删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应

本站小编 Free考研考试/2021-12-26

廖萍1, 刘磊1, 何宇轩1, 唐刚1, 张俊2, 曾勇军1, 吴自明1, 黄山,1,*1 教育部和江西省作物生理生态与遗传育种重点实验室/江西农业大学, 江西南昌 330045
2 中国农业科学院作物科学研究所, 北京 100081

Interactive effects of liming and straw incorporation on yield and nitrogen uptake in a double rice cropping system

LIAO Ping1, LIU Lei1, HE Yu-Xuan1, TANG Gang1, ZHANG Jun2, ZENG Yong-Jun1, WU Zi-Ming1, HUANG Shan,1,* 1 Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

通讯作者: *黄山, E-mail: ecohs@126.com

收稿日期:2019-04-1接受日期:2019-08-9网络出版日期:2019-09-03
基金资助:本研究由国家自然科学基金项目.31701383
国家重点研发计划项目资助.2018YFD0301102


Received:2019-04-1Accepted:2019-08-9Online:2019-09-03
Fund supported: This work was supported by the National Natural Science Foundation of China.31701383
National Key Research and Development Program of China.2018YFD0301102

作者简介 About authors
E-mail:763979314@qq.com。










摘要
红壤稻田面临土壤酸化和肥力偏低的双重挑战。施石灰和秸秆还田分别是稻田土壤酸化改良和培肥的有效措施, 但二者的互作效应尚不清楚。本研究连续4年(2015—2018年)在江西省开展施石灰和秸秆还田双因素田间定位试验, 旨在探明施石灰和秸秆还田对红壤双季稻田水稻产量和氮素吸收的互作效应。结果表明, 施石灰和秸秆还田均显著提高了早、晚稻的产量和氮素吸收, 且二者具显著的协同促进效应。秸秆还田下, 施石灰使早稻产量和氮素吸收分别增加10.7%和15.5%; 而在秸秆不还田下, 增幅仅分别为4.4%和9.7%。秸秆还田下, 石灰使晚稻产量和氮素吸收分别提高18.7%和24.6%; 但在秸秆不还田下, 增幅则分别为10.5%和5.7%。施石灰对早、晚稻产量和氮素吸收的促进效应随试验年限的增加而减弱。石灰对土壤pH值的提升效应随试验年限的延长显著降低。试验4年后, 石灰对土壤有机质和全氮含量均无显著影响; 秸秆还田显著提高了土壤有机质含量, 而对全氮含量无显著影响。因此, 秸秆还田配施石灰能够协同实现双季稻增产、土壤酸化改良与培肥。本研究表明在此酸性的红壤双季稻田上每4年左右施用一次石灰为宜。
关键词: 土壤酸化;秸秆还田;石灰;双季稻;产量;氮素吸收

Abstract
Soil acidification and low fertility limit crop productivity in red paddy soils. Liming and straw incorporation are effective practices to alleviate soil acidification and improve soil fertility, respectively, while their interaction is still unclear. A four-year field experiment was conducted in a double rice cropping system with red paddy soil in Jiangxi province to examine the interactive effect of liming and straw incorporation on rice yield and nitrogen (N) uptake from 2015 to 2018. Either liming or straw incorporation increased grain yield and N uptake in both early and late rice seasons. Lime application increased yield and N uptake by 10.7% and 15.5% under straw incorporation, while by 4.4% and 9.7% with straw removal in the early rice season, respectively. In contrast, liming enhanced yield and N uptake by 18.7% and 24.6% in the straw-incorporated treatments in the late rice season, respectively, whereas only by 10.5% and 5.7% in the straw-removed treatments. The effect of liming on enhancing grain yield, N uptake and soil pH for both early and late rice diminished in the present of time. Neither soil organic matter nor total N content was significantly affected by liming after the four-year experiment. Straw incorporation significantly increased soil organic matter, but had no effect on total N. Therefore, limes should be applied along with straw incorporation to simultaneously increase double rice yield, alleviate soil acidification, and improve soil fertility on acidic paddies. Besides, our results suggest that limes should be applied approximately every four years in the double rice cropping system with acidic red soil.
Keywords:soil acidification;straw incorporation;liming;double rice;grain yield;nitrogen uptake


PDF (937KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
廖萍, 刘磊, 何宇轩, 唐刚, 张俊, 曾勇军, 吴自明, 黄山. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(1): 84-92. doi:10.3724/SP.J.1006.2020.92016
LIAO Ping, LIU Lei, HE Yu-Xuan, TANG Gang, ZHANG Jun, ZENG Yong-Jun, WU Zi-Ming, HUANG Shan. Interactive effects of liming and straw incorporation on yield and nitrogen uptake in a double rice cropping system [J]. Acta Agronomica Sinica, 2020, 46(1): 84-92. doi:10.3724/SP.J.1006.2020.92016


全球近一半人口以稻米为主食, 中国是世界上最大的水稻生产国, 稻米产量占全球总产量的21.8% (http://www.fao.org/faostat/en/#data/QC)。南方双季稻区光温水资源丰富, 是我国重要的稻作区域, 对保障我国粮食安全具有重要意义(http://www. zzys.moa.gov.cn/)[1], 但其土壤pH较低, 加之长期施用氮肥, 稻田土壤酸化严重, 已经制约了水稻产量的持续提升[2,3]

施用石灰是一种改良土壤酸化和提高作物产量的有效措施[4,5]。其作用主要表现为提高土壤pH值和钙盐含量, 降低土壤Al3+的毒害作用[6]。适量施用石灰能够提高土壤缓冲能力, 促进水稻根系生长及其对土壤养分的吸收利用[7]。还能够提高土壤微生物数量和酶活性, 促进有机物的矿化速率[8]。然而, 单施石灰虽对治理稻田土壤酸化效果显著, 但在提升酸性土壤肥力方面作用有限[4]

由于双季稻区周年产量较高, 秸秆资源丰富, 是一种重要的土壤有机培肥资源[9]。随着机械收获的普及, 直接原位还田是目前最经济有效的秸秆资源化利用方式[10]。研究表明[11,12], 长期秸秆还田能够提高水稻产量和改善土壤肥力。然而, 在短期内, 秸秆还田对水稻的增产效果不明显[13,14]。主要是因为秸秆碳氮比较高, 直接还田后短期内会引起微生物对氮素的固定, 不利于水稻生长[8,13,15]。特别是在晚稻季, 由于前后茬时间紧张, 早稻秸秆还田后快速腐解往往会抑制晚稻分蘖[14]。而且, 秸秆的碱度较低, 秸秆还田在缓解土壤酸化方面作用有限[16,17]。因此, 我们假设, 石灰和秸秆配施在利用石灰改善土壤酸化和促进有机物分解的同时, 能够缓解短期内秸秆还田的不利影响并发挥其培肥地力的功能, 对水稻生长产生协同促进作用。以往的研究主要侧重对石灰或秸秆还田效应的单独分析, 对两者的互作效应关注较少[4,18]。我们在酸性的红壤性双季稻田上开展石灰和秸秆还田两因素定位试验, 旨在明确二者对水稻产量、氮素吸收和土壤性状的互作效应以及石灰的有效作用年限, 为南方双季稻系统的持续增产、土壤酸化改良和培肥提供科学依据。

1 材料与方法

1.1 试验地概况

江西省宜春市上高县泗溪镇曾家村(28°31'N, 115°09'E)。试验地属于典型的亚热带气候, 年平均降雨量和气温分别为1650 mm和17.5°C。种植制度为冬季休闲-早稻-晚稻。供试土壤为第四纪红色黏土发育而成的水稻土, 试验前耕层0~15 cm土壤容重1.1 g cm-3、pH 5.2、有机质18.1 g kg-1、全氮1.1 g kg-1、全磷0.4 g kg-1、全钾3.9 g kg-1、碱解氮115.0 mg kg-1、有效磷15.9 mg kg-1、有效钾64.0 mg kg-1、土壤黏粒含量(< 0.002 mm) 17.0%。

