Effect of lower water and nitrogen supply on grain yield and dry matter remobilization of organs in different layers of winter wheat plant in northern Henan province
JIANG Li-Na1, MA Jing-Li1, FANG Bao-Ting2, MA Jian-Hui1, LI Chun-Xi1, WANG Zhi-Min3, HAO Bao-Zhen,3,4,*通讯作者:
收稿日期:2018-09-29接受日期:2019-01-19网络出版日期:2019-02-27
基金资助: |
Received:2018-09-29Accepted:2019-01-19Online:2019-02-27
Fund supported: |
作者简介 About authors
E-mail:
摘要
关键词:
Abstract
Keywords:
PDF (873KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
姜丽娜, 马静丽, 方保停, 马建辉, 李春喜, 王志敏, 蒿宝珍. 限水减氮对豫北冬小麦产量和植株不同层次器官干物质运转的影响[J]. 作物学报, 2019, 45(6): 957-966. doi:10.3724/SP.J.1006.2019.81068
JIANG Li-Na, MA Jing-Li, FANG Bao-Ting, MA Jian-Hui, LI Chun-Xi, WANG Zhi-Min, HAO Bao-Zhen.
豫北地区既是小麦高产稳产区, 产量约占河南小麦总产量的四分之一(《河南统计年鉴》2017), 又是河南主要的优质专用强筋小麦生产基地, 在河南小麦生产中的地位十分重要。水资源匮乏是制约豫北小麦生产可持续发展的关键因素, 开展小麦节水栽培是必然趋势[1,2]。另外, 豫北地区小麦生产中过量施肥现象比较普遍, 52%农户的氮肥用量高于300 kg hm-2 [3], 而据估算, 河南省小麦最高产量和经济最佳的施氮量分别为171.0 kg hm-2和155.1 kg hm-2 [4]。过量施氮不仅导致小麦氮肥利用率下降和经济效益降低[5], 还给生态环境带来危害, 如水体富营养化、温室气体排放增加、土壤酸化和大气氮沉淀增多等[6,7,8,9,10]。因此, 就豫北地区而言, 小麦生产中降低氮肥用量是必然选择, 这不仅有利于提高肥料利用率, 还可减少养分环境损失及对环境的负面影响, 有助于实现小麦高产、高效和环境友好发展。
花前营养器官贮藏物质向籽粒的运转是决定小麦籽粒产量的主要因素[11], 该运转对籽粒的贡献可达20%~ 50%[12,13,14]。水分和氮肥供应能够调控花前营养器官贮藏物质向籽粒的运转[12,13]。适当提高供氮水平能够促进花前营养器官贮藏同化物向籽粒的运转, 提高对籽粒贡献率, 而过量增施氮肥不利于花前贮藏同化物向籽粒运转, 导致对籽粒贡献率下降[13,15-16], 这可能与供氮过多致使部分同化物滞留在茎杆而没有运转到籽粒有关[17,18]。小麦花后水分适度亏缺可减少同化物在营养器官中的滞留, 更多地向籽粒运转[19,20], 提高花前贮藏同化物运转对籽粒贡献率[21]。目前有关水氮供应对小麦植株同化物运转的研究, 多基于植株整个营养体[12,13]或器官[15,22], 而基于小麦植株不同空间层次营养器官的较少。本试验分别在常规灌溉(拔节水+开花水)和限水灌溉(拔节水)条件下, 以常规施氮量为基础设置不同减氮处理, 研究其对小麦籽粒产量和植株不同空间层次器官干物质运转的影响, 以期为豫北地区节水栽培冬小麦合理施用氮肥提供科学依据。
1 材料与方法
1.1 试验设计
以黄淮麦区主栽品种周麦18为试验材料, 于2009— 2010和2010—2011年在河南省浚县钜桥试验基地(41°02′ N, 116°41′ E)进行田间定位试验, 土质为潮土, 0~20 cm土壤含有机质13.2 g kg-1、全氮1.1 g kg-1、碱解氮72.6 mg kg-1、速效磷24.3 mg kg-1、速效钾123.6 mg kg-1, pH 8.1。2009—2010和2010—2011年小麦生育期总降雨量分别为133 mm和73 mm, 低于多年(1981—2008)平均降雨量163 mm (图1), 自然降水不能满足豫北高产麦区冬小麦生长发育需要, 需补充灌溉。图1
