Increasing spring maize yield by basic application of PASP chelating nitrogen fertilizer in northeast China
TANG Hui-Hui, XU Yan-Li, WANG Qing-Yan, MA Zheng-Bo, LI Guang-Yan, DONG Hui, DONG Zhi-Qiang,*Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / Key Laboratory of Crop Ecophysiology and Cultivation, Beijing 100081, China收稿日期:2018-07-22接受日期:2018-12-25网络出版日期:2019-01-07
基金资助: |
Received:2018-07-22Accepted:2018-12-25Online:2019-01-07
Fund supported: |
作者简介 About authors
E-mail:tanghuihui0609@163.com。
摘要
关键词:
Abstract
Keywords:
PDF (585KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
唐会会, 许艳丽, 王庆燕, 马正波, 李光彦, 董会, 董志强. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制[J]. 作物学报, 2019, 45(3): 431-442. doi:10.3724/SP.J.1006.2019.83056
TANG Hui-Hui, XU Yan-Li, WANG Qing-Yan, MA Zheng-Bo, LI Guang-Yan, DONG Hui, DONG Zhi-Qiang.
在保障国家粮食安全中, 化肥起着不可替代的作用, 对我国粮食单产增长的贡献率高达40%~ 50%[1]。但是, 大量的化肥投入在保障玉米高产稳产的同时, 也导致了严重的生态环境问题, 比如提高了耕地土壤、地下水与地表水体的富营养化程度, 加剧了农田面源污染[2]。我国玉米生产中, 基施部分氮肥和全部磷肥、钾肥, 配合拔节期和灌浆期追施氮肥, 是获得高产的惯用施肥方法。但在玉米生育中后期追施氮肥工作量较大, 实际可操作性差, 而将氮肥全基施又容易造成氮素大量流失, 引起玉米后期早衰减产。因此, 研究新型绿色适宜全基施的肥料对保障玉米高产稳产和简化玉米施肥技术具有重要意义。已有研究表明, 通过少量多次追施氮肥与多层施氮[3,4,5,6,7,8,9,10,11,12,13]、施用添加脲酶抑制剂和硝化抑制剂等助剂的缓控释肥料[14,15,16,17,18,19,20,21,22,23], 可有效提高作物氮素利用率, 但由于生产成本高、环境适应性差和环境污染等问题, 在推广应用中存在一定局限性。聚天门冬氨酸(polyaspartic acid, PASP)是天然存在于软体及蜗牛类壳内的一种氨基酸聚合物, 在环境中极易降解为二氧化碳和水[24]。PASP本身具有极强的鳌合、分散、吸附作用, 分子中的羟基和羧基, 能螯合金属离子, 富集N、P、K及微量元素供给植物, 提高作物对氮、磷、钾的利用率[25]。PASP能使尿素养分持效期延长[26]、改善土粒结构[27]、富集磷素[28]、能促进植株氮磷钾的吸收[29]、提高土壤全氮、速效磷和速效钾含量[30], 促进作物增产[28-29,31-32]。这些报道多以水培和盆栽试验研究PASP对作物生物量、产量和氮肥利用率的影响。以PASP螯合氮素减量全基施对作物氮素生理代谢的影响及其作用机制方面的研究较少。本研究基于大田试验, 设置不同施氮量处理, 研究氮肥全基施条件下PASP对春玉米氮素利用的调控效应, 以期揭示PASP对春玉米氮素利用的调控机制, 为建立东北春玉米减氮高效生产技术提供理论和技术依据。
1 材料与方法
1.1 试验地概况
中国农业科学院吉林省公主岭试验站(43o29°55°°N, 124o48°43°°E), 土壤为黑土, 耕层土壤(0~20 cm)含有机质26.7 g kg-1、全氮1.4 g kg-1、速效氮155.3 mg kg-1、速效磷34.4 mg kg-1、速效钾184.2 mg kg-1, pH 5.8。1.2 试验材料与设计
以玉米(Zea mays L.)杂交种中单909 (中国农业科学院作物科学研究所选育)为材料, 设置常规氮肥(CN)和聚天门冬氨酸螯合氮肥(PASP-N)两种氮肥的处理(表1)。CN为尿素, PASP-N为尿素混拌0.3%的聚天门冬氨酸; 均在春玉米播种前一次性基施。磷肥和钾肥施肥量分别为P2O5 75 kg hm-2和 K2O 117 kg hm-2。采用随机区组设计, 3次重复, 小区长6.0 m, 宽4.8 m, 玉米留苗密度为75,000株 hm-2, 60 cm等行距播种。田间除草、植保等管理同当地大田生产。2016年4月30日播种, 5月14日出苗, 9月29日收获; 2017年4月27日播种, 5月21日出苗, 9月27日收获。Table 1
表1
表1聚天门冬氨酸螯合氮肥(PASP-N)处理和常规氮肥(CN)处理的施氮量
Table 1
处理 Treatment | 基施氮肥用量 Basic application amount of nitrogen (kg hm-2) | |
---|---|---|
不施肥 No fertilizer | CK | 0 |
常规氮肥 Conventional N fertilizer | CN1 | 112.5 |
CN2 | 225.0 | |
CN3 | 337.5 | |
PASP螯合氮肥 N fertilizer coupled with PASP | PASP-N1 | 75.0 |
PASP-N2 | 150.0 | |
PASP-N3 | 225.0 |
新窗口打开|下载CSV
1.3 测定项目与方法
1.3.1 产量及产量构成因素 玉米成熟后, 在小区中部选取10 m2测产称重, 选取20个平均穗调查穗部性状(穗长、秃尖长、穗粗、穗粒数和千粒重), 测定出籽率和含水率, 并折算产量(按14%含水量计)。1.3.2 叶面积指数 在拔节(V6)、大口(V12)、开花吐丝期(VT)、花后15 d (VT+15)、花后30 d (VT+30)、花后45 d (VT+45)和收获期(R6)选取有代表性的植株3株, 测量每株的株高和穗位高(花期开始测量穗位)及每片叶的长度和宽度。采用长宽系数法(0.75)计算叶面积指数, 叶面积指数(LAI)=该土地面积上的总绿叶面积/土地面积。
1.3.3 地上部分干物质积累量 在开花吐丝期和收获期选取有代表性的植株3株, 按部位(叶片、叶鞘、茎秆、苞叶、籽粒、穗轴)分开, 于105℃杀青30 min后85℃烘干至恒重, 称量并粉碎以测定不同器官养分含量。
1.3.3 植株氮素含量及氮肥利用效率 利用VELP-UDK169型凯氏定氮仪测定植株不同部位氮素含量。按文献[33,34]计算如下参数。
氮积累量(kg hm-2) = 植株含氮量(%)×单株干重×小区密度
氮肥偏生产力(partial factor productivity from applied N, PFP, kg kg-1) = 施肥区玉米产量/施氮量
氮肥农学效率(agronomic efficiency of applied N, AE, kg kg-1) = (施肥区玉米产量–对照区玉米产量)/施氮量
氮肥表观利用率(recovery efficiency of applied N, N%) = (施氮区玉米地上部吸氮量–对照区玉米地上部吸氮量)/施氮量×100
氮肥生理利用率(physiological efficiency of applied N, PEN kg kg-1) = (施肥区玉米产量–未施肥区玉米产量)/(施肥区地上部的吸氮量–未施肥区地上部的吸氮量)
1.3.4 叶绿素相对含量(SPAD值) 在拔节期(V6)、大口期(V12)、开花期(VT)、花后10 d (VT+10)、花后20 d (VT+20)、花后30 d (VT+30)和花后40 d(VT+40)用日本美能达公司产手持式SPAD-502型叶绿素计测定穗位叶叶绿素相对含量(SPAD值)。
1.3.5 氮代谢相关酶活性测定 自开花期取至花后40 d, 每间隔10 d取一次穗位叶, 测定硝酸还原酶(NR), 谷氨酰胺合成酶(GS), 谷草转氨酶(GOT)和谷丙转氨酶(GPT)的活性。参考李合生[35]的磺胺比色法测定硝酸还原酶(NR)活性; 参照邹琦[36]的方法测定谷氨酰胺合成酶(GS)活性, 以540 nm处吸光度的上升值间接表示酶活性。参考吴良欢等[37]的方法测定谷草转氨酶(GOT)和谷丙转氨酶(GPT)活性。
1.4 试验数据处理
采用Microsoft Excel 2007整理计算数据及作图, 用SAS 9.2统计分析, 以LSD (P<0.05)检验平均数间差异显著性。2 结果与分析
2.1 产量及产量构成因素
2.1.1 产量 如图1-A所示, 2016年CN和PASP- N处理玉米籽粒产量均随氮肥施用量的增加而降低, 除CN3处理外, CN和PASP-N处理籽粒产量显著高于对照处理(以下简称CK)。相比CK, PASP-N处理增产2.1%~12.1%, CN处理增产6.1%~8.6%; 相比CN处理, PASP-N1和PASP-N3处理在氮肥减施1/3时增产3.1%~3.2%。图1
新窗口打开|下载原图ZIP|生成PPT图1CN与PASP-N处理不同施肥量对玉米产量的影响
A: 2016年产量; B: 2017年产量。CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm-2、225.0 kg hm-2和337.5 kg hm-2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm-2、150.0 kg hm-2和225.0 kg hm-2。图中标以不同小写字母的柱值在0.05水平上差异显著。
Fig. 1Effects of CN and PASP-N treatments on maize yield
A: yield in 2016; B: yield in 2017. CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2and 337.5 kg hm-2 respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively. Value within a column yellowed by different letters are significantly different at P < 0.05.
如图1-B所示, 2017年产量变化趋势与2016年略有差异, 随肥料施用量的增加呈先增加后降低的趋势, 而CN和PASP-N处理均显著大于CK, 整体来看, PASP-N处理增产8.2%~15%, CN处理增产7.3%~12.5%。与CN相比, PASP-N处理在氮肥减施1/3时增产0.9%~3.0%。
2.1.2 产量曲线拟合 CN和PASP-N施氮水平与玉米产量均呈二次曲线关系, 曲线方程分别为y = -0.0267x2+11.698x+10798 (R2=0.51, P<0.05)和y = -0.426x2+15.785x+10726 (R2=0.55, P<0.0001)。两者分别在施氮量219.1 kg hm-2和185.3 kg hm-2时达到最高产量12,079.3 kg hm-2和12,188.2 kg hm-2, PASP-N比CN高108.9 kg hm-2, 且比CN少施氮肥33.8 kg hm-2; 2条曲线在点(238.0, 12,069.7)处交汇; 即CN和PASP-N施氮量介于0~238.0 kg hm-2时, 获得相同产量(图2)。
图2
新窗口打开|下载原图ZIP|生成PPT图2CN和PASP-N处理施氮量与玉米产量曲线拟合图
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥。
Fig. 2Fitting relationship between nitrogen application and maize yield for CN and PASP-N
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP.
2.1.3 产量构成因素 如表2所示, 与CK比较, CN和PASP-N处理穗长增加2.7%~3.8%, 秃尖缩短7.6%~51.9%, 穗粗增加5.6%~8.3%, 穗粒数增加7.0%~10.9%; 相比CN, PASP-N处理穗长增加0.5%~2.9%, 秃尖长缩短13.8%~46.7%。
Table 2
表2
表2CN与 PASP-N不同施肥量对玉米产量构成因素的影响
Table 2
处理 Treatment | 穗长 Ear length (cm) | 秃尖长 Bare tip length (cm) | 穗粗 Ear diameter (mm) | 穗粒数 Kernels per ear | 千粒重 1000-kernel weight (g) |
---|---|---|---|---|---|
CK | 19.3±1.2 bc | 1.6±0.7 ab | 45.5±1.7 b | 588.1±57.4 b | 273.0±15.2 ab |
CN1 | 19.9±0.9 ab | 1.2±0.4 ab | 48.0±1.4 a | 600.6±39.2 a | 277.4±18.1 a |
CN2 | 19.2±1.1 c | 0.8±0.8 b | 49.2±1.4 a | 600.0±61.0 a | 267.2±11.6 b |
CN3 | 19.9±1.1 ab | 2.0±1.1 a | 49.0±1.5 a | 623.7±43.6 a | 272.0±6.9 ab |
PASP-N1 | 20.0±1.2 a | 1.0±0.7 ab | 48.9±2.0 a | 606.6±45.5 a | 276.7±14.0 a |
PASP-N2 | 19.8±1.1 abc | 1.5±0.7 ab | 48.9±1.5 a | 615.9±49.8 a | 267.8±12.1 b |
PASP-N3 | 20.0±1.0 a | 1.0±0.7 ab | 48.3±1.6 a | 604.0±37.2 a | 270.7±10.8 ab |
新窗口打开|下载CSV
2.2 地上部分干物质积累量
如表3所示, CN和PASP-N处理的地上部分干物质积累量显著大于对照(CK)。相比CK处理, CN和PASP-N处理花前干物质积累分别增加31.9%~44.6%和16.4%~25.9%, 花后干物质积累分别增加22.4%~101.9%和15.5%%~39.3%。PASP-N1和PASP- N2处理的花前干物质积累显著低于CN1和CN2, 而花后干物质积累与CN1和CN2差异不显著。PASP-N1和PASP-N3处理的收获指数比CN1、CN3高3.7%~6.0%, 但PASP-N2处理与CN2差异不显著。Table 3
表3
表3CN与PASP-N处理不同施肥量对玉米干物质积累的影响
Table 3
处理 Treatment | 施氮量 Nitrogen (kg hm-2) | 植株干物质积累Plant dry matter accumulation (g plant-1) | 收获指数 Harvest index | |
---|---|---|---|---|
花前Pre-silking | 花后Post-silking | |||
CK | 0 | 105.2±2.1 cd | 156.6±33.5 c | 0.6±0.1 ab |
CN1 | 112.5 | 138.7±6.2 ab | 191.7±7.3 bc | 0.5±0.0 ab |
CN2 | 225.0 | 152.1±10.8 a | 216.4±11.0 b | 0.6±0.0 ab |
CN3 | 337.5 | 104.1±9.1 d | 316.1±42.8 a | 0.5±0.0 b |
PASP-N1 | 75.0 | 124.2±15.7 b | 206.7±12.1 b | 0.6±0.0 a |
PASP-N2 | 150.0 | 122.4±10.9 bc | 218.1±25.3 b | 0.5±0.0 ab |
PASP-N3 | 225.0 | 132.4±10.9 b | 180.8±27.2 bc | 0.5±0.0 ab |
新窗口打开|下载CSV
2.3 形态指标
2.3.1 叶面积指数(LAI) 如图3所示, CN和PASP-N处理的玉米叶面积指数(LAI)显著大于对照(CK), 在收获期, CN和PASP-N处理玉米群体叶面积指数分别比CK增加44.8%~246.7%和36.5%~ 190.0%。拔节期至大口期, PASP-N和CN处理LAI差异不显著, 在开花期和花后15 d, CN1和CN2处理LAI大于PASP-N1和PASP-N2处理, 而在花后30 d至成熟期, PASP-N1和PASP-N2处理LAI大于CN1和CN2处理, 在花后45 d PASP-N1、PASP-N2处理比CN1和CN2高18.5%~22.3%。图3
新窗口打开|下载原图ZIP|生成PPT图3CN与PASP-N处理不同施肥量对玉米叶面积指数的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm-2、225.0 kg hm-2和337.5 kg hm-2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm-2、150.0 kg hm-2和225.0 kg hm-2; V6: 拔节期; V12; 大口期; VT: 花期; VT+15: 花后15 d; VT+30: 花后30 d; VT+45: 花后45 d; R6: 收获期。
Fig. 3Effects of CN and PASP-N treatments on maize leaf area index
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2 respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively; V6: elongation period; V12: flare opening period; VT: anthesis; VT+15: 15 days after anthesis; VT+30: 30 days after anthesis; VT+45: 45 days after anthesis; R6: harvest period.
2.3.2 株高及穗位 如图4, CN和PASP-N处理的株高显著高于CK, 与CN相比, PASP-N处理玉米株高及穗位高平均分别降低1.5%~2.5%和0.7%~ 8.4%; 而与CK相比, 株高增加2.8%~5.6%, 穗位高差异不显著。
图4
新窗口打开|下载原图ZIP|生成PPT图4CN与PASP-N处理不同施肥量对玉米株高及穗位的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm-2、225.0 kg hm-2和337.5 kg hm-2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm-2、150.0 kg hm-2和225.0 kg hm-2。图中标以不同小写字母的柱值在0.05水平上差异显著。
Fig. 4Effects of CN and PASP-N treatments on maize plant height and ear height
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2, respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2 respectively. Value within a column yellowed by different letters are significantly different at P < 0.05.
