Changes of Maize Lodging after Physiological Maturity and Its Influencing Factors
XUE Jun1, WANG Qun2, LI Lu-Lu1, ZHANG Wan-Xu2, XIE Rui-Zhi1, WANG Ke-Ru1, MING Bo1, HOU Peng1, LI Shao-Kun,1,*通讯作者:
第一联系人:
收稿日期:2018-02-6接受日期:2018-07-20网络出版日期:2018-12-12
基金资助: |
Received:2018-02-6Accepted:2018-07-20Online:2018-12-12
Fund supported: |
摘要
关键词:
Abstract
Keywords:
PDF (820KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
薛军, 王群, 李璐璐, 张万旭, 谢瑞芝, 王克如, 明博, 侯鹏, 李少昆. 玉米生理成熟后倒伏变化及其影响因素[J]. 作物学报, 2018, 44(12): 1782-1792. doi:10.3724/SP.J.1006.2018.01782
XUE Jun, WANG Qun, LI Lu-Lu, ZHANG Wan-Xu, XIE Rui-Zhi, WANG Ke-Ru, MING Bo, HOU Peng, LI Shao-Kun.
倒伏是玉米生产中的常见现象。在玉米整个生育期均可发生倒伏, 生理成熟前的倒伏影响籽粒灌浆速率, 降低产量[1]; 生理成熟后倒伏则会增加机械粒收过程中的落穗数量, 降低籽粒品质, 加大收获难度和收获效率, 生产效益明显降低[2,3,4]。直接收粒是我国玉米机械收获的发展方向[5]。与传统人工收获和机械穗收不同, 机械粒收要求玉米籽粒含水量控制在27%以下[6,7], 生理成熟后一般田间站秆脱水2~4周才能达到收粒要求[8,9]。在田间站秆脱水阶段, 玉米雌穗重达到最大, 茎秆衰老导致自身物质和水分变化, 受大风、降雨、茎腐病等影响造成倒伏[10,11]。Allen等[12]观测表明, 玉米在田间站秆脱水过程中, 当籽粒含水量从25%将至15%时, 倒伏率增加42%。Nolte等[13]研究表明, 在美国俄亥俄州10月15日之后, 每推迟1周, 茎折率增加5%, 并且1/3茎折植株会落穗。本研究团队曾对大田调查的381组样本数据分析表明, 玉米机械粒收落穗量与倒伏率呈极显著正相关, 符合线性关系。国家标准“玉米收获机械技术条件” (GB/T-21962-2008)中规定机械粒收的条件为田间植株倒伏率低于5%[14]。以往我国玉米收获以人工和机械穗收为主, 关于倒伏问题的研究多集中在玉米茎秆前期发育过程或生理成熟之前的某一个阶段[15,16,17,18,19], 对生育后期和生理成熟后茎秆衰老及倒伏研究较少。本研究旨在分析玉米生理成熟后倒伏发生类型及规律, 探讨影响玉米生理成熟后倒伏的关键因素, 对实施玉米籽粒收获抗倒品种的选育和最佳粒收时期的确定提供理论依据。
1 材料与方法
1.1 试验设计
试验于2017年在中国农业科学院新乡综合试验站, 新疆奇台总场108团、二分场和三分场进行。各试验点参试品种见表1, 均采用大区种植。在新乡试验站, 种植行距为60 cm, 行长为100 m, 每个品种不少于10行, 种植面积不少于600 m2, 种植密度均为67 500株 hm-2, 6月17日至18日播种。在奇台总场108团、二分场和三分场, 每个品种播种面积不低于667 m2, 4月中下旬至5月上旬播种, 种植密度为105 000株 hm-2, 宽窄行栽培, 宽行距70 cm, 窄行距40 cm。对4个试验点均参照当地大田管理。在生理成熟后分期调查玉米田间倒伏和茎秆质量。Table 1
表1
表1供试品种
Table 1
新窗口打开|下载CSV
在河南新乡试验站, 分别于10月27日、11月10日、11月25日和12月6日调查各品种的倒伏率, 于10月21日、11月1日、11月10日、11月21日、12月2日和12月12日在田间随机选取各品种5株样品, 测定玉米茎秆抗折断力、基部节间力学强度、干物质积累量和含水率。在新疆奇台总场3个试验点, 田间未发生倒伏, 分别于10月9日、10月29日和11月10日测定茎秆质量。
1.2.1 田间倒伏 在田间随机选取长度为10 m, 宽度为4行的样区调查玉米总株数、根倒和茎折株数, 3次重复。
根倒率(%) = 根倒数/总株数 × 100
茎折率(%) = 茎折数/总株数 × 100
总倒伏率 = 根倒率+茎折率
其中, 玉米穗下节间发生折断的为茎折; 穗下节间未发生折断, 植株偏离垂直方向45°以上的为根倒[14]。
1.2.2 茎秆抗折断力 田间自然生长状态下, 用YYD-1型茎秆强度测定仪(浙江托普仪器有限公司, 中国杭州)在穗位节垂直于茎秆方向将植株推断, 测定茎秆被推断时的最大力学值即茎秆抗折断力, 记录玉米发生倒折的节间。
1.2.3 重心高度 选取5株长势一致有代表性植株, 将植株沿地面水平截下并横放(带穗、叶和鞘), 用食指水平托起, 使其保持平衡不倾斜, 平衡时手指所在位置距离茎秆基部的距离为重心高度。
1.2.4 茎秆基部节间强度 参考勾玲等[19]的方法, 用茎秆强度测定仪将一定横断面积 (如1 mm2)的测头, 在第3节间中部短轴面垂直于茎秆方向匀速缓慢插入, 读取穿透茎秆表皮的最大值, 即穿刺强度(RPS); 用直径为1 cm2的探头测定第4节间恰好被压碎时的最大值, 即压碎强度(CS)。同时, 将第5节间两端固定, 采用三点弯曲法测定第5节间被折断时的最大力学值, 即弯曲强度(BS)[20]。
1.2.5 节间干物质积累和含水率 截取上述测定的第3、第4、第5节间样品, 用直尺测定节间长度, 称鲜重, 置烘箱105℃下杀青30 min, 80℃下烘干至恒重, 称重。
节间单位长度干重(g cm-1)=节间干重(g)/节间长度(cm),
含水率(%) = (节间鲜重—节间干重)/节间鲜重×100
1.3 数据分析
采用Microsoft Excel 2010整理数据, SPSS 17.0 软件检验差异显著性和相关性分析, SigmaPlot 10.0绘图。2 结果与分析
2.1 不同玉米品种生理成熟后倒伏率变化
玉米生理成熟后总倒伏率、根倒率和茎折率均呈逐渐增加趋势(表2)。以国标GB/T-21962-2008[14]中规定的机械粒收条件为标准, 10月27日、11月10日、11月25日和12月6日调查总倒伏率低于5%的品种数分别为22个、16个、8个和5个。28个参试品种茎折率占总倒伏率的比例随田间站秆晾晒时间的延长呈逐渐上升趋势, 分别为4.8%、10.5%、32.5%和43.4%, 说明生理成熟后倒伏的增加主要是茎折率提高所致。Table 2
表2
表2不同玉米品种生理成熟后倒伏率
Table 2
品种 Cultivar | 总倒伏率 Total lodging rate (%) | 茎折率 Stalk lodging rate (%) | 根倒率 Root lodging rate (%) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Oct. 27 | Nov. 10 | Nov. 25 | Dec. 6 | Oct. 27 | Nov. 10 | Nov. 25 | Dec. 6 | Oct. 27 | Nov. 10 | Nov. 25 | Dec. 6 | ||||||||||||
辽单586 Liaodan 586 | 1.7 | 11.3 | 12.1 | 12.5 | 1.7 | 11.3 | 12.1 | 12.1 | 0 | 0 | 0 | 0.4 | |||||||||||
辽单585 Liaodan 585 | 0 | 1.3 | 2.9 | 4.8 | 0 | 0.4 | 2.0 | 3.9 | 0 | 0.9 | 0.9 | 0.9 | |||||||||||
辽单575 Liaodan 575 | 2.3 | 5.6 | 23.0 | 23.2 | 1.2 | 1.6 | 19.1 | 19.3 | 1.1 | 4.0 | 4.0 | 4.0 | |||||||||||
MC 670 | 0 | 0.5 | 3.9 | 5.6 | 0 | 0.5 | 3.9 | 5.6 | 0 | 0 | 0 | 0 | |||||||||||
恒育898 Hengyu 898 | 0.5 | 1.2 | 2.2 | 2.2 | 0.5 | 1.2 | 2.2 | 2.2 | 0 | 0 | 0 | 0 | |||||||||||
宇玉30 Yuyu 30 | 4.6 | 7.5 | 10.6 | 15.7 | 0.7 | 2.2 | 3.0 | 8.1 | 4.0 | 5.3 | 7.6 | 7.6 | |||||||||||
裕丰303 Yufeng 303 | 25.3 | 28.0 | 37.9 | 37.9 | 1.2 | 1.2 | 7.0 | 7.0 | 24.1 | 26.8 | 30.9 | 30.9 | |||||||||||
联创808 Lianchuang 808 | 4.8 | 28.1 | 82.8 | 86.9 | 0 | 1.4 | 4.8 | 7.3 | 4.8 | 26.7 | 78.0 | 79.5 | |||||||||||