新窗口打开|下载原图ZIP|生成PPT图12009-2010和2010-2011年度冬小麦生育期间月降雨量及1981-2008年(28年)小麦生育期月平均降雨量
Fig. 1Monthly precipitation during the 2009-2010 and 2010- 2011 wheat growing seasons (October-May) and the average of 28 years (1981-2008)
试验采用裂区设计, 主区为水分处理, 分别为W1 (拔节期灌水1次)和W2 (拔节期和开花期分别灌水1次); 副区为氮肥处理, 分别为N4 (底施纯氮120 kg hm-2+追施210 kg hm-2, 豫北地区小麦生产中常规施氮量)、N3 (底施纯氮120 kg hm-2+追施150 kg hm-2)、N2 (底施纯氮120 kg hm-2+追施90 kg hm-2)、N1 (一次性底施纯氮120 kg hm-2)和N0 (不施氮肥), 在拔节期结合灌水追施氮肥。前茬作物为夏玉米, 播种小麦前将玉米秸秆粉碎翻压还田, 各小区底施磷肥(P2O5) 138 kg hm-2、钾肥(K2O) 112.5 kg hm-2、硫酸锌22.5 kg hm-2。小麦播种前底墒较好, 故未灌底墒水, 采用畦灌方式浇水, 每次灌750 m3 hm-2, 不同水分处理小区间设1 m隔离带。小区面积为40 m2 (4 m × 10 m), 行距20 cm, 重复3次, 基本苗4.0 × 106 株hm-2, 分别于2009年10月20日和2010年10月11日播种, 于2010年6月13日和2011年6月14日收获。其他管理措施同一般高产大田。
1.2 测定项目与方法
1.2.1 单茎干物质运转及对籽粒贡献 于小麦开花期在各处理小区选取生长整齐一致的植株单茎挂牌标记, 分别于开花期和成熟期, 从每处理小区取30个单茎, 分成叶片、茎鞘和穗(成熟期为籽粒和颖壳+穗轴), 再将叶片分成旗叶、倒二叶、倒三叶、倒四叶和余叶, 茎鞘又分为倒一节(穗下节)、倒二节、倒三节、倒四节和余节, 105℃杀青30 min, 80℃烘干至恒重, 称量。营养器官干物质运转量(mg stem-1)=开花期营养器官干物质量-成熟期营养器官干物质量;
营养器官干物质运转率(%)=营养器官干物质运转量/开花期营养器官干物质量×100;
营养器官干物质运转对籽粒贡献率(%)=营养器官干物质运转量/成熟期籽粒干物质量×100。
1.2.2 籽粒产量 成熟期从各小区选取4 m2 (2 m × 2 m)样点, 人工收割, 脱粒后风干计产。
1.3 数据分析
用Microsoft Excel和SAS 9.2软件处理和统计分析试验数据, LSD法检验显著性(α=0.05), GraphPad Prism 5软件绘图。2 结果与分析
2.1 不同空间层次器官干物质运转量
随供氮减少, 干物质总运转量在两水分条件下均呈先增后减的趋势, 均以N4处理最低(图2)。茎节的单茎干物质运转量为305.4 mg (W1)和277.0 mg (W2), 高于叶片的111.0 mg (W1)和117.1 mg (W2)及穗轴+颖壳的21.6 mg (W1)和29.3 mg (W2)。随供氮减少, 穗轴+颖壳干物质运转量在W1处理下呈先增后减趋势, 以N2处理较高, 而在W2处理下呈持续增加趋势(图2)。各叶片中, 旗叶和倒二叶干物质运转量在W1和W2处理下随供氮减少有所下降, 倒三叶和倒四叶则呈缓慢增加趋势, 余叶无明显变化。各茎节中, 倒二节、倒三节、倒四节和余节的干物质运转量在不同水分处理下总体表现为随供氮减少而增加, 而倒一节总体呈降低趋势。表明减量施氮与N4相比提高了各营养器官的干物质运转量, 其中, 穗轴+颖壳的单茎干物质运转量提高了323.2%, 增幅高于茎节的24.5%和叶片的4.6%, 但其干物质单茎运转量增加23.0 mg, 低于茎节的59.6 mg但高于叶片的5.1 mg (表1)。