Effects of tillage and straw returning methods on N2O emission from paddy fields, nitrogen uptake of rice plant and grain yield
FENG Jun-Heng1, HUANG Jin-Feng1, LIU Tian-Qi1, CAO Cou-Gui1,2, LI Cheng-Fang,1,2,*1 MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River/College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China 2 Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434023, Hubei, China
This study was supported by the National Natural Science Foundation of China.31671637 the National Key Research and Development Program of China.2017YFD0301403 the Natural Science Foundation of Hubei Province.2018CFB608
Abstract Conservation tillage is an important practice to improve agricultural soil fertility. However, the effects of this practice on crop nitrogen uptake and grain yield remain unknown. Here, a 2-year field experiment was conducted to investigate the effects of different tillage (conventional intensive tillage [CT] and no-tillage [NT]) and straw returning methods (preceding crop straw returning [S] and removal [NS]) on soil N2O emission, root nitrate reductase and glutamine synthetase activities, nitrogen uptake of rice plants and grain yield in the 2016 and 2017 rice growing seasons at Huaqiao town, Wuxue county, Hubei province. The tillage practices and straw returning methods had significant effects on the N2O emission from paddy soil. Compared with CT treatment, NT treatment enhanced the N2O emission by 12.5%-18.2% in 2016 and 21.1%-38.6% in 2017. S treatments increased the soil N2O emission by 38.5%-45.5% in 2016 and 13.1%-29.5% in 2017 as compared with NS treatments. Straw returning methods had significant effects on root nitrate reductase and glutamine synthetase activities, as well as on nitrogen uptake of rice plants and grain yield. Compared with NS treatments, S treatments had 6.7%-45.9% higher root nitrate reductase activity and 9.0%-46.7% higher root glutamine synthetase activity, resulting in 12.5%-26.0% higher nitrogen uptake of rice plants and 9.4%- 12.6% greater grain yield. Our results indicate that straw returning significantly increases nitrogen uptake and grain yield, and also promotes soil N2O emissions, suggesting that the effects of long-term NT and straw returning on global warming potential and soil carbon sequestration should be taken into account when assessing the global warming potential of these practices. Keywords:no-tillage;root;nitrate reductase;glutamine synthetase;greenhouse gas
PDF (429KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 冯珺珩, 黄金凤, 刘天奇, 曹凑贵, 李成芳. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响[J]. 作物学报, 2019, 45(8): 1250-1259. doi:10.3724/SP.J.1006.2019.82051 FENG Jun-Heng, HUANG Jin-Feng, LIU Tian-Qi, CAO Cou-Gui, LI Cheng-Fang. Effects of tillage and straw returning methods on N2O emission from paddy fields, nitrogen uptake of rice plant and grain yield[J]. Acta Agronomica Sinica, 2019, 45(8): 1250-1259. doi:10.3724/SP.J.1006.2019.82051