2.4 叶片SPAD值
图5表明, CN和PASP-N处理的叶绿素相对含量均高于CK, 在大口期, 分别比CK高21.2%~ 30.9%和17.1%~25.7%。PASP-N1处理各生育时期SPAD值高于CN1处理, PASP-N3处理在灌浆后期(VT+40) SPAD值高于CN3处理; 花期PASP-N1处理SPAD值比CN1高8.0%, PASP-N2与CN2处理无显著差异, PASP-N3比CN3低9.1%。图5
新窗口打开|下载原图ZIP|生成PPT图5CN与PASP-N处理不同施肥量对玉米SPAD值的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm-2、225.0 kg hm-2和337.5 kg hm-2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm-2、150.0 kg hm-2和225.0 kg hm-2; V6: 拔节期; V12; 大口期; VT: 花期; VT+10: 花后10 d; VT+20: 花后20 d; VT+30: 花后30 d; VT+40: 花后40 d。
Fig. 5Effects of CN and PASP-N treatments on maize SPAD value
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2 respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively; V6: elongation period; V12: flare opening period; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis.
2.5 穗位叶生理活性
2.5.1 硝酸还原酶(NR) 在开花期, CN和PASP- N处理的叶片NR活性分别比CK低7.9%~27.4%和29.0%~29.2%, 而在花期和花后10 d , 分别高1.4%~ 19.8%和4.0%~49.5%。在花后30 d , PASP-N1处理的叶片NR活性显著低于CN1; 花后20 d和40 d各处理间差异不显著(表6)。图6
新窗口打开|下载原图ZIP|生成PPT图6CN与PASP-N处理不同施肥量对玉米硝酸还原酶活性的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm-2、225.0 kg hm-2和337.5 kg hm-2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm-2、150.0 kg hm-2和225.0 kg hm-2; VT: 花期; VT+10: 花后10 d; VT+20: 花后20 d; VT+30: 花后30 d; VT+40: 花后40 d。
Fig. 6Effects of different CN and PASP-N on maize NR activity
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2 and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2, respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis.
2.5.2 谷氨酰胺合成酶(GS) GS活性如图7所示, CN1和CN3处理在花期至花后40 d呈增加趋势, CN2和PASP-N处理呈先增加后降低的趋势, 其中花后30 d最高; 花期PASP-N和CN各处理间差异不显著; 灌浆初期(花后10 d和20 d) CK显著高于CN和PASP-N处理, 灌浆中期(花后30 d及40 d)显著低于CN和PASP-N处理, 花后30 d PASP-N处理比CN高18.5%~33.1%。
图7
新窗口打开|下载原图ZIP|生成PPT图7CN与PASP-N处理施肥量对玉米谷氨酰胺合成酶活性的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm-2、225.0 kg hm-2和337.5 kg hm-2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm-2、150.0 kg hm-2和225.0 kg hm-2; VT: 花期; VT+10: 花后10 d; VT+20: 花后20 d; VT+30: 花后30 d; VT+40: 花后40 d。
Fig. 7Effects of CN and PASP-N on maize GS activity
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2, respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis.
2.5.3 谷丙转氨酶(GPT) 如图8所示, 花期至花后40 d, 各处理GPT酶活性变化呈先增加后降低趋势, 其中CN和PASP-N处理在花后10 d和20 d均显著大于CK, 花后20 d分别比CK高74.5%~92.3%和39.2%~99.0%; 花后10 d和20 d PASP-N1处理分别比CN处理低17.4%和30.2%。
图8
新窗口打开|下载原图ZIP|生成PPT图8CN与PASP-N处理不同施肥量对玉米谷丙转氨酶活性的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm-2、225.0 kg hm-2和337.5 kg hm-2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm-2、150.0 kg hm-2和225.0 kg hm-2; VT: 花期; VT+10: 花后10 d; VT+20: 花后20 d; VT+30: 花后30 d; VT+40: 花后40 d。
Fig. 8Effects of different CN and PASP-N treatments on maize GPT activity
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2 respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis.
2.5.4 谷草转氨酶(GOT) 如图9所示, CN和PASP-N处理下, 在花后10 d GOT活性达到最大值, 而CK处理处于低谷。在花期、花后10 d至花后40 d, PASP-N处理下GOT活性比CN处理高0.8%~ 6.4%。
图9
新窗口打开|下载原图ZIP|生成PPT图9CN与PASP-N处理不同施肥量对玉米谷草转氨酶活性的影响
CK: 对照; CN: 常规肥; PASP-N: PASP螯合氮肥; CN1、CN2和CN3分别代表施氮量为112.5 kg hm-2、225.0 kg hm-2和337.5 kg hm-2; PASP-N1、PASP-N2和PASP-N3分别代表施氮量为75.0 kg hm-2、150.0 kg hm-2和225.0 kg hm-2; VT: 花期; VT+10: 花后10 d; VT+20: 花后20 d; VT+30: 花后30 d; VT+40: 花后40 d。
Fig. 9Effects of different CN and PASP-N on maize GOT activity
CK: control; CN: conventional N fertilizer; PASP-N: N fertilizer coupled with PASP; CN1, CN2, and CN3 denote the N application rate of 112.5 kg hm-2, 225.0 kg hm-2, and 337.5 kg hm-2 respectively; PASP-N1, PASP-N2, and PASP-N3 denote the N application rate of 75.0 kg hm-2, 150.0 kg hm-2, and 225.0 kg hm-2, respectively; VT: anthesis; VT+10: 10 days after anthesis; VT+20: 20 days after anthesis; VT+30: 30 days after anthesis; VT+40: 40 days after anthesis.
2.6 氮肥利用效率
如表4所示, CN和PASP-N处理随施肥量增加, 氮肥偏生产力和氮肥表观利用率呈降低趋势; PASP- N处理的氮肥偏生产力、氮肥农学效率、氮肥表观利用率和氮肥生理效率均显著大于CN, 分别比CN高51.3%~54.4%、2.9%~104.2%、28.9%~126.6%和48.0%~405.2%。Table 4
表4
表4CN与PASP-N处理不同施肥量对玉米氮素利用效率的影响
Table 4
处理 Treatment | 施肥量 N application rate (kg hm-2) | 氮肥偏生产力 Partial factor productivity from applied N (kg kg-1) | 氮肥农学效率Agronomic efficiency of applied N (kg kg-1) | 氮肥表观利用率 Recovery efficiency of applied N (%) | 氮肥生理利用率 Physiological efficiency of applied N (kg kg-1) |
---|---|---|---|---|---|
CN1 | 112.5 | 103.4±4.0 b | 5.2±1.8 bc | 0.6±0.1 bc | 8.7±2.0 b |
CN2 | 225.0 | 54.2±1.7 d | 5.4±1.4 bc | 0.6±0.1 bc | 11.2±2.8 b |
CN3 | 337.5 | 34.6±1.5 e | 3.1±0.9 c | 0.6±0.1 bc | 3.3±1.6 c |
PASP-N1 | 75.0 | 156.4±13.3 a | 5.3±2.1 bc | 1.3±0.0 a | 4.0±1.5 c |
PASP-N2 | 150.0 | 83.1±3.3 c | 9.6±2.7 a | 0.7±0.2 b | 16.7±1.3 a |
PASP-N3 | 225.0 | 53.4±2.4 d | 6.3±1.1 b | 0.4±0.1 c | 16.5±2.2 a |
新窗口打开|下载CSV
3 讨论
3.1 PASP-N减量全基施的增产效应
前人对玉米[38,39,40]、水稻[41,42,43]、小麦[44]等粮食作物和蕹菜[45]、油菜[29]、芹菜[46]、甜茶[47]、黄瓜[48]等经济作物的研究表明, 相同施氮量下, PASP能够显著提高作物干物质积累量、产量以及氮肥利用效率。在本研究中, 2016、2017两年间, 聚天门冬氨酸螯合氮(PASP-N)在总施氮量相比常规氮肥(CN)降低1/3的条件下, 玉米单产分别增加3.1%~3.2%和0.9%~3.0%, 氮肥偏生产力、氮肥农学效率、氮肥表观利用率和氮肥生理效率分别增加51.3%~54.4%、2.9%~104.2%、28.9%~126.6%和48.0%~405.2%。而玉米产量的增加主要是通过增加穗长、缩短秃尖实现的, 这与前人研究一致[49]。PASP-N处理玉米花前干物质积累量显著低于CN处理, 而花后干物质积累量两者的差异不显著, 因此, PASP-N处理提高了花后/花前干物质积累比例, 这表明PASP-N处理相比CN处理提高了玉米花后的抗逆能力, 增加了玉米花后干物质积累量[50,51,52,53]。3.2 PASP-N减量全基施对玉米氮肥利用率的调控效应
PASP具有极强的鳌合、分散、吸附作用, 分子中的羧基, 能螯合阳离子, 并且通过对土壤养分离子的交换吸附力和环状分子结构的吸蓄能力, 明显减少氮素、磷素和钾等养分的流失、挥发和被固定[26], 并促进植株氮磷钾的吸收[28], 提高作物产量和肥料利用率[25,29-30]。在本研究中, 氮肥在玉米播种前一次性全基施下, 聚天门冬氨酸螯合氮肥(PASP-N)相比传统氮肥(CN), 在各个施氮梯度上氮肥用量降低1/3, 由于玉米在生育前期生长缓慢, 对氮肥的吸收利用同样较慢, 常规施氮(CN)一方面容易造成氮肥的大量淋失和挥发损失, 另一方面在玉米生育前期过量施氮也容易造成玉米长势过旺, 后期容易出现早衰。在2年的试验中, PASP-N处理下, 玉米开花前地上部分干物质积累量显著低于CN处理, 而在花后反而高于CN处理, 从LAI的变化趋势上同样可以看出, PASP-N处理比CN处理延缓了花后玉米叶片的衰老速率。这些现象表明, PASP-N处理玉米在生育后期的氮肥供应状况优于CN处理, 因而玉米氮素的农学效率和偏生产力均显著大于CN处理, 显著提高了氮肥的利用率。3.3 PASP-N对玉米氮素代谢关键酶活性的调控效应
有研究人员通过玉米盆栽试验发现[40], 聚天门冬氨酸与常规肥料混用, 可以提高玉米幼苗叶片叶绿素含量、硝酸还原酶(NR)活性; 高娇等[50,51]利用含PASP的聚糠萘合剂(PKN)处理盆栽玉米幼苗和田间不同积温带玉米, 发现PKN 处理提高了盆栽玉米幼苗NR活性、谷氨酰胺合成酶(GS)活性。NR是氮代谢过程中的限速酶, 受光照、温度、CO2、水势等多因素影响。Ferrario-Mery等[54]证明NR活性与其底物(NO3-)浓度正相关, 与氮同化产物NH3、谷氨酰胺、谷氨酸成负相关, 而GS是植物体内氨同化的关键酶之一, 在ATP和Mg2+存在下, 它催化植物体内NH3和谷氨酸形成谷氨酰胺。本研究中PASP-N处理玉米叶片NR活性从花期至花后20 d的减弱, 可能与该时段GS活性低, 导致NH3、谷氨酰胺、谷氨酸等氮同化产物积累多有关。在花后30 d和40 d, NR活性与CN无显著差异, 同时期GS活性显著高于CN处理, 进一步证明NR活性受GS活性调控; 在氮素同化过程中, NR催化NO3-转化成NO2-, NO2-在亚硝酸还原酶(NiR)的作用下将NO2-还原成NH3, 植物组织中的NiR存在量大, 所以亚硝酸盐很少在植物体内积累, GS催化无机NH3转化为谷氨酸; GS和GPT、GOT调控谷氨酸、谷氨酰胺以及天门冬氨酸、丙氨酸等其他氨基酸的合成[55,56,57]。本试验中, PASP-N处理GOT活性增强, GPT活性下降, 由此可见, PASP-N处理下, 玉米植株对天门冬氨酸的合成和代谢强于丙氨酸。前人研究表明, CN全基施易造成氮肥资源浪费和玉米早衰减产[58], 本试验中, PASP-N处理下玉米花后干物质积累较花前强, 灌浆中后期NR活性高于CN处理, 且GS活性高于CN处理, 同时叶面积指数增大, 由此可看出, PASP-N处理加强了玉米在灌浆中后期功能叶的氮素代谢能力, 延缓了玉米叶片衰老速率。综上, PASP-N处理相比CN处理具有缓控氮肥释放的作用, 能够在东北春玉米区作为基肥一次性施用取得较理想的效果。4 结论
聚天门冬氨酸螯合氮肥(PASP-N)能比常规氮肥(CN)降低玉米灌浆期叶片硝酸还原酶(NR)活性, 提高叶片谷氨酰胺合成酶(GS)和谷草转氨酶的活性(GOT), 促进玉米籽粒灌浆中后期的氮素代谢, 延缓叶片衰老并提高花后地上部分干物质的积累量。一次性基施PASP-N比CN施氮量减少1/3, 可增产玉米, 提高肥料利用率, 适合在东北春玉米区应用。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
URL [本文引用: 1]
现时我国粮食安全总体形势是好的,但在未来10~30年的时间 里,由于人口的持续增长、城乡居民消费结构的改善和消费水平的提高而粮食需求量将大增.在我国现有粮食生产能力的基础上存在500亿公斤的缺口,由此形成 粮食安全风险.化肥是粮食的"粮食",消除粮食安全风险的途径之一是增加粮食生产的化肥投入,而化肥投入有利有弊,如何趋利避害,使化肥投入能够持续提高 粮食单产,增加粮食总量,确保粮食安全是本文的研究要旨.
URL [本文引用: 1]
现时我国粮食安全总体形势是好的,但在未来10~30年的时间 里,由于人口的持续增长、城乡居民消费结构的改善和消费水平的提高而粮食需求量将大增.在我国现有粮食生产能力的基础上存在500亿公斤的缺口,由此形成 粮食安全风险.化肥是粮食的"粮食",消除粮食安全风险的途径之一是增加粮食生产的化肥投入,而化肥投入有利有弊,如何趋利避害,使化肥投入能够持续提高 粮食单产,增加粮食总量,确保粮食安全是本文的研究要旨.
,
DOI:10.3969/j.issn.1002-2104.2010.04.014URL [本文引用: 1]
通过对国内外农业面源污染研究资料的分析,认为农业面源污染的形式主要有:化肥污染、农药污染、农膜污染、秸秆燃烧污染、养殖业污染及水土流失等。农业面源污染导致了土地退化,在全世界不同程度退化的12亿hm2耕地中,约12%由农业面源污染引起;是河流和湖泊的重要污染源,导致美国40%的河流和湖泊水质不合格;是引起地表水氮、磷富营养化的主要因素,欧洲国家由农业面源污染排放的磷为地表水污染总负荷的24%-71%;中国的农业面源污染造成的水体氮、磷富营养化也显著超过来自城市的生活点源污染和工业点源污染。提出目前比较好的防治措施有:最佳农田管理措施、植被过滤带和人工湿地。建议我国控制农业面源污染必须从政策和法律上对农业生产活动进行规范,采用先进的理论和技术实行源头控制,并辅助以过程控制和末端控制。
DOI:10.3969/j.issn.1002-2104.2010.04.014URL [本文引用: 1]
通过对国内外农业面源污染研究资料的分析,认为农业面源污染的形式主要有:化肥污染、农药污染、农膜污染、秸秆燃烧污染、养殖业污染及水土流失等。农业面源污染导致了土地退化,在全世界不同程度退化的12亿hm2耕地中,约12%由农业面源污染引起;是河流和湖泊的重要污染源,导致美国40%的河流和湖泊水质不合格;是引起地表水氮、磷富营养化的主要因素,欧洲国家由农业面源污染排放的磷为地表水污染总负荷的24%-71%;中国的农业面源污染造成的水体氮、磷富营养化也显著超过来自城市的生活点源污染和工业点源污染。提出目前比较好的防治措施有:最佳农田管理措施、植被过滤带和人工湿地。建议我国控制农业面源污染必须从政策和法律上对农业生产活动进行规范,采用先进的理论和技术实行源头控制,并辅助以过程控制和末端控制。
,
DOI:10.3724/SP.J.1006.2011.00339URL [本文引用: 1]
Maize (.) of summer maize plays an important role in ensuring the country food security. However, there exist some problems in summer maize production such as excessive dosage and unreasonable period of nitrogen application, which hinders the realization of super-high-yield. In order to increase the use efficiency of fertilizer and grain yield of summer maize, field experiments were conducted and the effects of postponing N application on nitrogen absorption, use efficiency of nitrogen fertilizer and grain yield in summer maize were studied. The results showed that yield was increased by 9.62%–15.95% by applying nitrogen fertilizer. Compared with conventional fertilizer application, postponing N application increased grain yield by 2.27%–5.33%. The N absorption proportion after silking stage was 40.30%–47.78% of the total, so it is important to provide maize plants with sufficient N in later growth stage for realizing super-high-yield. It was indicated that postponing N application could promote N absorption and accumulation of super-high-yield summer maize at later stage, decrease N transfer efficiency in stem and leaf, increase activity of nitrate reductase and content of free amino acids in ear leaf at filling stage, and raise protein yield of summer maize. In comparison with conventional fertilizer application, the N fertilizer utilization rate and N fertilizer agronomy efficiency were increased by 1.88%–9.70% and 0.96–2.21 kg kg respectively by postponing N application. The highest yield and nitrogenous fertilizer use efficiency were obtained by applying 30% of nitrogen fertilizer at seedling stage and trumpeting stage respectively and 40% of nitrogen fertilizer at silking stage.