品种 Cultivar | 总倒伏率 Total lodging rate (%) | 茎折率 Stalk lodging rate (%) | 根倒率 Root lodging rate (%) | ||||||||||||||||||||
Oct. 27 | Nov. 10 | Nov. 25 | Dec. 6 | Oct. 27 | Nov. 10 | Nov. 25 | Dec. 6 | Oct. 27 | Nov. 10 | Nov. 25 | Dec. 6 | ||||||||||||
联创825 Lianchuang 825 | 47.8 | 63.1 | 71.1 | 71.1 | 0 | 0 | 0 | 0 | 47.8 | 63.1 | 71.1 | 71.1 | |||||||||||
利单295 Lidan 295 | 1.9 | 3.4 | 18.3 | 24.4 | 0.6 | 1.9 | 15.5 | 21.6 | 1.3 | 1.5 | 2.8 | 2.8 | |||||||||||
LA 505 | 1.0 | 2.6 | 5.3 | 11.4 | 0 | 1.5 | 3.9 | 5.2 | 1.0 | 1.0 | 1.4 | 6.3 | |||||||||||
北斗309 Beidou 309 | 8.2 | 11.9 | 32.6 | 33.5 | 1.7 | 4.5 | 23.9 | 24.7 | 6.4 | 7.4 | 8.8 | 8.8 | |||||||||||
豫单9953 Yudan 9953 | 3.5 | 3.5 | 7.5 | 25.7 | 0 | 0 | 2.1 | 17.3 | 3.5 | 3.5 | 5.4 | 8.5 | |||||||||||
新单58 Xindan 58 | 4.6 | 6.1 | 10.6 | 20.8 | 0.4 | 0.5 | 4.0 | 14.2 | 4.3 | 5.6 | 6.6 | 6.6 | |||||||||||
新单65 Xindan 65 | 0 | 0 | 1.0 | 11.5 | 0 | 0 | 1.0 | 6.2 | 0 | 0 | 0 | 5.3 | |||||||||||
新单68 Xindan 68 | 0 | 0.7 | 2.5 | 50.6 | 0 | 0.7 | 2.5 | 50.6 | 0 | 0 | 0 | 0 | |||||||||||
农华5号 Nonghua 5 | 74.6 | 74.8 | 80.9 | 80.9 | 0.3 | 0.5 | 0.8 | 0.8 | 74.3 | 74.3 | 80.1 | 80.1 | |||||||||||
农华816 Nonghua 816 | 7.0 | 7.6 | 18.0 | 20.6 | 0.8 | 1.4 | 11.7 | 13.7 | 6.2 | 6.2 | 6.2 | 6.9 | |||||||||||
迪卡517 Dika 517 | 0.4 | 1.0 | 7.7 | 8.2 | 0.4 | 1.0 | 7.7 | 8.2 | 0 | 0 | 0 | 0 | |||||||||||
迪卡653 Dika 653 | 0.4 | 0.4 | 2.9 | 2.9 | 0 | 0 | 2.5 | 2.5 | 0.4 | 0.4 | 0.4 | 0.4 | |||||||||||
陕单636 Shaandan 636 | 0.7 | 4.2 | 6.3 | 22.2 | 0.7 | 0.9 | 1.4 | 16.9 | 0 | 3.3 | 5.0 | 5.2 | |||||||||||
陕单650 Shaandan 650 | 3.8 | 4.5 | 10.2 | 12.1 | 0 | 0.3 | 4.9 | 6.7 | 3.8 | 4.2 | 5.3 | 5.3 | |||||||||||
泽玉501 Zeyu 501 | 0.8 | 1.7 | 2.9 | 4.5 | 0.6 | 0.8 | 2.0 | 3.6 | 0.2 | 0.9 | 0.9 | 0.9 | |||||||||||
泽玉8911 Zeyu 8911 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||
吉单66 Jidan 66 | 2.4 | 3.8 | 15.0 | 16.5 | 2.1 | 2.4 | 13.6 | 15.1 | 0.4 | 1.4 | 1.4 | 1.4 | |||||||||||
东单913 Dongdan 913 | 1.4 | 2.7 | 5.5 | 8.7 | 0 | 0 | 2.5 | 5.7 | 1.4 | 2.7 | 3.0 | 3.0 | |||||||||||
金通152 Jintong 152 | 2.2 | 5.6 | 51.7 | 54.9 | 0 | 1.6 | 43.7 | 45.2 | 2.2 | 4.0 | 8.0 | 9.6 | |||||||||||
中科玉505 Zhongkeyu 505 | 72.3 | 83.8 | 84.4 | 90.1 | 3 | 0.4 | 0.8 | 6.2 | 72.0 | 83.4 | 83.6 | 83.9 | |||||||||||
平均值 Average | 9.7 b | 13.0 ab | 21.8 ab | 27.1 a | 0.5 c | 1.4 c | 7.1 b | 11.8 a | 9.3 a | 11.7 a | 14.7 a | 15.3 a | |||||||||||
最大值 Maximum | 74.6 | 83.8 | 84.4 | 90.1 | 2.1 | 11.3 | 43.7 | 50.6 | 74.3 | 83.4 | 83.6 | 83.9 | |||||||||||
最小值 Minimum | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||||
变异系数 CV (%) | 210.4 | 174.9 | 123.8 | 98.4 | 130.1 | 159.3 | 132.8 | 103.3 | 221.4 | 197.6 | 184.6 | 176.4 |
新窗口打开|下载CSV
不同玉米品种之间倒伏差异显著, 12月6日总倒伏率最高的品种为中科玉505, 达90.1%; 最低的为泽玉8911, 未发生倒伏(表2)。根倒率较高的品种为中科玉505、农华5号、联创808和联创825, 12月6日均达到50%以上; 其次为裕丰303, 为30.9%; 其余23个品种根倒率均在10%以下。12月6日茎折率最高的品种为新单68, 为50.6%; 其次为中科玉505, 为45.2%; 利单295和北斗309的茎折率均超过20%, 辽单575、豫单9953和吉单66的茎折率均超过15%。
2.2 茎秆抗折断力变化及对倒伏的影响
玉米生理成熟后茎秆抗折断力逐渐降低。新乡试点28个供试品种抗折断力在10月21日至11月21日之间差异显著, 11月21日与12月2日之间、12月2日与12月12日之间差异未达到显著水平(图1-A)。奇台总场3个试验点参试品种的茎秆抗折断力在生理成熟后也呈逐渐降低趋势, 其中108团和三分场试点在11月10日显著低于10月9日, 二分场的茎折抗折断力在3个取样期的差异未达到显著水平(图1-B)。图1
新窗口打开|下载原图ZIP|生成PPT图1玉米生理成熟后茎秆抗折断力变化
图A为新乡夏玉米,图B为奇台春玉米。箱线图(图A)中箱体部分代表50%样本的分布区域,即四分位区间(IQR)。两端线为Tukey法判定的合理观测样本边界。箱体中实线为样本中位数,虚线为样本均值,空心点表示异常值。图B中数据为同一样点、不同取样期所有参试品种的均值。图中不同小写字母分别表示同一样点不同取样期在0.05 水平下的差异显著。
Fig. 1Changes in stalk breaking force of maize after physiological maturity
Fig. A shows the summer maize in Xinxiang, Fig. B show the spring maize in Qitai. The main box called IQR contains fifty percent samples in Box-whisker Plot (Fig. B). The two sidelines mean the reasonable sample border in Tukey method. The solid line in box positions the median sample. The hidden line stands for the average. The circle stands for the outlier. Values is the average for all cultivars in same sampling location and different sampling dates in Fig. B. Values within the same sampling location followed by different lowercase letters are significantly different at P<0.05.