湖北省武穴市花桥镇华中农业大学试验基地, 属长江中下游稻区(115°30′E, 29°55′N), 海拔20 m, 亚热带季风气候, 年均温16.0~16.8℃, 年降雨量1278.7~1442.6 mm, 土壤潴育型水稻土, 为第四纪红土沉积物发育。初始耕层土壤: pH 5.90, 含有机质23.0 g kg-1、全氮2.60 g kg-1、全磷0.60 g kg-1。2016和2017年试验期间日气温见图1。
设翻耕+前季作物秸秆不还田(CTNS)、翻耕+前季作物秸秆全量还田(CTS)、免耕+前季作物秸秆不还田(NTNS)和免耕+前季作物秸秆全量还田(NTS) 4个处理, 3次重复, 每个小区面积为11 m × 10 m。水稻或小麦成熟后采用机械收获。用粉碎机将切成5~7 cm碎片覆盖于免耕土壤表层或混入翻耕土壤。施用基肥前3 d用3%克无踪封闭除草。施基肥后立即用旋耕机翻耕土壤, 耕作深度为20 cm, 之后用犁耙耙平。对于免耕处理, 肥料表施。
2016年6月31日和2017年7月6日采用抛秧方式移栽水稻, 密度为30万穴 hm-2。水稻全生育期氮、磷、钾肥施用量为180 kg N hm-2、90 kg P2O5 hm-2、180 kg K2O hm-2。氮肥在苗期、分蘖期、拔节期与齐穗期按5.0∶2.0∶1.2∶1.8比例施用, 其中苗期用复合肥, 其他时期追用尿素; 磷、钾肥作为基肥一次性施用。直播小麦用种量为150 kg hm-2, 全生育期施肥量为144 kg N hm-2、72 kg P2O5 hm-2、144 kg K2O hm-2。其中磷、钾肥作为基肥一次性施用, 氮肥分3次(苗期、拔节期和齐穗期)施用。除了在分蘖盛期晒田控分蘖与水稻收获前7~10 d排干稻田, 水稻生长期间进行干湿灌溉。麦季除了播种后灌溉外不再灌溉。2016年9月28日和2017年10月12日收获水稻。病虫草害防治视实际情况而定。
Table 1 表1 表12016-2017年水稻不同生育期土壤铵态氮和硝态氮含量变化 Table 1Changes of soil ammonium N and nitrate N concentrations under treatments during different growing stages of rice in 2016 and 2017 (mg kg-1)
处理 Treatment
NH4+-N
NO3--N
分蘖期 Tillering stage
拔节期 Boosting stage
齐穗期 Heading stage
成熟期 Mature stage
分蘖期 Tillering stage
拔节期 Boosting stage
齐穗期 Heading stage
成熟期 Mature stage
2016
CTNS
19.24±2.26
11.53±4.03
12.71±1.11
6.51±0.70
2.07±0.12
3.76±0.57
4.72±0.32
1.52±0.24
CTS
21.88±2.56
14.61±2.13
16.04±0.79
8.71±0.31
1.82±0.11
4.95±0.23
5.94±0.30
2.09±0.19
NTNS
20.04±1.09
15.84±3.17
15.50±0.47
7.85±0.25
2.10±0.20
4.91±0.16
5.52±0.30
2.34±0.22
NTS
19.51±0.72
18.60±2.64
18.13±0.48
9.78±0.10
2.04±0.28
5.67±0.12
7.71±0.45
3.21±0.33
ANOVA
T
ns
**
**
**
ns
**
**
**
S
ns
**
**
*
ns
*
**
**
T×S
ns
ns
*
ns
ns
ns
ns
ns
2017
CTNS
6.32±1.12
12.62±1.72
8.60±0.66
6.27±0.86
4.17±0.37
4.89±0.47
1.90±0.32
1.81±0.19
CTS
5.73±1.63
13.89±1.50
10.80±0.78
7.44±0.23
3.66±0.33
6.31±0.31
2.50±0.25
2.45±0.01
NTNS
7.21±1.21
15.81±1.55
10.01±0.47
7.87±0.39
3.59±0.44
5.91±0.67
2.20±0.30
1.99±0.10
NTS
6.21±0.51
17.56±2.46
13.14±0.71
9.45±0.83
2.90±0.35
7.83±0.33
2.93±0.22
2.95±0.18
ANOVA
T
ns
*
*
**
ns
**
ns
*
S
ns
**
**
**
ns
**
**
*
T×S
ns
ns
ns
ns
ns
ns
ns
ns
CTNS: conventional intensive tillage without straw returning; CTS: conventional intensive tillage plus straw returning; NTNS: no-tillage without straw returning; NTS: no-tillage plus straw returning. T: tillage practices; S: straw managements. * and ** represent significant difference at the 0.05 and 0.01 probability levels: respectively; ns represents no significance at the 0.05 probability level. CTNS: 翻耕+前季作物秸秆不还田; CTS: 翻耕+前季作物秸秆全量还田; NTNS: 免耕+前季作物秸秆不还田; NTS: 免耕+前季作物秸秆全量还田。T: 耕作方式; S: 秸秆管理。*和**分别表示P < 0.05和P < 0.01水平差异显著; ns表示在0.05水平下差异不显著。
CTNS: 翻耕+前季作物秸秆不还田; CTS: 翻耕+前季作物秸秆全量还田; NTNS: 免耕+前季作物秸秆不还田; NTS: 免耕+前季作物秸秆全量还田。实线箭头表示施肥, 虚线箭头表示排水。 Fig. 2Seasonal changes in N2O flux under different treatments during the growth of rice in 2016 and 2017
CTNS: conventional intensive tillage without straw returning; CTS: conventional intensive tillage plus straw returning; NTNS: no-tillage and without straw returning; NTS: no-tillage plus straw returning. The solid arrow means N fertilization, and the dotted arrow means drainage of paddy field.
