Effects of phosphorus fertilizer application depths on root distribution and phosphorus uptake and utilization efficiencies of summer maize under subsoiling tillage
CHEN Xiao-Ying, LIU Peng,*, CHENG Yi, DONG Shu-Ting, ZHANG Ji-Wang, ZHAO Bin, REN Bai-ZhaoState Key Laboratory of Crop Biology / College of Agronomy, Shandong Agricultural University, Tai’an 271018, Shandong, China
This study was supported by the National Basic Research Program of China.2016YFD0300106 This study was supported by the National Basic Research Program of China.2018YFD0300603 the National Natural Science Foundation of China.31771713 the National Natural Science Foundation of China.31371576 the Shandong Province Key Agricultural Project for Application Technology Innovation.SDAIT-02-08
摘要 采用大田试验与土柱试验相结合的方式, 设置距离地表-5 cm (P5)、-10 cm (P10)、-15 cm (P15)和-20 cm (P20)施用磷肥处理, 以不施磷肥为对照(CK), 研究磷肥施用深度对夏玉米根系分布、干物质积累与产量形成及磷肥吸收和利用效率的影响。结果表明, 磷肥施用深度显著影响夏玉米根系干重及根长, 表现为P15>P10>P20>P5>CK。与常规磷肥施用深度(P5)处理相比, P15处理玉米籽粒产量两年平均提高23.1%, 根干重及总根长两年平均提高13.1%、22.9%; P15、P20处理均增加了-20 cm以下土层的根干重比例及根长比例, 土柱试验分别达到35.4%和36.4%、58.7%和59.3%, 大田试验根干重两年均达到19.0%, 根长比重分别达到39.8%和39.9%。根系分布的优化促进了植株磷素积累与转运, P10、P15、P20处理较P5处理磷积累量2年平均提高10.6%、25.2%和14.7%, 磷转运量平均提高46.9%、76.6%和57.6%, 籽粒产量相应增加12.9%、23.1%和10.6%。P15比P5处理的磷肥偏生产力、农学利用效率和表观利用效率两年平均值分别提高19.1 kg kg -1、19.1 kg kg -1和25.2%。磷肥深施能够增加深层土壤根系的分布比例, 提高植株对磷肥的吸收、利用效率, 显著提高夏玉米产量, 在本试验条件下以磷肥集中施用在-15 cm处效果最好。 关键词:夏玉米;施磷深度;根系;产量;磷肥利用效率
Abstract Phosphorus fertilizer application depths are extremely important for increasing phosphorus uptake and utilization efficiencies. In the present study, root distribution, biomass, grain yield, phosphorus uptake and utilization efficiencies were determined in field experiment and soil column experiment, with five treatments including CK (no P applied), P5 (phosphorus application depth was 5 cm), P10 (phosphorus application depth was 10 cm), P15 (phosphorus application depth was 15 cm), and P20 (phosphorus application depth was 20 cm). Phosphorus fertilizer application depths significantly affected root dry weight and root length of summer maize with a trend of P15>P10>P20>P5>CK. Compared with P5 treatment, averaged grain yield of P15 treatment increased by 23.1% in two years, averaged root dry weight and total root length increased by 13.1% and 22.9% in two years. Both P15 and P20 treatments increased the proportion of root dry weight and root length in the soil layer below -20 cm. The proportion of root dry weight of P15 and P20 treatments reached 35.4% and 36.4%, and the proportion of root length reached 58.7% and 59.3% in soil column experiments; the proportion of root dry weight both reached 19.0% and the proportion of root length reached 39.8% and 39.9% in field experiment, respectively. The optimization of root distribution