and nitrogen as well as yield after anthesis of summer maize. Results indicated that photosynthetic rate of the treatments with controlled-release fertilizers CRF and SCF kept in a higher level after anthesis. Under the same application rates of N, P, and K, applying CRF (1 428 kg ha) and SCF (1 668 kg ha) increased the accumulation of dry matter and nitrogen per plant significantly compared with applying the common compound fertilizer (CCF, 1 260 kg ha). When the applied amounts of the CRF and SCF were decreased by 25%, the increment was also significant, and the distribution proportion of the dry matter from plant to seeds was significantly higher than that of applying CCF. The accumulation of the nitrogen in seeds of the CRF and SCF treatments was significantly higher than that of CCF treatment at maturity stage, and was increased with increasing applied proportion of fertilizer, but these was no significant difference between treatments of CRF, SCF and 25%.of CRF and SCF. Appling CRF and SCF increased the maize grain yield by 13.15% and 14.15% respectively under the same application rates. When the applied amount of CRF and SCF was decreased by 25%, the yield increment was 9.69% and 10.04%, respectively, the nitrogen use efficiency (NUE) and nitrogen agronomy efficiency were significantly higher than those of applying CCF.
Zhao B, Dong S T, Zhang J W, Liu P . Effects of controlled- release fertilizer on yield and nitrogen accumulation and distribution in summer maize
Acta Agron Sin, 2010,36:1760-1768 (in Chinese with English abstract).

DOI:10.3724/SP.J.1006.2010.01760URL [本文引用: 1]
The field experiment was conducted to investigate the effects of controlled-release fertilizers (including one kind of fertilizer enveloped by colophony, CRF, and the other kind of fertilizer enveloped by sulfur, SCF) on accumulation and distribution of photosynthate and nitrogen as well as yield after anthesis of summer maize. Results indicated that photosynthetic rate of the treatments with controlled-release fertilizers CRF and SCF kept in a higher level after anthesis. Under the same application rates of N, P, and K, applying CRF (1 428 kg ha) and SCF (1 668 kg ha) increased the accumulation of dry matter and nitrogen per plant significantly compared with applying the common compound fertilizer (CCF, 1 260 kg ha). When the applied amounts of the CRF and SCF were decreased by 25%, the increment was also significant, and the distribution proportion of the dry matter from plant to seeds was significantly higher than that of applying CCF. The accumulation of the nitrogen in seeds of the CRF and SCF treatments was significantly higher than that of CCF treatment at maturity stage, and was increased with increasing applied proportion of fertilizer, but these was no significant difference between treatments of CRF, SCF and 25%.of CRF and SCF. Appling CRF and SCF increased the maize grain yield by 13.15% and 14.15% respectively under the same application rates. When the applied amount of CRF and SCF was decreased by 25%, the yield increment was 9.69% and 10.04%, respectively, the nitrogen use efficiency (NUE) and nitrogen agronomy efficiency were significantly higher than those of applying CCF.

Guo Z J, Yu Z W, Wang D, Shi Y, Zhang Y L. Photosynthesis and winter wheat yield responses to supplemental irrigation based on measurement of water content in various soil layers
Field Crops Res, 2014, 166: 102-111.

DOI:10.1016/j.fcr.2014.06.004URL [本文引用: 1]
Optimisation of supplemental irrigation (SI) is necessary for achieving continual improvement in the yield of winter wheat in arid, semi-arid and semi-humid regions. However, finding efficient water-saving irrigation techniques based on soil water storage in different soil layers has been difficult. In this field experiment, three soil layers were tested for soil water content (SWC) prior to SI: 0–20 (D20), 0–40 (D40) and 0–60cm (D60). The target relative soil water content of each tested soil layer was 70% field capacity at jointing and anthesis. The SWC of D40 was significantly lower than that of D20 in the 60–160cm soil profiles and that of D60 in the 20–180cm soil profiles at maturity, which indicates that the soil water consumption amount of D40 was higher than that of D20 and D60. The net photosynthesis rate (Pn), stomatal conductance (Gs), actual photochemical efficiency (ΦPSII) of photosystem II (PSII) and electron transport rate (ETR) of flag leaves in D40 were greater than those in D20 and D60. The highest grain yields of 9648.35 and 10032.17kgha611 were attained in D40 with a higher water use efficiency of 20.7 and 22.2kgha611mm611 in 2011–2012 and 2012–2013, respectively. These results indicate that the optimised SI regime based on measuring the SWC in the 0–40cm soil layers at jointing and anthesis increased the Pn, Gs, ΦPSII, yield and water use efficiency of winter wheat, which was related to the soil water consumption.

Thomas H, Morgan W G, Thomas A M , Ougham H J. Expression of the stay-green character introgressed into Lolium temulentum Ceres from a senescence mutant of Festuca pratensis
Theor Appl Genet, 1999, 99: 92-99.

DOI:10.1007/s001220051212URL [本文引用: 1]
A mutant allele at the nuclear locus sid confers indefinite greenness on senescing leaves of the pasture grass Festuca pratensis . Via the bridging species Lolium multiflorum and a programme of backcrossing and selfing, the mutant allele (designated sid y ) was introgressed into Lolium temulentum Ceres. The latter is a fast-growing, annual, inbreeding model grass with many advantages over the slower, perennial, genetically heterogeneous outbreeder F. pratensis . Analyses of photosynthetic pigments, total leaf proteins and individual plastid polypeptide components in senescing attached and detached leaves of yy, yY and YY plants confirmed that the stay-green phenotype of yy F. pratensis had been successfully introduced into the L. temulentum background.

邹慧, 黄兴法, 龚时宏 . 水分调亏对地下滴灌夏玉米田水热动态的影响
. 农业机械学报, 2012, 43(9): 72-77.