随供氮减少, 不同层次叶片和茎节的干物质运转量增幅差异较大, 各叶片中, 减量施氮与N4相比旗叶与倒二叶干物质运转量无明显变化, 而倒三叶和倒四叶干物质运转量分别增加4.3 g (28.7%)和7.0 g (201.1%)。各茎节中, 减量施氮与N4相比倒二节、倒三节、倒四节和余节干物质运转量分别增加12.8 g (21.7%)、22.9 g (71.8%)、19.2 g (44.5%)和14.6 g (31.1%), 倒一节干物质运转量不仅没有增加, 且减少9.9 g (15.9%), 这可能与同化物运转过程中部分同化物滞留在茎杆而没有运转到籽粒有关。可以看出, 与N4相比, 减量施氮下穗轴+颖壳和下层器官的干物质运转量有较大增幅, 而上层器官的干物质运转量没有明显变化。Table 1
表1
表1减氮处理(N3、N2、N1、N0)与常规施氮处理(N4)相比小麦植株各器官干物质运转量、运转率和对籽粒贡献率的增加量和增加率
Table 1
器官 Organ | 运转量DMRA | 运转率DMRE | 贡献率CDMR | |||||
---|---|---|---|---|---|---|---|---|
增加量 Increase amount (mg stem-1) | 增加率 Increase rate (%) | 增加量 Increase amount (%) | 增加率 Increase rate (%) | 增加量 Increase amount (%) | 增加率 Increase rate (%) | |||
穗轴+颖壳Chaff | 23.0 | 323.2 | 6.0 | 313.7 | 1.8 | 377.0 | ||
旗叶 Flag leaf | -1.6 | -4.2 | 0 | 0.1 | 0.1 | 2.8 | ||
倒二叶 2nd leaf | -2.8 | -7.4 | -0.7 | -1.9 | 0 | 0.3 | ||
倒三叶 3rd leaf | 4.3 | 28.7 | 7.4 | 32.9 | 0.4 | 39.6 | ||
倒四叶 4th leaf | 7.0 | 201.1 | 17.4 | 182.7 | 0.6 | 244.5 | ||
余叶 Residue leaf | -1.9 | -11.8 | 0.4 | 1.0 | 0 | -3.7 | ||
叶片 Leaf | 5.1 | 4.6 | 4.9 | 17.8 | 1.0 | 13.4 | ||
倒一节 1st internode | -9.9 | -15.9 | -2.3 | -12.9 | -0.4 | -9.4 | ||
倒二节 2nd internode | 12.8 | 21.7 | 4.5 | 19.3 | 1.4 | 34.2 | ||
倒三节 3rd internode | 22.9 | 71.8 | 10.8 | 63.6 | 2.0 | 91.6 | ||
倒四节 4th internode | 19.2 | 44.5 | 9.5 | 31.2 | 1.8 | 60.0 | ||
余节 Residue internode | 14.6 | 31.1 | 18.9 | 41.6 | 1.4 | 42.8 | ||
茎节 Internode | 59.6 | 24.5 | 8.3 | 30.9 | 6.3 | 36.8 |
新窗口打开|下载CSV
图2
新窗口打开|下载原图ZIP|生成PPT图2不同氮肥和水分处理下小麦植株地上部各器官干物质运转量
误差线表示3次重复的标准误。括号内的数值为氮肥处理间差异达到显著水平的LSD0.05值。
Fig. 2Dry matter remobilization amount of individual vegetative organs of wheat shoots under different N and water supplies
Error bars represent standard errors of three replicates. Values in brackets represent least significant difference (P < 0.05) among N treatments.