promoted the accumulation and transport of phosphorus in plants. Compared with P5 treatment, P10, P15, and P20 treatments increased the averaged phosphorus accumulation in two years by 10.6%, 25.2%, and 14.7%, the average phosphorus transport amount in two years by 46.9%, 76.6%, and 57.6%, and the grain yield by 12.9%, 23.1%, and 10.6%, respectively. Compared with P5 treatment, P15 treatment increased the averaged P partial factor productivity, P agronomic efficiency and P apparent utilization efficiency by 19.1 kg kg -1, 19.1 kg kg -1, and 25.2% in two years, respectively. In summary, deep fertilization of phosphorus could increase the distribution of root in deep soil layers, improve the absorption and utilization efficiencies of phosphorus in plants, and significantly improve the grain yield of summer maize. Under the condition of this study, the suitable P fertilizer application depth was 15 cm from the soil surface. Keywords:summer maize;phosphorus application depth;root;yield;phosphorus utilization efficiency
PDF (1010KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 陈晓影, 刘鹏, 程乙, 董树亭, 张吉旺, 赵斌, 任佰朝. 土壤深松下磷肥施用深度对夏玉米根系分布及磷素吸收利用效率的影响 [J]. 作物学报, 2019, 45(10): 1565-1575. doi:10.3724/SP.J.1006.2019.93005 CHEN Xiao-Ying, LIU Peng, CHENG Yi, DONG Shu-Ting, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao. Effects of phosphorus fertilizer application depths on root distribution and phosphorus uptake and utilization efficiencies of summer maize under subsoiling tillage[J]. Acta Agronomica Sinica, 2019, 45(10): 1565-1575. doi:10.3724/SP.J.1006.2019.93005
Fig. 1Daily mean temperature and rainfall during the growth period of summer maize in the test site
1.2 试验设计
供试夏玉米品种为登海605 (DH605)。试验以不施用磷肥处理为对照(CK), 共设置4个施肥深度, 分别为距离地表-5 cm (P5)、-10 cm (P10)、-15 cm (P15)和-20 cm (P20)。所用肥料为缓控尿素(含纯N 42%)、过磷酸钙(含P2O5 11%)、硫酸钾(含K2O 50%)。于小麦收获后表层撒施纯氮315 kg hm-2和K2O 270 kg hm-2, 然后结合小麦灭茬旋耕5 cm, 利用经改造后的深松条带式施肥机深松20 cm, 同时在设定深度集中施用P2O5 105 kg hm-2, 以深松不施磷为对照。大田试验采用随机区组设计, 3次重复, 种植密度为67,500株 hm-2, 行距60 cm, 株距25 cm。小区面积180 m2 (长30 m、宽6 m)。
土柱试验采用高100 cm, 直径35 cm的PVC管, 将其填埋于深90 cm的土坑内, 按照土50%、沙子40%、蛭石5%、珍珠岩5%的比例混匀基质装入土柱, 加水沉实至距离上口5 cm。每个处理10个土柱, 在距离表层5 cm处施入纯氮 4.9 g plant-1, K2O 4.2 g plant-1, 按试验设计深度施入P2O5 1.6 g plant-1。试验所用肥料为缓控尿素(含纯N 42%)、过磷酸钙(含P2O5 11%)、硫酸钾(含K2O 50%), 所用肥料均一次性施入。玉米生育期给予良好的管理并保证水分供应。
不同字母表示处理间差异达0.05显著水平。CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。 Fig. 2Effects of phosphorus application depth on biomass of summer maize
Bars superscripted by different letters are significantly different among treatments at the 0.05 probability level. CK: no P applied; P5: phosphorus application depth was 5 cm; P10: phosphorus application depth was 10 cm; P15: phosphorus application depth was 15 cm; P20: phosphorus application depth was 20 cm.