DOI:10.6041/j.issn.1000-1298.2012.09.015URL [本文引用: 3]
通过北京地区地下滴灌夏玉米田间试验,研究了前期不同程度水分亏缺对土壤水热和夏玉米冠层温度、株高、叶面积指数及产量的影响。结果表明:在20~60 cm土层,除重度亏水处理外,其他处理的土壤含水率均在高位平稳变化;在60~100 cm土层,丰水处理的土壤含水率最大;对不同深度的土层,轻度与中度亏水处理两者间的土壤含水率差异较小。受作物覆盖度和亏水程度的影响,拔节期各处理间土壤温度和冠层温度有明显差异;在较浅土层(距地表30 cm和50 cm处)中,拔节期之前丰水处理的土壤温度较低,拔节期之后各处理间差异逐渐减小;在较深土层(距地表80 cm处)中,水分亏缺程度越大,土壤温度越高。轻度亏水处理能获得较高的产量,中度亏水处理能提高水分利用效率。
Zou H, Huang X F , Gong S H. Effects of water deficit on soil moisture and temperature regimes in subsurface drip irrigated summer corn field
Trans CSAM, 2012, 43(9): 72-77 (in Chinese with English abstract).

DOI:10.6041/j.issn.1000-1298.2012.09.015URL [本文引用: 3]
通过北京地区地下滴灌夏玉米田间试验,研究了前期不同程度水分亏缺对土壤水热和夏玉米冠层温度、株高、叶面积指数及产量的影响。结果表明:在20~60 cm土层,除重度亏水处理外,其他处理的土壤含水率均在高位平稳变化;在60~100 cm土层,丰水处理的土壤含水率最大;对不同深度的土层,轻度与中度亏水处理两者间的土壤含水率差异较小。受作物覆盖度和亏水程度的影响,拔节期各处理间土壤温度和冠层温度有明显差异;在较浅土层(距地表30 cm和50 cm处)中,拔节期之前丰水处理的土壤温度较低,拔节期之后各处理间差异逐渐减小;在较深土层(距地表80 cm处)中,水分亏缺程度越大,土壤温度越高。轻度亏水处理能获得较高的产量,中度亏水处理能提高水分利用效率。

Hashemi A M, Herbert S J , Putnam D H. Yield response of corn to crowding stress
Agron J, 2005, 97: 839-846.

[本文引用: 1]

马玉平, 孙琳丽, 马晓群 . 黄淮海地区夏玉米对干旱和涝渍的生理生态反应
. 干旱地区农业研究, 2016, 34(4): 85-93.

DOI:10.7606/j.issn.1000-7601.2016.04.13URL [本文引用: 1]
利用黄淮海地区多站点的夏玉米水分控制试验,探讨旱涝对夏玉米发育进程、光合能力、干物质分配、叶面积扩展、产量结构及最终产量的影响,进而分析旱涝对夏玉米生长过程的影响机制。结果表明:干旱减缓了夏玉米营养生长阶段的发育速率,但加快了生殖生长阶段的发育进程,而涝渍对夏玉米发育进程的影响较小;夏玉米全生育期土壤湿度距适宜湿度减小1%,其叶片最大光合速率将下降0.3 mol·m-2·s-1,比叶面积上升8×10-6 hm2·kg-1;夏玉米全生育期土壤相对湿度下降1%,其地上总干重和穗干重均下降0.55%,而产量将减少155 kg·hm-2;干旱不仅使玉米灌浆时间变短,而且使叶片光合能力下降;营养生长阶段干旱使干物质更多地分配向茎秆,导致叶面积扩展乏力,生殖生长阶段干旱减少干物质向贮存器官的分配而影响产量构成;尽管干旱使叶片变薄而促进其扩展,但仍不足以减缓干旱的整体负面影响,最终导致玉米减产;而涝渍主要使玉米叶片光合能力下降,并导致干物质向穗的分配减少而减产。
Ma Y P, Sun L L ,Ma X Q. Ecophysiological responses of summer maize to drought and waterlogging in Huang-Huai-Hai plain
Agric Res Arid Areas, 2016, 34(4): 85-93 (in Chinese with English abstract).

DOI:10.7606/j.issn.1000-7601.2016.04.13URL [本文引用: 1]
利用黄淮海地区多站点的夏玉米水分控制试验,探讨旱涝对夏玉米发育进程、光合能力、干物质分配、叶面积扩展、产量结构及最终产量的影响,进而分析旱涝对夏玉米生长过程的影响机制。结果表明:干旱减缓了夏玉米营养生长阶段的发育速率,但加快了生殖生长阶段的发育进程,而涝渍对夏玉米发育进程的影响较小;夏玉米全生育期土壤湿度距适宜湿度减小1%,其叶片最大光合速率将下降0.3 mol·m-2·s-1,比叶面积上升8×10-6 hm2·kg-1;夏玉米全生育期土壤相对湿度下降1%,其地上总干重和穗干重均下降0.55%,而产量将减少155 kg·hm-2;干旱不仅使玉米灌浆时间变短,而且使叶片光合能力下降;营养生长阶段干旱使干物质更多地分配向茎秆,导致叶面积扩展乏力,生殖生长阶段干旱减少干物质向贮存器官的分配而影响产量构成;尽管干旱使叶片变薄而促进其扩展,但仍不足以减缓干旱的整体负面影响,最终导致玉米减产;而涝渍主要使玉米叶片光合能力下降,并导致干物质向穗的分配减少而减产。

Liu H, Li F . Root respiration, photosynthesis and grain yield of two spring wheat in response to soil drying
Plant Growth Regul, 2005, 46: 233-240.

DOI:10.1007/s10725-005-8806-7URL [本文引用: 1]
The effects of soil water regime and wheat cultivar, differing in drought tolerance with respect to root respiration and grain yield, were investigated in a greenhouse experiment. Two spring wheat ( Triticum aestivum ) cultivars, a drought sensitive ( Longchun 8139-2 ) and drought tolerant ( Dingxi 24 ) were grown in PVC tubes (12002cm in length and 1002cm in diameter) under an automatic rain-shelter. Plants were subjected to three soil moisture regimes: (1) well-watered control (85% field water capacity, FWC); (2) moderate drought stress (50% FWC) and (3) severe drought stress (30% FWC). The aim was to study the influence of root respiration on grain yield under soil drying conditions. In the experiment, severe drought stress significantly ( p 02< 0.05) reduced shoot and root biomass, photosynthesis and root respiration rate for both cultivars, but the extent of the decreases was greater for Dingxi 24 compared to that for Longchun 8139-2 . Compared with Dingxi 24 , 0.04 and 0.0702mg glucose m 612 02s 611 of additional energy, equivalent to 0.78 and 1.4302J02m 612 02s 611 , was used for water absorption by Longchun 8139-2 under moderate and severe drought stress, respectively. Although the grain yield of both cultivars decreased with declining soil moisture, loss was greater in Longchun 8139-2 than in Dingxi 24 , especially under severe drought stress. The drought tolerance cultivar ( Dingxi 24 ), had a higher biomass and metabolic activity under severe drought stress compared to the sensitive cultivar ( Longchun 8139-2 ), which resulted in further limitation of grain yield. Results show that root respiration, carbohydrates allocation (root:shoot ratio) and grain yield were closely related to soil water status and wheat cultivar. Reductions in root respiration and root biomass under severe soil drying can improve drought tolerant wheat growth and physiological activity during soil drying and improve grain yield, and hence should be advantageous over a drought sensitive cultivar in arid regions.