1.2 试验设计

采用二因素完全随机区组设计, 小区面积为25 m2。共设置4个处理, 分别为: 1)对照(CK), 不施石灰、秸秆不还田; 2)施用石灰处理(L), 仅在2015年早稻翻耕前施用一次, 施用量为2.1 t hm-2[19], 秸秆不还田; 3)秸秆还田处理(RS), 水稻收获后, 将秸秆切成约10 cm小段后均匀抛撒, 不施石灰; 4)秸秆还田配施石灰处理(L+RS), 石灰和秸秆施用量及施用方式分别同L处理和RS处理。每个处理3次重复。4个处理的氮磷钾化肥施用量和施用方式相同。氮肥、磷肥和钾肥早稻施用量分别为纯氮120 kg hm-2、纯磷33 kg hm-2和纯钾62 kg hm-2; 晚稻施用量分别为纯氮150 kg hm-2、纯磷33 kg hm-2和纯钾62 kg hm-2。早晚稻均以尿素为氮肥, 基肥、分蘖肥和穗肥施用比例为5∶2∶3; 以钙镁磷肥为磷肥, 作基肥一次性施用; 以氯化钾为钾肥, 基肥和穗肥施用比例为5∶5。连续4年定位试验早稻品种均为常规籼稻中嘉早17, 晚稻品种均为杂交籼稻五优308。采用水育秧方式, 2015—2018年早稻播种日期分别为3月22日、3月20日、3月23日和3月22日, 移栽日期分别为4月24日、4月21日、4月22日和4月16日; 晚稻播种日期分别为6月24日、6月22日、6月27日和6月24日, 移栽日期分别为7月22日、7月20日、7月26日和7月20日。早、晚稻的栽插密度分别为13.2 cm × 23.1 cm和13.2 cm × 26.4 cm, 基本苗分别为每穴4株和2株。采用人工插秧和收获。早、晚稻季田间水分管理均采用移栽后浅水, 分蘖末期排水晒田, 复水后干湿交替直至收获前1周左右断水。冬季休闲期田间水分自然排干。病虫草害防控按照当地高产栽培模式进行。

1.3 指标测定方法

1.3.1 产量及其构成和生物量 在水稻成熟期, 调查每个小区120蔸计算有效穗, 按照平均数法从各小区取5蔸水稻, 手工脱粒, 利用水漂法考察穗粒结构。另取各小区5蔸水稻, 将地上部植株从基部剪除后洗净, 将茎鞘、叶和穗分开, 于105°C杀青30 min后, 70°C烘干至恒重。从各小区收割10 m2水稻机械脱粒后称重, 并随机取1 kg稻谷于70°C烘干测定含水量, 折合14%标准含水量的水稻产量。

1.3.2 氮素吸收 将植株烘干称重后, 机械粉碎, 过0.25 mm筛。采用Kjeltec 8400全自动凯氏定氮仪(福斯集团公司, 丹麦)测定植株各器官氮素含量, 并根据各器官干物质重和氮素含量计算地上部氮素吸收总量。

1.3.3 土壤性状 收获晚稻后, 于各小区采用五点法取0~15 cm耕层土样, 自然风干后, 过2 mm筛保存, 待测相关土壤属性。采用PHS-3C pH测试仪(上海仪电科学仪器股份有限公司, 中国)测定土壤pH值; 重铬酸钾容量法测定土壤有机质含量; Kjeltec 8400全自动凯氏定氮仪(福斯集团公司, 丹麦)测定土壤全氮含量[19]。每年均测定土壤pH值, 而仅在2018年晚稻收获后测定土壤有机质和全氮含量。

1.4 统计分析

采用SPSS 18.0软件(SPSS Inc., 美国)进行统计分析, 于P < 0.05水平进行显著性检验。对于早稻和晚稻产量及其构成、地上部氮素吸收量、周年产量、周年氮素吸收和土壤pH值采用石灰(L)、秸秆还田(RS)和年份(Y)三因素方差分析。对于4年总产量、4年总氮素吸收、土壤有机质和全氮含量采用L和RS二因素方差分析。

2 结果与分析

2.1 施石灰和秸秆还田对早稻的影响

施石灰和秸秆还田均显著提高早稻产量和氮素吸收(表1)。并且二者具显著互作效应。在秸秆还田条件下, 施石灰使早稻产量和氮素吸收分别增加10.7%和15.5%; 在秸秆不还田条件下, 增幅分别为4.4%和9.7% (图1)。施石灰和试验年限对早稻产量和氮素吸收具有显著互作效应。施石灰对早稻产量和氮素吸收的促进效应在2016年最大, 之后增幅随着试验年限的增加逐渐降低, 在2018年施石灰对早稻产量和氮素吸收无显著影响。从产量构成来看, 施石灰显著提高早稻的有效穗数和每穗粒数, 对结实率和千粒重无显著性影响。秸秆还田亦显著提高了早稻的有效穗数和每穗粒数, 但显著降低了结实率。施石灰和秸秆还田对早稻各产量构成因素均无显著的互作效应。

Table 1
表1
表1施石灰和秸秆还田对双季早稻产量及其构成、氮素吸收的影响(F值)
Table 1Effects of liming and straw incorporation on grain yield and its components, and N uptake in early rice (F-values)
变异来源
Source of variations
有效穗
Effective panicle
每穗粒数
Spikelets per panicle
结实率
Seed-setting rate
千粒重
1000-grain weight
产量
Grain yield
氮素吸收
N uptake
石灰 Liming (L)16.0**20.1**0.21.333.5**48.0**
秸秆还田 Straw incorporation (RS)154.2**15.6**7.8**0111.3**133.5**
年份 Year (Y)100.0**7.9**87.8**11.8**64.1**111.0**
石灰×秸秆还田 L×RS3.01.00.90.67.2*4.8*
石灰×年份 L×Y2.13.4*3.6*0.34.6**5.4**
秸秆还田×年份 RS×Y1.44.8**1.61.14.7**5.2**
石灰×秸秆还田×年份 L×RS×Y0.20.50.50.31.21.6
* and **: significant at the 0.05 and 0.01 probability levels, respectively.
***分别表示在0.05和0.01概率水平下差异显著。

新窗口打开|下载CSV

图1

新窗口打开|下载原图ZIP|生成PPT
图1施石灰和秸秆还田对双季早稻产量及其构成、氮素吸收的影响(2015-2018)

CK、L、RS和L+RS分别表示对照、单施石灰、秸秆还田、秸秆还田配施石灰。误差线表示平均值的标准差(n = 3)。同一年份标的不同小写字母的柱值在不同处理间差异显著(P < 0.05)。
Fig. 1Effects of liming and straw incorporation on grain yield and its components, and N uptake in early rice (2015-2018)

CK, L, RS, and L+RS mean control, liming, straw incorporation, and straw incorporation with liming, respectively. Error bars represent the standard deviation of the mean (n = 3). Bars superscripted by different letters are significantly different at P < 0.05 in the same year.