Table 2 表2 表22016-2017年不同处理稻田土壤N2O累积排放量 Table 2Seasonal cumulative N2O emissions under different treatments during rice growing seasons in 2016 and 2017 (kg hm-2)
处理 Treatment
N2O累积排放量
2016
2017
翻耕+前季作物秸秆不还田 CTNS
0.22 ± 0.02
0.44±0.13
翻耕+前季作物秸秆全量还田 CTS
0.32 ± 0.05
0.57±0.02
免耕+前季作物秸秆不还田 NTNS
0.26 ± 0.02
0.61±0.18
免耕+前季作物秸秆全量还田 NTS
0.36 ± 0.05
0.69±0.12
ANOVA
耕作方式Tillage practices (T)
*
**
秸秆管理Straw managements (S)
*
*
T×S
ns
ns
CTNS: conventional intensive tillage without straw returning; CTS: conventional intensive tillage plus straw returning; NTNS: no-tillage and without straw returning; NTS: no-tillage plus straw returning. * and ** represent significant difference at the 0.05 and 0.01 probability levels, respectively; ns represents no significance at the 0.05 probability level. *和**分别表示P < 0.05和P < 0.01水平差异显著; ns表示在0.05水平下差异不显著。
Table 3 表3 表32016-2017年水稻不同生育期不同处理根系硝酸还原酶与谷氨酰胺合成酶活性的变化 Table 3Changes in nitrate reductase and glutamine synthetase activities at different stages of rice growth under different treatments in 2016 and 2017
处理 Treatment
硝酸还原酶 Nitrate reductase (μg NO2- g-1 FW h-1)
谷氨酰胺合成酶Glutamine synthease (μmol g-1 FW h-1)
分蘖期 Tillering stage
拔节期 Boosting stage
齐穗期 Heading stage
成熟期 Mature stage
分蘖期 Tillering stage
拔节期 Boosting stage
齐穗期 Heading stage
成熟期 Mature stage
2016
CTNS
0.87±0.10
0.63±0.22
0.55±0.10
0.13±0.05
17.40±2.98
29.87±7.70
22.85±1.73
5.05±1.95
CTS
0.92±0.03
0.74±0.08
0.63±0.08
0.21±0.05
20.53±3.30
32.58±6.62
26.74±2.04
7.39±1.31
NTNS
0.70±0.13
0.55±0.09
0.55±0.04
0.08±0.06
19.83±2.11
30.69± 4.94
27.51±2.10
4.79±1.23
NTS
0.80±0.13
0.78±0.07
0.60±0.07
0.14±0.10
21.85±3.13
33.46±6.77
29.30±2.48
7.05±0.87
ANOVA
T
*
ns
ns
ns
*
ns
ns
ns
S
**
**
*
**
*
*
ns
**
T×S
ns
ns
ns
ns
ns
ns
ns
ns
2017
CTNS
0.98±0.08
0.62±0.04
0.31±0.01
0.15±0.03
26.78±8.68
26.61±5.02
26.76±4.07
10.66±0.74
CTS
0.94±0.06
0.80±0.07
0.56±0.11
0.17±0.02
25.56±8.81
38.36±6.66
30.26±2.29
12.66±2.15
NTNS
0.84±0.17
0.53±0.03
0.43±0.10
0.05±0.03
29.86±10.5
29.43±1.43
20.53±4.62
8.78±0.95
NTS
0.76±0.12
0.75±0.12
0.52±0.09
0.08±0.04
27.64±7.26
41.97±8.78
29.40±5.15
9.35±1.46
ANOVA
T
ns
ns
ns
*
ns
ns
ns
ns
S
ns
**
**
*
ns
*
*
*
T×S
ns
ns
ns
ns
ns
ns
ns
ns
CTNS: conventional intensive tillage without straw returning; CTS: conventional intensive tillage plus straw returning; NTNS: no-tillage without straw returning; NTS: no-tillage plus straw returning. T: tillage practices; S: straw managements. * and ** represent significant difference at the 0.05 and 0.01 probability levels, respectively; ns represents no significance at the 0.05 level. CTNS: 翻耕+前季作物秸秆不还田; CTS: 翻耕+前季作物秸秆全量还田; NTNS: 免耕+前季作物秸秆不还田; NTS: 免耕+前季作物秸秆全量还田。T: 耕作方式; S: 秸秆管理。*和**分别表示P < 0.05和P < 0.01水平差异显著; ns表示在0.05水平下差异不显著。
Table 4 表4 表42016-2017年不同处理水稻氮吸收量与产量的变化 Table 4Changes of total N uptake and grain yields in different treatments of rice in 2016 and 2017
年份 Year
处理 Treatment
氮吸收量 N uptake
产量 Grain yield
2016
翻耕+前季作物秸秆不还田 CTNS
156.51±15.15 b
7379±252 b
翻耕+前季作物秸秆全量还田 CTS
179.81±11.69 a
8795±306 a
免耕+前季作物秸秆不还田 NTNS
140.86±20.13 b
7318±145 c
免耕+前季作物秸秆全量还田 NTS
194.86±18.89 a
7752±143 ab
ANOVA
耕作方式Tillage practices (T)
ns
ns
秸秆管理Straw managements (S)