魏子涵, 魏占民, 李春强, 边新洋, 李志红 . 不同灌溉方式对玉米植株生长参数及产量的影响
. 水土保持研究, 2017, 24(3): 183-187

URL [本文引用: 2]
为了探究不同的节水灌溉方式对玉米植株生长参数及产量的影响,选择在内蒙古通辽市设计低压管灌、膜下滴灌和喷灌这3种节水灌溉方式的试验,并在整个生长期内毛灌溉定额相同的条件下,分别观测在3种灌溉方式下玉米整个生长期内的土壤水分变化及玉米的植株高度、茎粗、叶面积指数、叶绿素含量、生物量、株籽粒重等指标。结果表明:灌溉定额相同时,不同的灌水次数对土壤水分含量有较大影响,进而影响作物的生长发育。不同的节水灌溉方式对玉米植株生长、产量有显著影响:在整个生长期内,玉米生物量膜下滴灌高于喷灌,喷灌高于低压管灌,膜下滴灌高于喷灌46.74%,高于低压管灌98.81%,喷灌高于低压管灌35.49%;膜下滴灌实际产量大于喷灌2.85%,大于低压管灌7.83%,喷灌大于低压管灌4.84%。总体来说,3种灌溉方式中,膜下滴灌最好,喷灌次之,低压管灌最差。
Wei Z H, Wei Z M, Li C Q, Bian X Y , Li Z H. Effects of different irrigation methods on maize plant growth parameters and yield
Res Soil Water Conserv, 2017, 24(3): 183-187 (in Chinese with English abstract).

URL [本文引用: 2]
为了探究不同的节水灌溉方式对玉米植株生长参数及产量的影响,选择在内蒙古通辽市设计低压管灌、膜下滴灌和喷灌这3种节水灌溉方式的试验,并在整个生长期内毛灌溉定额相同的条件下,分别观测在3种灌溉方式下玉米整个生长期内的土壤水分变化及玉米的植株高度、茎粗、叶面积指数、叶绿素含量、生物量、株籽粒重等指标。结果表明:灌溉定额相同时,不同的灌水次数对土壤水分含量有较大影响,进而影响作物的生长发育。不同的节水灌溉方式对玉米植株生长、产量有显著影响:在整个生长期内,玉米生物量膜下滴灌高于喷灌,喷灌高于低压管灌,膜下滴灌高于喷灌46.74%,高于低压管灌98.81%,喷灌高于低压管灌35.49%;膜下滴灌实际产量大于喷灌2.85%,大于低压管灌7.83%,喷灌大于低压管灌4.84%。总体来说,3种灌溉方式中,膜下滴灌最好,喷灌次之,低压管灌最差。

吕宁, 侯振安, 龚江 . 不同滴灌方式下成水灌溉对棉花根系分布的影响
. 灌溉排水学报, 2007, 26(5): 58-62.

DOI:10.3969/j.issn.1672-3317.2007.05.016URL [本文引用: 2]
通过大田试验研究了不同滴灌方式利用咸水灌溉对棉花根系分布的影响。结果表明,2种滴灌方式下土壤中的水分和盐分在1m土体内随土壤深度的增加和咸水浓度的增加而增加,且由于滴头的洗盐作用,地表滴灌和地下滴灌方式下土壤中的水盐分布深度均有所下移。正是由于水盐在土壤有这样的分布特征,2种滴灌方式下不同盐度咸水灌溉后,作物不仅可以感受到变化了的环境信息,而且自发地改变结构形态、空间构型,即增加根长、根干重、根半径以及根表面积,对盐胁迫做出适应性的根系形态变化。
Lyu N, Hou Z A , Gong J. Effects on cotton root distribution under different drip irrigation with saline-water
J Irrig Drain, 2007, 26(5): 58-62 (in Chinese with English abstract).

DOI:10.3969/j.issn.1672-3317.2007.05.016URL [本文引用: 2]
通过大田试验研究了不同滴灌方式利用咸水灌溉对棉花根系分布的影响。结果表明,2种滴灌方式下土壤中的水分和盐分在1m土体内随土壤深度的增加和咸水浓度的增加而增加,且由于滴头的洗盐作用,地表滴灌和地下滴灌方式下土壤中的水盐分布深度均有所下移。正是由于水盐在土壤有这样的分布特征,2种滴灌方式下不同盐度咸水灌溉后,作物不仅可以感受到变化了的环境信息,而且自发地改变结构形态、空间构型,即增加根长、根干重、根半径以及根表面积,对盐胁迫做出适应性的根系形态变化。

郭增江, 于振文, 石玉, 赵俊晔, 张永丽, 王东 . 不同土层测墒补灌对小麦旗叶光合特性和干物质积累与分配的影响
. 作物学报, 2014, 40: 731-738.