DOI:10.3724/SP.J.1006.2011.00339URL [本文引用: 1]
Maize (.) of summer maize plays an important role in ensuring the country food security. However, there exist some problems in summer maize production such as excessive dosage and unreasonable period of nitrogen application, which hinders the realization of super-high-yield. In order to increase the use efficiency of fertilizer and grain yield of summer maize, field experiments were conducted and the effects of postponing N application on nitrogen absorption, use efficiency of nitrogen fertilizer and grain yield in summer maize were studied. The results showed that yield was increased by 9.62%–15.95% by applying nitrogen fertilizer. Compared with conventional fertilizer application, postponing N application increased grain yield by 2.27%–5.33%. The N absorption proportion after silking stage was 40.30%–47.78% of the total, so it is important to provide maize plants with sufficient N in later growth stage for realizing super-high-yield. It was indicated that postponing N application could promote N absorption and accumulation of super-high-yield summer maize at later stage, decrease N transfer efficiency in stem and leaf, increase activity of nitrate reductase and content of free amino acids in ear leaf at filling stage, and raise protein yield of summer maize. In comparison with conventional fertilizer application, the N fertilizer utilization rate and N fertilizer agronomy efficiency were increased by 1.88%–9.70% and 0.96–2.21 kg kg respectively by postponing N application. The highest yield and nitrogenous fertilizer use efficiency were obtained by applying 30% of nitrogen fertilizer at seedling stage and trumpeting stage respectively and 40% of nitrogen fertilizer at silking stage.
,
URL [本文引用: 1]
本试验选用郑单958(ZD958)和登海605(DH605)为试验材料,于2012~2013年在山东农业大学玉米科技园进行研究,研究了普通氮肥分次施用、普通氮肥拔节期一次性施用(开沟深施)、普通氮肥拔节期地表撒施、包膜控释肥基施和拔节期施用等不同施氮方式对夏玉米产量和氮素利用效率的影响。主要研究结果如下: 1、不同施氮方式对夏玉米产量及其构成的影响 普通氮肥分次施比一次性施、开沟深施比地表撒施显著提高夏玉米产量。分次施比一次施处理的产量增加3.60%~4.41%,穗粒数提高了2.94%~3.61%,是增产的主要因素;DH605开沟深施比地表撒施处理的籽粒产量、...
URL [本文引用: 1]
本试验选用郑单958(ZD958)和登海605(DH605)为试验材料,于2012~2013年在山东农业大学玉米科技园进行研究,研究了普通氮肥分次施用、普通氮肥拔节期一次性施用(开沟深施)、普通氮肥拔节期地表撒施、包膜控释肥基施和拔节期施用等不同施氮方式对夏玉米产量和氮素利用效率的影响。主要研究结果如下: 1、不同施氮方式对夏玉米产量及其构成的影响 普通氮肥分次施比一次性施、开沟深施比地表撒施显著提高夏玉米产量。分次施比一次施处理的产量增加3.60%~4.41%,穗粒数提高了2.94%~3.61%,是增产的主要因素;DH605开沟深施比地表撒施处理的籽粒产量、...
,
DOI:10.2134/agronj1986.00021962007800040036xURL [本文引用: 1]
The increasing use of both no-tillage corn (Zea mays L.) production and ureasontaining fertilizers makes it imperative that we develop management strategies that maximize economic return from applications of these fertilizers to no-till corn. A 3-yr experiment was conducted on a Murrill silt loam (fine-loamy, mixed, mesic Typic Hapludult) to determine the relative efficiencies (yield and N uptake per unit of N applied) of three common N sources [NH4NO3 (AN), urea, and urea-ammonium nitrate solution (UAN)] used on no-till corn. They were applied either as a surface band or as an injected band at or near the time of planting, or as a sidedress 26 to 31 days after plant emergence. Surface-banded AN, injected AN, and injected urea all produced similar no-till corn yields and N uptakes. The apparent NH3 volatilization loss from surface-banded urea was strongly influenced by the number of days after application until a total of 10 mm of rain fell. Apparent losses ranged from less than 50 g kg–1 of applied N with 10 mm of rainfall within 2 to 3 days after application, to over 300 g kg–1 with 5 to 7 days of dry weather after application. Both surface-banded and injected UAN were less efficient than AN or injected urea. Sidedress applications of N resulted in more efficient N fertilizer utilization with all sources, but particularly with urea-containing sources. Shorter rain-free periods after sidedress applications may have contributed to this effect. Surface applications of an experimental fertilizer, 31 urea/urea phosphate, produced greater ear-leaf at silking N concentrations than did surface-banded urea. Amending urea with KCI, or UAN with ammonium thiosulfate, did not result in yields, ear-leaf N concentrations, or N uptakes significantly different from those obtained with their unamended surface-applied counterparts in the one year that each was tested.
,
DOI:10.11674/zwyf.2011.0489URL [本文引用: 1]
选用卺海661(DH661)和郑单958(ZD958)为试材,研究了超高产条件下施氮时期对夏玉米子粒产量、氮素利用率以及转运特性的影响。结果表明,拔节期一次性施氮较不施氮增产不显著;随着施氮次数的增加产量显著提高,灌浆期施氮可以显著提高粒重,从而提高产量。拔节期、大口期、花后10d按2:4:4施氮,DH661产量可达14188.9kg/hm^2;基肥、拔节期、大口期、花后10d按1:2:5:2施氮,ZD958产量可达14529.6kg/hm^2生长期内分次施氮及灌浆期施氮可显著提高植株和子粒中氮素积累,延长氮素积累活跃期;同时可以显著提高氮素收获指数、氮肥农学利用率、氮素表观回收率和氮肥偏生产力。DH661和ZD958在2:4:4和3:5:2施肥方式下开花前和开花后氮素吸收比例分别为51:49和60:40。开花前分次施氮可显著提高氮素转运量和转运效率,灌浆期施氮可显著提高花后子粒氮素同化。DH661和ZD958在2:4:4和3:5:2施肥方式下花后氮素同化量分别占子粒吸氮量63.0%和50.5%。本试验条件下,DH661采用拔节期、大口期、花后10d按2:4:4施入,ZD958基肥、拔节期、大口期、花后10d按1:2:5:2施入或拔节期、大口期、花后10d按3:5:2施人可提高氮素利用率,实现高产高效。
DOI:10.11674/zwyf.2011.0489URL [本文引用: 1]
选用卺海661(DH661)和郑单958(ZD958)为试材,研究了超高产条件下施氮时期对夏玉米子粒产量、氮素利用率以及转运特性的影响。结果表明,拔节期一次性施氮较不施氮增产不显著;随着施氮次数的增加产量显著提高,灌浆期施氮可以显著提高粒重,从而提高产量。拔节期、大口期、花后10d按2:4:4施氮,DH661产量可达14188.9kg/hm^2;基肥、拔节期、大口期、花后10d按1:2:5:2施氮,ZD958产量可达14529.6kg/hm^2生长期内分次施氮及灌浆期施氮可显著提高植株和子粒中氮素积累,延长氮素积累活跃期;同时可以显著提高氮素收获指数、氮肥农学利用率、氮素表观回收率和氮肥偏生产力。DH661和ZD958在2:4:4和3:5:2施肥方式下开花前和开花后氮素吸收比例分别为51:49和60:40。开花前分次施氮可显著提高氮素转运量和转运效率,灌浆期施氮可显著提高花后子粒氮素同化。DH661和ZD958在2:4:4和3:5:2施肥方式下花后氮素同化量分别占子粒吸氮量63.0%和50.5%。本试验条件下,DH661采用拔节期、大口期、花后10d按2:4:4施入,ZD958基肥、拔节期、大口期、花后10d按1:2:5:2施入或拔节期、大口期、花后10d按3:5:2施人可提高氮素利用率,实现高产高效。
,
DOI:10.14083/j.issn.1001-4942.2016.04.017URL [本文引用: 1]
以高产中筋冬小麦品种济麦22为材料,应用普通尿素和腐植酸尿素,采用单独或混合按一定比例分层施用方式,探讨其对小麦生长发育和产量的影响效果。结果表明,与常规施肥处理(OPT)相比,氮肥分层施用处理 OPT1、OPT2的小麦产量分别增加5.3%和4.4%,产量差异主要来自有效穗数和穗粒数;同时,小麦各生育时期干物质积累量和氮素含量也有所增加,氮素利用率分别提高6.4和4.2个百分点。
DOI:10.14083/j.issn.1001-4942.2016.04.017URL [本文引用: 1]
以高产中筋冬小麦品种济麦22为材料,应用普通尿素和腐植酸尿素,采用单独或混合按一定比例分层施用方式,探讨其对小麦生长发育和产量的影响效果。结果表明,与常规施肥处理(OPT)相比,氮肥分层施用处理 OPT1、OPT2的小麦产量分别增加5.3%和4.4%,产量差异主要来自有效穗数和穗粒数;同时,小麦各生育时期干物质积累量和氮素含量也有所增加,氮素利用率分别提高6.4和4.2个百分点。
,
DOI:10.3969/j.issn.1001-4942.2006.03.017URL [本文引用: 1]
不同深度的小麦追肥(尿素)试验结果表明,冬小麦的追肥深度以5~10 cm较好,比表面撒施小麦产量提高2.72%~11.57%,氮肥利用率提高7.2~12.8个百分点.
DOI:10.3969/j.issn.1001-4942.2006.03.017URL [本文引用: 1]
不同深度的小麦追肥(尿素)试验结果表明,冬小麦的追肥深度以5~10 cm较好,比表面撒施小麦产量提高2.72%~11.57%,氮肥利用率提高7.2~12.8个百分点.
,
DOI:10.11838/sfsc.20060116URL [本文引用: 1]
碳酸氢铵是昭平县水稻前期使用的主要氮肥品种,一般用量750~1050 kg/hm2,但是普遍采用浅施或面施,达不到应有的增产效果。为了推广应用碳铵深施增产技术,2001~2002年进行了大面积的试验示范。1材料与方法试验在昭平镇江口村进行,土壤肥力中等,常年平均产量6750 kg/hm2的稻田
DOI:10.11838/sfsc.20060116URL [本文引用: 1]
碳酸氢铵是昭平县水稻前期使用的主要氮肥品种,一般用量750~1050 kg/hm2,但是普遍采用浅施或面施,达不到应有的增产效果。为了推广应用碳铵深施增产技术,2001~2002年进行了大面积的试验示范。1材料与方法试验在昭平镇江口村进行,土壤肥力中等,常年平均产量6750 kg/hm2的稻田
,
DOI:10.11838/sfsc.20090211URL [本文引用: 1]
采用盆栽试验,研究了不同的氮肥施肥方式对不同小麦品种苗期生物量、氮素吸收、氮肥利用率和土壤氮转化的影响.结果表明,不同小麦品种氮素吸收不同,不施氮时,小麦生物量、植株氮积累量均表现为氮高效品种>氮低效品种.施肥方式影响小麦氮素吸收,对于不同小麦品种,均表现为侧深施较混施有利于氮素向小麦转移,且侧深施肥具有氮肥利用率高、氮素损失少、土壤残留多等特点,不失为小麦的一种良好的施肥方法.
DOI:10.11838/sfsc.20090211URL [本文引用: 1]
采用盆栽试验,研究了不同的氮肥施肥方式对不同小麦品种苗期生物量、氮素吸收、氮肥利用率和土壤氮转化的影响.结果表明,不同小麦品种氮素吸收不同,不施氮时,小麦生物量、植株氮积累量均表现为氮高效品种>氮低效品种.施肥方式影响小麦氮素吸收,对于不同小麦品种,均表现为侧深施较混施有利于氮素向小麦转移,且侧深施肥具有氮肥利用率高、氮素损失少、土壤残留多等特点,不失为小麦的一种良好的施肥方法.
,
DOI:10.3321/j.issn:1001-7216.2006.01.013URL [本文引用: 1]
By using a super-high yielding rice variety Dongnong 423 as material, the effect of four kinds of fertilizer application methods was studied based upon the investigation on some characters of growth and development in rice, including tiller number, leaf chlorophyll content, leaf area index, amount of dry matter accumulation in plant, and yield and its components, as well as protein content, amylose content and taste meter value of rice. The four fertilization methods were deep application in the whole growth period (DAF), incorporating into all soil layers (IAF), surface application(SAF) and no fertilization(NF). The DAF treatment could prolong the duration of effective tillering, increase leaf chlorophyll content, leaf area index and amount of dry matter accumulation in plant compared with the other three methods. There were significant differences(=0.01) in grain yield and rice protein content (DAF>IAF>SAF>NF), and in amylose content and taste meter value of rice(SAF>IAF>DAF). Under DAF treatment, the grain yield, number of panicles, number of grains per panicle and rice protein content were increased, however, the seed setting rate,1000-grain weight, amylose content and taste meter value of rice were decreased compared with the other three treatments.
DOI:10.3321/j.issn:1001-7216.2006.01.013URL [本文引用: 1]
By using a super-high yielding rice variety Dongnong 423 as material, the effect of four kinds of fertilizer application methods was studied based upon the investigation on some characters of growth and development in rice, including tiller number, leaf chlorophyll content, leaf area index, amount of dry matter accumulation in plant, and yield and its components, as well as protein content, amylose content and taste meter value of rice. The four fertilization methods were deep application in the whole growth period (DAF), incorporating into all soil layers (IAF), surface application(SAF) and no fertilization(NF). The DAF treatment could prolong the duration of effective tillering, increase leaf chlorophyll content, leaf area index and amount of dry matter accumulation in plant compared with the other three methods. There were significant differences(=0.01) in grain yield and rice protein content (DAF>IAF>SAF>NF), and in amylose content and taste meter value of rice(SAF>IAF>DAF). Under DAF treatment, the grain yield, number of panicles, number of grains per panicle and rice protein content were increased, however, the seed setting rate,1000-grain weight, amylose content and taste meter value of rice were decreased compared with the other three treatments.