**
*
T×S
*
ns
2017
翻耕+前季作物秸秆不还田 CTNS
203.32±9.99 bc
7302±338 b
翻耕+前季作物秸秆全量还田 CTS
220.25±11.54 a
8086±177 a
免耕+前季作物秸秆不还田 NTNS
184.34±10.54 c
7549±122 b
免耕+前季作物秸秆全量还田 NTS
215.90±8.97 a
8168±41 a
ANOVA
耕作方式Tillage practices (T)
ns
ns
秸秆管理Straw managements (S)
*
*
T×S
*
ns
CTNS: conventional intensive tillage without straw returning; CTS: conventional intensive tillage plus straw returning; NTNS: no-tillage without straw returning; NTS: no-tillage plus straw returning. * and ** represent significant difference at the 0.05 and 0.01 probability levels, respectively; ns represents no significance at the 0.05 probability level. *和**分别表示P < 0.05和P < 0.01水平差异显著; ns 表示在 0.05 水平下差异不显著。
Busari MA, Salako FK . Soil hydraulic properties and maize root growth after application of poultry manure under different tillage systems in Abeokuta, southwestern Nigeria , 2015,61:223-237. DOI:10.1080/03650340.2014.924620URL [本文引用: 2]
ScopelE, TriompheB, AffholderF, Da SilvaF A M, CorbeelsM, XavierJ H V, LahmarR, RecousS, BernouxM, BlanchartE, MendesL D C, De TourdonnetS . Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts: a review , 2013,33:113-130. DOI:10.1007/s13593-012-0106-9URL [本文引用: 1]
Gathala MK, Ladha JK, Saharawat YS, KurmarV, KumarV, Sharma PK . Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice-wheat rotation , 2011,75:1851-1862. DOI:10.2136/sssaj2010.0362URL [本文引用: 1]
Guo LJ, Zhang ZS, Wang DD, Li CF, Cao CG . Effects of short-term conservation management practices on soil organic carbon fractions and microbial community composition under a rice-wheat rotation system , 2015,51:65-75 DOI:10.1007/s00374-014-0951-6URL [本文引用: 1]
IPCC. . Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013 [本文引用: 1]
Zhang ZS, ChenJ, Liu TQ, Cao CG, Li CF . Effects of nitrogen fertilizer sources and tillage practices on greenhouse gas emissions in paddy fields of central China , 2016,144:274-281. DOI:10.1016/j.atmosenv.2016.09.003URL [本文引用: 11]
Zhang JS, Zhang FP, Yang JH, Wang JP, Cai ML, Li CF, Cao CG . Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China , 2011,140:164-173. DOI:10.1016/j.agee.2010.11.023URL [本文引用: 3]
Venterea RT, BijeshM, Dolan MS . Fertilizer source and tillage effects on yield-scaled nitrous oxide emissions in a corn cropping system , 2011,40:1521-1531. DOI:10.2134/jeq2011.0039URL [本文引用: 2]
Zhang YF, Zheng JC, Chen LG, Wang ZC, Zhu PP, ShengJ, Wang YL . Effects of wheat straw returning and soil tillage on CH4 and N2O emissions in paddy season Ecol Environ Sci, 2009,18:2334-2338 (in Chinese with English abstract). [本文引用: 4]
Weier KL, Doran JW, Power JF, Walters DT . Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water available carbon and nitrate , 1993,57:66-72. DOI:10.2136/sssaj1993.03615995005700010013xURL [本文引用: 1]
Jensen ES . Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues , 1997,24:39-44. DOI:10.1007/BF01420218URL [本文引用: 1]
Pittelkow CM, LiangX, LinquistB A, van GroenigenK J, LeeJ, LundyM E, van GestelN, SixJ, VentereaR T, van KesselC . Productivity limits and potentials of the principles of conservation agriculture , 2015,517:365-368. [本文引用: 3]