DOI:10.3724/SP.J.1006.2014.00731URL [本文引用: 1]
This study aimed to propose a suitable soil layer depth used in determining the irrigation amount. A field experiment was conducted in the 2011–2012 and 2012–2013 wheat growing seasons to study the effects of supplemental irrigation based on the measurement of soil moisture contents on photosynthesis of flag leaves and dry matter accumulation and allocation. Four irrigation treatments were designed with target soil moisture of 65% at jointing and 70% at anthesis in 0–20 (D1), 0–40 (D2), 0–60 (D3), and 0–140 cm (D4) soil layers. Zero-irrigation (D0) was used as the control. D2 was superior to other treatments with higher values of leaf area index (LAI) and flag leaf area on one square meter land at anthesis, photosynthetic rate () and actual photochemical efficiency () at seven and fourteen days after anthesis; whereas, the stomatal limitation () of D2 was lower than that of other treatments. Compared with other treatments, D2 had larger dry matter accumulation at maturity, more dry matter allocated in grains, and higher contribution ratio of dry matter from vegetative organs to grain after anthesis. The grain yield in D2 was 9367.4 kg ha in 2011–2012 growing season and 9727.5 kg ha in 2012–2013 growing season, which were significantly higher than those in other treatments. The water use efficiency of D2 was significantly higher than that of D0, D3, and D4, but with out significant difference to that of D1. To obtain both high yield and high water use efficiency, we suggest the optimal soil layer for measuring moisture content is 0–40 cm, and supplementary water should be given at jointing and anthesis based on measured soil moisture.
Guo Z J, Yu Z W, Shi Y, Zhao J Y, Zhang Y L, Wang D . Photosynthesis characteristics of flag leaf and dry matter accumulation and allocation in winter wheat under supplemental irrigation after measuring moisture content in different soil layers
Acta Agron Sin, 2014, 40: 731-738 (in Chinese with English abstract).

DOI:10.3724/SP.J.1006.2014.00731URL [本文引用: 1]
This study aimed to propose a suitable soil layer depth used in determining the irrigation amount. A field experiment was conducted in the 2011–2012 and 2012–2013 wheat growing seasons to study the effects of supplemental irrigation based on the measurement of soil moisture contents on photosynthesis of flag leaves and dry matter accumulation and allocation. Four irrigation treatments were designed with target soil moisture of 65% at jointing and 70% at anthesis in 0–20 (D1), 0–40 (D2), 0–60 (D3), and 0–140 cm (D4) soil layers. Zero-irrigation (D0) was used as the control. D2 was superior to other treatments with higher values of leaf area index (LAI) and flag leaf area on one square meter land at anthesis, photosynthetic rate () and actual photochemical efficiency () at seven and fourteen days after anthesis; whereas, the stomatal limitation () of D2 was lower than that of other treatments. Compared with other treatments, D2 had larger dry matter accumulation at maturity, more dry matter allocated in grains, and higher contribution ratio of dry matter from vegetative organs to grain after anthesis. The grain yield in D2 was 9367.4 kg ha in 2011–2012 growing season and 9727.5 kg ha in 2012–2013 growing season, which were significantly higher than those in other treatments. The water use efficiency of D2 was significantly higher than that of D0, D3, and D4, but with out significant difference to that of D1. To obtain both high yield and high water use efficiency, we suggest the optimal soil layer for measuring moisture content is 0–40 cm, and supplementary water should be given at jointing and anthesis based on measured soil moisture.

Bhattarai S P, Midmore D J, Pendergast L . Yield, water-use efficiencies and root distribution of soybean , chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols
Irrig Sci, 2008, 26: 439-450.

DOI:10.1007/s00271-008-0112-5URL [本文引用: 1]
Most trickle irrigation in the world is surface drip yet subsurface drip irrigation (SDI) can substantially improve irrigation water use efficiency (IWUE) by minimizing evaporative loss and maximizing capture of in-season rainfall by the soil profile. However, SDI emitters are placed at depths, and in many soil types sustained wetting fronts are created that lead to hypoxia of the rhizosphere, which is detrimental to effective plant functioning. Oxygation (aerated irrigation water) can ameliorate hypoxia of SDI crops and realize the full benefit of SDI systems. Oxygation effects on yield, WUE and rooting patterns of soybean, chickpeas, and pumpkin in glasshouse and field trials with SDI at different emitter depths (5, 15, 25, and 35 cm) were evaluated. The effect of oxygation was prominent with increasing emitter depths due to the alleviation of hypoxia. The effect of oxygation on yield in the shallow-rooted crop vegetable soybean was greatest (+43%), and moderate on medium (chickpea +11%) and deep-rooted crops (pumpkin +15%). Oxygation invariably increased season-long WUE (WUEsl) for fruit and biomass yield and instantaneous leaf transpiration rate. In general, the beneficial effects of oxygation at greater SDI depth on a heavy clay soil were mediated through greater root activity, as observed by general increase in root weight, root length density, and soil respiration in the trialed species. Our data show increased moisture content at depth with a lower soil oxygen concentration causing hypoxia. Oxygation offsets to a degree the negative effect of deep emitter placement on yield and WUE of SDI crops.

周培禄, 任红, 齐华, 赵明, 李从锋 . 氮肥用量对两种不同类型玉米杂交种物质生产及氮素利用的影响
. 作物学报, 2017, 43: 263-276.

DOI:10.3724/SP.J.1006.2017.00263URL [本文引用: 1]
旨在探明东北春玉米不同类型杂交种物质生产及氮素利用特征及其与产量的关系。本文以不同类型杂交种代表性品种郑单958(ZD958,Reid×唐四平头模式)和先玉335(XY335,Reid×Lancaster模式)为试验材料,2014年和2015年设置5个氮肥水平[0 kg hm–2(N0)、100 kg hm–2(N1)、200 kg hm–2(N2)、300 kg hm–2(N3)和400 kg hm–2(N4)]和2个种植密度(67 500株hm–2和90 000株hm–2)试验,比较研究了不同类型玉米杂交种干物质与氮素积累、运转及氮素利用的差异规律。结果表明,两年XY335品种的最高籽粒产量均高于ZD958,最优氮肥施用量明显降低4.8%~10.6%;相比ZD958,不施氮处理,两种种植密度下XY335品种干物质积累能力及物质运转效率都明显降低,而施氮条件下XY335品种的干物质积累量、花后干物质量及干物质运转效率均增加,同时增幅随着施氮量增加逐步提高,且在高密度条件下优势更为明显。开花期XY335叶片与茎鞘氮素含量显著高于ZD958(P〈0.05),而成熟期由于其较高物质的运转效率表现出明显较低的数值,籽粒氮素含量在高密度下差异较小,而低密度条件下相对ZD958显著提高(P〈0.05)。施氮条件下XY335品种花前、花后氮素积累量和氮素积累总量均高于ZD958,其中叶片中氮素的转运对籽粒的贡献率显著较高(P〈0.05)。两种种植密度处理最优施氮条件下XY335氮素利用效率和氮素吸收效率均显著高于ZD958(P〈0.05),而氮农学利用率和氮肥偏生产力差异不显著。可见,高密度条件下XY335类型品种表现出明显较高的物质积累能力以及花后物质运转对籽粒的贡献率,获得较高的氮素利用效率,表现出明显高氮高效的品种特征,因此生产上建议,东北春玉米区高密度种植条件下该类型品种在较高氮肥施用量时易获得高产高效。
Zhou P L, Ren H, Qi H, Zhao M , Li C F. Effects of nitrogen application rates on dry matter productivity and nitrogen utilization of different type maize hybrids
Acta Agron Sin, 2017, 43: 263-276 (in Chinese with English abstract).