2.2 不同空间层次器官干物质运转率
W1和W2处理下干物质运转率分别为24.6%和23.8% (图3)。随供氮减少, 干物质运转率在不同水分条件下均持续增加。叶片的干物质运转率为30.4% (W1)和32.7% (W2), 茎节的为35.2% (W1)和31.5% (W2), 均高于穗轴+颖壳的5.7% (W1)和7.8% (W2)。随供氮减少, 穗轴+颖壳干物质运转率在W1处理下先增后减, 以N2处理较高, 而在W2处理下呈持续增加趋势(图3)。各叶片中, 旗叶和倒二叶干物质运转率在W1和W2下均随供氮减少而缓慢降低, 倒四叶和倒三叶呈增加趋势, 余叶无明显变化。各茎节中, 倒一节干物质运转率在不同水分处理下随供氮减少呈持续减少趋势, 而其余茎节则呈持续增加趋势。可以看出, 减量施氮与N4相比提高了穗轴+颖壳、叶片和茎节的干物质运转率, 其中, 穗轴+颖壳干物质运转率提高313.7%, 叶片和茎节分别提高17.8%和30.9% (表1)。随供氮减少, 不同层次叶片和茎节的干物质运转率增幅差异较大, 各叶片中, 减氮处理与N4相比旗叶与倒二叶的干物质运转率无明显变化, 而倒三叶和倒四叶分别提高32.9%和182.7%。各茎节中, 减量施氮与N4相比倒一节干物质运转率下降12.9%, 倒二节、倒三节、倒四节和余节分别提高19.3%、63.6%、31.2%和41.6%。上述结果表明, 减量施氮与N4相比明显提高了穗轴+颖壳和下层器官的干物质运转率, 而对上层器官的干物质运转率没有明显影响。图3
新窗口打开|下载原图ZIP|生成PPT图3不同氮肥和水分处理下小麦植株地上部各器官干物质运转率
误差线表示3次重复的标准误。括号内的数值为氮肥处理间差异达到显著水平的LSD0.05值。
Fig. 3Dry matter remobilization efficiency of individual vegetative organs of wheat shoots under different N and water supplies
Error bars represent standard errors of three replicates. Values in brackets represent least significant difference (P < 0.05) among N treatments.
2.3 不同空间层次器官干物质运转对籽粒贡献率
W1和W2处理下植株地上部干物质运转对籽粒贡献率分别为35.1%和30.0% (图4)。随供氮减少, 干物质运转对籽粒贡献率在不同水分条件下均持续增加。茎节对籽粒的贡献率平均为24.6% (W1)和19.7% (W2), 高于叶片的8.8% (W1)和8.2% (W2)和穗轴+颖壳的1.7% (W1)和2.1% (W2)。随供氮减少, 穗轴+颖壳对籽粒贡献率在W1处理下呈先增后减趋势, 以N2处理较高, 而在W2处理下呈持续增加趋势(图4)。各叶片中, 旗叶和倒二叶对籽粒贡献率在W1和W2处理下总体随供氮减少先增加后减少, 倒三叶和倒四叶在两水分处理下均表现为持续增加趋势, 余叶无明显变化。各茎节中, 倒一节对籽粒干物质贡献率总体随供氮减少而降低, 而其余茎节在不同水分处理下均随供氮减少而增加, 均以N0处理最高。分析表明, 减量施氮与N4相比提高了穗轴+颖壳、叶片和茎节的对籽粒贡献率, 平均分别提高377.0%、13.4%和36.8% (表1)。随供氮减少, 不同层次叶片和茎节的对籽粒贡献率增幅差异较大, 各叶片中, 减量施氮与N4相比旗叶与倒二叶的对籽粒贡献率无明显变化, 而倒三叶和倒四叶分别提高39.6%和244.5%。各茎节中, 减量施氮与N4相比倒一节对籽粒贡献率下降9.4%, 倒二节、倒三节、倒四节和余节分别提高34.2%、91.6%、60.0%和42.8%。上述结果表明, 减量施氮与N4相比明显提高了穗轴+颖壳和下层器官对籽粒的贡献率, 而对上层器官籽粒贡献率没有明显影响。图4
新窗口打开|下载原图ZIP|生成PPT图4不同氮肥和水分处理下小麦植株地上部各器官干物质运转对籽粒贡献率
误差线表示3次重复的标准误。括号内的数值为氮肥处理间达到显著差异的LSD0.05值。
Fig. 4Contribution of dry matter remobilization to grain of individual vegetative organs of wheat shoots under different N and water supplies
Error bars represent standard errors of three replicates. Values in brackets represent least significant difference (P < 0.05) among N treatments.