2.2 施石灰和秸秆还田对双季晚稻的影响

与早稻结果相似, 施石灰和秸秆还田均显著提高晚稻产量和氮素吸收, 且二者具显著互作效应(表2)。在秸秆还田条件下, 施石灰使晚稻产量和氮素吸收分别提高18.7%和24.6%; 而在秸秆不还田条件下, 增幅分别为10.5%和5.7% (图2)。另外, 施石灰和试验年限对晚稻产量和氮素吸收也具有显著互作效应。施用石灰对晚稻产量的促进效应在2015年最大(+26.7%), 氮素吸收在2016年增幅最大(+30.7%), 之后增幅逐渐降低, 在2018年施石灰对晚稻产量和氮素吸收无显著影响。施石灰显著提高了晚稻的有效穗数和每穗粒数, 而对结实率无显著性影响。秸秆还田显著提高了晚稻的每穗粒数, 对有效穗数和千粒重均无显著影响, 但显著降低晚稻结实率。施石灰和秸秆还田对晚稻有效穗数具有显著的协同促进效应。施石灰和秸秆还田对晚稻有效穗数和氮素吸收正的互作效应随试验年限的增加表现降低趋势(L×RS×Y: P < 0.01)。在秸秆还田条件下, 施用石灰对晚稻氮素吸收的促进效应在2016年最大(46.7%), 有效穗数在2015年增幅最大, 达27.3% (图2)。

Table 2
表2
表2施石灰和秸秆还田对双季晚稻产量及其构成、氮素吸收的影响(F值)
Table 2Effects of liming and straw incorporation on grain yield and its components, and N uptake in late rice (F-values)
变异来源
Source of variations
有效穗
Effective panicle
每穗粒数
Spikelets per panicle
结实率
Seed-setting rate
千粒重
1000-grain weight
产量
Grain yield
氮素吸收
N uptake
石灰 Liming (L)94.3**45.2**1.19.7**125.7**93.1**
秸秆还田 Straw incorporation (RS)0.969.5**22.2**0.418.4**65.7**
年份 Year (Y)67.8**15.6**37.7**11.5**49.4**26.1**
石灰×秸秆还田 L×RS25.9**0.40.60.310.4**38.0**
石灰×年份L×Y10.3**5.5**2.21.120.8**15.2**
秸秆还田×年份RS×Y2.33.6*7.5**1.90.710.3**
石灰×秸秆还田×年份 L×RS×Y6.5**0.10.70.21.26.1**
* and ** significant at the 0.05 and 0.01 probability levels, respectively.
***分别表示在0.05和0.01概率水平下差异显著。

新窗口打开|下载CSV

图2

新窗口打开|下载原图ZIP|生成PPT
图2石灰和秸秆还田对双季晚稻产量及其构成、氮素吸收的影响(2015-2018)

缩写同图1。误差线表示平均值的标准差(n = 3)。同一年份标的不同小写字母的柱值在不同处理间差异显著(P < 0.05)。
Fig. 2Effects of liming and straw incorporation on grain yield and its components, and N uptake in late rice (2015-2018)

Abbreviations are the same as those given in Fig. 1. Error bars represent the standard deviation of the mean (n = 3). Bars superscripted by different letters are significantly different at P < 0.05 in the same year.


2.3 施石灰和秸秆还田对双季稻周年产量和氮素吸收的影响

施石灰和秸秆还田均显著提高周年产量和周年氮素吸收, 且二者具显著互作效应(图3-a, b)。在秸秆还田条件下, 施石灰使周年产量和周年氮素吸收分别提高15.0%和20.1%; 而在秸秆不还田条件下, 增幅分别为7.9%和7.5%。施石灰和试验年限对周年产量和周年氮素吸收均具有显著互作效应。施石灰对周年产量和周年氮素吸收的促进效应在2016年最大, 之后增幅随着试验年限的增加逐渐降低, 在2018年施石灰对周年产量和周年氮素吸收无显著影响。

图3

新窗口打开|下载原图ZIP|生成PPT
图3施石灰和秸秆还田对双季稻周年产量(a)、周年氮素吸收(b)、4年总产量(c)和总氮素吸收(d)的影响

缩写同图1。误差线表示平均值的标准差(n = 3)。同一年份标的不同小写字母的柱值在不同处理间差异显著(P < 0.05)。
Fig. 3Effects of liming and straw incorporation on annual yield (a), annual N uptake (b), total yield (c), and total N uptake (d) over the 4-year

Abbreviations are the same as those given in Fig. 1. Error bars represent the standard deviation of the mean (n = 3). Bars superscripted by different letters are significantly different at P < 0.05 in the same year.


施石灰和秸秆还田均显著提高4年的总产量和总氮素吸收, 且二者具显著互作效应(图3-c, d)。在秸秆还田条件下, 施石灰使总产量和总氮素吸收分别提高15.0%和20.1%; 而在秸秆不还田条件下, 增幅分别为7.9%和7.5%。

2.4 施石灰和秸秆还田对土壤pH值的影响

施石灰和秸秆还田均显著提高土壤pH值, 但无显著互作效应(图4)。施石灰与试验年限对土壤pH值有显著的互作效应。随着试验年限的增加, 施石灰对土壤pH值的正效应减弱, 到2018年4个处理间无显著差异。

图4

新窗口打开|下载原图ZIP|生成PPT
图4施石灰和秸秆还田对土壤pH值的影响(2015-2018)

缩写同图1。误差线表示平均值的标准差(n = 3)。同一年份标的不同小写字母的柱值在不同处理间差异显著(P < 0.05)。
Fig. 4Effects of liming and straw incorporation on soil pH (2015-2018)

Abbreviations are the same as those given in Fig. 1. Error bars represent the standard deviation of the mean (n = 3). Bars superscripted by different letters are significantly different at P < 0.05 in the same year.


2.5 施石灰和秸秆还田对土壤有机质和全氮含量的影响

试验进行4年后, 施石灰对土壤有机质无显著影响, 而秸秆还田显著增加了土壤有机质(图5-a)。施石灰和秸秆还田对土壤全氮均无显著影响(图5-b), 且对土壤有机质和全氮含量均无显著的互作效应。

图5

新窗口打开|下载原图ZIP|生成PPT
图5施石灰和秸秆还田对土壤有机质(a)和全氮(b)含量的影响(2018年)

缩写同图1。误差线表示平均值的标准差(n = 3)。同一年份标的不同小写字母的柱值在不同处理间差异显著(P < 0.05)。
Fig. 5Effects of liming and straw incorporation on soil organic matter (a) and total N content (b) (2018)

Abbreviations are the same as those given in Fig.1. Error bars represent the standard deviation of the mean (n = 3). Bars superscripted by different letters are significantly different at P < 0.05 in the same year.


3 讨论

3.1 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应

与前人研究一致, 秸秆还田能够显著提高双季早稻的产量和氮素吸收[20]。原因主要是: (1)双季稻系统较长的冬闲期有利于晚稻秸秆还田后的腐解矿化[8]。本研究也表明, 晚稻秸秆还田显著提高了第2年早稻的有效穗数, 说明晚稻秸秆还田并不会导致氮素固定和抑制早稻的分蘖。(2)秸秆自身氮素以及其他营养元素的矿化分解能够提高养分供给[14,21]。(3)秸秆还田能够改善土壤结构, 促进根系发育及其对土壤养分的吸取[22,23]。此外, 秸秆为土壤微生物提供了大量的碳源, 提高了土壤微生物的数量和活性[8,24]。然而, 与我们的结果不同, 有研究表明[13,14], 秸秆还田对双季晚稻无显著增产效应。主要是因为, 在双季稻系统早稻秸秆还田到晚稻秧苗移栽仅间隔10 d左右, 加之气温较高, 大量高碳氮比秸秆的快速腐解可能会导致微生物对土壤氮素的固定、水稻前期根系活力下降, 从而抑制水稻分蘖, 最终影响水稻穗数[8,14,25]。与前人研究结果相似, 本研究也发现秸秆还田导致2015—2017年晚稻有效穗数下降(图2-c), 但是晚稻产量却显著增加(表2)。可能是虽然秸秆还田降低了晚稻有效穗数, 但土壤微生物前期固定的氮素之后又被逐渐释放, 促进了后期水稻的穗分化、光合作用和灌浆速率, 从而提高了每穗粒数和产量[8]。另外, 笔者推测, 稻田土壤肥力的差异以及不同品种的生长发育和需肥特性不同也可能是导致早稻秸秆还田对晚稻产量效应不一致的原因。有研究表明[26], 秸秆还田在低肥力土壤上对土壤有机质含量提升效果更显著, 有利于水稻增产。