Table 2 表2 表2磷肥施用深度对夏玉米产量及产量构成因素的影响 Table 2Effects of phosphorus application depth on grain yield and its components of summer maize
年份 Year
处理 Treatment
单位面积穗数 Ears (×104 ear hm-2)
穗粒数 Grains per ear
千粒重 1000-grain weight (g)
籽粒产量 Yield (kg hm-2)
2017
CK
6.37 a
425.40 c
381.39 b
7661.53 d
P5
6.49 a
439.83 b
385.23 ab
8293.59 c
P10
6.42 a
450.31 b
391.15 ab
9277.15 b
P15
6.56 a
476.48 a
397.24 a
10023.14 a
P20
6.55 a
448.70 b
398.06 a
8926.96 b
2018
CK
6.44 a
477.24 b
381.39 b
9438.52 c
P5
6.41 a
476.15 b
385.23 ab
9711.62 c
P10
6.33 a
493.59 b
391.15 ab
11063.84 b
P15
6.56 a
525.54 a
397.24 a
12178.65 a
P20
6.34 a
491.54 b
398.06 a
11021.54 b
变异来源 Source of variation
年份 Year (Y)
NS
***
***
***
磷肥施用深度 Phosphorus application depth (P)
NS
***
***
***
年份×磷肥施用深度 Y×P
NS
NS
NS
NS
Values followed by different letters with in a column are significantly different among treatments at the 0.05 probability level. CK: no P applied; P5: phosphorus application depth was 5 cm; P10: phosphorus application depth was 10 cm; P15: phosphorus application depth was 15 cm; P20: phosphorus application depth was 20 cm. *** P<0.001; NS: not significant. 同列中标以不同字母的值在处理间差异达0.05显著水平。CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。***表示P<0.001, NS表示不显著。
不同字母表示处理间差异达0.05显著水平。CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。 Fig. 3Effects of phosphorus application depth on root dry weight and root length of summer maize
Bars superscripted by different letters are significantly different among treatments at the 0.05 probability level. CK: no P applied; P5: phosphorus application depth was 5 cm; P10: phosphorus application depth was 10 cm; P15: phosphorus application depth was 15 cm; P20: phosphorus application depth was 20 cm.
CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。 Fig. 4Coordination vertical distribution of root dry weight and root length of summer maize in 0-60 cm depths at VT stage in the different fertilization depths (2018)
CK: no P applied; P5: phosphorus application depth was 5 cm; P10: phosphorus application depth was 10 cm; P15: phosphorus application depth was 15 cm; P20: phosphorus application depth was 20 cm.
CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。 Fig. 5Effects of phosphorus application depth on the proportion of root dry weight and the proportion of root length of summer maize
CK: no P applied; P5: phosphorus application depth was 5 cm; P10: phosphorus application depth was 10 cm; P15: phosphorus application depth was 15 cm; P20: phosphorus application depth was 20 cm.
Table 3 表3 表3夏玉米不同器官和植株中磷积累量 Table 3Accumulation of P in different organs and plant of summer maize (kg hm-2)
器官 Organ
处理 Treatment
2017
2018
抽雄期 VT
灌浆期 R2
完熟期 R6
抽雄期 VT
灌浆期 R2
完熟期 R6
营养器官 Vegetation organ
CK
41.34 c
47.98 e
36.13 e
46.49 d
54.45 e
43.40 c
P5
51.38 b
56.76 d
40.81 d
59.55 c
67.25 d
51.23 b
P10
58.68 a
75.80 b
49.35 b
62.61 b
72.33 c
51.82 b
P15
60.17 a
83.46 a
51.91 a
69.72 a
82.52 a
57.63 a
P20
57.80 a
73.13 c
45.74 c
63.82 b
76.06 b
53.18 b
籽粒 Grains
CK
3.48 b
51.60 e
6.66 c
78.45 d
P5
5.31 ab
60.35 d
12.90 b
88.14 c
P10
6.26 a
67.54 c
15.79 a
96.32 b
P15
7.36 a
79.81 a
17.97 a
104.06 a
P20
6.58 a
71.46 b
16.09 a
98.00 b
整株 Whole plant
CK
41.34 c
51.46 e
87.73 d
46.49 d
61.10 e
121.85 d
P5
51.38 b
62.07 d
101.16 c
59.55 c
80.14 d
139.37 c
P10
58.68 a
82.05 b
116.99 b