2.4 籽粒产量
2009—2010和2010—2011年常规灌溉下(W2)籽粒产量分别为9020 kg hm-2和9080 kg hm-2, 显著高于限水灌溉(W1)的7917 kg hm-2和8158 kg hm-2。W1与W2相比, 籽粒产量平均减少11.2%, 水分供应量减少750 m3 hm-2 (图5)。W1处理下, 随着供氮量减少籽粒产量在2年试验中均总体呈先增后降趋势, 均以N3处理最高, 表明限水灌溉条件下适量减氮有利于提高籽粒产量。W2处理下, 2009—2010年籽粒产量以N2、N3和N4处理较高, 而2010—2011年籽粒产量随着供氮量减少总体呈下降趋势。图5
新窗口打开|下载原图ZIP|生成PPT图5不同氮肥和水分处理下小麦籽粒产量
误差线表示3次重复的标准误, 其上所标不同字母表示处理间差异显著(P < 0.05)。
Fig. 5Grain yield of wheat under different N and water supplies
Error bars represent standard errors of three replicates. Different letters above error bars indicate significant difference among treatments (P < 0.05).
3 讨论
3.1 减氮对豫北冬小麦籽粒产量的影响
在豫北地区小麦生产中减施氮肥是必然趋势, 且已有研究表明, 通过合理的氮肥管理, 河南小麦生产仍有很大的节氮潜力[4]。前人研究表明, 豫北地区小麦生产中减施氮肥可以维持较高的产量, 同时提高氮素吸收利用效率, 减少氮素损失[23,24,25,26,27]。本研究中供氮量从330 kg hm-2减至210 kg hm-2, 籽粒产量最大变幅为6.1% (限水灌溉下)和5.4% (常规灌溉下), 表明在豫北高产麦区常规施氮量的基础上适量减氮能够维持较高的籽粒产量。综合以上研究结果可以看出, 适量减氮有助于实现豫北小麦高产、高效和环境友好的可持续发展。另外, 以上研究均以适量减氮为出发点, 这与其他****提出的减氮要在一定限度内进行, 要与作物产量目标和土壤养分状况相结合, 确保土壤养分平衡, 维持土壤长期生产力是一致的[28]。3.2 施氮对小麦营养器官干物质运转的影响
赵亚南等[28]的研究表明, 与习惯施肥相比, 减量施肥小麦花前贮藏物质运转量、运转率及其对籽粒灌浆贡献率分别增加 28.5%、17.5% 和 20.7%。本研究表明, 低氮处理(N0、N1、N2)花前贮藏物质运转量、运转率及其对籽粒贡献率均显著高于高氮处理(N3和N4), 分别增加20.4%、22.3%和37.0%, 在此基础上, 进一步分析小麦植株地上部11个器官的平均干物质运转量、运转率和对籽粒贡献率与供氮量的关系(图6), 发现随供氮减少干物质运转量、运转率和对籽粒贡献率均显著增加, 表明减量施氮与过量施氮相比更有利于花前贮藏物质向籽粒再运转。另有研究表明, 适量施氮有利于促进小麦营养器官花前贮存同化物向籽粒运转[12], 而本试验中N1和N2处理与不施氮处理(N0)相比花前贮藏物质运转量、运转率及其对籽粒的贡献率并没有更明显增加, 这与前人研究结果不尽相同, 造成这种现象的原因可能是本研究中试验田土壤肥力较高, 土壤中氮素残留较多。图6
新窗口打开|下载原图ZIP|生成PPT图6不同氮肥处理下小麦植株地上部全部营养器官的平均干物质运转量(A)、运转率(B)和对籽粒贡献率(C)
各箱体中, 实线表示中位数, 虚线表示平均值。箱体上方不同字母表示处理间差异显著(P < 0.05)。
Fig. 6Amount (A), efficiency (B), and contribution rate of dry matter remobilization to grain (C) averaged over all vegetative organs and water treatments of wheat shoots under different N supplies
In the box, solid lines represent the median while dashed lines represent the average. Data were also analyzed by one-way ANOVA, different letters above the boxes indicate significant difference at P < 0.05.