,
DOI:10.3969/j.issn.1000-6850.2006.09.068URL [本文引用: 1]
几年来在豫东潮土地区砂质土上 进行的肥料深施效果试验研究结果表明,肥料深施对小麦的生育状况和经济性状有较大影响,肥料深施与浅施比较,可使小麦植株前期生长健壮,中后期生长稳健, 落黄好,穗大粒多,籽粒饱满。可显著增加小麦养分吸收量,提高化肥利用率,肥料深施处理比浅施处理氮、磷、钾的吸收量,分别增加 34.32 ̄67.81kg/hm2,3.22 ̄9.42kg/hm2和17.82 ̄39.84kg/hm2;氮素化肥利用率提高20.86 ̄41.1个 百分点,磷肥利用率提高7.13 ̄15.39个百分点;肥料深施在小麦田里养分残留量较浅施的高,尽管一季小麦对土壤有机质耗竭不大,但对氮、磷素的残存 已有差异。肥料深施对小麦产量、经济效益、化肥利用率有显著的影响,采用肥料深施技术比群众习惯施肥方法(浅施)可增产小麦 337.1 ̄1183.5kg/hm2,增产率达7.6% ̄26.6%,增加收益539.36 ̄1893.6元/hm2。
DOI:10.3969/j.issn.1000-6850.2006.09.068URL [本文引用: 1]
几年来在豫东潮土地区砂质土上 进行的肥料深施效果试验研究结果表明,肥料深施对小麦的生育状况和经济性状有较大影响,肥料深施与浅施比较,可使小麦植株前期生长健壮,中后期生长稳健, 落黄好,穗大粒多,籽粒饱满。可显著增加小麦养分吸收量,提高化肥利用率,肥料深施处理比浅施处理氮、磷、钾的吸收量,分别增加 34.32 ̄67.81kg/hm2,3.22 ̄9.42kg/hm2和17.82 ̄39.84kg/hm2;氮素化肥利用率提高20.86 ̄41.1个 百分点,磷肥利用率提高7.13 ̄15.39个百分点;肥料深施在小麦田里养分残留量较浅施的高,尽管一季小麦对土壤有机质耗竭不大,但对氮、磷素的残存 已有差异。肥料深施对小麦产量、经济效益、化肥利用率有显著的影响,采用肥料深施技术比群众习惯施肥方法(浅施)可增产小麦 337.1 ̄1183.5kg/hm2,增产率达7.6% ̄26.6%,增加收益539.36 ̄1893.6元/hm2。
,
DOI:10.1007/BF01985721URL [本文引用: 1]
Field methods used to measure nitrogen mineralization are reviewed. The relative importance of net and gross measures of mineralization are considered in relation to field studies. Some of the problems with in situ core incubations are discussed, particularly that of the disruption of plant roots, and immobilization of mineralized N. A technique applying pool dilution to the study of... [Show full abstract]
,
DOI:10.3321/j.issn:0564-3945.2005.03.017URL [本文引用: 1]
通过田间试验研究了控释包衣尿素在田间的实际溶出过程及其对玉米产量、氮肥利用率的影响。结果表明,控释包衣尿素在田间的实际溶出期限远远高于实验室的测定值,控释包衣尿素处理耕层土壤无机氮动态过程与其溶出特征比较一致;在减少20%氮肥用量并且采用玉米全生育期一次性基施的措施下,控释包衣尿素的玉米产量和吸氮量与常规施肥措施的尿素持平,而氮肥利用率略有提高。
DOI:10.3321/j.issn:0564-3945.2005.03.017URL [本文引用: 1]
通过田间试验研究了控释包衣尿素在田间的实际溶出过程及其对玉米产量、氮肥利用率的影响。结果表明,控释包衣尿素在田间的实际溶出期限远远高于实验室的测定值,控释包衣尿素处理耕层土壤无机氮动态过程与其溶出特征比较一致;在减少20%氮肥用量并且采用玉米全生育期一次性基施的措施下,控释包衣尿素的玉米产量和吸氮量与常规施肥措施的尿素持平,而氮肥利用率略有提高。
,
DOI:10.3321/j.issn:1008-505X.2008.03.010URL [本文引用: 1]
连续两年在吴桥实验站进行田间试验,研究了3种类型氮肥(尿素、包膜尿素和复合肥)对夏玉米郑单958(紧凑型)和农大108(半紧凑型)氮素吸收与利用效率的影响。结果表明,随施氮量增大,夏玉米氮累积量(NAA)显著增加,氮素吸收效率(NUPE)、氮生理效率(NPE)、氮素利用效率(NUTE)、氮收获指数(NHI)降低,氮肥利用率(NUE)、氮肥效率(NFE)显著降低。氮肥类型影响夏玉米氮素吸收与利用效率,NUE、NUPE以包膜尿素和复合肥处理较大,而NPE和NUTE以尿素处理较高,但差异不达显著水平;NHI一般以尿素处理较高,其差异显著性存在品种间、年际间及施氮水平间差异。夏玉米NAA、NHI、NFE等具有较明显的基因型差异,均表现为郑单958大于农大108;两品种在氮素利用上均属敏感型,但郑单958的敏感性强于农大108。可见,施氮量是影响夏玉米氮高效利用的关键因素,而合理选择品种与氮肥类型也能起到一定的积极作用。本试验条件下,选择紧凑型品种与复合肥对提高华北平原夏玉米氮利用效率较为有利。
DOI:10.3321/j.issn:1008-505X.2008.03.010URL [本文引用: 1]
连续两年在吴桥实验站进行田间试验,研究了3种类型氮肥(尿素、包膜尿素和复合肥)对夏玉米郑单958(紧凑型)和农大108(半紧凑型)氮素吸收与利用效率的影响。结果表明,随施氮量增大,夏玉米氮累积量(NAA)显著增加,氮素吸收效率(NUPE)、氮生理效率(NPE)、氮素利用效率(NUTE)、氮收获指数(NHI)降低,氮肥利用率(NUE)、氮肥效率(NFE)显著降低。氮肥类型影响夏玉米氮素吸收与利用效率,NUE、NUPE以包膜尿素和复合肥处理较大,而NPE和NUTE以尿素处理较高,但差异不达显著水平;NHI一般以尿素处理较高,其差异显著性存在品种间、年际间及施氮水平间差异。夏玉米NAA、NHI、NFE等具有较明显的基因型差异,均表现为郑单958大于农大108;两品种在氮素利用上均属敏感型,但郑单958的敏感性强于农大108。可见,施氮量是影响夏玉米氮高效利用的关键因素,而合理选择品种与氮肥类型也能起到一定的积极作用。本试验条件下,选择紧凑型品种与复合肥对提高华北平原夏玉米氮利用效率较为有利。
,
URL [本文引用: 1]
以玉米杂交种郑单958为材料,研究基施包膜尿素(120 kg/hm2和90 kg/hm2纯N,下同)和分施普通尿素(1:1和1:2:1的比例,总量均为120 kg/hm2)对夏玉米产量、产量构成、干物质生产及碳氮代谢的影响.结果表明.基施包膜尿素120 kg/hm2和分施(1:2:1)普通尿素效果基本一致,在子粒产量、穗粒数、生物产量及氮素累积量等方面均显著优于基施包膜尿素90 kg/hm2和分施(1:1)普通尿素.前二者的子粒干物质和氮素累积主要来源于灌浆期叶片的光合生产和根系的吸收,表明基施包膜尿素120 kg/hm2和分施(1:2:1)普通尿素,均有利于增大并延长叶片的光合生产能力和根系的吸收能力.另外,乳熟至灌浆中期,包膜尿素处理的植株营养器官 总糖含量处于较合理的水平.
URL [本文引用: 1]
以玉米杂交种郑单958为材料,研究基施包膜尿素(120 kg/hm2和90 kg/hm2纯N,下同)和分施普通尿素(1:1和1:2:1的比例,总量均为120 kg/hm2)对夏玉米产量、产量构成、干物质生产及碳氮代谢的影响.结果表明.基施包膜尿素120 kg/hm2和分施(1:2:1)普通尿素效果基本一致,在子粒产量、穗粒数、生物产量及氮素累积量等方面均显著优于基施包膜尿素90 kg/hm2和分施(1:1)普通尿素.前二者的子粒干物质和氮素累积主要来源于灌浆期叶片的光合生产和根系的吸收,表明基施包膜尿素120 kg/hm2和分施(1:2:1)普通尿素,均有利于增大并延长叶片的光合生产能力和根系的吸收能力.另外,乳熟至灌浆中期,包膜尿素处理的植株营养器官 总糖含量处于较合理的水平.
,
DOI:10.3969/j.issn.1006-6500.2012.01.011URL [本文引用: 1]
采用田间试验方法研究施用树脂包膜控释尿素(TSCU)和树脂加硫包膜控释尿素(PSCU) 对玉米植株全氮含量、吸氮量、肥料氮素吸收效率、产量以及土壤耕层硝态氮含量的影响。结果表明,TSCU和PSCU处理吸氮量分别达到 163.32kg·hm^-2和178.54kg·hm^-2,比施普通尿素(Pu)处理增加26.62奴·hm^-2和41.84kg.hm^-2,差 异达显著水平;玉米产量比PU处理分别提高21.27%和33.36%;TSCU和PSCU处理的玉米氮素吸收效率比PU处理分别增加18.68%和 27.47%;在玉米成熟后,控释肥处理耕层土壤硝态氮仍然高于普通尿素处理。在黑土生态条件下,与PU处理的玉米相比,TSCU和PSCU处理均有效提 高了玉米的干物质量、吸氮量及产量,减少了环境污染,以PSCU处理控释效果最好。
DOI:10.3969/j.issn.1006-6500.2012.01.011URL [本文引用: 1]
采用田间试验方法研究施用树脂包膜控释尿素(TSCU)和树脂加硫包膜控释尿素(PSCU) 对玉米植株全氮含量、吸氮量、肥料氮素吸收效率、产量以及土壤耕层硝态氮含量的影响。结果表明,TSCU和PSCU处理吸氮量分别达到 163.32kg·hm^-2和178.54kg·hm^-2,比施普通尿素(Pu)处理增加26.62奴·hm^-2和41.84kg.hm^-2,差 异达显著水平;玉米产量比PU处理分别提高21.27%和33.36%;TSCU和PSCU处理的玉米氮素吸收效率比PU处理分别增加18.68%和 27.47%;在玉米成熟后,控释肥处理耕层土壤硝态氮仍然高于普通尿素处理。在黑土生态条件下,与PU处理的玉米相比,TSCU和PSCU处理均有效提 高了玉米的干物质量、吸氮量及产量,减少了环境污染,以PSCU处理控释效果最好。
,
URL [本文引用: 1]
2013年的试验明确了包膜尿素和多肽尿素采用一次底施的施肥方式,能提高玉米的产量效益,促进玉米对尿素肥料中氮元素的吸收和利用。在此基础上,2014年试验进一步研究了不同尿素类型和施氮水平对玉米产量及氮效率的影响,以期为川中丘陵区玉米施肥提供理论依据和技术指导。主要研究结果如下:1尿素类型及用量对玉米产量效益的影响。玉米籽粒产量受生育后期干物质积累及其向籽粒的分配率的影响,等施氮量一次底施时,与普通尿素相比,多肽尿素和硫包膜尿素能显著增加玉米生育后期干物质积累,吐丝后、成熟期干物质积累量分别增加了13.95%和10.07%、7.26%和5.79%;而不同处理间干物质向籽粒的分配比例差异较明显,引起这种差异的原因主要是尿素的施用量。相同施氮量下,同为一次底施的3种尿素,籽粒干物质分配率差异不显著,多肽尿素和硫包膜尿素干物质向籽粒的分配比例均以高氮处理显著低于中低氮处理。虽然普通尿素两次施肥能增加干物质的积累及其向籽粒的分配率,在生产上同样能起到增产的作用,但在川中丘陵区玉米生产中主要以人工追肥为主,劳动力成本是制约其效益增加的主要因素。施氮量225kg/hm2时,与一次底施的多肽尿素和硫包膜尿素相比,普通尿素两次施肥的利润分别下降了28.98%和5.62%。2尿素类型及施用量对玉米叶片活性的影响。与相同施氮量一次底施的普通尿素相比,具有缓/控释作用的包膜尿素和多肽尿素,采用一次底施的方式不仅提高了玉米生育中后期的叶绿素含量,还能有效减缓生育进程中叶片硝酸还原酶活性的下降,一定程度上延缓了叶片衰老,保持了植株的活性,避免玉米早衰。在增加玉米生育中后期干物质积累和氮素吸收的基础上,保证了玉米高产。3尿素类型及用量对玉米氮效率的影响。多肽尿素和硫包膜尿素不仅能促进玉米对肥料中氮素的吸收,而且还能提高玉米对氮素的利用。施氮量相同且同为一次底施时,多肽尿素和硫包膜尿素地上部氮素吸收量比普通尿素增加了19.91%和4.86%,氮肥农学效率增加了30.57%和41.05%,氮肥利用率增加了76.65%和18.73%。普通尿素追施攻苞肥有效缓解了玉米生育后期氮素亏缺的现象,但其氮素吸收效率与多肽尿素处理相比,下降了15.49%。施用多肽尿素还能减少生育中期氮素转移量,延缓玉米叶片衰老,增加玉米吐丝后氮素合成量及其对籽粒的贡献率。4合理氮素运筹模式的研究。两年实验结果表明,在土层瘠薄,劳动力短缺的川中丘陵区,与传统的普通尿素一次底施和两次施肥方式相比,使用具有缓/控释作用的多肽尿素和硫包膜尿素能提高玉米产量,促进玉米对氮素的吸收利用。综合考虑产量与效益,硫包膜尿素虽然可以达到简化施肥方式、增加产量的效果,因其肥料成本过高,施氮量相同时,利润比多肽尿素低22.11%,在生产上不宜单施,可考虑与普通尿素配施。多肽尿素一次底施,是兼顾产量与效益的最佳施肥选择,适当减量还可以避免肥料的浪费。因此我们认为在这一地区的最佳施肥选择是多肽尿素一次底施225kg/hm2。
URL [本文引用: 1]
2013年的试验明确了包膜尿素和多肽尿素采用一次底施的施肥方式,能提高玉米的产量效益,促进玉米对尿素肥料中氮元素的吸收和利用。在此基础上,2014年试验进一步研究了不同尿素类型和施氮水平对玉米产量及氮效率的影响,以期为川中丘陵区玉米施肥提供理论依据和技术指导。主要研究结果如下:1尿素类型及用量对玉米产量效益的影响。玉米籽粒产量受生育后期干物质积累及其向籽粒的分配率的影响,等施氮量一次底施时,与普通尿素相比,多肽尿素和硫包膜尿素能显著增加玉米生育后期干物质积累,吐丝后、成熟期干物质积累量分别增加了13.95%和10.07%、7.26%和5.79%;而不同处理间干物质向籽粒的分配比例差异较明显,引起这种差异的原因主要是尿素的施用量。相同施氮量下,同为一次底施的3种尿素,籽粒干物质分配率差异不显著,多肽尿素和硫包膜尿素干物质向籽粒的分配比例均以高氮处理显著低于中低氮处理。虽然普通尿素两次施肥能增加干物质的积累及其向籽粒的分配率,在生产上同样能起到增产的作用,但在川中丘陵区玉米生产中主要以人工追肥为主,劳动力成本是制约其效益增加的主要因素。施氮量225kg/hm2时,与一次底施的多肽尿素和硫包膜尿素相比,普通尿素两次施肥的利润分别下降了28.98%和5.62%。2尿素类型及施用量对玉米叶片活性的影响。与相同施氮量一次底施的普通尿素相比,具有缓/控释作用的包膜尿素和多肽尿素,采用一次底施的方式不仅提高了玉米生育中后期的叶绿素含量,还能有效减缓生育进程中叶片硝酸还原酶活性的下降,一定程度上延缓了叶片衰老,保持了植株的活性,避免玉米早衰。在增加玉米生育中后期干物质积累和氮素吸收的基础上,保证了玉米高产。3尿素类型及用量对玉米氮效率的影响。多肽尿素和硫包膜尿素不仅能促进玉米对肥料中氮素的吸收,而且还能提高玉米对氮素的利用。施氮量相同且同为一次底施时,多肽尿素和硫包膜尿素地上部氮素吸收量比普通尿素增加了19.91%和4.86%,氮肥农学效率增加了30.57%和41.05%,氮肥利用率增加了76.65%和18.73%。普通尿素追施攻苞肥有效缓解了玉米生育后期氮素亏缺的现象,但其氮素吸收效率与多肽尿素处理相比,下降了15.49%。施用多肽尿素还能减少生育中期氮素转移量,延缓玉米叶片衰老,增加玉米吐丝后氮素合成量及其对籽粒的贡献率。4合理氮素运筹模式的研究。两年实验结果表明,在土层瘠薄,劳动力短缺的川中丘陵区,与传统的普通尿素一次底施和两次施肥方式相比,使用具有缓/控释作用的多肽尿素和硫包膜尿素能提高玉米产量,促进玉米对氮素的吸收利用。综合考虑产量与效益,硫包膜尿素虽然可以达到简化施肥方式、增加产量的效果,因其肥料成本过高,施氮量相同时,利润比多肽尿素低22.11%,在生产上不宜单施,可考虑与普通尿素配施。多肽尿素一次底施,是兼顾产量与效益的最佳施肥选择,适当减量还可以避免肥料的浪费。因此我们认为在这一地区的最佳施肥选择是多肽尿素一次底施225kg/hm2。
,
DOI:10.11674/zwyf.2010.0421URL [本文引用: 1]
Using japonica Xiushui 110 as the tested rice cultivar, effects of different mixture rates of sulfur-polyester resin-coated urea(SPCU)and prilled urea(PU)on rice grain yield and nitrogen use efficiency(NUE)were studied in fields during 2007 and 2008. Results show that compared to the PU100% at N 210 kg/ha in conventional fertilizer application, the rice grain yields are 7644.0, 7172.5 and 7008.2 kg/ha under the single basal application of SPCU100%, SPCU70%+PU30% and SPCU50%+PU50% treatments, respectively, which are significantly increased by 17.75%, 10.49% and 7.96%, and the nitrogen use efficiencies are 27.64%, 23.24% and 18.06%, which are significantly increased by 18.73,14.33 and 9.15 percent point. These results indicate the agronomic nitrogen use efficiencies are significantly increased.