本研究表明, 在酸性稻田上施用石灰能够显著提高早、晚稻的产量和氮素吸收, 且和秸秆还田具有显著的协同促进作用, 这与我们的假设一致。施石灰和秸秆还田对早稻产量正的互作效应主要是由于二者协同促进了地上部氮素吸收(表1)。这有利于促进光合作用和同化物向籽粒的转运, 增加水稻产量[8,27]。而晚稻正的互作效应主要是由于施石灰和秸秆还田对有效穗数和氮素吸收具有显著的协同促进效应(表2)。为什么秸秆还田配施石灰能显著促进水稻氮素吸收?主要是因为石灰能够提高土壤碳氮代谢相关的酶活性, 提高有机凋落物和土壤有机质的矿化速率[8,28], 从而缓解秸秆还田对土壤速效氮的固定, 进而促进水稻的氮素吸收和生长以及产量形成。特别是在晚稻季, 施石灰缓解了早稻秸秆还田对晚稻前期分蘖的不利影响, 因此施石灰和秸秆还田对晚稻有效穗数具有正的互作效应。

本研究表明, 施石灰和秸秆还田协同促进双季稻氮素吸收, 但试验4年后土壤全氮含量无显著变化。原因可能是土壤的基础氮素库容较大, 短期内水稻对土壤氮库的影响尚未显现, 需要更长时间才能探测出各处理土壤全氮含量的差异。但可以推测, 如果石灰施用下水稻氮素吸收的增加主要是来自肥料氮(化肥氮或稻草氮), 则石灰能够提高氮肥利用效率、降低环境污染; 如果是土壤氮, 则需要关注土壤氮库的平衡和地力的维持。因此, 下一步研究需要采用15N交叉标记肥料氮和秸秆氮, 以揭示石灰施用条件下水稻氮素吸收的来源[15]。另外, 试验进行4年后, 秸秆还田显著提高了土壤有机质含量, 但在2018年, L、RS和L+RS处理间晚稻产量无显著差异。其一, 随着试验年限的延长, 石灰改良土壤酸化的效果在逐渐减弱, 导致其促进有机物矿化的效果下降[28]。其二, 秸秆还田在晚稻季对水稻生长的负效应大于早稻季, 主要是由于早稻季的秸秆腐解抑制了晚稻的前期分蘖[14]。最后, 秸秆还田虽然能够显著提高土壤有机质, 但对水稻产量的影响还受其他因素的共同作用, 如秸秆的腐解程度、氮素的有效性等[29]。因此, 可能需要更长时间的秸秆还田对土壤培肥的效应才能体现在双季晚稻产量的增加。

3.2 石灰的作用年限

本研究表明, 施石灰和试验年限对双季早、晚稻产量和氮素吸收具有显著互作效应, 早、晚稻产量分别在2016年和2015年增幅最大(图1-a, 图2-a), 氮素吸收均在2016年增幅最大(图1-b, 图2-b), 之后增幅逐渐降低。有研究表明[18], 随着年限的增加, 石灰改良后的酸化土壤容易出现反酸现象。本研究也发现相似结果, 石灰改良土壤酸化的效果逐渐减弱, 且试验第4年(2018年)对土壤pH值无显著影响(图4)。当石灰对土壤pH值的正效应减弱时, 石灰对有机物矿化的促进效果可能也会随之降低, 从而降低养分的释放速率, 减弱其对水稻产量和氮素吸收的促进效应[18,28]。到2018年施石灰对早、晚稻产量和氮素吸收均无显著影响。同时, 三因素方差分析表明, 施石灰和秸秆还田对晚稻氮素吸收的协同促进效应随试验年限的增加也整体表现降低趋势。因此, 随着化肥氮的持续施用, 土壤H+会不断产生中和石灰的碱性, 土壤pH也会随之回落。本研究表明, 在此酸性的红壤稻田每4年左右施用一次石灰为宜。但是, 应该指出, 不同的田块土壤属性不同、初始土壤pH值以及施氮量和产量水平也不同, 导致其对石灰的需要量以及石灰的有效作用年限有所差异[30,31,32]。因此, 应因地制宜根据水稻产量和土壤酸度的响应确定石灰的再次施用时间[18,32]

4 结论

施石灰和秸秆还田能够协同提高双季稻产量, 主要是因为二者协同促进了水稻的氮素吸收。试验4年后, 施石灰对土壤有机质含量无显著性影响, 而秸秆还田显著提高土壤有机质含量。因此, 秸秆还田的同时配施石灰不仅能够提高双季稻产量, 而且能够改良土壤酸化和培肥地力。石灰对稻田土壤酸化的改良效果到第4年已经不显著。对酸化的红壤稻田每4年左右施用一次石灰为宜。但是, 石灰和秸秆还田对双季稻产量的协同促进效应是否能够维持, 且石灰和秸秆配施对土壤的长期培肥效果均需持续监测。

参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Liu S L, Pu C, Ren Y X, Zhao X L, Zhao X, Chen F, Xiao X P, Zhang H L . Yield variation of double-rice in response to climate change in Southern China
Eur J Agron, 2016,81:161-168.

DOI:10.1016/j.eja.2016.09.014URL [本文引用: 1]

Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W, Zhang F S . Significant acidification in major Chinese croplands
Science, 2010,327:1008-1010.

DOI:10.1126/science.1182570URLPMID:20150447 [本文引用: 1]
Soil acidification is a major problem in soils of intensive Chinese agricultural systems. We used two nationwide surveys, paired comparisons in numerous individual sites, and several long-term monitoring-field data sets to evaluate changes in soil acidity. Soil pH declined significantly (P &amp;lt; 0.001) from the 1980s to the 2000s in the major Chinese crop-production areas. Processes related to nitrogen cycling released 20 to 221 kilomoles of hydrogen ion (H+) per hectare per year, and base cations uptake contributed a further 15 to 20 kilomoles of H+ per hectare per year to soil acidification in four widespread cropping systems. In comparison, acid deposition (0.4 to 2.0 kilomoles of H+ per hectare per year) made a small contribution to the acidification of agricultural soils across China.

Miao Y X, Stewart B A, Zhang F S . Long-term experiments for sustainable nutrient management in China: a review
Agron Sustain Dev, 2011,31:397-414.

DOI:10.1051/agro/2010034URL [本文引用: 1]
China is facing one of the largest challenges of this century to continue to increase annual cereal production to about 600 Mt by 2030 to ensure food security with shrinking cropland and limited resources, while maintaining or improving soil fertility, and protecting the environment. Rich experiences in integrated and efficient utilization of different strategies of crop rotation, intercropping, and all possible nutrient resources accumulated by Chinese farmers in traditional farming systems have been gradually abandoned and nutrient management shifted to over-reliance on synthetic fertilizers. China is now the world's largest producer, consumer and importer of chemical fertilizers. Overapplication of nitrogen (N) is common in intensive agricultural regions, and current N-uptake efficiency was reported to be only 28.3, 28.2 and 26.1% for rice, wheat and maize, respectively, and less than 20% in intensive agricultural regions and for fruit trees or vegetable crops. In addition to surface and groundwater pollution and greenhouse gas emissions, over-application of N fertilizers has caused significant soil acidification in major Chinese croplands, decreasing soil pH by 0.13 to 2.20. High yield as a top priority, small-scale farming, lack of temporal synchronization of nutrient supply and crop demand, lack of effective extension systems, and hand application of fertilizers by farmers are possible reasons leading to the over-application problems. There is little doubt that current nutrient management practices are not sustainable and more efficient management systems need to be developed. A review of long-term experiments conducted around the world indicated that chemical fertilizer alone is not enough to improve or maintain soil fertility at high levels and the soil acidification problem caused by overapplication of synthetic N fertilizers can be reduced if more fertilizer N is applied as NO (3) (-) relative to ammonium- or urea-based N fertilizers. Organic fertilizers can improve soil fertility and quality, but long-term application at high rates can also lead to more nitrate leaching, and accumulation of P, if not managed well. Well-managed combination of chemical and organic fertilizers can overcome the disadvantages of applying single source of fertilizers and sustainably achieve higher crop yields, improve soil fertility, alleviate soil acidification problems, and increase nutrient-use efficiency compared with only using chemical fertilizers. Crop yield can be increased through temporal diversity using crop rotation strategies compared with continuous cropping and legume-based cropping systems can reduce carbon and nitrogen losses. Crop yield responses to N fertilization can vary significantly from year to year due to variation in weather conditions and indigenous N supply, thus the commonly adopted prescriptive approach to N management needs to be replaced by a responsive in-season management approach based on diagnosis of crop growth, N status and demand. A crop sensor-based in-season site-specific N management strategy was able to increase Nuptake efficiency by 368% over farmers' practices in the North China Plain.
Combination of these well-tested nutrient management principles and practices with modern crop management technologies is needed to develop sustainable nutrient management systems in China that can precisely match field-to-field and year-to-year variability in nutrient supply and crop demand for both single crops and crop rotations to not only improve nutrient-use efficiency but also increase crop yieldand protect the environment. In addition, innovative and effective extension and service-providing systems to assist farmers in adopting and applying new management systems and technologies are also crucially important for China to meet the grand challenge of food security, nutrient-use efficiency and sustainable development.