前人研究表明, 减施氮肥提高了小麦营养器官花前贮藏物质的运转量, 但是, 贮藏物质运转的增加主要来自于植株哪些器官目前尚不明确。有****指出, 适量减氮条件下花前贮藏物质运转的增加主要来自叶片和茎鞘[22], 也有研究表明, 减氮条件下叶片、茎鞘和穗轴+颖壳的花前贮藏物质运转量均有增加[12]。本研究中减氮提高了营养器官(穗轴+颖壳、叶片和茎节)的干物质运转量, 运转率和对籽粒贡献率, 其中, 穗轴+颖壳干物质运转量、运转率和对籽粒贡献率增幅均远高于叶片和茎节, 各层次叶片和茎节中, 减氮处理的下层器官(倒三叶、倒四叶、倒三节、倒四节和余节)干物质运转量、运转率和对籽粒贡献率与常规施氮相比均有显著增加, 而上层器官(旗叶、倒二叶和倒一节)无明显变化, 表明减量施氮下贮藏物质运转的增加主要来自于穗轴+颖壳和下层器官(倒三叶、倒四叶、倒三节、倒四节和余节)。
花前营养器官贮藏同化物运转量的增加可能与植株花后光合同化生产量不能满足籽粒灌浆对同化物的需求有关[29], 本研究中, 减氮作用下穗轴+颖壳、下层叶片和下层茎节的花前贮藏物质运转量大幅增加, 而上层叶片和茎节的运转量并没有增加, 造成这种现象的原因可能是, 减量施氮下植株花后光合同化生产能力相对减弱, 花后同化物生产量下降, 不能满足籽粒灌浆对同化物的需求, 从而促使营养器官贮藏物质向籽粒运转, 而上层叶片是花后光合同化物合成的主要场所, 其向籽粒提供的主要是花后合成的同化物, 低氮条件下上层叶片可能通过自身调控限制其贮藏物质向籽粒的运转, 以维持其光合同化生产能力, 同时下层器官加速衰老, 贮藏物质加速降解,促使更多地贮藏物质向籽粒运转, 以满足籽粒灌浆对同化物的需求。与高氮处理相比, 低氮处理下倒一节花前贮藏物质运转量不仅没有增加, 反而减少15.9%, 这可能与同化物运转过程中部分同化物滞留在茎杆而没有运转到籽粒有关。
3.3 供水对小麦籽粒产量和营养器官干物质运转的影响
中度以上水分亏缺能促进小麦营养器官中同化物向外运转, 减少滞留, 即提高花后干物质运转量和运转率[13,19,30]。本研究中限水灌溉与常规灌溉相比, 花后干物质运转量无显著差异, 且运转率差异较小, 分别为24.6%和23.8%, 表明限水灌溉并没有对小麦生长产生明显的胁迫作用。另外, 本研究中限水灌溉与常规灌溉相比, 水分投入减少750 m3 hm-2, 籽粒产量降低11.2%, 表明在水分短缺的豫北地区小麦生产中采用限水灌溉, 减产幅度小且能大幅减少水分投入, 具有一定的可行性, 当然, 这需要通过多年多点和不同气候条件下的田间试验验证。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1126/science.1182570URLPMID:20150447 [本文引用: 1]
Soil acidification is a major problem in soils of intensive Chinese agricultural systems. We used two nationwide surveys, paired comparisons in numerous individual sites, and several long-term monitoring-field data sets to evaluate changes in soil acidity. Soil pH declined significantly (P < 0.001) from the 1980s to the 2000s in the major Chinese crop-production areas. Processes related to nitrogen cycling released 20 to 221 kilomoles of hydrogen ion (H62) per hectare per year, and base cations uptake contributed a further 15 to 20 kilomoles of H62 per hectare per year to soil acidification in four widespread cropping systems. In comparison, acid deposition (0.4 to 2.0 kilomoles of H62 per hectare per year) made a small contribution to the acidification of agricultural soils across China.