DOI:10.11674/zwyf.2010.0421URL [本文引用: 1]
Using japonica Xiushui 110 as the tested rice cultivar, effects of different mixture rates of sulfur-polyester resin-coated urea(SPCU)and prilled urea(PU)on rice grain yield and nitrogen use efficiency(NUE)were studied in fields during 2007 and 2008. Results show that compared to the PU100% at N 210 kg/ha in conventional fertilizer application, the rice grain yields are 7644.0, 7172.5 and 7008.2 kg/ha under the single basal application of SPCU100%, SPCU70%+PU30% and SPCU50%+PU50% treatments, respectively, which are significantly increased by 17.75%, 10.49% and 7.96%, and the nitrogen use efficiencies are 27.64%, 23.24% and 18.06%, which are significantly increased by 18.73,14.33 and 9.15 percent point. These results indicate the agronomic nitrogen use efficiencies are significantly increased.
,
DOI:10.3864/j.issn.0578-1752.2011.19.010URL [本文引用: 1]
【Objective】 The objective of this study was to determine the effects of urease/nitrification inhibitors on the transformation and leaching of nitrogen from urea.【Method】A soil column leaching experiment was conducted in a greenhouse to observe nitrogen transformation and leaching loss following the application of urea with a urease inhibitor N-(n-Butyl) thiophosphoric triamide (NBPT), a nitrification inhibitor dicyandiamide (DCD), or both.【Result】When urea-N was applied at 600 kg61hm-2, NBPT and DCD combined or separately application significantly reduced the NO3--N concentration in the leacheate before 24 days, and reached the peak after 30 days. DCD, or DCD and NBPT combined application retarded the peak by 7 days. DCD had a greater effect on reducing nitrogen leaching through the whole monitoring period, the combination of NBPT or DCD and NBPT had a good effect especially in the latter period. For the whole leaching study period, the combination of NBPT, DCD, DCD and NBPT significantly reduced the nitrate accumulation by 11.6%, 13.7% and 17.2%, respectively. 【Conclusion】When fertilizer was applied to a certain extent, nitrate leaching loss can be reduced by applying urea fertilizer with a urease and/or nitrification inhibitor.
DOI:10.3864/j.issn.0578-1752.2011.19.010URL [本文引用: 1]
【Objective】 The objective of this study was to determine the effects of urease/nitrification inhibitors on the transformation and leaching of nitrogen from urea.【Method】A soil column leaching experiment was conducted in a greenhouse to observe nitrogen transformation and leaching loss following the application of urea with a urease inhibitor N-(n-Butyl) thiophosphoric triamide (NBPT), a nitrification inhibitor dicyandiamide (DCD), or both.【Result】When urea-N was applied at 600 kg61hm-2, NBPT and DCD combined or separately application significantly reduced the NO3--N concentration in the leacheate before 24 days, and reached the peak after 30 days. DCD, or DCD and NBPT combined application retarded the peak by 7 days. DCD had a greater effect on reducing nitrogen leaching through the whole monitoring period, the combination of NBPT or DCD and NBPT had a good effect especially in the latter period. For the whole leaching study period, the combination of NBPT, DCD, DCD and NBPT significantly reduced the nitrate accumulation by 11.6%, 13.7% and 17.2%, respectively. 【Conclusion】When fertilizer was applied to a certain extent, nitrate leaching loss can be reduced by applying urea fertilizer with a urease and/or nitrification inhibitor.
,
DOI:10.3321/j.issn:0564-3945.2002.04.019URL [本文引用: 1]
本文综述了硝化抑制剂在农业上应用的研究进展 ,包括硝化抑制剂的种类和作用机理、硝化抑制剂对农作物生长和产量的影响以及对环境保护的作用等 ,并指出了一些需要注意的问题
DOI:10.3321/j.issn:0564-3945.2002.04.019URL [本文引用: 1]
本文综述了硝化抑制剂在农业上应用的研究进展 ,包括硝化抑制剂的种类和作用机理、硝化抑制剂对农作物生长和产量的影响以及对环境保护的作用等 ,并指出了一些需要注意的问题
,
URL [本文引用: 1]
A field experiment was conducted on two soil types in the Changsha suburb of Hunan Province to study the effects of hydroquinone (HQ),dicyandiamide (DCD) and thiourea (TU) on the nitrate content in soil and pakchoi and on the yield of pakchoi.The results showed that all the test nitrification inhibitors could significantly decrease the nitrate content in soil and pakchoi during whole growth stage,among which,DCD had the best effect,but the effect was differed on different soil types.Nitrification inhibitors could increase pakchoi yield,DCD was also the best one,and the effect was significantly better on vegetable garden red soil than on vegetable garden alluvial soil.The nitrate content in soil and pakchoi was the highest about 40 days after pakchoi transplanting.
URL [本文引用: 1]
A field experiment was conducted on two soil types in the Changsha suburb of Hunan Province to study the effects of hydroquinone (HQ),dicyandiamide (DCD) and thiourea (TU) on the nitrate content in soil and pakchoi and on the yield of pakchoi.The results showed that all the test nitrification inhibitors could significantly decrease the nitrate content in soil and pakchoi during whole growth stage,among which,DCD had the best effect,but the effect was differed on different soil types.Nitrification inhibitors could increase pakchoi yield,DCD was also the best one,and the effect was significantly better on vegetable garden red soil than on vegetable garden alluvial soil.The nitrate content in soil and pakchoi was the highest about 40 days after pakchoi transplanting.
,
URLMagsci [本文引用: 1]
氮素是农作物生长必不可少的元素,其对促进农作物生长,提高产量方面起到了不可忽视的作用。所以,土壤中氮肥的施用成为控制高产的主要因素。但是随着氮肥施用量的增加,土壤过多累积的硝态氮又导致了环境污染方面的问题。为了解决这种污染问题,许多****在对脲酶抑制剂和硝化抑制剂的研究上取得了很好的进展,利用脲酶抑制剂和硝化抑制剂可以很好的抑制土壤中铵态氮的硝化作用,控制硝态氮的大量积累所导致的环境污染。
URLMagsci [本文引用: 1]
氮素是农作物生长必不可少的元素,其对促进农作物生长,提高产量方面起到了不可忽视的作用。所以,土壤中氮肥的施用成为控制高产的主要因素。但是随着氮肥施用量的增加,土壤过多累积的硝态氮又导致了环境污染方面的问题。为了解决这种污染问题,许多****在对脲酶抑制剂和硝化抑制剂的研究上取得了很好的进展,利用脲酶抑制剂和硝化抑制剂可以很好的抑制土壤中铵态氮的硝化作用,控制硝态氮的大量积累所导致的环境污染。
,
URL [本文引用: 1]
聚天冬氨酸是一类可生物降解、对环境友好的绿色化学品。聚天冬氨酸是仿生合成的水溶性高分子化合物,作为绿色环保型产品可用于农业的植物生长促进剂及农药土壤修复添加剂等。综述了聚天冬氨酸合成方法及在农业领域应用的研究进展。
URL [本文引用: 1]
聚天冬氨酸是一类可生物降解、对环境友好的绿色化学品。聚天冬氨酸是仿生合成的水溶性高分子化合物,作为绿色环保型产品可用于农业的植物生长促进剂及农药土壤修复添加剂等。综述了聚天冬氨酸合成方法及在农业领域应用的研究进展。
,
DOI:10.3969/j.issn.1007-7103.2015.04.025URL [本文引用: 2]
我国是一个农业大国,农业资源的利用率严重影响着我国农业的发展。聚天门冬氨酸是一种水溶性的多肽结构,能够有效地进行生物降解,是一种环境友好型的仿生型产品,也是顺应当下两型社会、两型农业号召的产品。就聚天门冬氨酸的的作用以及应用研究现状进行系统的分析,并对其应用前景进行了预估。
DOI:10.3969/j.issn.1007-7103.2015.04.025URL [本文引用: 2]
我国是一个农业大国,农业资源的利用率严重影响着我国农业的发展。聚天门冬氨酸是一种水溶性的多肽结构,能够有效地进行生物降解,是一种环境友好型的仿生型产品,也是顺应当下两型社会、两型农业号召的产品。就聚天门冬氨酸的的作用以及应用研究现状进行系统的分析,并对其应用前景进行了预估。
,
DOI:10.3969/j.issn.1000-2561.2011.12.037URL [本文引用: 2]
聚天门冬氨酸同源多肽是一种水溶性多肽,可生物降解,属于环境友好型代谢仿生型产品。本文综述了农用聚天门冬氨酸同源多肽的开发历程、主要作用原理、农用产品开发、在农业上的应用效果、应用前景和发展建议,以期对农用聚天门冬氨酸同源多肽有全面的了解,推动农用聚天门冬氨酸同源多肽的开发应用。
DOI:10.3969/j.issn.1000-2561.2011.12.037URL [本文引用: 2]
聚天门冬氨酸同源多肽是一种水溶性多肽,可生物降解,属于环境友好型代谢仿生型产品。本文综述了农用聚天门冬氨酸同源多肽的开发历程、主要作用原理、农用产品开发、在农业上的应用效果、应用前景和发展建议,以期对农用聚天门冬氨酸同源多肽有全面的了解,推动农用聚天门冬氨酸同源多肽的开发应用。
,
DOI:10.11838/sfsc.20110403URL [本文引用: 1]
土壤微生物量碳、氮是植物营养与土壤肥力的主要参数之一。采用对聚天冬氨酸、普通尿素及聚天冬氨酸尿素肥料培养实验、小麦盆栽方法,研究了普通尿素及聚天冬氨酸尿素对土壤微生物量碳、氮的影响。培养试验结果表明:聚天冬氨酸在培养早期能促进土壤微生物量碳、氮增加,聚天冬氨酸尿素处理比普通尿素处理对土壤微生物量碳、氮的作用更有效,前45 d,普通尿素处理的土壤微生物量氮降幅达21.87 mg?kg-1 ,而聚天冬氨酸尿素处理的土壤微生物量氮仅降低4.8 mg?kg -1 ;盆栽条件下,三叶期聚天冬氨酸尿素处理比普通尿素处理的土壤微生物量氮差值最高达12.57 mg?kg -1 ,成熟期差值为2.85 mg?kg -1 ,抽穗期、成熟期的聚天冬氨酸尿素处理比普通尿素处理土壤微生物量碳分别低16.12和14.81 mg?kg -1 。说明聚天冬氨酸尿素的碱解氮易被聚天冬氨酸吸附,养分持效时间更长,比尿素具有一定增效作用。
DOI:10.11838/sfsc.20110403URL [本文引用: 1]
土壤微生物量碳、氮是植物营养与土壤肥力的主要参数之一。采用对聚天冬氨酸、普通尿素及聚天冬氨酸尿素肥料培养实验、小麦盆栽方法,研究了普通尿素及聚天冬氨酸尿素对土壤微生物量碳、氮的影响。培养试验结果表明:聚天冬氨酸在培养早期能促进土壤微生物量碳、氮增加,聚天冬氨酸尿素处理比普通尿素处理对土壤微生物量碳、氮的作用更有效,前45 d,普通尿素处理的土壤微生物量氮降幅达21.87 mg?kg-1 ,而聚天冬氨酸尿素处理的土壤微生物量氮仅降低4.8 mg?kg -1 ;盆栽条件下,三叶期聚天冬氨酸尿素处理比普通尿素处理的土壤微生物量氮差值最高达12.57 mg?kg -1 ,成熟期差值为2.85 mg?kg -1 ,抽穗期、成熟期的聚天冬氨酸尿素处理比普通尿素处理土壤微生物量碳分别低16.12和14.81 mg?kg -1 。说明聚天冬氨酸尿素的碱解氮易被聚天冬氨酸吸附,养分持效时间更长,比尿素具有一定增效作用。
,
DOI:10.3969/j.issn.1007-5739.2012.18.002URL [本文引用: 3]
聚天门冬氨酸同源多肽对水稻产量效应研究表明,聚天门冬氨酸同源多肽对水稻秧苗生长和根的生长有较大的促进作用,根的鲜重、干重和根长分别比清水对照增加28.2%、46.2%、17.9%,对水稻经济性状及产量也有较好的作用,有效穗数、实粒数、千粒重、考种产量和实际产量分别比清水对照增加14.21%、13.44%、2.38%、16.80%、7.74%。利用32P同位素示踪试验研究了聚天门冬氨酸同源多肽对水稻磷素营养吸收的效应,发现喷施聚天门冬氨酸同源多肽的初期对水稻吸收肥料磷有抑制作用。随着时间的推移,聚天门冬氨酸同源多肽本身含有的速效磷被完全吸收后,聚天门冬氨酸同源多肽的富集作用逐渐表现出来,从而表现为20 d时处理的水稻对磷素的吸收略有增加。30 d时,由于聚天门冬氨酸同源多肽逐渐被微生物降解,大量释放出被固定的磷素,表现为测量时的结果比对照略有降低。
DOI:10.3969/j.issn.1007-5739.2012.18.002URL [本文引用: 3]
聚天门冬氨酸同源多肽对水稻产量效应研究表明,聚天门冬氨酸同源多肽对水稻秧苗生长和根的生长有较大的促进作用,根的鲜重、干重和根长分别比清水对照增加28.2%、46.2%、17.9%,对水稻经济性状及产量也有较好的作用,有效穗数、实粒数、千粒重、考种产量和实际产量分别比清水对照增加14.21%、13.44%、2.38%、16.80%、7.74%。利用32P同位素示踪试验研究了聚天门冬氨酸同源多肽对水稻磷素营养吸收的效应,发现喷施聚天门冬氨酸同源多肽的初期对水稻吸收肥料磷有抑制作用。随着时间的推移,聚天门冬氨酸同源多肽本身含有的速效磷被完全吸收后,聚天门冬氨酸同源多肽的富集作用逐渐表现出来,从而表现为20 d时处理的水稻对磷素的吸收略有增加。30 d时,由于聚天门冬氨酸同源多肽逐渐被微生物降解,大量释放出被固定的磷素,表现为测量时的结果比对照略有降低。
,
DOI:10.3969/j.issn.1002-2767.2013.12.008URL [本文引用: 4]
为了提高肥料利用效率,以盆栽油菜为试材,在水溶肥料中添加不同水平的聚天门冬氨酸,研究聚天门冬氨酸作为肥料增效剂加入肥料中对油菜生长及品质的影响。结果表明:聚天门冬氨酸与肥料结合施用可以增加油菜的叶绿素含量,有利于油菜干物质的积累,促进植株氮磷钾的吸收,提高VC含量,同时降低硝酸盐的含量,以聚天门冬氨酸(为肥料用量的5%)加水溶肥处理效果最好。
DOI:10.3969/j.issn.1002-2767.2013.12.008URL [本文引用: 4]
为了提高肥料利用效率,以盆栽油菜为试材,在水溶肥料中添加不同水平的聚天门冬氨酸,研究聚天门冬氨酸作为肥料增效剂加入肥料中对油菜生长及品质的影响。结果表明:聚天门冬氨酸与肥料结合施用可以增加油菜的叶绿素含量,有利于油菜干物质的积累,促进植株氮磷钾的吸收,提高VC含量,同时降低硝酸盐的含量,以聚天门冬氨酸(为肥料用量的5%)加水溶肥处理效果最好。