徐仁扣, 李九玉, 周世伟, 徐明岗, 沈仁芳 . 我国农田土壤酸化调控的科学问题与技术措施
中国科学院院刊, 2018,33:160-167.

[本文引用: 3]

Xu R K, Li J Y, Zhou S W, Xu M G, Shen R F . Scientific issues and controlling strategies of soil acidification of croplands in China
China Acad J Electr Publish House, 2018,33:160-167 (in Chinese with English abstract).

[本文引用: 3]

Holland J E, Bennett A E, Newton A C, White P J, McKenzie B M, George T S, Pakeman R J, Bailey J S, Fornara D A, Hayes R C . Liming impacts on soils, crops and biodiversity in the UK: a review
Sci Total Environ, 2018,610:316-332.

DOI:10.1016/j.scitotenv.2017.08.020URLPMID:28806549 [本文引用: 1]
Fertile soil is fundamental to our ability to achieve food security, but problems with soil degradation (such as acidification) are exacerbated by poor management. Consequently, there is a need to better understand management approaches that deliver multiple ecosystem services from agricultural land. There is global interest in sustainable soil management including the re-evaluation of existing management practices. Liming is a long established practice to ameliorate acidic soils and many liming-induced changes are well understood. For instance, short-term liming impacts are detected on soil biota and in soil biological processes (such as in N cycling where liming can increase N availability for plant uptake). The impacts of liming on soil carbon storage are variable and strongly relate to soil type, land use, climate and multiple management factors. Liming influences all elements in soils and as such there are numerous simultaneous changes to soil processes which in turn affect the plant nutrient uptake; two examples of positive impact for crops are increased P availability and decreased uptake of toxic heavy metals. Soil physical conditions are at least maintained or improved by liming, but the time taken to detect change varies significantly. Arable crops differ in their sensitivity to soil pH and for most crops there is a positive yield response. Liming also introduces implications for the development of different crop diseases and liming management is adjusted according to crop type within a given rotation. Repeated lime applications tend to improve grassland biomass production, although grassland response is variable and indirect as it relates to changes in nutrient availability. Other indicators of liming response in grassland are detected in mineral content and herbage quality which have implications for livestock-based production systems. Ecological studies have shown positive impacts of liming on biodiversity; such as increased earthworm abundance that provides habitat for wading birds in upland grasslands. Finally, understanding of liming impacts on soil and crop processes are explored together with functional aspects (in terms of ecosystems services) in a new qualitative framework that includes consideration of how liming impacts change with time. This holistic approach provides insights into the far-reaching impacts that liming has on ecosystems and the potential for liming to enhance the multiple benefits from agriculturally managed land. Recommendations are given for future research on the impact of liming and the implications for ecosystem services.

Jiang Y, Liao P, van Gestel N, Sun Y N, Zeng Y J, Huang S, Zhang W J, van Groenigen K J . Lime application lowers the global warming potential of a double rice cropping system
Geoderma, 2018,325:1-8.

DOI:10.1016/j.geoderma.2018.03.034URL [本文引用: 1]

Ai C, Liang G Q, Sun J W, He P, Tang S H, Yang S H, Zhou W, Wang X B . The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition
Biol Fert Soils, 2015,51:465-477.

DOI:10.1007/s00374-015-0994-3URL [本文引用: 1]

Liao P, Huang S, van Gestel N, Zeng Y J, Wu Z M, van Groenigen K J . Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system
Field Crops Res, 2018,216:217-224.

DOI:10.1016/j.fcr.2017.11.026URL [本文引用: 8]

Wang B, Shen X, Chen S, Bai Y C, Yang G, Zhu J P, Shu J C, Xue Z T . Distribution characteristics, resource utilization and popularizing demonstration of crop straw in Southwest China: a comprehensive evaluation
Ecol Indic, 2018,93:998-1004.

DOI:10.1016/j.ecolind.2018.05.081URL [本文引用: 1]

张国, 逯非, 赵红, 杨广斌, 王效科, 欧阳志云 . 我国农作物秸秆资源化利用现状及农户对秸秆还田的认知态度
农业环境科学学报, 2017,36:981-988.

[本文引用: 1]

Zhang G, Lu F, Zhao H, Yang G B, Wang X K, Ou-Yang Z Y . Residue usage and farmers’ recognition and attitude toward residue retention in China's croplands
J Agro-Environ Sci, 2017,36:981-988 (in Chinese with English abstract).

[本文引用: 1]

Li H, Dai M W, Dai S L, Dong X J . Current status and environment impact of direct straw return in China’s cropland-A review
Ecotox Environ Safe, 2018,159:193-300.

[本文引用: 1]

Han X, Xu C, Dungait J A, Bol R, Wang X J, Wu W L, Meng F Q . Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis
Biogeosciences, 2018,15:1933-1946.

DOI:10.5194/bg-15-1933-2018URL [本文引用: 1]

Singh B, Shan Y H, Johnson-Beebout S E, Singh Y, Buresh R J . Crop residue management for lowland rice-based cropping systems in Asia
Adv Agron, 2008,98:117-199.

[本文引用: 3]

曾研华, 吴建富, 曾勇军, 范呈根, 谭雪明, 潘晓华, 石庆华 . 机收稻草全量还田减施化肥对双季晚稻养分吸收利用及产量的影响
作物学报, 2018,44:454-462.

DOI:10.3724/SP.J.1006.2018.00454URL [本文引用: 6]
稻草还田替代部分化肥对推进化肥零增长行动具有重要的意义。研究等量氮磷钾养分条件下连续稻草还田减施化肥对双季晚稻产量及养分吸收利用的影响, 可为南方稻区稻草资源的合理利用和水稻高产、养分高效管理提供参考。本试验基于江西温圳国家级耕地质量监测点双季稻稻草还田定位试验, 以超级杂交晚稻五丰优T025为试材, 设稻草还田减施化肥(SI+NPK)、稻草烧灰还田减施化肥(SB+NPK)和单施化肥(NPK)等处理, 以稻草不还田不施化肥(CK)为对照, 施肥处理中氮磷钾养分用量相等。研究了不同处理对双季晚稻产量、氮磷钾素养分吸收利用的影响。结果表明, 在等量氮磷钾养分施用条件下, 连续6年早稻稻草还田处理有利于协调双季晚稻穗粒结构, 协同维持晚稻产量稳定, 保持与其余施肥处理产量基本持平。与NPK相比, SI+NPK处理植株各器官中N、P、K含量及总吸收量在生育前期均较低, 生育后期较高, 且P、K养分吸收量差异显著; SI+NPK可显著提高水稻N、P、K养分收获指数、农学效率、回收率和养分偏生产力, 而SB+NPK只比NPK显著提高了K养分收获指数、农学效率、回收率和养分偏生产力。此外, SI+NPK也比SB+NPK提高了氮、磷、钾养分收获指数、农学效率、回收率及偏生产力。总之, 早稻稻草还田替代部分化肥可稳定晚稻产量水平及提高养分利用效率, 实现南方稻区土壤养分资源的高效利用。
Zeng Y H, Wu J F, Zeng Y J, Fan C G, Tan X M, Pan X H, Shi Q H . Effects of straw incorporation with reducing chemical fertilizers on nutrient absorption and utilization and grain yield of double-cropping late rice under mechanical harvest
Acta Agron Sin, 2018,44:454-462 (in Chinese with English abstract).