62.61 b
88.12 c
148.14 b
P15
60.17 a
90.82 a
131.72 a
69.72 a
100.49 a
161.69 a
P20
57.80 a
79.71 c
117.09 b
63.82 b
92.14 b
151.18 b
Values followed by different letters with in a column are significantly different among treatments at the 0.05 probability level. CK: no P applied; P5: phosphorus application depth was 5 cm; P10: phosphorus application depth was 10 cm; P15: phosphorus application depth was 15 cm; P20: phosphorus application depth was 20 cm. 同列中标以不同字母的值在处理间差异达0.05显著水平。CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。
磷肥深施也促进营养器官的磷素向籽粒转运, 2017年各处理间转运量范围为11.9~31.6 kg hm-2, 2018年为11.1~24.9 kg hm-2, P15处理转运量显著高于其他施磷处理(表4)。
Table 4 表4 表4磷肥施用深度对夏玉米磷转运的影响 Table 4Effects of phosphorus application depth on P translocation of summer maize
处理 Treatment
2017
2018
转运量 Translocation amount (kg hm-2)
转运率 Translocation rate (%)
贡献率 Contribution rate (%)
转运量 Translocation amount (kg hm-2)
转运率 Translocation rate (%)
贡献率 Contribution rate (%)
CK
11.85 d
24.66 c
23.96 c
11.05 d
20.30 b
14.08 c
P5
15.95 c
28.11 b
27.31 b
16.02 c
23.77 b
18.22 b
P10
26.45 b
34.90 a
37.83 a
20.51 b
28.36 a
21.30 ab
P15
31.55 a
37.79 a
39.90 a
24.89 a
30.16 a
23.95 a
P20
27.50 b
37.61 a
37.46 a
22.88 ab
30.08 a
23.34 a
Values followed by different letters with in a column are significantly different among treatments at the 0.05 probability level. CK: no P applied; P5: phosphorus application depth was 5 cm; P10: phosphorus application depth was 10 cm; P15: phosphorus application depth was 15 cm; P20: phosphorus application depth was 20 cm. 同列中标以不同字母的值在处理间差异达0.05显著水平。CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。
与P5处理相比, 2017—2018年磷肥偏生产力P10、P15、P20处理分别高9.4 kg kg-1和11.1 kg kg-1、16.5 kg kg-1和21.7 kg kg-1、6.0 kg kg-1和10.7 kg kg-1; 磷肥表观利用效率分别高15.0%和8.4%、29.1%和21.3%、15.1%和11.3%; 磷肥农学利用效率分别高9.4 kg kg-1和11.1 kg kg-1、16.5 kg kg-1和21.7 kg kg-1、6.0 kg kg-1和10.7 kg kg-1 (表5)。说明磷肥深施有利于提高夏玉米磷肥偏生产力和利用效率。
Table 5 表5 表5磷肥施用深度对夏玉米磷肥偏生产力和磷利用效率的影响 Table 5Effects of phosphorus application depth on P partial productivity and P utilization efficiency of summer maize
年份 Year
处理 Treatment
磷肥偏生产力 PPFP (kg kg-1)
磷肥表观利用效率 PAUE (%)
磷肥农学利用效率 PAE (kg kg-1)
2017
P5
78.99 c
12.79 c
6.02 c
P10
88.35 b
27.77 b
15.39 b
P15
95.46 a
41.90 a
22.49 a
P20
85.02 b
27.87 b
12.05 b
2018
P5
94.29 c
16.68 c
5.98 c
P10
105.37 b
25.04 b
17.05 b
P15
115.99 a
37.94 a
27.67 a
P20
104.97 b
27.93 b
16.65 b
变异来源 Source of variation
年份 Year (Y)
***
NS
*
磷肥施用深度Phosphorus application depth (P)
***
***
***
年份×磷肥施用深度 Y×P
NS
*
NS
Values followed by different letters with in a column are significantly different among treatments at the 0.05 probability level. CK: no P applied; P5: phosphorus application depth was 5 cm; P10: phosphorus application depth was 10 cm; P15: phosphorus application depth was 15 cm; P20: phosphorus application depth was 20 cm. * P<0.05, *** P<0.001, NS: not significant. PPFP: P partial factor productivity; PAUE: P apparent utilization efficiency; PAE: P agronomic efficiency. 同列数据后不同字母表示处理间差异达0.05显著水平。CK: 不施磷肥; P5: 距离地表-5 cm处施磷; P10: 距离地表-10 cm处施磷; P15: 距离地表-15 cm处施磷; P20: 距离地表-20 cm处施磷。*表示 P<0.05, ***表示 P<0.001, NS表示不显著。
WissuwaM . How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects , 2003,133:1947-1958. [本文引用: 1]
Vance CP, UhdestoneC, Allan DL . Phosphorus acquistion and use: critical adaptations by plants for securing a nonrenewable resource , 2010,157:423-447. [本文引用: 1]