LiC, ZhangZ, GuoL, CaiM, CaoC . Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods , 2013,80:438-444. DOI:10.1016/j.atmosenv.2013.08.027URL [本文引用: 3]
ZhengX, WangM, WangY, ShenR, LiJ, HeyerJ, KoggeM, LiL, JinJ . Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields , 1998,15:569-579. DOI:10.1007/s00376-998-0033-5URL [本文引用: 1]
Lu RK. Beijing: China Agricultural Science and Technology Press, 2000 (in Chinese). [本文引用: 1]
Ussiri DA, LalR, Jarecki MK . Nitrous oxide and methane emissions from long-term tillage under a continuous corn cropping system in Ohio , 2009,104:247-255. DOI:10.1016/j.still.2009.03.001URL [本文引用: 2]
SixJ, Ogle SM, Conant RT, Mosier AR, PaustianK . The potential to mitigate global warming with no-tillage management is only realized when practised in the long term , 2004,10:155-160. DOI:10.1111/gcb.2004.10.issue-2URL [本文引用: 2]
Liu XJ, Mosier AR, Halvorson AD, Zhang FS . The impact of nitrogen placement and tillage on NO, N2O, CH4 and CO2 fluxes from a clay loam soil , 2006,280:177-188. DOI:10.1007/s11104-005-2950-8URL [本文引用: 1]
HaradaH, KobayashiH, ShindoH . Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: life-cycle inventory analysis , 2007,53:668-677. DOI:10.1111/j.1747-0765.2007.00174.xURL [本文引用: 1]
AbdallaM, OsborneB, LaniganG, ForristalD, WilliamsM, SmithP, Jones MB . Conservation tillage systems: a review of its consequences for greenhouse gas emissions , 2013,29:199-209. DOI:10.1111/sum.2013.29.issue-2URL [本文引用: 1]
Xiong SP, Wu KY, Wang XC, Wu YX, DuP, Ma XM . Analysis of nitrogen metabolism in roots and uptake characteristic of wheat cultivars with different nitrogen efficiency at seedling stage J Triticeae Crops, 2016,36:325-331 (in Chinese with English abstract). [本文引用: 2]
周佳民, 徐世宏, 江立庚 . 免耕对水稻根系生长及根际环境的影响: II. 免耕对水稻根系保护酶活性的影响 , 2009,25(14):118-121. Magsci [本文引用: 1] 以金优253为材料进行盆栽试验,比较水稻在免耕、常耕、分根栽培三种栽培条件下水稻根系保护性酶活性的差异。结果表明,免耕栽培水稻根系或分根栽培中免耕侧根系的SOD、CAT、POD酶活性在拔节期比常耕栽培水稻根系或分根栽培中常耕侧根系活性低,其MDA含量较高。相反,免耕栽培水稻根系或分根栽培中免耕侧根系的SOD、CAT、POD酶活性在灌浆期比常耕栽培水稻根系或分根栽培中常耕侧根系活性高,其MDA含量较低。因此,免耕栽培水稻根系后期衰老较常耕栽培水稻根系慢。 Zhou JM, Xu SH, Jiang LG . Influence of no tillage on root growth and rhizosphere environment in rice: II. Influence of no tillage on activities of antioxidant enzymes in root Chin Agric Sci Bull, 2009,25(14):118-121 (in Chinese with English abstract). Magsci [本文引用: 1] 以金优253为材料进行盆栽试验,比较水稻在免耕、常耕、分根栽培三种栽培条件下水稻根系保护性酶活性的差异。结果表明,免耕栽培水稻根系或分根栽培中免耕侧根系的SOD、CAT、POD酶活性在拔节期比常耕栽培水稻根系或分根栽培中常耕侧根系活性低,其MDA含量较高。相反,免耕栽培水稻根系或分根栽培中免耕侧根系的SOD、CAT、POD酶活性在灌浆期比常耕栽培水稻根系或分根栽培中常耕侧根系活性高,其MDA含量较低。因此,免耕栽培水稻根系后期衰老较常耕栽培水稻根系慢。
Sui PX, Zhang WK, MeiN, TianP, Wang YY, SunY, Meng GX, Su YH, QiH . Effects of different straw returning methods and spring maize yield, water use and root growth J Soil Water Conserv, 2018,32(4):255-261 (in Chinese with English abstract). [本文引用: 1]
Li GQ, ShiY . Effect of subsoiling tillage and ploughing tillage on the root senescence after anthesis and yield of wheat in dry-land J Triticeae Crops, 2012,32:500-502 (in Chinese with English abstract). [本文引用: 1]
XiongY, Chen JJ, WangW . Effects of straw-returning on root activity and physiological characteristics of carbon-nitrogen metabolism of flu-cured tobacco Chin Agric Sci Bull, 2012,28(30):65-70 (in Chinese with English abstract). [本文引用: 1]