DOI:10.3724/SP.J.1006.2017.00263URL [本文引用: 1]
旨在探明东北春玉米不同类型杂交种物质生产及氮素利用特征及其与产量的关系。本文以不同类型杂交种代表性品种郑单958(ZD958,Reid×唐四平头模式)和先玉335(XY335,Reid×Lancaster模式)为试验材料,2014年和2015年设置5个氮肥水平[0 kg hm–2(N0)、100 kg hm–2(N1)、200 kg hm–2(N2)、300 kg hm–2(N3)和400 kg hm–2(N4)]和2个种植密度(67 500株hm–2和90 000株hm–2)试验,比较研究了不同类型玉米杂交种干物质与氮素积累、运转及氮素利用的差异规律。结果表明,两年XY335品种的最高籽粒产量均高于ZD958,最优氮肥施用量明显降低4.8%~10.6%;相比ZD958,不施氮处理,两种种植密度下XY335品种干物质积累能力及物质运转效率都明显降低,而施氮条件下XY335品种的干物质积累量、花后干物质量及干物质运转效率均增加,同时增幅随着施氮量增加逐步提高,且在高密度条件下优势更为明显。开花期XY335叶片与茎鞘氮素含量显著高于ZD958(P〈0.05),而成熟期由于其较高物质的运转效率表现出明显较低的数值,籽粒氮素含量在高密度下差异较小,而低密度条件下相对ZD958显著提高(P〈0.05)。施氮条件下XY335品种花前、花后氮素积累量和氮素积累总量均高于ZD958,其中叶片中氮素的转运对籽粒的贡献率显著较高(P〈0.05)。两种种植密度处理最优施氮条件下XY335氮素利用效率和氮素吸收效率均显著高于ZD958(P〈0.05),而氮农学利用率和氮肥偏生产力差异不显著。可见,高密度条件下XY335类型品种表现出明显较高的物质积累能力以及花后物质运转对籽粒的贡献率,获得较高的氮素利用效率,表现出明显高氮高效的品种特征,因此生产上建议,东北春玉米区高密度种植条件下该类型品种在较高氮肥施用量时易获得高产高效。

苗文芳, 陈素英, 邵立成, 孙宏勇, 张喜英 . 不同灌溉处理对夏玉米氮素吸收及转移的影响
. 中国生态农业学报, 2011, 19: 293-299.

DOI:10.3724/SP.J.1011.2011.00293URL [本文引用: 2]
通过田间试验,研究了两个生长季夏玉米4个不同水分处理(灌溉1水、灌溉2水、灌溉3水、灌溉4水)对其各个生育阶段氮素吸收、分配、转移的影响。结果表明,拔节抽雄期灌水可以增加夏玉米茎叶的氮素积累量和氮分配比,生育后期灌水各处理之间单株氮素积累量无显著差异;穗部的氮素积累75%来源于扬花后期氮素同化吸收,25%来自营养器官茎叶的氮素转移,说明灌浆至成熟期穗部氮素主要吸收利用土壤中的氮,充足的水分可以保证营养器官积累更多的氮素,但后期同化氮素比率随着灌水的增加而减小。因此,灌浆至成熟期需要维持适中的水分条件,在保证吸收利用土壤氮素的同时,增加储存在茎叶中的氮素向籽粒的转移,从而提高氮素利用效率。
Miao W F, Chen S Y, Shao L C, Sun H Y , Zhang X Y. Effect of irrigation on nitrogen uptake and translocation in summer maize
Chin J Eco-Agric, 2011, 19: 293-299 (in Chinese with English abstract).

DOI:10.3724/SP.J.1011.2011.00293URL [本文引用: 2]
通过田间试验,研究了两个生长季夏玉米4个不同水分处理(灌溉1水、灌溉2水、灌溉3水、灌溉4水)对其各个生育阶段氮素吸收、分配、转移的影响。结果表明,拔节抽雄期灌水可以增加夏玉米茎叶的氮素积累量和氮分配比,生育后期灌水各处理之间单株氮素积累量无显著差异;穗部的氮素积累75%来源于扬花后期氮素同化吸收,25%来自营养器官茎叶的氮素转移,说明灌浆至成熟期穗部氮素主要吸收利用土壤中的氮,充足的水分可以保证营养器官积累更多的氮素,但后期同化氮素比率随着灌水的增加而减小。因此,灌浆至成熟期需要维持适中的水分条件,在保证吸收利用土壤氮素的同时,增加储存在茎叶中的氮素向籽粒的转移,从而提高氮素利用效率。

王朝辉, 王兵, 李生秀 . 缺水与补水对小麦氮素吸收及土壤残留氮的影响
. 应用生态学报, 2004, 15: 1339-1443.

URL [本文引用: 1]
Pot experiment in greenhouse showed that water deficit at all growth stages and supplemental irrigation at tillering stage significantly decreased the nitrogen uptake by winter wheat and increased the mineral N residual (79.8~113.7 mg·kg) in soil.Supplemental irrigation at over-wintering,jointing or filling stage significantly increased the nitrogen uptake by plant and decreased the nitrogen residual (47.2~60.3 mg·kg) in soil.But,the increase of nitrogen uptake caused by supplemental irrigation did not always mean a high magnitude of efficient use of nitrogen by plants.Supplemental irrigation at over-wintering stage didn't induce any significant change in nitrogen content of grain,irrigation at filling stage increased the nitrogen content by 20.9%,and doing this at jointing stage decreased the nitrogen content by 19.6%,as compared to the control.
Wang C H, Wang B , Li S X. Influence of water deficit and supplemental irrigation on nitrogen uptake by winter wheat and nitrogen residual in soil
Chin J Appl Ecol, 2004, 15: 1339-1443 (in Chinese with English abstract).