BorlingK, BarberisE, OtabbongE . Impact of long-term inorganic phosphorus fertilization on accumulation, sorption and release of phosphorus in five Swedish soil profiles , 2004,69:11-21. [本文引用: 1]
Mu HF, WangJ, LiuK, Liu ZW, Dang YH, WangB . Effect of long-term fertilization on spatial distribution and availability of soil phosphorus in Loess Plateau Plant Nutr Fert Sci, 2008,14:424-430 (in Chinese with English abstract). [本文引用: 1]
Liu CL . Analysis and prospect of efficient use of phosphate fertilizer Phosphate & Compound Fert, 2016,31(7):41-42 (in Chinese with English abstract). [本文引用: 1]
Schoumans OF, BouraouiF, KabbeC, OenemaO, Van Dijk KC . Phosphorus management in Europe in a changing world , 2015,44(S2):180-192. [本文引用: 1]
Ju XT, Kou CL, ChristieP, Dou ZX, Zhang FS . Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain , 2007,145:497-506. [本文引用: 1]
GheysariM, Mirlatifi SM, HomaeeM, Asadi ME, HoogenboomG . Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates , 2009,96:946-954. [本文引用: 1]
Qi WZ, Liu HH, LiG, Shao LJ, Wang FF, LiuP, Dong ST, Zhang JW, ZhaoB . Temporal and spatial distribution characteristics of super-high-yield summer maize root Plant Nutr Fert Sci, 2012,18:69-76 (in Chinese with English abstract). [本文引用: 1]
Fan XY, Yang HS, Gao JL, Zhang RF, Wang ZG, Zhang YQ . Effects of phosphorus fertilization methods on phosphorus absorption and utilization of high yield spring maize Plant Nutr Fert Sci, 2013,19:312-320 (in Chinese with English abstract). [本文引用: 1]
张永清, 苗果园 . 冬小麦根系对施肥深度的生物学响应研究 , 2006,14(4):72-75. Magsci [本文引用: 1] 施肥深度对冬小麦根系分布及后期衰老影响的根管栽培试验 结果表明,施肥深度可改变不同土体中小麦根重及根系活性,较深层次(50~100cm)施肥有利于小麦根长增加和下层土壤中根重及根系活性的提高,同时可增加旗叶叶面积和净光合率 ,并使小麦根系SOD和POD活性保持较高水平,抑制过氧化产物MDA的产生,延缓根系及旗叶衰老,明显提高小麦产量。施肥过深(150cm)虽能诱导根系下扎,但小麦总根重和产量却均有所下降。 Zhang YQ, Miao GY . Biological response of winter wheat root system to fertilization depth Chin J Eco-Agric, 2006,14(4):72-75 (in Chinese with English abstract). Magsci [本文引用: 1] 施肥深度对冬小麦根系分布及后期衰老影响的根管栽培试验 结果表明,施肥深度可改变不同土体中小麦根重及根系活性,较深层次(50~100cm)施肥有利于小麦根长增加和下层土壤中根重及根系活性的提高,同时可增加旗叶叶面积和净光合率 ,并使小麦根系SOD和POD活性保持较高水平,抑制过氧化产物MDA的产生,延缓根系及旗叶衰老,明显提高小麦产量。施肥过深(150cm)虽能诱导根系下扎,但小麦总根重和产量却均有所下降。
Lynch JP, Brown KM . Topsoil foraging—an architectural adaptation of plants to low phosphorus availability , 2001,237:225-237. [本文引用: 1]
HuangY, Bi SY, Zou HT, DouS . Effect of straw deep returning on corn root system and yield Maize Sci, 2013,21(5):109-112 (in Chinese with English abstract). [本文引用: 2]
Yang YM, Sun YM, Jia LL, Jia SL, Meng CX . Effects of phosphorus fertilization depth on yield and root distribution of summer maize Sci Agric Sin, 2018,51:1518-1526 (in Chinese with English abstract). [本文引用: 3]
Lynch JP . Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems , 2013,112:347-357. [本文引用: 3]
Mi GH, Chen FJ, Wu QP, Lai NW, Yuan LX, Zhang FS . Ideotype root architecture for efficient nitrogen acquisition by maize in intensive cropping systems , 2010,53:1369-1373. [本文引用: 2]
Postma JA, DatheA, Lynch JP . The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability , 2014,166:590-602. [本文引用: 1]
Lynch JP, WojciechowskiT . Opportunities and challenges in the subsoil: pathways to deeper rooted crops , 2015,66:2199-2210. [本文引用: 1]