,
DOI:10.1007/s00267-010-9440-3URLPMID:20177679 [本文引用: 1]
Lake water eutrophication has become one of the most important factors impeding sustainable economic development in China. Knowledge of the current status of lake water eutrophicatoin and determination of its mechanism are prerequisites to devising a sound solution to the problem. Based on reviewing the literature, this paper elaborates on the evolutional process and current state of shallow inland lake water eutrophication in China. The mechanism of lake water eutrophication is explored from nutrient sources. In light of the identified mechanism strategies are proposed to control and tackle lake water eutrophication. This review reveals that water eutrophication in most lakes was initiated in the 1980s when the national economy underwent rapid development. At present, the problem of water eutrophication is still serious, with frequent occurrence of damaging algal blooms, which have disrupted the normal supply of drinking water in shore cities. Each destructive bloom caused a direct economic loss valued at billions of yuan. Nonpoint pollution sources, namely, waste discharge from agricultural fields and nutrients released from floor deposits, are identified as the two major sources of nitrogen and phosphorus. Therefore, all control and rehabilitation measures of lake water eutrophication should target these nutrient sources. Biological measures are recommended to rehabilitate eutrophied lake waters and restore the lake ecosystem in order to bring the problem under control.
,
[本文引用: 1]
,
DOI:10.1073/pnas.1210447110URLPMID:23671096 [本文引用: 1]
http://www.pnas.org/cgi/doi/10.1073/pnas.1210447110
,
DOI:10.1016/S2095-3119(17)61743-XURL [本文引用: 1]
The upland agricultural soils in North China are distributed north of a line between the Kunlun Mountains, the Qinling Mountains and the Huaihe River. They occur in arid, semi-arid and semi-humid regions and crop production often depends on rain-fed or irrigation to supplement rainfall. This paper summarizes the characteristics of gross nitrogen (N) transformation, the fate of N fertilizer and soil N as well as the N loss pathway, and makes suggestions for proper N management in the region. The soils of the region are characterized by strong N mineralization and nitrification, and weak immobilization and denitrification ability, which lead to the production and accumulation of nitrate in the soil profile. Large amounts of accumulated nitrate have been observed in the vadose-zone in soils due to excess N fertilization in the past three decades, and this nitrate is subject to occasional leaching which leads to groundwater nitrate contamination. Under farmer's conventional high N fertilization practice in the winter wheat-summer maize rotation system (N application rate was approximately 600 kg ha–1 yr–1), crop N uptake, soil residual N, NH3 volatilization, NO3 – leaching, and denitrification loss accounted for around 27, 30, 23, 18 and 2% of the applied fertilizer N, respectively. NH3 volatilization and NO3 – leaching were the most important N loss pathways while soil residual N was an important fate of N fertilizer for replenishing soil N depletion from crop production. The upland agricultural soils in North China are a large source of N2O and total emissions in this region make up a large proportion (approximately 54%) of Chinese cropland N2O emissions. The "non-coupled strong ammonia oxidation" process is an important mechanism of N2O production. Slowing down ammonia oxidation after ammonium-N fertilizer or urea application and avoiding transient high soil NH4 + concentrations are key measures for reducing N2O emissions in this region. Further N management should aim to minimize N losses from crop and livestock production, and increase the recycling of manure and straw back to cropland. We also recommend adoption of the 4R (Right soure, Right rate, Right time, Right place) fertilization techniques to realize proper N fertilizer management, and improving application methods or modifying fertilizer types to reduce NH3 volatilization, improving water management to reduce NO3 – leaching, and controlling the strong ammonia oxidation process to abate N2O emission. Future research should focus on the study of the trade-off effects among different N loss pathways under different N application methods or fertilizer products.