由表3可知, 茎折发生在地上部第3节间的植株占总折断植株的比例最高, 其次为第4节间, 茎折发生在第2、第3、第4、第5节间的比例在新乡和奇台分别为93.9%和90.4%。说明玉米植株茎折主要发生在茎秆基部节间。
Table 3
表3
表3玉米茎秆不同节间折断比例
Table 3
玉米季 Maize season | 试验地点 Experimental site | 占总折断率的比例 Percentage in total stalk broken rate (%) | ||||
---|---|---|---|---|---|---|
第2节 Second internode | 第3节 Third internode | 第4节 Fourth internode | 第5节 Fifth internode | 其他 Others | ||
夏玉米 Summer maize | 河南新乡 Xinxiang, Henan | 18.6 | 42.9 | 24.1 | 7.8 | 6.1 |
春玉米 Spring maize | 新疆奇台 Qitai, Xinjiang | 17.0 | 30.4 | 27.4 | 15.6 | 9.6 |
新窗口打开|下载CSV
对田间玉米茎折率和茎秆抗折断力拟合结果(图2)表明, 茎秆抗折断力(x)与茎折率(y)符合递减关系, 拟合方程为$y=\frac{167.23}{x}-6.7293,$R2=0.25**(n = 112)。由方程可知, 当抗折力 ≤ 24.9 N时, 开始有茎折发生; 当抗折力≤ 14.3 N时, 茎折率高于机械粒收国家标准(倒伏率 < 5%)。
图2
新窗口打开|下载原图ZIP|生成PPT图2玉米茎秆力学强度与茎折率之间的关系
**表示0.01 水平上相关显著。
Fig. 2Relationship between maize stalk breaking force and stalk lodging rate
** Correlation is significant at the 0.01 probability level.
2.3 重心高度变化及对茎秆抗折断力的影响
在新乡夏玉米生理成熟后, 重心高度逐渐降低, 11月21日重心高度显著低于10月21日(图3)。说明玉米生理成熟后植株重心高度变化并不是影响茎秆抗折断力降低和倒伏增加主要因素。图3
新窗口打开|下载原图ZIP|生成PPT图3玉米生理成熟后重心高度变化
图中不同小写字母分别表示不同取样期在0.05 水平下的差异显著。
Fig. 3Changes in the height of gravity center of maize after physiological maturity
Height of gravity center indexed with different lowercase letters are significantly different at P < 0.05.
2.4 茎秆基部节间力学强度的变化
玉米生理成熟后, 茎秆基部第3节间穿刺强度(rind penetration strength, RPS)、第4节间压碎强度(crushing strength, CS)及第5节间弯曲强度(bending strength, BS)均逐渐降低(图4)。新乡夏玉米试点6次测定结果显示, 10月21日至11月21日差异显著, 12月2日和12月12日之间差异未达到显著水平; 第4节间CS在10月21日显著高于其他几个测定日期, 12月2日和12月12日显著低于其他日期; 第5节间BS在11月11日之前显著高于11月21日之后。奇台3个试验点的春玉米茎秆基部力学强度在10月9日至11月10日之间也总体呈逐渐降低趋势。图4
新窗口打开|下载原图ZIP|生成PPT图4玉米生理成熟后茎秆基部节间力学强度的变化
图A、C、E 为河南新乡夏玉米, 图B、D、F 为新疆奇台春玉米; RPS: 穿刺强度; CS: 压碎强度; BS: 弯曲强度。图中不同小写字母分别表示同一样点不同取样期在0.05 水平下的差异显著。
Fig. 4Changes in mechanical strength of maize basal internode after physiological maturity
Fig. A, Fig. C, and Fig. E show summer maize in Xinxiang, Henan. Fig. B, Fig. D, and Fig. F show spring maize in Qitai, Xinjiang. RPS is rind penetration strength, CS is crushing strength, and BS is bending strength. Values within the same sampling location indexed with different lowercase letters are significantly different at P < 0.05.
2.5 茎秆基部节间干物质的变化
新乡夏玉米试点28个供试玉米品种生理成熟后茎秆基部第3、第4、第5节间单位长度干重(dryweight per unit length, DWUL)逐渐降低(图5)。奇台3个试验点的春玉米茎秆基部节间DWUL在10月9日至11月10日之间也总体呈逐渐降低趋势。图5
新窗口打开|下载原图ZIP|生成PPT图5玉米生理成熟后茎秆基部节间干物质变化
图A、C、E 为河南新乡夏玉米, 图B、D、F 为新疆奇台春玉米; DWUL, 单位长度干重。图中不同小写字母分别表示同一样点不同取样期在0.05 水平下的差异显著。
Fig. 5Changes in dry weight per unit length (DWUL) of maize basal internode after physiological maturity
Fig. A, Fig. C, and Fig E show summer maize in Xinxiang, Henan. Fig. B, Fig. D, and Fig. F show spring maize in Qitai, Xinjiang. DWUL is dry weight per unit length. Values within the same sampling location indexed with different lowercase letters are significantly different at P < 0.05.
2.6 茎秆基部节间含水率的变化
玉米生理成熟后茎秆基部节间含水率呈逐渐降低趋势(图6)。28个供试品种第3节间含水率在10月21日至11月21日之间无显著差异, 第4、第5节间在10月21日至11月11日之间无显著差异, 11月11日取样前新乡试验点有降雨发生, 节间含水率略高于11月1日, 11月21日之后, 茎秆含水率显著降低。奇台3个试验点的春玉米茎秆基部节间含水率在10月9日至11月10日之间逐渐降低, 差异达到显著水平。图6
新窗口打开|下载原图ZIP|生成PPT图6玉米生理成熟后茎秆基部节间含水率变化
图A、C、E 为河南新乡夏玉米, 图B、D、F 为新疆奇台春玉米。图中不同小写字母分别表示同一样点不同取样期在0.05 水平下的差异显著。
Fig. 6Changes in moisture content of maize basal internode after physiological maturity
Fig. A, Fig. C, and Fig E show summer maize in Xinxiang, Henan. Fig. B, Fig. D, and Fig. F show spring maize in Qitai, Xinjiang. Values within the same sampling location indexed with different lowercase letters are significantly different at P < 0.05.