,
DOI:10.3969/j.issn.0488-5368.2007.03.025URL [本文引用: 2]
一次施入聚天门冬氨酸肥料增效剂,有机质提高了10.43%,全氮含量提高6.87%,土壤 速效磷提高11.76%,土壤速效钾提高25.52%。聚天门冬氨酸处理的土壤容重较不施下降了3.73%;聚天门冬氨酸的处理物理性粘粒含量比不施平均 增加1.725%,改善土粒结构。
DOI:10.3969/j.issn.0488-5368.2007.03.025URL [本文引用: 2]
一次施入聚天门冬氨酸肥料增效剂,有机质提高了10.43%,全氮含量提高6.87%,土壤 速效磷提高11.76%,土壤速效钾提高25.52%。聚天门冬氨酸处理的土壤容重较不施下降了3.73%;聚天门冬氨酸的处理物理性粘粒含量比不施平均 增加1.725%,改善土粒结构。
,
URL [本文引用: 1]
[目的]筛选肥料增效剂聚天门 冬氨酸对玉米生长的最适宜添加量。[方法]以玉米先科11号为供试材料,通过盆栽试验,研究不同浓度的聚天门冬氨酸添加到液体肥料后对玉米生长、肥料利用 效率的影响。[结果]液体肥料中添加不同浓度的聚天门冬氨酸对玉米株高、生物量以及氮磷钾养分积累量等都具有明显的影响,有利于玉米的生长发育,同时提高 肥料利用效率。[结论]在液体肥料中添加1%的聚天门冬氨酸处理效果最为显著。
URL [本文引用: 1]
[目的]筛选肥料增效剂聚天门 冬氨酸对玉米生长的最适宜添加量。[方法]以玉米先科11号为供试材料,通过盆栽试验,研究不同浓度的聚天门冬氨酸添加到液体肥料后对玉米生长、肥料利用 效率的影响。[结果]液体肥料中添加不同浓度的聚天门冬氨酸对玉米株高、生物量以及氮磷钾养分积累量等都具有明显的影响,有利于玉米的生长发育,同时提高 肥料利用效率。[结论]在液体肥料中添加1%的聚天门冬氨酸处理效果最为显著。
,
URL [本文引用: 1]
近年来,黄腐酸(FA)和聚天冬氨酸(PASP)作为肥料添加剂在生产和应用中发展迅速。为研究碱性土壤上FA和PASP与氮肥配施的效果及可能的作用机制,本文通过田间小区试验和溶液培养试验研究了FA和PASP对白菜、萝卜和蕹菜的生长及氮素吸收的影响;通过恒温培养试验探讨了FA和PASP与尿素配施对氮素转化的影响;同时通过盆栽试验,采用15N示踪法明晰了施用FA和PASP后蕹菜的氮素吸收特性及标记氮肥的去向。主要研究结论如下: 1.不同用量的FA和PASP对白菜和萝卜的产量及氮累积量的影响不同。FA用量为72kg·hm-2时白菜的产量和氮累积量分别提高了13.25%和16.06%,PASP用量为15kg·hm-2时白菜的产量和氮累积量分别增加了10.50%和14.10%。施用FA和PASP显著提高了萝卜的产量,但对萝卜的氮累积量无显著影响。 2.在适宜的FA和PASP浓度下,蕹菜的根系形态、生物量和吸氮量变化显著。稀释400倍的FA处理显著提高了蕹菜的鲜重,同时蕹菜的根长和根表面积分别增加了25.76%和22.61%,但对蕹菜吸氮量无显著影响。稀释2000和1200倍的PASP处理显著提高了蕹菜的生物量和吸氮量,同时促进了根系伸长、根表面积及根体积的增加,且蕹菜吸氮量与根系形态呈极显著正相关。 3.不同用量的FA和PASP与尿素配施,氮素的转化规律与尿素对照有所不同。(1)配施FA后土壤铵态氮含量降低了7.54%~38.15%,验证了FA对NH_4~+具有吸附作用;硝态氮产生速率与对照基本相同,但FA用量为1.5g·kg~(-1)和3.0g·kg~(-1)时,其硝化潜势分别提高了16.74%和37.55%,可能与小分子量FA有机氮矿化有关。(2)配施PASP后土壤铵态氮含量降低了9.29%~30.74%,这与PASP羧基上的H+与土壤中的NH_4~+发生交换作用有关。不同用量的PASP处理硝态氮的产生速率不同,当PASP用量为900mg·kg~(-1)时,其硝化速率常数比对照降低了15.73%,减缓了培养期间硝态氮的释放速率。 4. FA和PASP与15N标记尿素配施,蕹菜对不同来源氮素的吸收量及氮肥的去向均有所变化。蕹菜生长60天收获时,配施处理的蕹菜总吸氮量提高了10.84%~18.25%,其中,蕹菜对非标记氮素的吸收量显著增加,且随FA和PASP用量的增多而增加。FA用量为3.0g·kg~(-1)时氮肥的当季利用率显著低于尿素对照,其余处理无显著变化。而配施处理的标记氮肥损失率比对照减少了5.41~14.58个百分点,氮肥在土壤中的残留率提高了5.08~20.02个百分点,显示出对土壤氮库的贡献作用显著。 综上分析,FA与尿素配施后,能很快吸附土壤中的NH_4~+,有利于减少碱性土壤上氨的挥发损失,且随着时间的延长,FA发生矿化释放出无机氮;PASP与尿素配施,能减缓铵态氮的释放速率,硝态氮的产生速率也有所降低;在土壤-作物系统中,FA和PASP与氮肥配施能提高蔬菜的产量,促进蔬菜根系的生长及对氮素的吸收,减少氮肥的损失量,提高氮肥的总回收率。
URL [本文引用: 1]
近年来,黄腐酸(FA)和聚天冬氨酸(PASP)作为肥料添加剂在生产和应用中发展迅速。为研究碱性土壤上FA和PASP与氮肥配施的效果及可能的作用机制,本文通过田间小区试验和溶液培养试验研究了FA和PASP对白菜、萝卜和蕹菜的生长及氮素吸收的影响;通过恒温培养试验探讨了FA和PASP与尿素配施对氮素转化的影响;同时通过盆栽试验,采用15N示踪法明晰了施用FA和PASP后蕹菜的氮素吸收特性及标记氮肥的去向。主要研究结论如下: 1.不同用量的FA和PASP对白菜和萝卜的产量及氮累积量的影响不同。FA用量为72kg·hm-2时白菜的产量和氮累积量分别提高了13.25%和16.06%,PASP用量为15kg·hm-2时白菜的产量和氮累积量分别增加了10.50%和14.10%。施用FA和PASP显著提高了萝卜的产量,但对萝卜的氮累积量无显著影响。 2.在适宜的FA和PASP浓度下,蕹菜的根系形态、生物量和吸氮量变化显著。稀释400倍的FA处理显著提高了蕹菜的鲜重,同时蕹菜的根长和根表面积分别增加了25.76%和22.61%,但对蕹菜吸氮量无显著影响。稀释2000和1200倍的PASP处理显著提高了蕹菜的生物量和吸氮量,同时促进了根系伸长、根表面积及根体积的增加,且蕹菜吸氮量与根系形态呈极显著正相关。 3.不同用量的FA和PASP与尿素配施,氮素的转化规律与尿素对照有所不同。(1)配施FA后土壤铵态氮含量降低了7.54%~38.15%,验证了FA对NH_4~+具有吸附作用;硝态氮产生速率与对照基本相同,但FA用量为1.5g·kg~(-1)和3.0g·kg~(-1)时,其硝化潜势分别提高了16.74%和37.55%,可能与小分子量FA有机氮矿化有关。(2)配施PASP后土壤铵态氮含量降低了9.29%~30.74%,这与PASP羧基上的H+与土壤中的NH_4~+发生交换作用有关。不同用量的PASP处理硝态氮的产生速率不同,当PASP用量为900mg·kg~(-1)时,其硝化速率常数比对照降低了15.73%,减缓了培养期间硝态氮的释放速率。 4. FA和PASP与15N标记尿素配施,蕹菜对不同来源氮素的吸收量及氮肥的去向均有所变化。蕹菜生长60天收获时,配施处理的蕹菜总吸氮量提高了10.84%~18.25%,其中,蕹菜对非标记氮素的吸收量显著增加,且随FA和PASP用量的增多而增加。FA用量为3.0g·kg~(-1)时氮肥的当季利用率显著低于尿素对照,其余处理无显著变化。而配施处理的标记氮肥损失率比对照减少了5.41~14.58个百分点,氮肥在土壤中的残留率提高了5.08~20.02个百分点,显示出对土壤氮库的贡献作用显著。 综上分析,FA与尿素配施后,能很快吸附土壤中的NH_4~+,有利于减少碱性土壤上氨的挥发损失,且随着时间的延长,FA发生矿化释放出无机氮;PASP与尿素配施,能减缓铵态氮的释放速率,硝态氮的产生速率也有所降低;在土壤-作物系统中,FA和PASP与氮肥配施能提高蔬菜的产量,促进蔬菜根系的生长及对氮素的吸收,减少氮肥的损失量,提高氮肥的总回收率。
,
DOI:10.2134/agronj1982.00021962007400030037xURL [本文引用: 1]
,
DOI:10.3321/j.issn:0496-3490.2002.02.023URL [本文引用: 1]
不同施肥水平下夏玉米光合对生理、生态因子的响应研究表明,施肥可以改善叶肉细胞的光合能力,使阻碍光合速率进一步提高的因素由非气孔限制逐渐转变为气孔限制,并可提高生育后期叶片的光合强度,延长高光合持续期,在日变化中表现为增加了下午的光合强度。大田条件下,光合有效辐射(PAR)和气孔导度(Sc)是影响光合速度(Pn)最主要的生态、生理因子,且其对Pn始终具有正的直接效应。而与Pn呈最显著线性相关的生态、生理因子则为PAR和蒸腾速度(T)。
DOI:10.3321/j.issn:0496-3490.2002.02.023URL [本文引用: 1]
不同施肥水平下夏玉米光合对生理、生态因子的响应研究表明,施肥可以改善叶肉细胞的光合能力,使阻碍光合速率进一步提高的因素由非气孔限制逐渐转变为气孔限制,并可提高生育后期叶片的光合强度,延长高光合持续期,在日变化中表现为增加了下午的光合强度。大田条件下,光合有效辐射(PAR)和气孔导度(Sc)是影响光合速度(Pn)最主要的生态、生理因子,且其对Pn始终具有正的直接效应。而与Pn呈最显著线性相关的生态、生理因子则为PAR和蒸腾速度(T)。
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
URL [本文引用: 1]
,
DOI:10.3969/j.issn.1005-0906.2005.03.032URL [本文引用: 1]
聚天冬氨酸是一种可生物降解的绿色化学品,在农业中可用作肥料增效剂。试验显示,施用聚天冬氨酸可使玉米水培的生物学产量增加53.8%,玉米盆栽生物学产量增加13.4%。施用肥料增效剂聚天冬氨酸对土壤性质无明显影响。
DOI:10.3969/j.issn.1005-0906.2005.03.032URL [本文引用: 1]
聚天冬氨酸是一种可生物降解的绿色化学品,在农业中可用作肥料增效剂。试验显示,施用聚天冬氨酸可使玉米水培的生物学产量增加53.8%,玉米盆栽生物学产量增加13.4%。施用肥料增效剂聚天冬氨酸对土壤性质无明显影响。
,
DOI:10.3969/j.issn.1000-6850.2013.06.011URL [本文引用: 1]
Pot experiment was conducted to study the effects of polyaspartic acid (PASP) and water-retention agent on growth in maize at seedling stage under water controlled condition. The results were as following: under soil water stress condition, water-retention agent and PASP indeed promoted the growth of plant root, photosynthesis and dry matter accumulation. Compared with waters stress treatment, water-retention agent and PASP treatments induced to the increase of root length by 18.2% and 8.3%, the number of side root by26.3 %, 14.8%, the photosynthesis by 6.6%, 1.4%, and the dry matter by 33.8% and 12.12%, respectively, however, there was no obvious effect of PASP on root vigor under water stress condition, neither for the water-retention agent.
DOI:10.3969/j.issn.1000-6850.2013.06.011URL [本文引用: 1]
Pot experiment was conducted to study the effects of polyaspartic acid (PASP) and water-retention agent on growth in maize at seedling stage under water controlled condition. The results were as following: under soil water stress condition, water-retention agent and PASP indeed promoted the growth of plant root, photosynthesis and dry matter accumulation. Compared with waters stress treatment, water-retention agent and PASP treatments induced to the increase of root length by 18.2% and 8.3%, the number of side root by26.3 %, 14.8%, the photosynthesis by 6.6%, 1.4%, and the dry matter by 33.8% and 12.12%, respectively, however, there was no obvious effect of PASP on root vigor under water stress condition, neither for the water-retention agent.
,
DOI:10.3969/j.issn.1005-0906.2007.05.031URL [本文引用: 2]
在盆栽不同施肥水平条件下,肥料增效剂聚天冬氨酸对玉米苗期肥料吸收以及生长的影响进行比较研究。结果表明,施用聚天冬氨酸可以使玉米幼苗中叶绿素的含量增加,叶片中硝酸还原酶的活性增强,光合速率加快进而加速光合产物的积累,聚天冬氨酸有利于玉米干物重积累,尤其在养分较为充足条件下,单株地上部干重和总干重分别增加19%和16%。施用聚天冬氨酸有利于促进玉米幼苗对氮、钾的吸收,在养分较充足条件下,植株氮、钾吸收量分别增加27%和19%。
DOI:10.3969/j.issn.1005-0906.2007.05.031URL [本文引用: 2]
在盆栽不同施肥水平条件下,肥料增效剂聚天冬氨酸对玉米苗期肥料吸收以及生长的影响进行比较研究。结果表明,施用聚天冬氨酸可以使玉米幼苗中叶绿素的含量增加,叶片中硝酸还原酶的活性增强,光合速率加快进而加速光合产物的积累,聚天冬氨酸有利于玉米干物重积累,尤其在养分较为充足条件下,单株地上部干重和总干重分别增加19%和16%。施用聚天冬氨酸有利于促进玉米幼苗对氮、钾的吸收,在养分较充足条件下,植株氮、钾吸收量分别增加27%和19%。
,
DOI:10.3969/j.issn.1007-5739.2011.06.196URL [本文引用: 1]
研究聚天冬氨酸对水稻生长及产量的影响,结果表明:将聚天冬氨酸作为肥料添加剂,具有改善水稻的经济性状、增加实粒数、增加有效穗数、提高产量的作用,并能产生较好的经济效益,当施用量低时,效益增加明显。
DOI:10.3969/j.issn.1007-5739.2011.06.196URL [本文引用: 1]
研究聚天冬氨酸对水稻生长及产量的影响,结果表明:将聚天冬氨酸作为肥料添加剂,具有改善水稻的经济性状、增加实粒数、增加有效穗数、提高产量的作用,并能产生较好的经济效益,当施用量低时,效益增加明显。
,
DOI:10.1016/j.still.2014.08.004URL [本文引用: 1]
Reasonable management of nitrogen (N) and the development of N fertilizers with higher use efficiency are the two main methods to increase rice yield. The effects of optimized nitrogen management (ONM) and polyaspartic acid urea treatment (PAU) on rice dry matter production and grain yield under different soil conditions in Sichuan, China, were studied in 2013. When the different N management regimes were applied there were differences in the rice tiller number, dry matter production, and yield observed. At Shehong, ONM3 (a 15% increase in the N rate over the farmer fertilizer practice) had the highest grain yield, and significantly (P<0.05) increased the percentage of effective tillers, biomass yield, the ratio of leaf lamina at anthesis and maturity stages, amount of post-anthesis transfer of accumulated dry matter into the grain (APA), and panicles per meter square. ONM2 (a 15% reduction in the N rate over the farmer fertilizer practice) significantly (P<0.05) increased the percentage of effective tillers, panicles per meter square, and grain yield at Wenjiang, as the rice plants had a reasonable amount of pre-anthesis stored dry matter from the vegetative organs to redistribute to the grain and APA. At both sites, PAU3 (polyaspartic acid urea (PASP-urea) spilt-applied in four stages) improved the grain yield due to an increase in APA, panicles per meter square, and spikelets per panicle. It was shown through correlation analysis that at both sites the grain yield was correlated positively with the panicles per meter square and APA (P<0.01). Therefore, it can be concluded that the increase in panicles per meter square and APA were the causes of the improved grain yields. PASP-urea promoted rice production, and PAU3 was suitable for use with different soils. Based on these results, the effect of spilt-applied N during the middle and later stages largely depended on the soil fertility, and the spilt-applied N being used at a suitable rate that was beneficial for improving the rice yield.