URL [本文引用: 1]
Pot experiment in greenhouse showed that water deficit at all growth stages and supplemental irrigation at tillering stage significantly decreased the nitrogen uptake by winter wheat and increased the mineral N residual (79.8~113.7 mg·kg) in soil.Supplemental irrigation at over-wintering,jointing or filling stage significantly increased the nitrogen uptake by plant and decreased the nitrogen residual (47.2~60.3 mg·kg) in soil.But,the increase of nitrogen uptake caused by supplemental irrigation did not always mean a high magnitude of efficient use of nitrogen by plants.Supplemental irrigation at over-wintering stage didn't induce any significant change in nitrogen content of grain,irrigation at filling stage increased the nitrogen content by 20.9%,and doing this at jointing stage decreased the nitrogen content by 19.6%,as compared to the control.

彭亚静, 汪新颖, 张丽娟, 郝晓然, 乔继杰, 王玮, 吉艳芝 . 根层调控对小麦-玉米种植体系氮素利用及土壤硝态氮残留的影响
中国农业科学, 2015, 48: 2187-2198.

DOI:10.3864/j.issn.0578-1752.2015.11.010URL [本文引用: 1]
【目的】针对华北平原冬小麦-夏玉米轮作区高产田水肥资源利用效率低、氮素累积严重的问题,探索不同根层调控措施对作物氮素利用及土壤NO3--N残留的影响。【方法】以华北平原高产粮田为对象,设置传统水氮、水氮调控、调控+土壤调理剂(Agh)、调控+CRU(用含量为43%的缓释尿素代替氮肥)和调控+植物生长调节剂(GGR)田间小区试验,采集测定土壤、植株及根系样品,分析不同根层调控措施对氮素利用的效果。【结果】在控水减氮前提下,调理剂和GGR处理的小麦玉米周年产量、吸氮量均高于传统水氮。小麦拔节期GGR处理80—100 cm土层根系分布较多,表明GGR能促进中下层根系的发育;玉米大喇叭口期,藁城调理剂和大名GGR处理20—50 cm土层的根长密度均明显高于传统水氮。第一个轮作季,藁城和深州GGR的0—200 cm土体各土层硝态氮残留量均显著低于传统水氮,尤其在60—100 cm土层硝态氮的残留最低;第二个轮作季,藁城调理剂和大名GGR处理各土层硝态氮的残留量显著低于传统水氮。第一个轮作季的调理剂和第二个轮作季的GGR(藁城)的氮素表观亏缺量较大,说明根层调控促进了作物对土壤累积氮素的利用。根层调控措施能够达到经济和生态的双赢,灌溉水分利用效率(WUE)和氮偏生产力(PFPN)较传统水氮平均提高了2.47 kg·m-3和18.08 kg·kg-1,平均增收258.43元/667 m2。【结论】在华北平原高产田,不同根层调控措施的小麦、玉米单季及周年的产量较传统水氮平均分别提高了8.58%、5.99%和7.13%;两季作物收获后0—100 cm土层中土壤硝态氮残留量较传统水氮平均分别降低了70.73和59.44kg·hm-2,明显降低了土壤硝态氮的残留,减缓了向土体深层的淋溶损失;促进了小麦、玉米关键生育期根系的发育。总之,通过在控水减氮的基础上添加土壤调理剂和植物生长调节剂(GGR)可以显著提高作物产量,能使其充分挖掘土壤累积氮素,实现节本增效,提高水肥利用效率。
Peng Y J, Wang X Y, Zhang L J, Hao X R, Qiao J J, Wang W, Ji Y Z . Effects of root layer regulation on nitrogen utilization and soil NO3 --N residue of wheat-maize system
Sci Agric Sin, 2015, 48: 2187-2198 (in Chinese with English abstract).

DOI:10.3864/j.issn.0578-1752.2015.11.010URL [本文引用: 1]
【目的】针对华北平原冬小麦-夏玉米轮作区高产田水肥资源利用效率低、氮素累积严重的问题,探索不同根层调控措施对作物氮素利用及土壤NO3--N残留的影响。【方法】以华北平原高产粮田为对象,设置传统水氮、水氮调控、调控+土壤调理剂(Agh)、调控+CRU(用含量为43%的缓释尿素代替氮肥)和调控+植物生长调节剂(GGR)田间小区试验,采集测定土壤、植株及根系样品,分析不同根层调控措施对氮素利用的效果。【结果】在控水减氮前提下,调理剂和GGR处理的小麦玉米周年产量、吸氮量均高于传统水氮。小麦拔节期GGR处理80—100 cm土层根系分布较多,表明GGR能促进中下层根系的发育;玉米大喇叭口期,藁城调理剂和大名GGR处理20—50 cm土层的根长密度均明显高于传统水氮。第一个轮作季,藁城和深州GGR的0—200 cm土体各土层硝态氮残留量均显著低于传统水氮,尤其在60—100 cm土层硝态氮的残留最低;第二个轮作季,藁城调理剂和大名GGR处理各土层硝态氮的残留量显著低于传统水氮。第一个轮作季的调理剂和第二个轮作季的GGR(藁城)的氮素表观亏缺量较大,说明根层调控促进了作物对土壤累积氮素的利用。根层调控措施能够达到经济和生态的双赢,灌溉水分利用效率(WUE)和氮偏生产力(PFPN)较传统水氮平均提高了2.47 kg·m-3和18.08 kg·kg-1,平均增收258.43元/667 m2。【结论】在华北平原高产田,不同根层调控措施的小麦、玉米单季及周年的产量较传统水氮平均分别提高了8.58%、5.99%和7.13%;两季作物收获后0—100 cm土层中土壤硝态氮残留量较传统水氮平均分别降低了70.73和59.44kg·hm-2,明显降低了土壤硝态氮的残留,减缓了向土体深层的淋溶损失;促进了小麦、玉米关键生育期根系的发育。总之,通过在控水减氮的基础上添加土壤调理剂和植物生长调节剂(GGR)可以显著提高作物产量,能使其充分挖掘土壤累积氮素,实现节本增效,提高水肥利用效率。

何华, 康绍忠 . 灌溉施肥深度对玉米同化物分配和水分利用效率的影响
. 植物生态学报, 2002, 26: 454-458.