2.7 相关性分析
相关分析(表4)表明, 玉米茎秆抗折断力与基部第3节间RPS、第4节间CS及第5节间BS均呈显著正相关, 抗折断力也与基部第3、第4、第5节间的平均DWUL和含水率呈显著正相关, 相关系数最高的为BS和DWUL, 分别为0.7373和0.7356。茎秆基部节间DWUL、含水率均与RPS、CS和BS呈显著相关, 其中相关系数较高的为BS和DWUL及含水率。Table 4
表4
表4玉米生理成熟后茎秆抗折断力、基部节间力学强度、干物质积累及含水率相关性分析
Table 4
指标 Indicator | 抗折断力 Breaking force | 穿刺强度 Rind penetration strength | 压碎强度 Crushing strength | 弯曲强度 Bending strength |
---|---|---|---|---|
穿刺强度Rind penetration strength | 0.6552** | |||
压碎强度Crushing strength | 0.6562** | 0.7253** | ||
弯曲强度Bending strength | 0.7373** | 0.5908** | 0.6758** | |
单位长度干重 Dry weight per unit length | 0.7356** | 0.5432** | 0.5836** | 0.7311** |
含水率Moisture content | 0.5096** | 0.4914** | 0.4430** | 0.5155** |
新窗口打开|下载CSV
3 讨论
3.1 茎折率提高是玉米生理成熟后倒伏增加的主要原因
玉米倒伏是由外力作用引发的根或茎秆倒折现象。吐丝之前, 玉米根系未发育成熟, 固着能力较弱, 遇暴雨加大风天气, 根倒发生严重; 吐丝至成熟期, 玉米根系发育成熟, 茎秆中的物质向穗部运输, 使茎秆质量下降, 雌穗重量不断增加, 提高了植株的重心高度, 玉米以茎折为主, 且多发生在穗下基部节间[18]。本研究表明, 玉米生理成熟后倒伏逐渐增加, 从10月21日至12月6日, 黄淮海夏玉米区28个参试品种的总倒伏率均值由9.7%提高至27.1%, 茎折率由0.5%提高至11.8%, 根倒率由9.3%提高至15.3%, 茎折率占总倒伏率的比例由4.8%提高至43.4%, 由此说明生理成熟后倒伏率的提高主要是因为茎折率增加所致。3.2 玉米生理成熟后基部节间强度下降是影响茎折率上升的重要因素
玉米茎折发生与植株形态和茎秆强度有关。前人研究表明, 玉米基部节间较长的植株具有较高的穗位和重心高度, 倒伏风险大; 相反, 基部节间较短且粗壮的植株具有较强的抗倒伏能力[21]。茎秆力学强度, 如茎秆外皮穿刺强度、压碎强度和弯曲强度均与田间倒伏率呈显著负相关[15,16,17,18,19]。茎秆抗折断力是综合了植株形态和茎秆力学强度来评价植株抗倒伏能力的综合指标[22]。本研究结果表明, 玉米生理成熟后茎折率随茎秆抗折力降低而升高, 当抗折断力低于14.3 N时, 茎折率高于国家机械粒收标准倒伏率低于5%的规定。进一步分析影响玉米茎秆抗折断力降低的因素可知, 在形态方面, 生理成熟后玉米株高、穗位高、节间长度、直径不会发生变化, 仅重心高度发生变化, 而生理成熟后植株受含水率降低、植株养分转移、上部叶片脱落、穗上部分折断等因素影响, 重心高度逐渐降低, 说明植株形态方面的变化不是影响抗折断力下降和茎折率提高的主要因素; 茎秆力学强度方面, 生理成熟后基部第3节间RPS、第4节间CS和第5节间BS均逐渐降低, 相关分析也表明, 茎秆抗折断力与基部节间RPS、CS和BS均呈显著正相关。由此说明, 生理成熟后玉米茎秆基部节间强度降低使抗折断力下降, 导致茎折率上升。3.3 玉米生理成熟后茎秆衰老使茎秆力学强度降低
玉米茎秆中碳水化合物和水分是茎秆强度形成的物质基础。前人研究表明, 玉米茎秆DWUL与力学强度呈显著正相关[14,18], 抽雄后茎秆髓部含水量与力学强度呈显著正相关[23]。生理成熟后植株迅速衰老, 根系活性迅速下降和对水分、营养物质吸收能力降低, 叶片衰老, 蒸腾作用和光合能力显著下降, 加之籽粒库对茎秆中可溶性碳水化合物的拉力和茎秆自身的呼吸消耗, 使茎秆中碳水化合物和水分含量下降。Chen等[24]研究表明, 在我国吉林从8月30日至9月30日, 玉米茎秆总碳水化合物降低31%~42%, 含水率由77%~79%降低至52%~56%。玉米茎秆碳水化合物分解和水分含量下降导致细胞萎缩, 细胞壁降解变薄, 细胞之间缝隙加大, 韧性降低, 脆性增加, 机械强度降低。本研究结果表明, 新乡试验站28个参试品种从10月21日至12月12日基部第3、第4、第5节间单位长度干重均值降低25.3%, 含水率均值降低47.9%, 第3节间RPS降低33.2%, 第4节间CS降低30.2%, 第5节间BS降低33.5%, 相关分析也表明, 节间单位长度干重和含水率均与基部节间力学强度呈显著正相关。由此说明, 生理成熟后玉米迅速衰老导致的茎秆中碳水化合物降低和茎秆失水使力学强度降低, 造成茎折率显著提高。3.4 田间站秆能力是衡量玉米品种是否适合机械粒收的重要因素
本研究在新乡试验站对28个参试品种茎折率测试结果显示, 10月27日茎折率变幅为0~2.1%, 抗折断力变幅为13.3~43.4 N; 12月6日茎折率变幅为0~50.6%, 抗折断力变幅为5.7~15.9 N。说明不同玉米品种在生理成熟后茎秆抗折断力下降和茎折率提高的幅度差异较大。品种之间除了玉米茎秆基部节间力学强度差异外, 可能与品种的穗位高和重心高度有关。此外, 后期茎腐病发生和种植区气象因素也是影响玉米倒伏发生的重要因素[25,26,27], 需做进一步研究。总之, 在适宜机械粒收品种筛选过程中, 除了与机械粒收质量有关的含水率、破碎率、杂质率等机收质量指标外, 生理成熟后的田间站秆能力也应作为衡量玉米品种是否适合机械粒收的重要因素。4 结论
玉米生理成熟后植株衰老使茎秆基部节间干物质和水分含量减少, 导致基部节间机械力学强度和茎秆抗折断力下降, 当茎秆抗折断力降低至14.3 N时, 茎折率≥5%; 不同品种之间茎秆质量下降幅度和茎折率差异显著; 适期收获, 可以有效避免因为站秆时间过长引起的倒伏。参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.1051/agro:19900601URL [本文引用: 1]
In field experiments in 1988 the relationship between morphological characteristics and susceptibility to root lodging was studied in 12 maize cultivars grown on a loam soil (pH 8.1). Natural lodging occurred when plants had 13-15 visible leaves and cultivars were placed in 6 lodging angle classes: 0-6, 6-12, 12-24, 24-48 and 48-90 from vertical. Seven of the 12 cultivars were lodged; the mean...