,
DOI:10.1016/j.fcr.2014.08.015URL [本文引用: 1]
In this study, we aimed to investigate the effects of nitrogen (N) management and polyaspartic acid urea (PASP-urea) on N utilization and soil N balance of midseason rice in southwest China. Field experiments with no N treatment, famer's fertilizer practice (FFP), three optimized nitrogen managements (ONMs), and three PASP-urea treatments (PASPTs) were conducted at Shehong and Wenjiang, Sichuan Province, in 2013. The results showed that the N fertilizer increased crop N uptake and total N output, but intensified the apparent N losses. Compared to FFP, ONMs and PASPTs (excluding ONM2 and PASPT1 at Shehong) increased N accumulation in plant organs before anthesis, which significantly (p<0.05) increased crop N uptake and N recovery efficiency (NRE), but reduced N production efficiency and N physiological efficiency (NPE), as well as apparent N losses at both the sites. However, the effectiveness of N treatments on N utilization and soil N balance was associated with the initial soil Nmin (amount of inorganic N accumulation). ONM3 (a 15% increase in the N rate over that used in the FFP) increased N accumulation, NRE, and N agronomy efficiency (NAE) of rice at Shehong, whereas ONM2 (a 15% reduction in the N rate over that used in the FFP) reduced N loss but significantly (p<0.05) increased NPE, NAE, and N partial factor productivity at Wenjiang. PASP-urea, especially PASPT3 (PASP urea spilt-applied in four stages), significantly (p<0.05) reduced apparent N surplus before anthesis and N deficit after anthesis, resulting in higher crop N uptake and N use efficiency. Therefore, split-application of N at an optimal rate and PASP-urea could improve the balance between plant N requirement and N input and thus enhance N use efficiency and/or reduce N losses.
,
DOI:10.15889/j.issn.1002-1302.2016.06.034URL [本文引用: 1]
对比研究了聚天冬氨酸增效复合肥和不同施用量普通复合肥在小麦上的应用效果,结果表明:施用聚天冬氨酸增效复合肥和普通复合肥都能通过增加有效穗数和每穗粒数,提高作物产量和经济效益,聚天冬氨酸增效复合肥增产增效作用更加明显。提高普通复合肥用量虽使产量和经济效益有所增加,但产投比与低施肥量持平,肥料利用效率甚至更低。适当降低施肥量可提高养分利用效率,减少肥料流失。聚天冬氨酸增效复合肥具有投入成本低、经济效益高的优势,在小麦生产上推广应用潜力巨大。
DOI:10.15889/j.issn.1002-1302.2016.06.034URL [本文引用: 1]
对比研究了聚天冬氨酸增效复合肥和不同施用量普通复合肥在小麦上的应用效果,结果表明:施用聚天冬氨酸增效复合肥和普通复合肥都能通过增加有效穗数和每穗粒数,提高作物产量和经济效益,聚天冬氨酸增效复合肥增产增效作用更加明显。提高普通复合肥用量虽使产量和经济效益有所增加,但产投比与低施肥量持平,肥料利用效率甚至更低。适当降低施肥量可提高养分利用效率,减少肥料流失。聚天冬氨酸增效复合肥具有投入成本低、经济效益高的优势,在小麦生产上推广应用潜力巨大。
,
DOI:10.11838/sfsc.20140111URL [本文引用: 1]
为了解黄腐酸(FA)和聚天冬氨酸(PASP)对蕹菜氮素吸收及氮肥去向的影响,采用15N尿素示踪技术,设置不施氮肥(CK),单施尿素(N),尿素配施低、中、高用量的FA和PASP(NF1、NF2、NF3、NP1、NP2、NP3)8个处理,在温室条件下进行盆栽试验。结果表明,与N处理相比,配施FA和PASP后蕹菜地上部鲜重增加了7.46%~17.55%;NP2、NP3和各NF处理显著提高了蕹菜的吸氮量,提高幅度为10.84%~18.25%,其中,蕹菜对非标记氮的吸收量显著增加,且随FA和PASP用量的增大而增加;NF3处理的15N利用率显著低于N处理,其余处理无显著变化;NF2、NF3、NP2和NP3处理的15N损失率比N处理减少了5.41~14.58个百分点;NF2、NF3和NP2处理的15N土壤残留率增加了5.08~20.02个百分点。研究表明,中、高用量的FA和PASP与尿素配施促进了蕹菜对氮素(尤其是非标记氮素)的吸收,同时减少了氮肥的损失,增加了氮肥在土壤中的残留,对土壤氮库的贡献作用显著。
DOI:10.11838/sfsc.20140111URL [本文引用: 1]
为了解黄腐酸(FA)和聚天冬氨酸(PASP)对蕹菜氮素吸收及氮肥去向的影响,采用15N尿素示踪技术,设置不施氮肥(CK),单施尿素(N),尿素配施低、中、高用量的FA和PASP(NF1、NF2、NF3、NP1、NP2、NP3)8个处理,在温室条件下进行盆栽试验。结果表明,与N处理相比,配施FA和PASP后蕹菜地上部鲜重增加了7.46%~17.55%;NP2、NP3和各NF处理显著提高了蕹菜的吸氮量,提高幅度为10.84%~18.25%,其中,蕹菜对非标记氮的吸收量显著增加,且随FA和PASP用量的增大而增加;NF3处理的15N利用率显著低于N处理,其余处理无显著变化;NF2、NF3、NP2和NP3处理的15N损失率比N处理减少了5.41~14.58个百分点;NF2、NF3和NP2处理的15N土壤残留率增加了5.08~20.02个百分点。研究表明,中、高用量的FA和PASP与尿素配施促进了蕹菜对氮素(尤其是非标记氮素)的吸收,同时减少了氮肥的损失,增加了氮肥在土壤中的残留,对土壤氮库的贡献作用显著。
,
DOI:10.3969/j.issn.0517-6611.2016.33.032URL [本文引用: 1]
[目的]明确聚天冬氨酸(PASP)和黄腐酸钾(FA)在芹菜上的施用效果。[方法]以冲施清水及金正大20–20–20水溶肥作为对照,将0.20%FA、0.50%PASP、0.20%FA与0.50%PASP复配增效剂添加到金正大20–20–20水溶肥中对芹菜进行冲施,研究不同处理对芹菜农艺性状、产量和经济效益的影响。[结果]与空白对照相比,冲施水溶肥和水溶肥中添加PASP和FA及复配使用均可明显改善芹菜的农艺性状,提高芹菜的产量和经济效益。株高增加6.50-15.00 cm,茎粗增加0.43-0.60 cm,单株重增加0.07-0.23 kg,产量提高14.50%-48.66%。其中,以0.50%PASP与0.20%FA复配处理效果最好,经济效益最高,比冲施金正大20–20–20水溶肥收益增加40 380元/hm^2。[结论]水溶肥中添加PASP和FA在芹菜及其他蔬菜上有广阔的应用前景。
DOI:10.3969/j.issn.0517-6611.2016.33.032URL [本文引用: 1]
[目的]明确聚天冬氨酸(PASP)和黄腐酸钾(FA)在芹菜上的施用效果。[方法]以冲施清水及金正大20–20–20水溶肥作为对照,将0.20%FA、0.50%PASP、0.20%FA与0.50%PASP复配增效剂添加到金正大20–20–20水溶肥中对芹菜进行冲施,研究不同处理对芹菜农艺性状、产量和经济效益的影响。[结果]与空白对照相比,冲施水溶肥和水溶肥中添加PASP和FA及复配使用均可明显改善芹菜的农艺性状,提高芹菜的产量和经济效益。株高增加6.50-15.00 cm,茎粗增加0.43-0.60 cm,单株重增加0.07-0.23 kg,产量提高14.50%-48.66%。其中,以0.50%PASP与0.20%FA复配处理效果最好,经济效益最高,比冲施金正大20–20–20水溶肥收益增加40 380元/hm^2。[结论]水溶肥中添加PASP和FA在芹菜及其他蔬菜上有广阔的应用前景。
,
URL [本文引用: 1]
以一年生平邑甜茶盆栽幼苗为试材,采用15 N同位素示踪技术,研究不同聚天冬氨酸施用量对平邑甜茶生长及氮素利用、损失的影响。结果表明,植株的生长及对15 N的利用率在生长前期均以低水平聚天冬氨酸处理最高,但随着生长期的推移,它们则随着聚天冬氨酸量的增大而显著提高。在整个生长过程中,各处理的15 N分配率均表现为地上部地下部;随着生长期的推进,植株15 N分配率表现为随着聚天冬氨酸施用量的增加,植株吸收的15 N分配到地上部的比值越高。施用聚天冬氨酸显著降低了土壤氮素的损失,并且聚天冬氨酸用量越高效果越明显。总之,施用聚天冬氨酸显著促进了植株的生长及对15 N的吸收利用,降低了土壤氮素的损失,以施PASP 400mg/kg土处理效果最佳。
URL [本文引用: 1]
以一年生平邑甜茶盆栽幼苗为试材,采用15 N同位素示踪技术,研究不同聚天冬氨酸施用量对平邑甜茶生长及氮素利用、损失的影响。结果表明,植株的生长及对15 N的利用率在生长前期均以低水平聚天冬氨酸处理最高,但随着生长期的推移,它们则随着聚天冬氨酸量的增大而显著提高。在整个生长过程中,各处理的15 N分配率均表现为地上部地下部;随着生长期的推进,植株15 N分配率表现为随着聚天冬氨酸施用量的增加,植株吸收的15 N分配到地上部的比值越高。施用聚天冬氨酸显著降低了土壤氮素的损失,并且聚天冬氨酸用量越高效果越明显。总之,施用聚天冬氨酸显著促进了植株的生长及对15 N的吸收利用,降低了土壤氮素的损失,以施PASP 400mg/kg土处理效果最佳。
,
URL [本文引用: 1]
以黄瓜品种中农26号为试验材料,研究根施聚天门冬氨酸(PASP)对日光温室秋冬茬黄瓜生长、产量以及矿质元素吸收的影响.结果表明:与对照相比,根施聚天门冬氨酸促进了黄瓜生长及干物质的积累,黄瓜叶片数、叶绿素含量、净光合速率、根系活力、果实VC和可溶性蛋白含量都明显提高;促进了植株对氮磷钾的吸收,增加了土壤速效氮、速效磷、速效钾的含量,提高了黄瓜产量.其中根施60 mg·株-1聚天门冬氨酸处理效果最好,全株干、鲜质量分别比对照显著增加16.24%、11.16%,土壤速效氮、速效磷、速效钾含量分别比对照显著增加20.91%、31.65% 和35.87%,黄瓜单株产量、单株果数和总产量分别比对照显著增加17.85%、20.92% 和17.85%.表明在日光温室秋冬茬黄瓜生长过程中,可通过根施60 mg·株-1的聚天门冬氨酸促进黄瓜植株生长、提高黄瓜产量,增加植株氮磷钾吸收量,从而提高肥料利用率.
URL [本文引用: 1]
以黄瓜品种中农26号为试验材料,研究根施聚天门冬氨酸(PASP)对日光温室秋冬茬黄瓜生长、产量以及矿质元素吸收的影响.结果表明:与对照相比,根施聚天门冬氨酸促进了黄瓜生长及干物质的积累,黄瓜叶片数、叶绿素含量、净光合速率、根系活力、果实VC和可溶性蛋白含量都明显提高;促进了植株对氮磷钾的吸收,增加了土壤速效氮、速效磷、速效钾的含量,提高了黄瓜产量.其中根施60 mg·株-1聚天门冬氨酸处理效果最好,全株干、鲜质量分别比对照显著增加16.24%、11.16%,土壤速效氮、速效磷、速效钾含量分别比对照显著增加20.91%、31.65% 和35.87%,黄瓜单株产量、单株果数和总产量分别比对照显著增加17.85%、20.92% 和17.85%.表明在日光温室秋冬茬黄瓜生长过程中,可通过根施60 mg·株-1的聚天门冬氨酸促进黄瓜植株生长、提高黄瓜产量,增加植株氮磷钾吸收量,从而提高肥料利用率.
,
URL [本文引用: 1]
采用大田试验,研究了尿素添加不同增效剂(黄腐酸U17、聚天冬氨酸U24、复合增效剂黄腐酸加聚天冬氨酸组合U20)对夏玉米产量及氮肥利用率的影响。结果表明,施用增效尿素U20、U24和U17分别比普通尿素增产16.0%、8.5%和8.0%,达到显著性差异水平。与施用普通尿素相比,增效尿素U20、U24和U17减量20%时不减产。增效尿素U20、U24和U17能有效提高氮肥利用率,分别比普通尿素提高18.0、10.3和11.5个百分点;减量20%时,氮肥利用率比普通尿素提高18.6、12.7和12.3个百分点,且高于全量时处理。不同增效剂相比,以0.5%黄腐酸+0.3%聚天冬氨酸复合处理(U20)效果最优。
URL [本文引用: 1]
采用大田试验,研究了尿素添加不同增效剂(黄腐酸U17、聚天冬氨酸U24、复合增效剂黄腐酸加聚天冬氨酸组合U20)对夏玉米产量及氮肥利用率的影响。结果表明,施用增效尿素U20、U24和U17分别比普通尿素增产16.0%、8.5%和8.0%,达到显著性差异水平。与施用普通尿素相比,增效尿素U20、U24和U17减量20%时不减产。增效尿素U20、U24和U17能有效提高氮肥利用率,分别比普通尿素提高18.0、10.3和11.5个百分点;减量20%时,氮肥利用率比普通尿素提高18.6、12.7和12.3个百分点,且高于全量时处理。不同增效剂相比,以0.5%黄腐酸+0.3%聚天冬氨酸复合处理(U20)效果最优。
,
DOI:10.3969/j.issn.1005-0906.2013.04.011URL [本文引用: 2]
以郑单958和丰单3号的3展叶期幼苗为材料,在人工气候室 进行盆栽试验,研究4℃低温胁迫至幼苗死亡过程中叶片氮素代谢关键酶活的变化规律及聚糠萘水剂(PKN)的调控效应。结果表明,低温胁迫打破了氮素代谢平 衡,致使氮素同化相关酶硝酸还原酶活性(NRA)、谷氨酰胺合成酶活性(GSA)和谷氨酸-草酰乙酸转移酶活性(GOTA)于胁迫初期升高,之后迅速下 降,且GSA和GOTA降低比NRA提前2 d。随低温胁迫时间的延长,玉米幼苗受害加重,蛋白酶、肽酶活性增加,叶片可溶性蛋白与游离氨基酸含量升高。PKN处理提高了NRA、GSA、GOTA, 降低了蛋白酶、肽酶活性,维持氮素代谢稳定,促进单株干物重增加,提高了玉米幼苗抗冷性。
DOI:10.3969/j.issn.1005-0906.2013.04.011URL [本文引用: 2]
以郑单958和丰单3号的3展叶期幼苗为材料,在人工气候室 进行盆栽试验,研究4℃低温胁迫至幼苗死亡过程中叶片氮素代谢关键酶活的变化规律及聚糠萘水剂(PKN)的调控效应。结果表明,低温胁迫打破了氮素代谢平 衡,致使氮素同化相关酶硝酸还原酶活性(NRA)、谷氨酰胺合成酶活性(GSA)和谷氨酸-草酰乙酸转移酶活性(GOTA)于胁迫初期升高,之后迅速下 降,且GSA和GOTA降低比NRA提前2 d。随低温胁迫时间的延长,玉米幼苗受害加重,蛋白酶、肽酶活性增加,叶片可溶性蛋白与游离氨基酸含量升高。PKN处理提高了NRA、GSA、GOTA, 降低了蛋白酶、肽酶活性,维持氮素代谢稳定,促进单株干物重增加,提高了玉米幼苗抗冷性。
,
DOI:10.5846/stxb201212101773URL [本文引用: 2]
试验于2010-2011年在黑龙江省3个积温带哈尔滨市(Ⅰ)、绥化市(Ⅱ)、依安县(Ⅲ)的试验站进行,以郑单958和丰单3号为材料,研究大田条件下温度差异对花后玉米穗位叶氮同化及产量的影响与化学调控剂——聚糠萘水剂(PASP-KT-NAA, PKN)的调控效应。结果表明:(1)硝酸还原酶活性(Nitrate Reductase Activity, NRA)、硝态氮、叶绿素、叶片氮含量表现为Ⅰ > Ⅱ > Ⅲ;可溶性蛋白与游离氨基酸含量花后0-10 d表现为Ⅲ高于Ⅰ、Ⅱ;在花后30-40 d 游离氨基酸Ⅰ高于Ⅱ、Ⅲ;PKN处理提高NRA、硝态氮、叶绿素、叶片氮含量、可溶性蛋白和游离氨基酸含量。(2) 玉米产量均表现为Ⅰ > Ⅱ > Ⅲ,郑单958产量均高于丰单3号;PKN处理后,玉米产量均高于清水对照,其中郑单958化控处理(Zhengdan treatment, ZDTR)在Ⅰ、Ⅱ、Ⅲ的增产幅度分别为为3.09%-8.81%,4.61%-10.91%,5.91%-13.51%;丰单3号化控处理(Fengdan treatment, FDTR)在Ⅰ、Ⅱ、Ⅲ的增产幅度为2.43%-5.19%,3.03%-6.01%,2.57%-4.62%。PKN处理提高了3个积温带玉米穗位叶片氮同化关键酶活及其产物含量,促进低温条件下氮同化正常进行,最终提高产量。;Northeast China is a key area for maize production, but the low temperatures often result in delayed maize growth and slow maturity, as well as low grain quality and high grain moisture. So, to help improve maize yield, we studied the effects of PASP-KT-NAA on maize leaf nitrogen assimilation characteristics after florescence over different accumulated temperature regions with Zhengdan 958 and Fengdan 3 maize seeds as materials, in Heilongjiang province. The protein content in maize leaves is low and the key enzyme activities of nitrogen metabolism are susceptible to changes in environment, such as frost harm, etc. For this reason, the effects of different temperatures and the PASP-KT-NAA mixture on maize NRA (nitrogen reductive activity) in leaf tissue has been studied in three different accumulated temperature zones in Heilongjiang province, during 2010-2011. In field experiments, the first zone trial plot is located in the science station of Heilongjiang academy of agriculture sciences in Harbin. Its general accumulated temperature is ≥2800℃, but the accumulated temperature in the maize growing season in 2010 and 2011 is 3154.2℃ and 3004.2℃, respectively. The second zone trial plot is located in the science station of Heilongjiang Academy of Agricultural Sciences in Suihua City. Its general accumulated temperature is ≥2600℃, but the accumulated temperature in the maize growing season in 2010 and 2011 is 2901.8℃ and 2885.0℃, respectively. The third zone trial plot is located in Yi'an County. Its general accumulated temperature is ≥2400℃, but the accumulated temperature in the maize growing season in 2010 and 2011 is 2728.3℃ and 2602.6℃, respectively. The results showed that: (1) The NRA, NO3- content, leaf nitrogen content and chlorophyll content were affected by temperature, in zone order of I > Ⅱ > Ⅲ. After PKN treatment, FDTR and ZDTR ear leaf NRA in the three accumulated temperature zone were significantly higher than that in the water control and leaf nitrogen content and chlorophyll content was higher than the water control. The average of the ear leaf free amino acid of the two maize varieties performed up-down trends with the growth process, and reached its maximum 20 d after florescence. The soluble protein of zone Ⅰ tended to decrease with the growth process, with zones Ⅱ, and Ⅲ firstly increasing then decreasing with the growth process, reaching its maximum at 10 d after florescence. After PKN treatment, ear leaf free amino acid and soluble protein in samples from zone Ⅰ, Ⅱ and Ⅲ were significantly higher than the water control; (2) The grain yield of zone Ⅰ was higher than that for zone Ⅱ and Ⅲ. PKN treatment raised grain yield higher than those of the water control. The increased rate of ZDTR yield in zones Ⅰ, Ⅱ and Ⅲ in 2010 and 2011 were 3.09%-8.81%, 4.61%-10.91%, 5.91%-13.51%, respectively. The increased rate of FDTR yield in zones Ⅰ, Ⅱ and Ⅲ, in 2010 and 2011 were 2.43%-5.19%, 3.03%-6.01%, 2.57%-4.62%, respectively. PKN treatment improved the maize ear leaf nitrogen assimilation key enzyme activity and its product content over different accumulated temperature regions, promoted nitrogen assimilation normally under low temperature conditions and eventually increased yield.