DOI:10.3724/SP.J.1006.2018.00454URL [本文引用: 6]
稻草还田替代部分化肥对推进化肥零增长行动具有重要的意义。研究等量氮磷钾养分条件下连续稻草还田减施化肥对双季晚稻产量及养分吸收利用的影响, 可为南方稻区稻草资源的合理利用和水稻高产、养分高效管理提供参考。本试验基于江西温圳国家级耕地质量监测点双季稻稻草还田定位试验, 以超级杂交晚稻五丰优T025为试材, 设稻草还田减施化肥(SI+NPK)、稻草烧灰还田减施化肥(SB+NPK)和单施化肥(NPK)等处理, 以稻草不还田不施化肥(CK)为对照, 施肥处理中氮磷钾养分用量相等。研究了不同处理对双季晚稻产量、氮磷钾素养分吸收利用的影响。结果表明, 在等量氮磷钾养分施用条件下, 连续6年早稻稻草还田处理有利于协调双季晚稻穗粒结构, 协同维持晚稻产量稳定, 保持与其余施肥处理产量基本持平。与NPK相比, SI+NPK处理植株各器官中N、P、K含量及总吸收量在生育前期均较低, 生育后期较高, 且P、K养分吸收量差异显著; SI+NPK可显著提高水稻N、P、K养分收获指数、农学效率、回收率和养分偏生产力, 而SB+NPK只比NPK显著提高了K养分收获指数、农学效率、回收率和养分偏生产力。此外, SI+NPK也比SB+NPK提高了氮、磷、钾养分收获指数、农学效率、回收率及偏生产力。总之, 早稻稻草还田替代部分化肥可稳定晚稻产量水平及提高养分利用效率, 实现南方稻区土壤养分资源的高效利用。

Pan F F, Yu W T, Ma Q, Zhou H, Jiang C M, Xu Y G, Ren J F . Influence of 15N-labeled ammonium sulfate and straw on nitrogen retention and supply in different fertility soils
Biol Fert Soils, 2017,53:303-313.

DOI:10.1007/s00374-017-1177-1URL [本文引用: 2]

孟红旗, 刘景, 徐明岗, 吕家珑, 周宝库, 彭畅, 石孝均, 黄庆海, 王伯仁 . 长期施肥下我国典型农田耕层土壤的pH演变
土壤学报, 2013,50:1109-1116.

[本文引用: 1]

Meng H Q, Liu J, Xu M G, Lyu J L, Zhou B K, Peng C, Shi X J, Huang Q H, Wang B R . Evolution of pH in top soils of typical Chinese croplands under long-term fertilization
Acta Pedol Sin, 2013,50:1109-1116 (in Chinese with English abstract).

[本文引用: 1]

孟红旗, 吕家珑, 徐明岗, 蔡泽江, 王伯仁 . 有机肥的碱度及其减缓土壤酸化的机制
植物营养与肥料学报, 2012,18:1153-1160.

[本文引用: 1]

Meng H Q, Lyu J L, Xu M G, Cai Z J, Wang B R . Alkalinity of organic manure and its mechanism for mitigating soil acidification
Plant Nutr Fert Sci, 2012,18:1153-1160 (in Chinese with English abstract).

[本文引用: 1]

Goulding K W T . Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom
Soil Use Manage, 2016,32:390-399.

DOI:10.1111/sum.12270URLPMID:27708478 [本文引用: 4]
Soil acidification is caused by a number of factors including acidic precipitation and the deposition from the atmosphere of acidifying gases or particles, such as sulphur dioxide, ammonia and nitric acid. The most important causes of soil acidification on agricultural land, however, are the application of ammonium-based fertilizers and urea, elemental S fertilizer and the growth of legumes. Acidification causes the loss of base cations, an increase in aluminium saturation and a decline in crop yields; severe acidification can cause nonreversible clay mineral dissolution and a reduction in cation exchange capacity, accompanied by structural deterioration. Soil acidity is ameliorated by applying lime or other acid-neutralizing materials. 'Liming' also reduces N2O emissions, but this is more than offset by CO 2 emissions from the lime as it neutralizes acidity. Because crop plants vary in their tolerance to acidity and plant nutrients have different optimal pH ranges, target soil pH values in the UK are set at 6.5 (5.8 in peaty soils) for cropped land and 6.0 (5.3 in peaty soils) for grassland. Agricultural lime products can be sold as 'EC Fertiliser Liming Materials' but, although vital for soil quality and agricultural production, liming tends to be strongly influenced by the economics of farming. Consequently, much less lime is being applied in the UK than required, and many arable and grassland soils are below optimum pH.

鲍士旦 . 土壤农化分析. 北京: 农业出版社, 2006.
[本文引用: 2]

Bao S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2006 (in Chinese).
[本文引用: 2]

曾研华, 范呈根, 吴建富, 曾勇军, 周春火, 谭雪明, 潘晓华, 石庆华 . 等养分条件下稻草还田替代双季早稻氮钾肥比例的研究
植物营养与肥料学报, 2017,23:658-668.

[本文引用: 1]

Zeng Y H, Fan C G, Wu J F, Zeng Y J, Zhou C H, Tan X M, Pan X H, Shi Q H . Replacement ratio of nitrogen and potassium fertilizer by straw incorporation in early rice under the same nitrogen, phosphorus and potassium input
Plant Nutr Fert Sci, 2017,23:658-668 (in Chinese with English abstract).

[本文引用: 1]

孙凯, 刘振, 胡恒宇, 李耕, 刘文涛, 杨柳, 宁堂原, 王彦玲 . 有机培肥与轮耕方式对夏玉米田土壤碳氮和产量的影响
作物学报, 2019,45:401-410.

[本文引用: 1]

Sun K, Liu Z, Hu H Y, Li G, Liu W T, Yang L, Ning T Y, Wang Y L . Effect of organic fertilizer and rotational tillage practices on soil carbon and nitrogen and maize yield in wheat-maize cropping system
Acta Agron Sin, 2019,45:401-410 (in Chinese with English abstract).

[本文引用: 1]

李昊昱, 孟兆良, 庞党伟, 陈金, 侯永坤, 崔海兴, 金敏, 王振林, 李勇 . 周年秸秆还田对农田土壤固碳及冬小麦-夏玉米产量的影响
作物学报, 2019,45:893-903.

[本文引用: 1]

Li H Y, Meng Z L, Pang D W, Chen J, Hou Y K, Cui H X, Jin M, Wang Z L, Li Y . Effect of annual straw return model on soil carbon sequestration and crop yields in winter wheat-summer maize rotation farmland
Acta Agron Sin, 2019,45:893-903 (in Chinese with English abstract).

[本文引用: 1]

陈玉章, 柴守玺, 程宏波, 柴雨葳, 杨长刚, 谭凯敏, 常磊 . 秸秆还田结合秋覆膜对旱地冬小麦耗水特性和产量的影响
作物学报, 2019,45:256-266.