,
DOI:10.2134/jpa1999.0293URL [本文引用: 1]
,
DOI:10.7668/hbnxb.2015.02.034URLMagsci [本文引用: 1]
为明确不同玉米群体的抗倒伏性能以及适宜机械化收获的性能指标。通过设置不同的密度处理,研究了不同密植群体条件下的玉米产量、农艺性状、抗倒伏性能以及机收指标。结果表明,供试玉米品种在90 000株/hm<sup>2</sup> 密度下产量最高,达到10 124.7 kg/hm<sup>2</sup>;随着密度增加玉米抗折力、压碎强度和穿刺强度均呈下降趋势,105 000株/hm<sup>2</sup> 处理与75 000株/hm<sup>2</sup>处理相比,基部第3节间和穗下第1节间抗折力分别降低了22.6%和17.0%,抗倒伏能力下降;随着密度增加机收各项指标呈上升趋势,105 000株/hm<sup>2</sup>处理与7 500株/hm<sup>2</sup>处理相比,籽粒损失率从3.29%上升到了9.79%,上升地率达到66.4%;玉米群体抗倒力学特性与机收指标间存在极显著相关关系,茎秆穿刺强度可以作为适宜机收的判定指标之一。适宜机收的玉米品种德美亚1号在黄淮海地区适宜密度为90 000株/hm<sup>2</sup>,产量较高,倒伏发生率较低,结合机收指标综合分析,该处理模式最为理想。
DOI:10.7668/hbnxb.2015.02.034URLMagsci [本文引用: 1]
为明确不同玉米群体的抗倒伏性能以及适宜机械化收获的性能指标。通过设置不同的密度处理,研究了不同密植群体条件下的玉米产量、农艺性状、抗倒伏性能以及机收指标。结果表明,供试玉米品种在90 000株/hm<sup>2</sup> 密度下产量最高,达到10 124.7 kg/hm<sup>2</sup>;随着密度增加玉米抗折力、压碎强度和穿刺强度均呈下降趋势,105 000株/hm<sup>2</sup> 处理与75 000株/hm<sup>2</sup>处理相比,基部第3节间和穗下第1节间抗折力分别降低了22.6%和17.0%,抗倒伏能力下降;随着密度增加机收各项指标呈上升趋势,105 000株/hm<sup>2</sup>处理与7 500株/hm<sup>2</sup>处理相比,籽粒损失率从3.29%上升到了9.79%,上升地率达到66.4%;玉米群体抗倒力学特性与机收指标间存在极显著相关关系,茎秆穿刺强度可以作为适宜机收的判定指标之一。适宜机收的玉米品种德美亚1号在黄淮海地区适宜密度为90 000株/hm<sup>2</sup>,产量较高,倒伏发生率较低,结合机收指标综合分析,该处理模式最为理想。
,
[本文引用: 1]
[本文引用: 1]
,
URL [本文引用: 1]
设置不同玉米品种和收获时期试验,研究黄淮海地区夏玉米子粒机械收获的可能性及影响收获质量的因素。结果表明,选择适宜品种和收获时期,在黄淮海小麦/玉米一年两作区实施夏玉米机械直接收获子粒是可行的。影响收粒质量的主要因素是子粒水分含量,随含水量增加,机收时子粒损失率、破碎率和杂质率明显上升,适宜子粒收获的含水量建议控制在27%以内。
URL [本文引用: 1]
设置不同玉米品种和收获时期试验,研究黄淮海地区夏玉米子粒机械收获的可能性及影响收获质量的因素。结果表明,选择适宜品种和收获时期,在黄淮海小麦/玉米一年两作区实施夏玉米机械直接收获子粒是可行的。影响收粒质量的主要因素是子粒水分含量,随含水量增加,机收时子粒损失率、破碎率和杂质率明显上升,适宜子粒收获的含水量建议控制在27%以内。
,
DOI:10.16035/j.issn.1001-7283.2017.02.015 [本文引用: 1]
为明确夏玉米生理成熟期子粒含水率及其影响因素,2014-2016年,以郑单958、先玉335等玉米品种为研究对象,分别在北京和河南新乡开展品种比较和播期研究.结果表明:生理成熟期玉米子粒含水率平均27.8%,在品种间存在极显著差异,变幅为21.5%~33.1%,按80%置信区间为24.2%~31.4%;环境条件对子粒达到生理成熟的时间和含水率有极显著影响,且环境和品种之间具有明显的交互作用;生理成熟期子粒含水率高低与授粉到生理成熟经历的天数之间相关度较低.夏玉米区主栽品种郑单958、先玉335、农华101、中单909、京农科728、华美1号和农华816生理成熟期子粒含水率平均值分别为28.4%、24.9%、27.9%、29.1%、28.7%、29.2%和29.9%.
DOI:10.16035/j.issn.1001-7283.2017.02.015 [本文引用: 1]
为明确夏玉米生理成熟期子粒含水率及其影响因素,2014-2016年,以郑单958、先玉335等玉米品种为研究对象,分别在北京和河南新乡开展品种比较和播期研究.结果表明:生理成熟期玉米子粒含水率平均27.8%,在品种间存在极显著差异,变幅为21.5%~33.1%,按80%置信区间为24.2%~31.4%;环境条件对子粒达到生理成熟的时间和含水率有极显著影响,且环境和品种之间具有明显的交互作用;生理成熟期子粒含水率高低与授粉到生理成熟经历的天数之间相关度较低.夏玉米区主栽品种郑单958、先玉335、农华101、中单909、京农科728、华美1号和农华816生理成熟期子粒含水率平均值分别为28.4%、24.9%、27.9%、29.1%、28.7%、29.2%和29.9%.
,
[本文引用: 1]
[本文引用: 1]
,
DOI:10.3864/j.issn.0578-1752.2017.11.007URL [本文引用: 1]
机械粒收是玉米收获技术发展的方向,是玉米实现全程机械化、转变生产方式的关键。当前,籽粒收获过程中破碎率高的问题不仅降低玉米等级和销售价格,而且导致收获产量下降,并增大烘干成本、增加安全贮藏的难度,是推广机械粒收技术面临的重要问题。玉米不同基因型间籽粒破碎率存在显著差异,抗破碎特性是可遗传的性状,可通过育种培育抗破碎率的品种;不同收获机械和作业参数对籽粒破碎率有显著影响,选择轴流式收获机,并根据玉米生长、成熟和籽粒含水率状况及时检查与调试收获机参数是保证低破碎率的有效措施;生态环境因素对破碎率也有显著的影响,籽粒形成、自然干燥和收获期的光照、温度、湿度等因素均会影响到籽粒硬度、容重、含水率和质地等与籽粒破碎相关的特性;种植密度、水肥管理、收获时期等栽培管理措施对籽粒破碎率也会产生明显的影响。因此,针对不同区域生态环境条件,应选择适宜生育期内能与当地光温资源匹配的品种以及确定品种适宜的种植区域。合理种植密度、优化氮肥管理和适量灌溉有利于降低破碎率,而选择在最佳收获期收获是降低籽粒破碎率的最有效措施。
DOI:10.3864/j.issn.0578-1752.2017.11.007URL [本文引用: 1]
机械粒收是玉米收获技术发展的方向,是玉米实现全程机械化、转变生产方式的关键。当前,籽粒收获过程中破碎率高的问题不仅降低玉米等级和销售价格,而且导致收获产量下降,并增大烘干成本、增加安全贮藏的难度,是推广机械粒收技术面临的重要问题。玉米不同基因型间籽粒破碎率存在显著差异,抗破碎特性是可遗传的性状,可通过育种培育抗破碎率的品种;不同收获机械和作业参数对籽粒破碎率有显著影响,选择轴流式收获机,并根据玉米生长、成熟和籽粒含水率状况及时检查与调试收获机参数是保证低破碎率的有效措施;生态环境因素对破碎率也有显著的影响,籽粒形成、自然干燥和收获期的光照、温度、湿度等因素均会影响到籽粒硬度、容重、含水率和质地等与籽粒破碎相关的特性;种植密度、水肥管理、收获时期等栽培管理措施对籽粒破碎率也会产生明显的影响。因此,针对不同区域生态环境条件,应选择适宜生育期内能与当地光温资源匹配的品种以及确定品种适宜的种植区域。合理种植密度、优化氮肥管理和适量灌溉有利于降低破碎率,而选择在最佳收获期收获是降低籽粒破碎率的最有效措施。
,
DOI:10.1017/S0024282904014124URL [本文引用: 1]
Abstract Limited capacity for artificially drying maize (Zea mays L.) grain exists in the mid-south USA. Most of the area's production is field-dried and thus subjected to risks inherent to leaving mature crops in the field. A two-year experiment to assess some of the effects of delayed harvest on maize grain yield and other characteristics was conducted at Stoneville, MS. Six maize hybrids (three Bt and three non-Bt) were field grown in 2000 and 2001. Grain was hand harvested and shelled at 14, 28, 42, 56, and 70 d post-physiological maturity (P-PM). Grain moisture levels declined with increased delays in harvest both years. Levels safe for handling and storage (150 mg g -1) were acquired at 28 d P-PM in 2000 and 42 d P-PM in 2001. Grain moisture fell below 120 mg g -1, 28 d P-PM in 2000 making it subject to mechanical damage. Declines in grain bulk density at 70 d P-PM may be explained by such damage. Bt hybrids had less stalk lodging than non-Bt hybrids, and lodging tended to increase as harvests were delayed. Aflatoxin contamination was minimal in 2000 and non-existent in 2001. Fumonisin levels were higher in 2001 than 2000. Adverse effects on yield and grain quality with delayed harvest appear minimal, inherent risks of crop losses due to weather exist though, and monitoring grain moisture and the weather are recommended.