DOI:10.1023/A:1022289509702URL [本文引用: 2]
以夏玉米(Zea mays L.)(陕单9号)为供试材料,采用置于遮雨棚下的模拟土柱的方法,进行了不同灌溉施肥深度对夏玉米生长发育、地上与地下部分同化物分配、产量及水分利用效率的影响的试验研究.灌溉施肥深度分4个处理:表面灌施;20 cm 深度灌水施肥;30 cm 深度灌水施肥和40 cm深度灌水施肥.后3个处理为土表下灌施处理.4个重复.试验结果表明:土表下灌施抑制了玉米生育早期的地上部分生长,使根系向土壤中下层的分布加强,从而保证了作物中后期对水分养分的吸收利用,提高了水分利用效率.在本试验条件下,玉米生长的最佳灌施深度为30 cm.
He H , Kang S Z. Effect of fertigation depth on dry matter partition and water use efficiency of corn
Acta Phytoecol Sin, 2002, 26: 454-458 (in Chinese with English abstract).

DOI:10.1023/A:1022289509702URL [本文引用: 2]
以夏玉米(Zea mays L.)(陕单9号)为供试材料,采用置于遮雨棚下的模拟土柱的方法,进行了不同灌溉施肥深度对夏玉米生长发育、地上与地下部分同化物分配、产量及水分利用效率的影响的试验研究.灌溉施肥深度分4个处理:表面灌施;20 cm 深度灌水施肥;30 cm 深度灌水施肥和40 cm深度灌水施肥.后3个处理为土表下灌施处理.4个重复.试验结果表明:土表下灌施抑制了玉米生育早期的地上部分生长,使根系向土壤中下层的分布加强,从而保证了作物中后期对水分养分的吸收利用,提高了水分利用效率.在本试验条件下,玉米生长的最佳灌施深度为30 cm.

Hassanli A M, Ebrahimizadeh M A , Beecham S. The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region
Agric Water Manage, 2009, 96: 93-99.

DOI:10.1016/j.agwat.2008.07.004URL [本文引用: 1]
A great challenge for the agricultural sector is to produce more food from less water, particularly in arid and semi-arid regions which suffer from water scarcity. A study was conducted to evaluate the effect of three irrigation methods, using effluent versus fresh water, on water savings, yields and irrigation water use efficiency (IWUE). The irrigation scheduling was based on soil moisture and rooting depth monitoring. The experimental design was a split plot with three main treatments, namely subsurface drip (SSD), surface drip (SD) and furrow irrigation (FI) and two sub-treatments effluent and fresh water, which were applied with three replications. The experiment was conducted at the Marvdasht city (Southern Iran) wastewater treatment plant during 2005 and 2006. The experimental results indicated that the average water applied in the irrigation treatments with monitoring was much less than that using the conventional irrigation method (using furrows but based on a constant irrigation interval, without moisture monitoring). The maximum water saving was obtained using SSD with 5907 m 3 ha 611 water applied, and the minimum water saving was obtained using FI with 6822 m 3 ha 611. The predicted irrigation water requirements using the Penman–Monteith equation (considering 85% irrigation efficiency for the FI method) was 10,743 m 3 ha 611. The pressure irrigation systems (SSD and SD) led to a greater yield compared to the surface method (FI). The highest yield (12.11 × 10 3 kg ha 611) was obtained with SSD and the lowest was obtained with the FI method (9.75 × 10 3 kg ha 611). The irrigation methods indicated a highly significant difference in irrigation water use efficiency. The maximum IWUE was obtained with the SSD (2.12 kg m 613) and the minimum was obtained with the FI method (1.43 kg m 613). Irrigation with effluent led to a greater IWUE compared to fresh water, but the difference was not statistically significant.

张国强, 王克如, 肖春华, 谢瑞芝, 侯鹏, 李健, 徐文娟, 初振东, 刘广周, 刘朝巍, 李少昆 . 滴灌量对新疆高产春玉米产量和水分利用效率的影响研究
. 玉米科学, 2015, 23(4): 117-123.

URL [本文引用: 1]
【研究背景】在新疆干旱地区,农业灌溉用水量大,水资源短缺是限制玉米高产高效的重要因素。探明玉米需水规律是在有限水资源条件下进行玉米生产的关键管理措施,高效的水分利用效率(WUE)是干旱区农业得以持续稳定发展的关键。因此,开展不同滴灌量条件下高产(≥15000kg/hm~2)玉米的需水规律的研究,探索该条件下高产玉米产量形成的有效调控途径,在节水的前提下,实现新疆玉米的高产、高效,对促进区域玉米产业健康发展具有重要意义,对我国西北类似区域玉米生产也具有借鉴意义。【材料与方法】通过设置不同灌溉量处理,研究新疆滴灌高产玉米(≥15000 kg/hm~2)的需水规律及其灌溉量对产量及WUE的影响,为高产滴灌玉米合理灌溉提供依据。于2013~2014年在新疆伊宁县和奇台总场,采用膜下滴灌,以当地高产玉米灌溉量为基准(T4),设置四个灌量水平[伊宁县为5880m~3/bm~2(T1)、6720 m~3/hm~2(T2)、7560 m~3/hm~2(T3)和8400 m~3/hm~2(T4);奇台总场为4200m~3/hm~2(T1)、4800m~3/hm~2(T2)、5400m~3/hm~2(T3)和6000m~3/hm~2(T4)]。【结果与分析】两年两地均表现为产量随着灌量降低而显著降低,灌量显著影响千粒重,而对收获穗数无显著影响;相同灌量不同基因型间的耗水量无显著差异,但同一基因型不同灌量处理间的耗水量均表现为随着灌量降低而显著降低;同一灌量不同基因型的WU-E有差异,不同基因型间均表现出较低灌量处理的水分利用效率较高。【结论】综合考虑玉米产量和水分利用效率(WUE),现行高产田灌溉量偏高,虽然高产但水分利用效率(WUE)不高,如果灌溉量减少10%或20%,可在不影响产量的同时达到节水的目的。
Zhang G Q, Wang K R, Xiao C H, Xie R Z, Hou P, Li J, Xu W J, Chu Z D, Liu G Z, Liu C W , Li S K. Effect of drip irrigation on yield and water use efficiency of spring maize with high yield in Xinjiang
J Maize Sci, 2015, 23(4): 117-123 (in Chinese with English abstract).