DOI:10.3724/SP.J.1006.2019.71081URL [本文引用: 1]
秸秆还田和秋覆膜是西北旱地雨养农业区冬小麦生产中有效的节水增产措施。为明确西北半干旱雨养农业区不同作物秸秆还田结合秋覆膜种植模式下冬小麦田土壤蓄水保墒和节水增产效果, 于2011年9月至2013年6月连续2个小麦生长季在甘肃省通 县进行了田间定位试验, 比较玉米秸秆还田结合秋覆膜、单一玉米秸秆还田、麦秸秆还田结合秋覆膜、单一麦秸秆还田和传统平作种植对西北旱地冬小麦耗水特性和籽粒产量的影响。结果表明, 与传统平作相比, 冬小麦全生育期秸秆还田结合秋覆膜处理0~200 cm平均土壤贮水量在2011—2012和2012—2013年度分别提高6.1%和9.6%, 而单一秸秆还田分别提高0.7%和4.6%。在降水偏多的2011—2012年度, 除玉米秸秆还田结合秋覆膜处理冬小麦全生育期0~200 cm土壤贮水消耗量比传统平作低19.0 mm (P<0.05)外, 其余各处理无显著差异; 在降水偏少的2012—2013年度, 秸秆还田及秸秆还田结合秋覆膜处理平均比传统平作多耗水39.1 mm, 其中, 两个秸秆还田结合秋覆膜处理显著增加冬小麦返青至拔节阶段的耗水量, 显著降低开花至成熟阶段耗水量, 并增加了对深层土壤水分的调用。与传统平作相比, 秸秆还田结合秋覆膜处理可使小麦籽粒产量提高31.0%~69.4%, 水分利用效率提高25.6%~43.0%; 而单一秸秆还田的小麦籽粒产量提高1.2%~28.0%, 水分利用效率提高3.0%~11.6%。以玉米秸秆还田结合秋覆膜处理增产效果最好, 2年平均籽粒产量和水分利用效率分别较传统平作提高51.1%和41.7%, 且显著高于其他处理。因此, 玉米秸秆还田结合秋覆膜种植模式能显著提高冬小麦籽粒产量和水分利用效率, 适宜在西北旱农区小麦生产中应用。
Chen Y Z, Chai S X, Cheng H B, Chai Y W, Yang C G, Tan K M, Chang L . Effects of straw-incorporation combined with autumn plastic mulching on soil water consumption characteristics and winter wheat yield in arid farming areas
Acta Agron Sin, 2019,45:256-266 (in Chinese with English abstract).

DOI:10.3724/SP.J.1006.2019.71081URL [本文引用: 1]
秸秆还田和秋覆膜是西北旱地雨养农业区冬小麦生产中有效的节水增产措施。为明确西北半干旱雨养农业区不同作物秸秆还田结合秋覆膜种植模式下冬小麦田土壤蓄水保墒和节水增产效果, 于2011年9月至2013年6月连续2个小麦生长季在甘肃省通 县进行了田间定位试验, 比较玉米秸秆还田结合秋覆膜、单一玉米秸秆还田、麦秸秆还田结合秋覆膜、单一麦秸秆还田和传统平作种植对西北旱地冬小麦耗水特性和籽粒产量的影响。结果表明, 与传统平作相比, 冬小麦全生育期秸秆还田结合秋覆膜处理0~200 cm平均土壤贮水量在2011—2012和2012—2013年度分别提高6.1%和9.6%, 而单一秸秆还田分别提高0.7%和4.6%。在降水偏多的2011—2012年度, 除玉米秸秆还田结合秋覆膜处理冬小麦全生育期0~200 cm土壤贮水消耗量比传统平作低19.0 mm (P<0.05)外, 其余各处理无显著差异; 在降水偏少的2012—2013年度, 秸秆还田及秸秆还田结合秋覆膜处理平均比传统平作多耗水39.1 mm, 其中, 两个秸秆还田结合秋覆膜处理显著增加冬小麦返青至拔节阶段的耗水量, 显著降低开花至成熟阶段耗水量, 并增加了对深层土壤水分的调用。与传统平作相比, 秸秆还田结合秋覆膜处理可使小麦籽粒产量提高31.0%~69.4%, 水分利用效率提高25.6%~43.0%; 而单一秸秆还田的小麦籽粒产量提高1.2%~28.0%, 水分利用效率提高3.0%~11.6%。以玉米秸秆还田结合秋覆膜处理增产效果最好, 2年平均籽粒产量和水分利用效率分别较传统平作提高51.1%和41.7%, 且显著高于其他处理。因此, 玉米秸秆还田结合秋覆膜种植模式能显著提高冬小麦籽粒产量和水分利用效率, 适宜在西北旱农区小麦生产中应用。

曾研华, 吴建富, 潘晓华, 石庆华, 朱德峰 . 稻草原位还田对双季稻田土壤理化与生物学性状的影响
水土保持学报, 2013,27(3):150-155.

[本文引用: 1]

Zeng Y H, Wu J F, Pan X H, Shi Q H, Zhu D F . Effects of rice straw incorporation on soil physical, chemical and biological properties in double cropping paddy fields
J Soil Water Conserv, 2013,27(3):150-155 (in Chinese with English abstract).

[本文引用: 1]

Xu Y Z, Nie L X, Buresh R J, Huang J L, Cui K H, Xu B, Gong W H, Peng S B . Agronomic performance of late-season rice under different tillage, straw, and nitrogen management
Field Crops Res, 2010,115:79-84.

DOI:10.1016/j.fcr.2009.10.005URL [本文引用: 1]

Zhao Y C, Wang M Y, Hu S J, Zhang X D, Ou-Yang Z, Zhang G L, Huang B, Zhao S W, Wu J S, Xie D T, Zhu B, Yu D S, Pan X Z, Xu S X, Shi X Z . Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands
Proc Natl Acad Sci USA, 2018,115:4045-4050.

DOI:10.1073/pnas.1700292114URLPMID:29666318 [本文引用: 1]
China's croplands have experienced drastic changes in management practices, such as fertilization, tillage, and residue treatments, since the 1980s. There is an ongoing debate about the impact of these changes on soil organic carbon (SOC) and its implications. Here we report results from an extensive study that provided direct evidence of cropland SOC sequestration in China. Based on the soil sampling locations recorded by the Second National Soil Survey of China in 1980, we collected 4,060 soil samples in 2011 from 58 counties that represent the typical cropping systems across China. Our results showed that across the country, the average SOC stock in the topsoil (0-20 cm) increased from 28.6 Mg C ha-1 in 1980 to 32.9 Mg C ha-1 in 2011, representing a net increase of 140 kg C ha-1 year-1 However, the SOC change differed among the major agricultural regions: SOC increased in all major agronomic regions except in Northeast China. The SOC sequestration was largely attributed to increased organic inputs driven by economics and policy: while higher root biomass resulting from enhanced crop productivity by chemical fertilizers predominated before 2000, higher residue inputs following the large-scale implementation of crop straw/stover return policy took over thereafter. The SOC change was negatively related to N inputs in East China, suggesting that the excessive N inputs, plus the shallowness of plow layers, may constrain the future C sequestration in Chinese croplands. Our results indicate that cropland SOC sequestration can be achieved through effectively manipulating economic and policy incentives to farmers.

唐海明, 肖小平, 李超, 汤文光, 郭立君, 汪柯, 程凯凯, 潘孝晨, 孙耿 . 不同土壤耕作模式对双季水稻生理特性与产量的影响
作物学报, 2019,45:740-754.

DOI:10.3724/SP.J.1006.2019.82030URL [本文引用: 1]
为探明双季稻区不同土壤耕作模式下双季水稻生理特性、干物质积累及产量的变化, 本文以双季稻-紫云英大田定位试验为平台, 设双季水稻翻耕+秸秆还田(CT)、双季水稻旋耕+秸秆还田(RT)、双季水稻免耕+秸秆还田(NT)、双季水稻旋耕+秸秆不还田(RTO, 对照) 4种土壤耕作处理, 于2016—2017年取样, 系统分析了不同处理对双季水稻植株叶片保护性酶活性、光合特性、干物质积累及产量的影响。研究结果表明, 早、晚稻各个主要生育时期CT和RT处理植株叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性均显著高于RTO处理(P<0.05), 而叶片丙二醛(MDA)含量均显著低于RTO处理(P<0.05)。CT处理植株叶片的净光合速率(Pn)、蒸腾速率(Tr)和叶片气孔导度(Gs)均显著高于RTO处理(P<0.05), 均表现为CT>RT>NT>RTO。CT和RT处理水稻植株物质生产能力强, 干物质积累多, 而且在各器官间的分配合理。2个年份的早稻产量均以CT处理最高, 均显著高于RTO处理(P<0.05), 比RTO处理增加731.1~733.3 kg hm -2; 晚稻产量均以CT处理为最高, 均显著高于RTO处理(P<0.05), 比RTO处理增加582.5~717.6 kg hm -2。总之, 土壤翻耕、旋耕结合秸秆还田处理有利于提高双季水稻叶片保护性酶活性、光合特性和干物质积累量, 为水稻高产奠定了生理和生物学基础。
Tang H M, Xiao X P, Li C, Tang W G, Guo L J, Wang K, Cheng K K, Pan X C, Sun G . Effects of different soil tillage systems on physiological characteristics and yield of double-cropping rice
Acta Agron Sin, 2019,45:740-754 (in Chinese with English abstract).