,
DOI:10.2134/agronj2011.0147URL [本文引用: 1]
Many corn (Zea mays L.) growers in Ohio delay harvest as a management strategy for reducing grain drying costs. However, this practice increases the risk of yield loss due to extended crop weathering. Field studies were conducted at three Ohio locations in 2002 to 2004 to determine effects of three harvest date periods, early to mid-October (HD1), early to mid-November (HD2), and early to mid-December (HD3), and four plant densities (59,000; 74,000; 89,000; and 104,000 plants ha611) on the agronomic performance of four corn hybrids differing in maturity and stalk strength. Interactions between harvest date, plant population, and hybrid indicated that decreases in grain yield and increases in stalk rot and lodging associated with harvest delays were influenced by plant population and hybrid characteristics. Significant yield losses due to delayed harvest were evident only after HD2. When harvest was delayed until HD3, yields decreased at the higher plant populations, especially at 104,000 plants ha611. Stalk rot and lodging increased at the higher plant populations, and this effect was magnified by late harvesting. Hybrids with lower stalk strength scores exhibited greater stalk lodging and yield loss when harvest was delayed beyond HD2. Stalk rot showed a greater increase between HD1 and HD2, whereas stalk lodging generally showed a greater increase after HD2. Harvest delays after HD2 achieved little or no additional grain drying. Results of this study indicate that harvest delays should be avoided when using plant populations above 74,000 plants ha611, especially if planting hybrids that are not highly rated for stalk strength.
,
DOI:10.13031/2013.33760URL [本文引用: 1]
ABSTRACT THE tops of corn plants were removed above the ear at physiological maturity to determine if that practice would hasten field grain drying on the Southern Great Plains. Topping lowered the grain moisture content 1.5 percentage points below that of non-topped corn until the grain had dried to about 20 percent moisture. Top-ping reduced lodging if harvest was delayed but had no significant effect on combine harvested grain yield. Delaying harvest until the grain moisture level had fallen below 20 percent reduced harvestable grain yields, however, the yield reduction was minimized if the Southwestern corn borer was controlled by spraying.
,
[本文引用: 1]
[本文引用: 4]
[本文引用: 4]
,
DOI:10.1016/j.fcr.2016.01.003URL [本文引用: 2]
Close planting often increases the lodging rate of maize, but the cause is unclear. Close planting reduces light intensity within the canopy; therefore, we hypothesized that light intensity may be the main factor affecting maize lodging. To test this hypothesis, three field experiments involving plant density, shading and defoliation were designed to explore how the light environment in a maize canopy affects stalk strength formation and lodging rate. The results showed that close planting and artificial shading treatments both reduced light intensity in the lower canopy. This reduced the dry weight per unit length (DWUL) and rind penetration strength (RPS) of the third basal internode and increased the lodging rate. Removal of leaves 10–12 reduced the DWUL and RPS of the third internode and increased lodging rate. This showed that leaves 10–12 play a crucial role both in the formation of RPS of the third basal internode and in lodging resistance. Removal of either all or part of leaf 16 and above not only increased ptotosynthetic active radiation (PAR) at leaves 10–12 but also increased the DWUL and RPS of the third basal internode. This resulted in a decline in lodging. Therefore, we conclude that light intensity is an important factor affecting maize lodging at high plant density. Increasing light intensity at leaves 10–12 can enhance stalk strength and reduce lodging.
,
DOI:10.2135/cropsci2016.04.0243URL [本文引用: 2]
Abstract High plant density of maize (Zea mays L.) reduces the stalk quality of the basal internodes and increases stalk lodging. The objective of this experiment was to explore the mechanism by which plant density influences basal internodes. The morphological, mechanical, anatomical, and biochemical characteristics of the third basal internode were compared at three plant densities. High plant density increased internode length due to an increase in the rate of rapid elongation. High plant density decreased the duration of internode thickening and dry matter accumulation, causing the diameter and dry weight per unit length to decline. However, rind penetration strength (RPS) did not increase rapidly until after the termination of rapid morphological growth. The mid-to-late stage of dry matter accumulation was critical for RPS formation. The rapid increase in RPS was closely related to cellulose and lignin accumulation. High plant density reduced the rates of cellulose and lignin accumulation, which was adverse to the formation of cortex tissue and RPS. High plant density caused rapid elongation, thickening, and structural carbohydrate accumulation to begin and end earlier. These results indicate that measures should be implemented as early as possible in the growing season to increase lodging resistance at high plant density of maize. These measures need to reduce the rate of rapid internode elongation and increase the rate of rapid cellulose and lignin accumulation. Crop Science Society of America | 5585 Guilford Rd., Madison, WI 53711 USA. All rights reserved.
DOI:10.1016/S2095-3119(16)61394-1URL [本文引用: 2]
,
DOI:10.1016/S2095-3119(17)61785-4URL [本文引用: 4]
,
DOI:10.3321/j.issn:0496-3490.2007.10.019URL [本文引用: 3]
. Experiments were arranged in a split plot design with four replicates. The irrigation and fertilizer management in the experiment plot was consistent with typical agronomic practices in the local high-yield field. The results indicated that the increase of planting density would cause significant decreases in stalk crushing strength (SCS), rind penetration strength (RPS), internode diameter and dry weight (DW), percentage of dry matter and ratio of dry matter weight to length of internode (RDWL), and dramatic increase in internode length. The relationship between stalk mechanical characteristics and planting density fitted a exponential curve (y = ae) significantly. The stalk mechanical characteristics were highly correlated with the agronomic characteristics. These characteristics of Jingke 519 were susceptive of the increasing planting density above 75 000 plant ha, especially for these above the 4th internode was. The whole plant would have high lodging resistant ability if the dry matter accumulation was high in the 4th and above 4th internods. That the internod length enlarged slowly and diameter of internode decreased significantly with increasing plant density was an adaptability to high planting density for the resistant cultivar. When the percentage of DW of the 4th and above 4th internods was more than 7.5%, and its RDWL was more than 0.2 g cm at a week prior to anthesis, the plants would be resistant to lodging .The stepwise regression analysis revealed that the RDWL contributed positively the most to SCS and RPS. RDWL was definite as an agronomic indicator of maize stalk lodging resistant ability.
DOI:10.3321/j.issn:0496-3490.2007.10.019URL [本文引用: 3]
. Experiments were arranged in a split plot design with four replicates. The irrigation and fertilizer management in the experiment plot was consistent with typical agronomic practices in the local high-yield field. The results indicated that the increase of planting density would cause significant decreases in stalk crushing strength (SCS), rind penetration strength (RPS), internode diameter and dry weight (DW), percentage of dry matter and ratio of dry matter weight to length of internode (RDWL), and dramatic increase in internode length. The relationship between stalk mechanical characteristics and planting density fitted a exponential curve (y = ae) significantly. The stalk mechanical characteristics were highly correlated with the agronomic characteristics. These characteristics of Jingke 519 were susceptive of the increasing planting density above 75 000 plant ha, especially for these above the 4th internode was. The whole plant would have high lodging resistant ability if the dry matter accumulation was high in the 4th and above 4th internods. That the internod length enlarged slowly and diameter of internode decreased significantly with increasing plant density was an adaptability to high planting density for the resistant cultivar. When the percentage of DW of the 4th and above 4th internods was more than 7.5%, and its RDWL was more than 0.2 g cm at a week prior to anthesis, the plants would be resistant to lodging .The stepwise regression analysis revealed that the RDWL contributed positively the most to SCS and RPS. RDWL was definite as an agronomic indicator of maize stalk lodging resistant ability.