URL [本文引用: 1]
【研究背景】在新疆干旱地区,农业灌溉用水量大,水资源短缺是限制玉米高产高效的重要因素。探明玉米需水规律是在有限水资源条件下进行玉米生产的关键管理措施,高效的水分利用效率(WUE)是干旱区农业得以持续稳定发展的关键。因此,开展不同滴灌量条件下高产(≥15000kg/hm~2)玉米的需水规律的研究,探索该条件下高产玉米产量形成的有效调控途径,在节水的前提下,实现新疆玉米的高产、高效,对促进区域玉米产业健康发展具有重要意义,对我国西北类似区域玉米生产也具有借鉴意义。【材料与方法】通过设置不同灌溉量处理,研究新疆滴灌高产玉米(≥15000 kg/hm~2)的需水规律及其灌溉量对产量及WUE的影响,为高产滴灌玉米合理灌溉提供依据。于2013~2014年在新疆伊宁县和奇台总场,采用膜下滴灌,以当地高产玉米灌溉量为基准(T4),设置四个灌量水平[伊宁县为5880m~3/bm~2(T1)、6720 m~3/hm~2(T2)、7560 m~3/hm~2(T3)和8400 m~3/hm~2(T4);奇台总场为4200m~3/hm~2(T1)、4800m~3/hm~2(T2)、5400m~3/hm~2(T3)和6000m~3/hm~2(T4)]。【结果与分析】两年两地均表现为产量随着灌量降低而显著降低,灌量显著影响千粒重,而对收获穗数无显著影响;相同灌量不同基因型间的耗水量无显著差异,但同一基因型不同灌量处理间的耗水量均表现为随着灌量降低而显著降低;同一灌量不同基因型的WU-E有差异,不同基因型间均表现出较低灌量处理的水分利用效率较高。【结论】综合考虑玉米产量和水分利用效率(WUE),现行高产田灌溉量偏高,虽然高产但水分利用效率(WUE)不高,如果灌溉量减少10%或20%,可在不影响产量的同时达到节水的目的。

隋娟, 龚时宏, 王建东, 邹慧, 于颖多 . 滴灌灌水频率对土壤水热分布和夏玉米产量的影响
. 水土保持学报, 2008, 22(4): 148-152.

DOI:10.3321/j.issn:1009-2242.2008.04.031URL [本文引用: 1]
通过大田试验研究了北京地区夏玉米滴灌灌水频率对田间土壤水、热分布及夏玉米生长的影响。结果表明,整个生育期内,高频滴灌下土壤水分变化波动较小,土壤水分保持在一个比较稳定的范围;土壤温度受土壤含水率、气温及作物生育阶段的影响较为明显,表层土壤温度(10 cm以上)的变化受气温的影响比较显著,50 cm土层深度及以下的土壤温度基本趋于稳定,但会随气温上升而缓慢升高;高频滴灌下作物产量最高,但其水分利用效率较低。研究表明:华北地区夏玉米宜采用中频滴灌模式。
Sui J, Gong S H, Wang J D, Zou H, Yu Y D. Effects of drip irrigation frequency on the distribution of soil water, soil temperature and maize grown in North China
Res Soil Water Conserv, 2008, 22(4): 148-152 (in Chinese with English abstract).

DOI:10.3321/j.issn:1009-2242.2008.04.031URL [本文引用: 1]
通过大田试验研究了北京地区夏玉米滴灌灌水频率对田间土壤水、热分布及夏玉米生长的影响。结果表明,整个生育期内,高频滴灌下土壤水分变化波动较小,土壤水分保持在一个比较稳定的范围;土壤温度受土壤含水率、气温及作物生育阶段的影响较为明显,表层土壤温度(10 cm以上)的变化受气温的影响比较显著,50 cm土层深度及以下的土壤温度基本趋于稳定,但会随气温上升而缓慢升高;高频滴灌下作物产量最高,但其水分利用效率较低。研究表明:华北地区夏玉米宜采用中频滴灌模式。

郭安红, 刘庚山, 任三学, 安顺清, 阳园燕 . 玉米根、茎、叶中脱落酸含量和产量形成对土壤干旱的响应
. 作物学报, 2004, 30: 888-893.

DOI:10.3321/j.issn:0496-3490.2004.09.008URL [本文引用: 2]
Experiments were conducted to study the relationship of abscisic acid content in leaf, stem, and root and the yield formation of maize under soil drought conditions in the root vertical observation field at Gucheng Agrometeorological Experimental Base of Chinese Academy of Meteorological Science. 5
Guo A H, Liu G S, Ren S X, An S Q , Yang Y Y. The response of yield formation and abscisic acid content in root, stem, leaf of maize to soil drying
Acta Agron Sin, 2004, 30: 888-893 (in Chinese with English abstract).

DOI:10.3321/j.issn:0496-3490.2004.09.008URL [本文引用: 2]
Experiments were conducted to study the relationship of abscisic acid content in leaf, stem, and root and the yield formation of maize under soil drought conditions in the root vertical observation field at Gucheng Agrometeorological Experimental Base of Chinese Academy of Meteorological Science. 5

Ayars J E, Fulton A , Taylor B. Subsurface drip irrigation in California-Here to stay?
Agric Water Manage, 2015, 157: 39-47.

DOI:10.1016/j.agwat.2015.01.001URL [本文引用: 1]
Subsurface drip irrigation (SDI) has been used in California for over 30 years. Adoption occurred first in high value annual row crops. Over the years as drip irrigation materials, installation equipment, and irrigation scheduling tools have evolved, SDI has gained wider acceptance and is now being used in perennial crops as well on a limited basis. We discuss the early research on SDI in California and provide examples of the current commercial practices in both annual and perennial crops. These examples demonstrate how research preceded on-farm adoption and contributed to the implementation of SDI in California's production agriculture. SDI is being implemented throughout the world and these examples of implementation in production agriculture will be of interest in countries adopting the technology. Significant benefits are identified in terms of increased yield, improved crop quality, reduction in applied water and reduced agronomic costs for weed control, fertilization, and tillage. Improved water management is crucial for a sustainable future and SDI will be one tool that is available to improve water productivity.
相关话题/土壤 物质 生育 作物 营养