DOI:10.5846/stxb201212101773URL [本文引用: 2]
试验于2010-2011年在黑龙江省3个积温带哈尔滨市(Ⅰ)、绥化市(Ⅱ)、依安县(Ⅲ)的试验站进行,以郑单958和丰单3号为材料,研究大田条件下温度差异对花后玉米穗位叶氮同化及产量的影响与化学调控剂——聚糠萘水剂(PASP-KT-NAA, PKN)的调控效应。结果表明:(1)硝酸还原酶活性(Nitrate Reductase Activity, NRA)、硝态氮、叶绿素、叶片氮含量表现为Ⅰ > Ⅱ > Ⅲ;可溶性蛋白与游离氨基酸含量花后0-10 d表现为Ⅲ高于Ⅰ、Ⅱ;在花后30-40 d 游离氨基酸Ⅰ高于Ⅱ、Ⅲ;PKN处理提高NRA、硝态氮、叶绿素、叶片氮含量、可溶性蛋白和游离氨基酸含量。(2) 玉米产量均表现为Ⅰ > Ⅱ > Ⅲ,郑单958产量均高于丰单3号;PKN处理后,玉米产量均高于清水对照,其中郑单958化控处理(Zhengdan treatment, ZDTR)在Ⅰ、Ⅱ、Ⅲ的增产幅度分别为为3.09%-8.81%,4.61%-10.91%,5.91%-13.51%;丰单3号化控处理(Fengdan treatment, FDTR)在Ⅰ、Ⅱ、Ⅲ的增产幅度为2.43%-5.19%,3.03%-6.01%,2.57%-4.62%。PKN处理提高了3个积温带玉米穗位叶片氮同化关键酶活及其产物含量,促进低温条件下氮同化正常进行,最终提高产量。;Northeast China is a key area for maize production, but the low temperatures often result in delayed maize growth and slow maturity, as well as low grain quality and high grain moisture. So, to help improve maize yield, we studied the effects of PASP-KT-NAA on maize leaf nitrogen assimilation characteristics after florescence over different accumulated temperature regions with Zhengdan 958 and Fengdan 3 maize seeds as materials, in Heilongjiang province. The protein content in maize leaves is low and the key enzyme activities of nitrogen metabolism are susceptible to changes in environment, such as frost harm, etc. For this reason, the effects of different temperatures and the PASP-KT-NAA mixture on maize NRA (nitrogen reductive activity) in leaf tissue has been studied in three different accumulated temperature zones in Heilongjiang province, during 2010-2011. In field experiments, the first zone trial plot is located in the science station of Heilongjiang academy of agriculture sciences in Harbin. Its general accumulated temperature is ≥2800℃, but the accumulated temperature in the maize growing season in 2010 and 2011 is 3154.2℃ and 3004.2℃, respectively. The second zone trial plot is located in the science station of Heilongjiang Academy of Agricultural Sciences in Suihua City. Its general accumulated temperature is ≥2600℃, but the accumulated temperature in the maize growing season in 2010 and 2011 is 2901.8℃ and 2885.0℃, respectively. The third zone trial plot is located in Yi'an County. Its general accumulated temperature is ≥2400℃, but the accumulated temperature in the maize growing season in 2010 and 2011 is 2728.3℃ and 2602.6℃, respectively. The results showed that: (1) The NRA, NO3- content, leaf nitrogen content and chlorophyll content were affected by temperature, in zone order of I > Ⅱ > Ⅲ. After PKN treatment, FDTR and ZDTR ear leaf NRA in the three accumulated temperature zone were significantly higher than that in the water control and leaf nitrogen content and chlorophyll content was higher than the water control. The average of the ear leaf free amino acid of the two maize varieties performed up-down trends with the growth process, and reached its maximum 20 d after florescence. The soluble protein of zone Ⅰ tended to decrease with the growth process, with zones Ⅱ, and Ⅲ firstly increasing then decreasing with the growth process, reaching its maximum at 10 d after florescence. After PKN treatment, ear leaf free amino acid and soluble protein in samples from zone Ⅰ, Ⅱ and Ⅲ were significantly higher than the water control; (2) The grain yield of zone Ⅰ was higher than that for zone Ⅱ and Ⅲ. PKN treatment raised grain yield higher than those of the water control. The increased rate of ZDTR yield in zones Ⅰ, Ⅱ and Ⅲ in 2010 and 2011 were 3.09%-8.81%, 4.61%-10.91%, 5.91%-13.51%, respectively. The increased rate of FDTR yield in zones Ⅰ, Ⅱ and Ⅲ, in 2010 and 2011 were 2.43%-5.19%, 3.03%-6.01%, 2.57%-4.62%, respectively. PKN treatment improved the maize ear leaf nitrogen assimilation key enzyme activity and its product content over different accumulated temperature regions, promoted nitrogen assimilation normally under low temperature conditions and eventually increased yield.
,
DOI:10.3969/j.issn.1005-0906.2013.03.013 [本文引用: 1]
在黑龙江省I、II、III积温带进行大田试验,以抗冷型玉米品种丰单3号和非抗冷型郑单958为试验材料,于3展叶、6展叶期叶面喷施玉米专用抗冷调节剂聚糠萘水剂(PKN),研究聚糠萘水剂对不同温度环境下春玉米灌浆期光合性能的调控作用。研究表明,聚糠萘水剂处理后不同积温带两个品种玉米穗位叶RuBP羧化酶、PEP羧化酶的活性提高,尤其在第II、III积温带,穗位叶RuBP羧化酶和PEP羧化酶活性提高幅度大。同时,聚糠萘水剂显著提高两个品种的叶绿素含量和光合速率,这种效应可能与聚糠萘水剂成分中含有细胞分裂素组分有关,也与聚糠萘水剂提高光合作用相关酶(RuBP羧化酶和PEP羧化酶)活性有直接关系。叶片光合性能增强,促进光合产物的合成、运输和积累,最终提高两个品种的子粒成熟度,提高产量。
DOI:10.3969/j.issn.1005-0906.2013.03.013 [本文引用: 1]
在黑龙江省I、II、III积温带进行大田试验,以抗冷型玉米品种丰单3号和非抗冷型郑单958为试验材料,于3展叶、6展叶期叶面喷施玉米专用抗冷调节剂聚糠萘水剂(PKN),研究聚糠萘水剂对不同温度环境下春玉米灌浆期光合性能的调控作用。研究表明,聚糠萘水剂处理后不同积温带两个品种玉米穗位叶RuBP羧化酶、PEP羧化酶的活性提高,尤其在第II、III积温带,穗位叶RuBP羧化酶和PEP羧化酶活性提高幅度大。同时,聚糠萘水剂显著提高两个品种的叶绿素含量和光合速率,这种效应可能与聚糠萘水剂成分中含有细胞分裂素组分有关,也与聚糠萘水剂提高光合作用相关酶(RuBP羧化酶和PEP羧化酶)活性有直接关系。叶片光合性能增强,促进光合产物的合成、运输和积累,最终提高两个品种的子粒成熟度,提高产量。
,
DOI:10.3724/SP.J.1006.2012.01698URL [本文引用: 1]
在大田栽培条件下,以郑单958和丰单3号为材料,于六叶期喷施玉米专用抗冷剂聚糠萘水剂(PKN),研究PKN对黑龙江省3个积温带上花后玉米穗位叶衰老生理及籽粒灌浆速率的影响。结果表明,从第1积温带到第1II积温带,气温逐渐降低;两玉米品种穗位叶的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及叶绿素(Chla+Chlb)含量均呈逐渐下降趋势,而MDA含量呈逐渐升高的趋势。同一积温带,两品种不同处理的穗位叶SOD、POD、CAT的活性随生育期呈“先升高后下降”的单峰变化趋势,而MDA含量呈“先降低后升高”的趋势;PKN处理后3个积温带的两品种穗位叶SOD、POD、CAT的活性及叶绿素含量较对照均有不同程度的提高。而MDA的含量与对照相比呈下降趋势。从第1积温带到第III积温带,两品种籽粒的干重均随籽粒的发育呈“慢-快-慢”的S型变化,而灌浆速率呈“先升高后降低”的单峰曲线变化趋势,且两品种籽粒干物重和灌浆速率呈下降趋势;PKN处理后两品种的籽粒干物重和灌浆速率较对照均有不同程度的提高。2010年和2011年PKN处理后3个积温带两品种的产量均增加。2010年第III积温带的ZDTR和FDTR的增产幅度比第I、第II积温带高2.58%、1.17%和2.04%、1.48%。2011年第III积温带的ZDTR和FDTR的增产幅度比第I、第II积温带高8.2%、5.1%和3.4%、0.8%。由此可见,PKN处理后延缓玉米叶片衰老,提高籽粒的灌浆速率,最终增加玉米的产量。
DOI:10.3724/SP.J.1006.2012.01698URL [本文引用: 1]
在大田栽培条件下,以郑单958和丰单3号为材料,于六叶期喷施玉米专用抗冷剂聚糠萘水剂(PKN),研究PKN对黑龙江省3个积温带上花后玉米穗位叶衰老生理及籽粒灌浆速率的影响。结果表明,从第1积温带到第1II积温带,气温逐渐降低;两玉米品种穗位叶的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及叶绿素(Chla+Chlb)含量均呈逐渐下降趋势,而MDA含量呈逐渐升高的趋势。同一积温带,两品种不同处理的穗位叶SOD、POD、CAT的活性随生育期呈“先升高后下降”的单峰变化趋势,而MDA含量呈“先降低后升高”的趋势;PKN处理后3个积温带的两品种穗位叶SOD、POD、CAT的活性及叶绿素含量较对照均有不同程度的提高。而MDA的含量与对照相比呈下降趋势。从第1积温带到第III积温带,两品种籽粒的干重均随籽粒的发育呈“慢-快-慢”的S型变化,而灌浆速率呈“先升高后降低”的单峰曲线变化趋势,且两品种籽粒干物重和灌浆速率呈下降趋势;PKN处理后两品种的籽粒干物重和灌浆速率较对照均有不同程度的提高。2010年和2011年PKN处理后3个积温带两品种的产量均增加。2010年第III积温带的ZDTR和FDTR的增产幅度比第I、第II积温带高2.58%、1.17%和2.04%、1.48%。2011年第III积温带的ZDTR和FDTR的增产幅度比第I、第II积温带高8.2%、5.1%和3.4%、0.8%。由此可见,PKN处理后延缓玉米叶片衰老,提高籽粒的灌浆速率,最终增加玉米的产量。
,
DOI:10.1007/s004250000504URL [本文引用: 1]
,
DOI:10.1093/jexbot/53.370.979URLPMID:11912240 [本文引用: 1]
This short review outlines the central role of (GS) in plant nitrogen metabolism and discusses some possibilities for crop improvement. GS functions as the major assimilatory enzyme for ammonia produced from N fixation, and nitrate or ammonia nutrition. It also reassimilates ammonia released as a result of and the breakdown of proteins and nitrogen compounds. GS is distributed in different subcellular locations (and ) and in different tissues and organs. This distribution probably changes as a function of the of the tissue, for example, appears to play a key role in . The enzyme is the product of multiple genes with complex promoters that ensure the expression of the genes in an organ- and tissue-specific manner and in response to a number of environmental variables affecting the nutritional status of the cell. GS activity is also regulated post-translationally in a manner that involves and . GS and plant nitrogen metabolism is best viewed as a complex matrix continually changing during the cycle of . Along with GS, a number of other enzymes play key roles in maintaining the balance of carbon and nitrogen. It is proposed that one of these is (). There is considerable evidence for a shunt to return the carbon in amino acids back into reactions of carbon metabolism and the tri-cycle. Results with transgenic containing transferred GS genes suggest that there may be ways in which it is possible to improve the efficiency with which crop use nitrogen. Marker-assisted breeding may also bring about such improvements.
,
DOI:10.1007/s00425-004-1468-2URL [本文引用: 1]
,
DOI:10.1111/j.1469-8137.2009.02823.xURLPMID:19422547 [本文引用: 1]
Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.
,
DOI:10.1016/S1002-0160(12)60016-2URL [本文引用: 1]
Many recently developed N management strategies have been extremely successful in improving N use efficiency. However, attempts to further increase grain yields have had limited success. Field experiments were conducted in 2007 and 2008 at four sites to evaluate the effect of an in-season root-zone N management strategy on maize (Zea mays L.). According to the in-season root-zone N management, the optimal N rate (ONR) was determined by subtracting measured soil mineral N (NH+461N and NO613-N) in the root zone from N target values. Other treatments included a control without N fertilization, 70% of ONR, 130% of ONR, and recommended N rate (RNR) by agronomists in China that have been shown to approach maize yield potentials. Although apparent N recovery for the ONR treatment was significantly higher than that under RNR in 2007, grain yield declined from 13.3 to 11.0 Mg ha611 because of an underestimation of N uptake. In 2008, N target values were adjusted to match crop uptake, and N fertilization rates were reduced from 450 kg N ha611 for RNR to 225 to 265 kg N ha611 for ONR. High maize yields were maintained at 12.6 to 13.5 Mg ha611, which were twice the yield from typical farmers' practice. As a result, apparent N recovery increased from 29% to 66%, and estimated N losses decreased significantly for the ONR treatment compared to the RNR treatment. In conclusion, the in-season root-zone N management approach was able to achieve high yields, high NUE and low N losses.