DOI:10.2135/cropsci2013.11.0794URL [本文引用: 1]
ABSTRACT Weak stems or stalks in grass crop species increase the likelihood of stalk failure, thereby reducing yield. Three-point bending tests are often employed in selective breeding studies to characterize stalk strength. However, it is hypothesized that the loading setup used during three-point bending experiments may significantly alter test results. To investigate this hypothesis, two different loading configurations were employed in conducting three-point bending experiments of corn (Zea mays L.) stalks. In the first configuration, stalks were loaded and supported at nodes. In the second configuration, stalks were loaded and supported at internodal segments. Significantly higher bending moments were experienced at internodal segments during the node-loaded configuration than was required to fail the same segment during internode-loaded tests. This is because the loading anvil significantly deforms the stalk cross section when it is placed on an internodal segment, thereby inducing premature failure. In addition, internode-loaded tests were observed to produce unnatural failure patterns, while node-loaded tests demonstrated natural variability in failure location. While transverse deformation of the stalk cross section cannot be eliminated in three-point bending tests, its effects can be mitigated by placing the loading anvil at nodal locations, which are much stiffer than internode regions. Maximizing the span length of bending tests likewise reduces transverse deformation of stalk cross sections. These results are relevant to selective breeding studies designed to produce lodging resistant crop hybrids.
,
DOI:10.2134/agronj2012.0301URL [本文引用: 1]
Twin rows are being promoted as a means to increase maize yield through increased interception of photosynthetically active radiation (PAR) and plant morphology modification. The objective of this research was to explore the interactive effects of maize hybrid, plant population, and row configuration on grain yield and grain yield components, interception of PAR during vegetative growth, plant morphology, and percent lodging. Twin-row irrigated maize produced the same grain yield as single-row production. Small changes in plant morphology and grain yield components and 2.3 to 4.2% increased interception of PAR at the V9 (nine leaves with visible collars) stage were documented for twin rows, but the sum of these did not result in changes in grain yield. Twin-row production increased lodging by 3.5%. Few interactions between row configuration and hybrid and target population were found, leading to the conclusion that twin-row production of maize affords little opportunity to increase maize grain yields. Hybrid and plant population had a much larger effect on grain yield and lodging. Increasing the maize target population to 93,000 plants ha(-1) maximized grain yield at 14.3 Mg ha(-1), and led to small changes in plant morphology that increased lodging from 6.8 to 14.9%. Ear height had the highest direct effect on lodging in both the low (2009) and high (2010) percent lodging years. Based on these results, current promotion of twin rows is not justified for irrigated maize production in the western Maize Belt.
,
DOI:10.3864/j.issn.0578-1752.2017.12.010URL [本文引用: 1]
【目的】针对黄淮海平原区夏玉米倒伏严重的问题,探讨不同施氮时期对夏玉米茎秆发育及倒伏情况的影响,以期为黄淮海平原区高产夏玉米氮素管理、提高夏玉米植株抗茎倒伏能力提供理论依据。【方法】以不同植株形态的玉米品种先玉335(XY,高秆低穗位型)、浚单20(XD,中秆高穗位型)和京单28(JD,中秆低穗位型)为试验材料,每个品种设种肥(N1)、苗肥(N2)、拔节肥(N3)、大喇叭口肥(N4)和抽雄肥(N5)5个施氮时期处理,以不施氮肥(N0)为对照,研究施氮时期对夏玉米茎秆形态学、解剖学和机械力学特征以及田间倒伏率的影响。【结果】施氮时期对夏玉米茎秆形态学、解剖学及机械力学特征均有显著影响(P0.05)。N1、N2、N3处理能明显促进夏玉米茎秆发育,植株重心、穗高系数、基部第3节间长与粗、硬皮组织厚度、表皮层厚度及大小维管束数目、节间抗折力、硬皮穿刺强度和植株抗拉力均显著大于N0处理;其中,N1、N2处理夏玉米基部第3节间长粗比值显著小于N0处理,N3处理则表现出略大于N0趋势;田间倒伏率表现为N1、N2显著低于N0和其他施氮处理,N3略大于N0处理;N4处理下,夏玉米植株穗高系数、基部第3节间长与N0无明显差异,节间粗、各项解剖学及力学指标显著高于N0,节间长粗比值表现为略低于N0处理,田间倒伏率较N0显著降低;N5处理对夏玉米茎秆发育无明显影响,节间各项形态学、解剖学和力学特征与N0差异不显著,田间倒伏率随着夏玉米植株重心和穗高系数的显著降低而明显低于N0处理。从产量及产量构成因素来看,各施氮处理夏玉米穗粒数、粒重及产量均显著大于N0处理(P0.05),其中,N3、N4处理穗粒数和粒重均处于较高水平,增产幅度最大;N1、N2处理穗粒数最多,但粒重较低,增产幅度低于N3、N4处理;N5处理虽然粒重最高,但穗粒数较其他施氮处理显著降低,最终增产幅度不大。【结论】合理的施氮时期可显著促进夏玉米茎秆基部节间发育,显著降低节间长粗比值,增强植株抗茎倒伏能力;种肥、苗肥作用最显著,但因粒重较低进而降低了增产幅度;拔节期施氮节间长增长迅速进而导致了节间长粗比值增加,植株抗茎倒伏能力降低,玉米栽培管理中应尽量避免;大喇叭口期施氮可明显促进茎粗增加,进而降低节间长粗比和田间倒伏率,同时穗粒数和粒重较高,增产幅度最大。因此,结合前人研究结果表明,采用播种或苗期少量施氮,大喇叭口期重施氮肥的分次施氮措施有利于促进夏玉米茎秆和雌穗发育,提高夏玉米产量及植株抗茎倒伏能力。关于最佳氮肥配比有待进一步系统研究。
DOI:10.3864/j.issn.0578-1752.2017.12.010URL [本文引用: 1]
【目的】针对黄淮海平原区夏玉米倒伏严重的问题,探讨不同施氮时期对夏玉米茎秆发育及倒伏情况的影响,以期为黄淮海平原区高产夏玉米氮素管理、提高夏玉米植株抗茎倒伏能力提供理论依据。【方法】以不同植株形态的玉米品种先玉335(XY,高秆低穗位型)、浚单20(XD,中秆高穗位型)和京单28(JD,中秆低穗位型)为试验材料,每个品种设种肥(N1)、苗肥(N2)、拔节肥(N3)、大喇叭口肥(N4)和抽雄肥(N5)5个施氮时期处理,以不施氮肥(N0)为对照,研究施氮时期对夏玉米茎秆形态学、解剖学和机械力学特征以及田间倒伏率的影响。【结果】施氮时期对夏玉米茎秆形态学、解剖学及机械力学特征均有显著影响(P0.05)。N1、N2、N3处理能明显促进夏玉米茎秆发育,植株重心、穗高系数、基部第3节间长与粗、硬皮组织厚度、表皮层厚度及大小维管束数目、节间抗折力、硬皮穿刺强度和植株抗拉力均显著大于N0处理;其中,N1、N2处理夏玉米基部第3节间长粗比值显著小于N0处理,N3处理则表现出略大于N0趋势;田间倒伏率表现为N1、N2显著低于N0和其他施氮处理,N3略大于N0处理;N4处理下,夏玉米植株穗高系数、基部第3节间长与N0无明显差异,节间粗、各项解剖学及力学指标显著高于N0,节间长粗比值表现为略低于N0处理,田间倒伏率较N0显著降低;N5处理对夏玉米茎秆发育无明显影响,节间各项形态学、解剖学和力学特征与N0差异不显著,田间倒伏率随着夏玉米植株重心和穗高系数的显著降低而明显低于N0处理。从产量及产量构成因素来看,各施氮处理夏玉米穗粒数、粒重及产量均显著大于N0处理(P0.05),其中,N3、N4处理穗粒数和粒重均处于较高水平,增产幅度最大;N1、N2处理穗粒数最多,但粒重较低,增产幅度低于N3、N4处理;N5处理虽然粒重最高,但穗粒数较其他施氮处理显著降低,最终增产幅度不大。【结论】合理的施氮时期可显著促进夏玉米茎秆基部节间发育,显著降低节间长粗比值,增强植株抗茎倒伏能力;种肥、苗肥作用最显著,但因粒重较低进而降低了增产幅度;拔节期施氮节间长增长迅速进而导致了节间长粗比值增加,植株抗茎倒伏能力降低,玉米栽培管理中应尽量避免;大喇叭口期施氮可明显促进茎粗增加,进而降低节间长粗比和田间倒伏率,同时穗粒数和粒重较高,增产幅度最大。因此,结合前人研究结果表明,采用播种或苗期少量施氮,大喇叭口期重施氮肥的分次施氮措施有利于促进夏玉米茎秆和雌穗发育,提高夏玉米产量及植株抗茎倒伏能力。关于最佳氮肥配比有待进一步系统研究。
,
DOI:10.1094/PD-78-0590URL [本文引用: 1]
Methods of evaluating maize stalk quality at or near anthesis and stalk rot susceptibility following inoculation were examined for 3 years to identify those most effective in predicting premature death of plants and stalk lodging in multiple environments. Stalk quality measurements, including rind puncture, rind thickness, stalk push test, pith density or pith moisture, and susceptibility to th...