Chen LT, Tang MY, Zhao RD, Jiang LG, WangQ, ChenL, Liang TF . Influence of field tillage patterns and water management on nitrogen assimilation and utilization in rice J Southern Agric, 2012,43:942-946 (in Chinese with English abstract). [本文引用: 2]
Liang TF, Xu SH, Liu KQ, Wang DJ, LiangH, Dong DF, Wei SQ, Mo RX, ZengK, Jiang LG . Influence of tillage patterns on incorporated straw nitrogen release and nitrogen utilization of rice Sci Agric Sin, 2009,42:3564-3570 (in Chinese with English abstract). [本文引用: 2]
HuangM, Zou YB, JiangP, XiaB, FengY, ChengZ, MoY . Effect of tillage on soil and crop properties of wet-seeded flooded rice , 2012,129:28-38. DOI:10.1016/j.fcr.2012.01.013URL [本文引用: 1]
Malhi SS, NyborgM, Solberg ED, McConkeyB, DyckM, PuurveenD . Long-term straw management and N fertilizer rate effects on quantity and quality of organic C and N and some chemical properties in two contrasting soils in Western Canada 2011,47:785-800. DOI:10.1007/s00374-011-0587-8URL [本文引用: 1]
BrennanJ, HackettR, McCabeT, GrantJ, FortuneR A, ForristalP D . The effect of tillage system and residue management on grain yield and nitrogen use efficiency in winter wheat in a cool atlantics climate , 2014,54:61-69. DOI:10.1016/j.eja.2013.11.009URL [本文引用: 2]
Malhi SS, LemkeR, Wang ZH, Chhabra BS . Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions , 2006,90:171-183. DOI:10.1016/j.still.2005.09.001URL [本文引用: 1]
Liebig MA, Tanaka DL, Wienhold BJ . Tillage and cropping effects on soil quality indicators in the northern Great Plains , 2004,78:131-141. DOI:10.1016/j.still.2004.02.002URL [本文引用: 1]
Yang XL, Lu YL, Tong YA, LinW, LiangT . Effects of long-term application and straw returning on N budget under wheat-maize rotation system Plant Nutr Fert Sci, 2013,19:65-73 (in Chinese with English abstract). [本文引用: 1]
Zhang ZS, Guo LJ, Liu TQ, Li CF, Cao CG . Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice-wheat cropping systems in central China , 2015,122:636-644. DOI:10.1016/j.atmosenv.2015.09.065URL [本文引用: 1]
Zhu LQ, Zhang DW, Bian XM . Effect of continuous returning straws to field and shifting different tillage methods on changes of physical-chemical properties of soil and yield components of rice Chin J Soil Sci, 2011,42(1):81-85 (in Chinese with English abstract). [本文引用: 1]
Xie RZ, Li SK, Li XJ, Jin YZ, Wang KR, Chu ZD, Gao SJ . The analysis of conservation tillage in China: conservation tillage and crop production Sci Agric Sin, 2007,40:1914-1924 (in Chinese with English abstract). [本文引用: 1]
Li CF, Zhou DN, Kui ZK, Zhang ZS, Wang JP, Cai ML, Cao CG . Effects of tillage and nitrogen fertilizers on CH4 and CO2 emissions and soil organic carbon in paddy fields of central China , 2012,7:e34642. DOI:10.1371/journal.pone.0034642URL [本文引用: 1]
Li CF, Kou ZK, Zhang ZS, Cao CG, Wu HY, Mei JA, Zhai ZB, Zhang CD, Wei TX, Liu SQ, Xia QX . Effects of rape residue mulch on greenhouse gas emissions and carbon sequestration from no-tillage rice fields J Agro-Environ Sci, 2011,30:2362-2367 (in Chinese with English abstract). [本文引用: 1]