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 5]
[本文引用: 5]
,
DOI:10.1016/j.eja.2007.06.002URL [本文引用: 5]
Durum wheat (Triticum durum Desf.) is commonly grown in dryland conditions, where environmental stress during grain filling can limit productivity and increase the dependency on stored assimilate. We investigated current assimilation and remobilization of dry matter and nitrogen during grain filling in N fertilized and unfertilized durum wheat subjected to different levels of water deficit during grain filling. Two durum wheat varieties, Appio and Creso, were grown in open-air containers with three rates of nitrogen fertilizer (not applied, NO; normal amount, NN; high amount, NH) and four water regimes during grain filling (fully irrigated treatment, FI; low, LWS, moderate, MWS and high water stress, HWS) across 2 years. Grain yield and dry matter and N accumulation and remobilization were positively affected by N availability and negatively by water stress during grain filling. The reduction of grain yield by severe post-anthesis water stress amounted to 27 and 37% for NO and NN, respectively, and was associated with a decrease in kernel weight. There was also a small negative effect on the number of kernels per spike. Conversely, the duration of grain filling was not modified either by water stress or by nitrogen treatments. Severe water stress also reduced dry matter accumulation and remobilization by 36 and 14% in NO plants and by 48 and 25% in NH plants. Similarly, N accumulation and N remobilization was reduced by 43% and by 16% in NO plants and by 51% and by 15% in NH plants. Conversely, low and moderate water stress did not substantially modify the patterns of dry matter and nitrogen deposition in grain. Although remobilization of dry matter and N was less affected by water stress than accumulation, it was not able to counterbalance the reduction of assimilation and consequently it was not able to stabilize grain yield under drought. (c) 2007 Elsevier B.V All rights reserved.
,
DOI:10.1016/j.eja.2006.06.009URL [本文引用: 1]
The influence of crop density on the remobilization of dry matter and nitrogen from vegetative plant parts to the developing grain, was investigated in the durum wheat ( Triticum durum Desf.) varieties Creso, Simeto and Svevo cultivated in the field at three seeding rates, 200, 250 and 400 seeds m . Variety seeding rate interaction was unsignificant for all recorded characters. Grain yield declined in the order Svevo > Simeto > Creso. Yield differences mainly depended on the different number of kernels per unit land and, secondly, on mean kernel weight. Spike components differed among varieties: Svevo and Simeto showed more kernels per spikelet and Creso more spikelets per spike. Grain yield was highest with 400 seeds m 2 primarily due to the higher number of spikes per unit area, and secondly, to the higher mean kernel weight. Post-heading dry matter accumulation was highest in Svevo and lowest in Creso, but varieties showed a reverse order for dry matter remobilization and contribution of dry matter remobilization to grain yield. The increase of seeding rate increased both the post-heading dry matter accumulation and the dry matter remobilization from vegetative plant parts to grain. Nitrogen uptake of the whole crop and N content of grain was higher in Simeto and Svevo than in Creso. The N concentration of grain did not vary among varieties, but Svevo showed a markedly lower N concentration and N content of culms at maturity, which may be consequence of the high N remobilization efficiency performed by this variety. The N uptake by the crop was highest with 400 seeds m 2, but the N concentration of culms, leaves and even grain was slightly lower than with the lower seed rates. The post-heading N accumulation was by far higher in Simeto and Svevo than in Creso, whereas remobilization was highest in Svevo and lowest in Simeto. The percentage contribution of N remobilization to grain N was by far higher in Creso than in the other two varieties. Post-heading N accumulation and N remobilization were highest with the highest plant density, but the contribution of N remobilization to N grain content did not differ between seeding rates.
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 2]
[本文引用: 2]
,
[本文引用: 1]
[本文引用: 1]
,
[本文引用: 1]
[本文引用: 1]