,
DOI:10.1016/j.livsci.2006.11.013URL [本文引用: 1]
Shearing force, one of physical characteristics, is an important indictor of forage value. Maize stem abounds in agro-pastoral ecotone in north-east China and can be utilized as ruminant forage in cold season. The objective of this study is to investigate temporal dynamics and vertical change of shearing force of maize stem because stem is the dominant morphological component contributing to stover nutritive value. Three maize varieties were selected in the study. The stem was cut into 4 segments, and every segment was measured at the approximate midpoint. The results show that shearing force increases with advancing maturity of maize. On same sampling date, shearing force of bottom part of stem is higher than that of upper part. Maize should be harvested as early as possible to avoid the decrease of forage value of stover. Of course, grain yield cannot be sacrificed greatly because maize is grown for its grain in this area. The upper part of stover should be selected as ruminant forage in order to improve the forage digestibility. If maize stover is utilized efficiently, it can play an important role for filling forage shortage gap in agro-pastoral ecotone in north-east China. There is positive relationship between shearing force and cellulose content, and between shearing force and lignin content. Measuring shearing force is very simple, so it can be used to predict forage value of maize stover.
,
DOI:10.1016/j.pmpp.2016.12.004URL [本文引用: 1]
Maize Stalk Rot (MSR) is a serious complex disease and principally caused by Fusarium species. In order to assess pathogenicity of the Fusarium species on maize plants, a field survey was made in maize-cultivation zones in North-East China to collect the infected stem tissues from MSR. The Transmission Electron Microscopic (TEM) observation revealed thin cell wall, increased number of endoplasmic reticulum (ER), appearance of plastoglobule (PG) and presence of fungal hyphae in the MSR infected stem tissues. Further, a total of nine Fusarium strains were isolated in stems of MSR including five from Liaoning Province and four from Jilin Province. It was demonstrated that the combination of dominant strains such as Fusarium verticillioides and Fusarium graminearum displayed higher virulence than the individuals on the detached stems of seedlings. Invivo experiment showed that the MSR was obvious in maize genotype of Huangzao 4 when inoculated with the two Fusarium strains by the toothpick method. Then, the dynamic infection process observed by using eGFP-Tag strain and paraffin section revealed that F.verticillioides hyphae extended out from the cutting site to the neighboring plant cells inside the host. Thus F.verticillioides was proved to play a vital role in contribution of the MSR complex process in North-East of China.
,
DOI:10.16035/j.issn.1001-7283.2016.02.015 [本文引用: 1]
以玉米品种先玉335、丹玉336、郑单958和迪卡516为试验材料,采用3种密度、3次重复的试验设计,研究茎秆质量性状、农艺性状、病虫害发生与倒伏的关系。相关分析结果表明:植株倒伏率与穗位、重心高度、茎腐病、玉米螟虫发生和种植密度呈极显著正相关;与株高、节间长度和纹枯病发生呈显著正相关;与茎秆拉力、穿刺强度、折断强度和茎粗呈极显著负相关;与压碎强度和气生根层数呈显著负相关。茎秆质量性状可作为玉米倒伏的直接评价指标,穗位、重心高度和种植密度可作为玉米倒伏的间接评价指标。通径分析结果表明:密度、重心高度、茎粗和茎秆拉力4个性状对倒伏性起主要作用,密度指标对倒伏性的直接通径系数最大,达到0.8366,重心高度的直接通径系数为0.5490,茎粗和茎秆拉力的直接通径系数也很大。
DOI:10.16035/j.issn.1001-7283.2016.02.015 [本文引用: 1]
以玉米品种先玉335、丹玉336、郑单958和迪卡516为试验材料,采用3种密度、3次重复的试验设计,研究茎秆质量性状、农艺性状、病虫害发生与倒伏的关系。相关分析结果表明:植株倒伏率与穗位、重心高度、茎腐病、玉米螟虫发生和种植密度呈极显著正相关;与株高、节间长度和纹枯病发生呈显著正相关;与茎秆拉力、穿刺强度、折断强度和茎粗呈极显著负相关;与压碎强度和气生根层数呈显著负相关。茎秆质量性状可作为玉米倒伏的直接评价指标,穗位、重心高度和种植密度可作为玉米倒伏的间接评价指标。通径分析结果表明:密度、重心高度、茎粗和茎秆拉力4个性状对倒伏性起主要作用,密度指标对倒伏性的直接通径系数最大,达到0.8366,重心高度的直接通径系数为0.5490,茎粗和茎秆拉力的直接通径系数也很大。
,
DOI:10.3969/j.issn.1002-6819.2011.06.044URLMagsci [本文引用: 1]
为指导玉米新品种的推广,采用回归模型分析玉米主产区倒伏胁迫空间分布成因。该文用多元逐步线性回归法筛选黄淮海夏播玉米区的倒伏胁迫的决定因素,比较普通最小二乘法线性回归模型和地理加权回归模型的结果,以确定倒伏胁迫及其决定因素是否存在空间非平稳性和空间依赖性。结果表明:在探索倒伏的空间异质性时,地理加权回归模型显著优于普通最小二乘法线性回归模型;日降水量是玉米倒伏胁迫的主要环境成因,且倒伏程度随日降水量增加而加重;土壤含氮量、留苗密度和日平均风速与倒伏的关系随空间位置而发生正负向变化,因地制宜的分析倒伏成因才能客观有效的指导农民种植生产。
DOI:10.3969/j.issn.1002-6819.2011.06.044URLMagsci [本文引用: 1]
为指导玉米新品种的推广,采用回归模型分析玉米主产区倒伏胁迫空间分布成因。该文用多元逐步线性回归法筛选黄淮海夏播玉米区的倒伏胁迫的决定因素,比较普通最小二乘法线性回归模型和地理加权回归模型的结果,以确定倒伏胁迫及其决定因素是否存在空间非平稳性和空间依赖性。结果表明:在探索倒伏的空间异质性时,地理加权回归模型显著优于普通最小二乘法线性回归模型;日降水量是玉米倒伏胁迫的主要环境成因,且倒伏程度随日降水量增加而加重;土壤含氮量、留苗密度和日平均风速与倒伏的关系随空间位置而发生正负向变化,因地制宜的分析倒伏成因才能客观有效的指导农民种植生产。