DOI:10.3724/SP.J.1006.2019.82030URL [本文引用: 1]
为探明双季稻区不同土壤耕作模式下双季水稻生理特性、干物质积累及产量的变化, 本文以双季稻-紫云英大田定位试验为平台, 设双季水稻翻耕+秸秆还田(CT)、双季水稻旋耕+秸秆还田(RT)、双季水稻免耕+秸秆还田(NT)、双季水稻旋耕+秸秆不还田(RTO, 对照) 4种土壤耕作处理, 于2016—2017年取样, 系统分析了不同处理对双季水稻植株叶片保护性酶活性、光合特性、干物质积累及产量的影响。研究结果表明, 早、晚稻各个主要生育时期CT和RT处理植株叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性均显著高于RTO处理(P<0.05), 而叶片丙二醛(MDA)含量均显著低于RTO处理(P<0.05)。CT处理植株叶片的净光合速率(Pn)、蒸腾速率(Tr)和叶片气孔导度(Gs)均显著高于RTO处理(P<0.05), 均表现为CT>RT>NT>RTO。CT和RT处理水稻植株物质生产能力强, 干物质积累多, 而且在各器官间的分配合理。2个年份的早稻产量均以CT处理最高, 均显著高于RTO处理(P<0.05), 比RTO处理增加731.1~733.3 kg hm -2; 晚稻产量均以CT处理为最高, 均显著高于RTO处理(P<0.05), 比RTO处理增加582.5~717.6 kg hm -2。总之, 土壤翻耕、旋耕结合秸秆还田处理有利于提高双季水稻叶片保护性酶活性、光合特性和干物质积累量, 为水稻高产奠定了生理和生物学基础。

Page K L, Allen D E, Dalal R C, Slattery W . Processes and magnitude of CO2, CH4 and N2O fluxes from liming of Australian acidic soils: a review
Aust J Soil Res, 2009,47:747-762.

[本文引用: 3]

Kumar M, Kundu D K, Ghorai A K, Mitra S, Singh S R . Carbon and nitrogen mineralization kinetics as influenced by diversified cropping systems and residue incorporation in inceptisols of eastern Indo-Gangetic Plain
Soil Tillage Res, 2018,178:108-117.

DOI:10.1016/j.still.2017.12.025URL [本文引用: 1]

侯文峰, 李小坤, 王思潮, 汪金平, 徐祥玉, 熊又升, 丛日环 . 石灰与秸秆配施对冷浸田水稻产量与土壤特性的影响
华中农业大学学报, 2015,34(5):58-62.

[本文引用: 1]

Hou W F, Li X K, Wang S C, Wang J P, Xu X Y, Xiong Y S, Cong R H . Effects of combined application of lime and straw on rice yield and soil properties in cold waterlogged paddy field
J Huazhong Agric Univ, 2015,34(5):58-62 (in Chinese with English abstract).

[本文引用: 1]

曾廷廷, 蔡泽江, 王小利, 梁文君, 周世伟, 徐明岗 . 酸性土壤施用石灰提高作物产量的整合分析
中国农业科学, 2017,50:2519-2527.

DOI:10.3864/j.issn.0578-1752.2017.13.011URL [本文引用: 1]
【目的】施用石灰是改良土壤酸度获得作物增产的传统而有效的方法之一,整合分析石灰增加作物产量的效应和原因,对科学合理施用石灰维持作物高产提供指导。【方法】收集已公开发表有关石灰改良酸性土壤的文献数据,建立土壤pH和作物产量/生物量数据库。分析土壤初始pH(3.1—6.6)、作物类型(粮食作物、经济作物)、石灰施入量(<750、750—1 500、1 500—3 000、3 000—6 000、>6 000 kg·hm-2)和石灰类型(生石灰、熟石灰、石灰石粉)下,作物的增产率。【结果】与不施石灰相比,酸性土壤上施用石灰可提高作物产量,增产幅度为2%—255%,粮食类作物和经济类作物增产率分别为42%和47%,其中粮食类作物增产率大小排序:玉米(149%)>高粱(142%)>麦类(55%)>豆类(32%)>水稻(4%)>薯类(2%),经济类作物增产率排序:蔬菜(255%)>牧草(89%)>油菜(26%)>水果(23%)>烟草(7%)。施用石灰作物增产率随土壤初始pH的升高呈先升高后降低趋势:当pH为4.3时,增产效果最好,达99%;pH 5.8以上出现减产。在常见土壤酸性范围(pH 4.5—5.5),石灰用量以3 000—6 000 kg·hm-2最佳,增产率达55%—173%。熟石灰的增产效果(100%)要优于生石灰(32%)和石灰石粉(64%)。施用石灰提高土壤pH和交换性钙含量、降低交换性铝含量,是作物增产的主要原因,且当交换性钙为6.2 cmol·kg-1时增产率最大,也证实改良土壤酸度时需要中等石灰用量。【结论】酸性土壤添加石灰对蔬菜和玉米的增产效果最好,并优先选用熟石灰。石灰用量以3 000—6 000 kg·hm-2为宜,在pH大于5.8时不宜施用,即酸性土壤改良目标值为pH 5.8。
Zeng T T, Cai Z J, Wang X L, Liang W J, Zhou S W, Xu M G . Integrated analysis of liming for increasing crop yield in acidic soils
Sci Agric Sin, 2017,50:2519-2527 (in Chinese with English abstract).

DOI:10.3864/j.issn.0578-1752.2017.13.011URL [本文引用: 1]
【目的】施用石灰是改良土壤酸度获得作物增产的传统而有效的方法之一,整合分析石灰增加作物产量的效应和原因,对科学合理施用石灰维持作物高产提供指导。【方法】收集已公开发表有关石灰改良酸性土壤的文献数据,建立土壤pH和作物产量/生物量数据库。分析土壤初始pH(3.1—6.6)、作物类型(粮食作物、经济作物)、石灰施入量(<750、750—1 500、1 500—3 000、3 000—6 000、>6 000 kg·hm-2)和石灰类型(生石灰、熟石灰、石灰石粉)下,作物的增产率。【结果】与不施石灰相比,酸性土壤上施用石灰可提高作物产量,增产幅度为2%—255%,粮食类作物和经济类作物增产率分别为42%和47%,其中粮食类作物增产率大小排序:玉米(149%)>高粱(142%)>麦类(55%)>豆类(32%)>水稻(4%)>薯类(2%),经济类作物增产率排序:蔬菜(255%)>牧草(89%)>油菜(26%)>水果(23%)>烟草(7%)。施用石灰作物增产率随土壤初始pH的升高呈先升高后降低趋势:当pH为4.3时,增产效果最好,达99%;pH 5.8以上出现减产。在常见土壤酸性范围(pH 4.5—5.5),石灰用量以3 000—6 000 kg·hm-2最佳,增产率达55%—173%。熟石灰的增产效果(100%)要优于生石灰(32%)和石灰石粉(64%)。施用石灰提高土壤pH和交换性钙含量、降低交换性铝含量,是作物增产的主要原因,且当交换性钙为6.2 cmol·kg-1时增产率最大,也证实改良土壤酸度时需要中等石灰用量。【结论】酸性土壤添加石灰对蔬菜和玉米的增产效果最好,并优先选用熟石灰。石灰用量以3 000—6 000 kg·hm-2为宜,在pH大于5.8时不宜施用,即酸性土壤改良目标值为pH 5.8。

Li Y, Cui S, Chang S X, Zhang Q Q . Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: a global meta-analysis
J Soil Sediment, 2019,19:1393-1406.

DOI:10.1007/s11368-018-2120-2URL [本文引用: 2]

相关话题/土壤 作物 物质 秸秆 石灰