Fan XY, Yang HS, Gao JL, Zhang RF, Wang ZG, Zhang YQ . Effects of phosphorus application on root characteristics of super-high-yield spring maize Plant Nutr Fert Sci, 2012,18:562-570 (in Chinese with English abstract). [本文引用: 1]
Chen MN, SunM, Gao ZQ, Wen FF, Hao XY, Yang ZP . Effect of deep application of phosphate fertilizer on soil moisture, root distribution and yield of dryland wheat J Irrig Drain, 2016,35(1):47-52 (in Chinese with English abstract). [本文引用: 2]
Chen SQ, Xu HT, Duan CP . Effects of phosphorus application amount on growth and development, yield components and quality of maize J Hebei Agric Sci, 2011,15(2):62-64 (in Chinese with English abstract). [本文引用: 1]
Bian XZ, Ge JH, Guo JR, Yan XJ, RenJ, Zhao JB . Biological effects of phosphorus fertilizer application on maize Maize Sci, 2008,16(5):120-122 (in Chinese with English abstract). [本文引用: 1]
ZhaoL, Hou ZA, Li SX, Liu LP, HuangT, ZhangY . Effects of P rate on soil available P, yield and nutrient uptake of maize Maize Sci, 2014,22(2):123-128 (in Chinese with English abstract). [本文引用: 1]
WangP, MouP, Li YB . Review of root nutrient foraging plasticity and root competition of plants Chin J Plant Ecol, 2012,36:1184-1196 (in Chinese with English abstract). [本文引用: 1]
Wang KJ, Zheng HJ, Liu KC, Zhang JW, Dong ST, Hu CH . Evolution of maize root distribution in space-time during maize varieties replacing in china J Plant Ecol, 2001,25:472-475 (in Chinese with English abstract). [本文引用: 1]
Yin BZ, Zhen WC, FengY . Effects of subsoiling-seeding on root physiological indices, water-saving and yield-increasing behaviors in summer maize ( Zea mays L.) in Haihe Lowland Plain of China Acta Agron Sin, 2015,41:623-632 (in Chinese with English abstract). [本文引用: 1]
Maddonni GA, ChelleM, Drouet JL, AndrieuB . Light interception of contrasting azimuth canopies under square and rectangular plant spatial distributions: simulations and crop measurements , 2001,70:1-13. [本文引用: 1]
Zhang RF, Yang HS, Fan XY, Zhang HY, Liu BL, LiuJ . Effects of phosphorus application depths on its uptake and utilization in spring maize under subsoiling tillage Plant Nutr Fert Sci, 2018,24:880-887 (in Chinese with English abstract). [本文引用: 2]
Jin JY, HeP, Liu HL, Li WJ, Huang SW, Wang XF . Comparison of nitrogen absorption, yield and quality between high-starch and common corn as affected by nitrogen application plant Plant Nutr Fert Sci, 2004,10:568-573 (in Chinese with English abstract). [本文引用: 1]
ZhaoY, Tong YA, Zhao HB . Effects of different N rates on nutrients accumulation, transformation and yield of summer maize Plant Nutr Fert Sci, 2006,12:622-627 (in Chinese with English abstract). [本文引用: 1]
Yu XF, Gao JL, YeJ, Wang ZJ, Sun JY, Hu SP, Su ZJ . Effects of deep loosening with nitrogen deep application on root growth, grain yield and nitrogen use efficiency of super high-yield spring maize Maize Sci, 2013,21(1):114-119 (in Chinese with English abstract). [本文引用: 1]
ZhaoW, SongC, ZhouP, Wang JY, XuF, YeF, Wang XC, Yang WY . Effects of phosphorus application rates and depths on P utilization and loss risk in a maize-soybean intercropping system Chin J Appl Ecol, 2018,29:1205-1214 (in Chinese with English abstract). [本文引用: 1]
Zhao YL, Yang CS, WangQ, Liu TX, Li CH . Effects of phosphorus application depth on yield and nutrient uptake of summer maize Sci Agric Sin, 2010,43:4805-4813 (in Chinese with English abstract). [本文引用: 1]