关键词:雨养旱地; 膜侧施肥; 冬小麦; 产量; 蛋白质含量; 水分利用效率 Effects of Ridge Mulching with Side-dressing on Grain Yield, Protein Content and Water Use Efficiency in Dryland Wheat HUANG Ming1,2, WANG Zhao-Hui1,3,*, LUO Lai-Chao1, WANG Sen1, BAO Ming1, HE Gang1, CAO Han-Bing1, DIAO Chao-Peng1, LI Sha-Sha1 1Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture / College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China;
2School of Agriculture, Henan University of Science and Technology, Luoyang 471003, China
3State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China;
Fund:This study was supported by the National Basic Research Program of China (2015CB150404), the China Agriculture Research System (CARS-3-1-31), and the China Special Fund for Agro-scientific Research in the Public Interest (201303104). AbstractThe yield of dryland wheat can be promoted in plastic-film-mulching cultivation but the grain protein content is decreased simultaneously. Fertilizer management is considered as one of the solutions to this problem. From September 2013 to September 2016, we conducted a three-year experiment in four fixed dryland plots in central Loess Plateau with winter wheat under three cropping patterns. The CP pattern was the local conventional cropping pattern without plastic film mulching and uniform fertilization. The RF pattern was carried out by ridge mulching, furrow seeding and uniform fertilization. The RFF pattern was similar to RF except that fertilizer was located with side-dressing under plastic film. The nitrate-N content in 0-40 cm soil layer, soil moisture (0-200 cm), the nitrogen absorption and utilization of wheat plant, final yield, grain protein content, and water use efficiency (WUE) were measured. In the dry 2013-2014 and 2015-2016 growing seasons, compared with CP, yield increased by 9.5% and 6.3% in RF and by 18.8% and 22.8% in RFF, WUE increased by 5.8% and 8.7% in RF and by 13.2% and 19.6% in RFF. The grain protein content under RF condition decreased by 7.1% in 2013-2014 and 9.9% in 2015-2016, however, that under RFF condition had no significant changes in both years. In the wet 2014-2015 growing season, grain yield had no significant changes among CP, RF, and RFF, whereas the grain protein content and WUE in RFF were increased by 6.0% and 17.0%, respectively. RFF could adjust soil water storage and consumption better than RF with decreasing water consumption in 100-200 cm soil layer in wet year and increasing water harvest during fallow period in dry year. In addition, RFF was more favorable than RF to the nitrate-N content in 0-40 cm soil layer, total N content in root at anthesis and harvest, total N content in leaf at anthesis, and N absorption, accumulation in vegetative organs and N translocation to grain. As a result, RFF had higher yield, grain protein content, and WUE than RF. In dry years of 2013-2014 and 2015-2016, compared with RF, the yield in RFF was increased by 8.4% and 15.5%, the grain protein content increased by 9.9% and 8.7%, and WUE increased by 7.0% and 10.0%, respectively. In the wet year of 2014-2015, the grain protein content in RFF was 6.0% higher than that in RF, although there was no significant increase of yield under RFF condition. These results indicate that RFF is an excellent cropping pattern for dryland wheat because it is able to maintain the soil N supply at later growing stage and water storage in deep soil before seeding of the following growing season, as well as increase yield, protein content and WUE of wheat.
Keyword:Rain-fed dryland; Ridge mulching with side-dressing; Winter wheat; Yield; Protein content; Water use efficiency Show Figures Show Figures
小麦是黄土高原区的主要粮食作物, 种植面积占我国小麦总面积的19%[1]。由于降水少且季节分布不均匀、土壤肥力低和施肥不科学等问题, 产量低而不稳。这一区域年降水200~700 mm, 但60%集中在7月至9月的夏休闲季, 与3月至5月的小麦生长需水高峰期错位[2, 3]。因生育期降水少且无灌溉导致追肥困难, 小麦生育后期易发生养分供应不足, 影响产量提高和品质改善。传统旱地小麦种植中通过夏初深翻、秋季平作播种, 力求伏雨春用[4], 但由于地表裸露, 土壤水分易蒸发散失, 导致小麦生育期供水不足[5]。因此, 优化旱地小麦栽培措施, 在充分集蓄休闲季降水的同时实现水分的跨季高效利用, 在仅施底肥的情况下改善小麦生育后期的养分供应, 对提高旱地小麦产量、品质和水分利用效率具有重要意义。 垄覆沟播不仅能抑制土壤水分蒸发, 还可以通过田间原位微域集水, 促进小麦生长期内垄上雨水流向沟内, 渗入土壤深层[6], 提高土壤贮水。在甘肃中部, 垄覆沟播使小麦产量提高20%~29%, 水分利用效率提高12%~14%[7]。在山西南部, 垄覆沟播小麦增产12%~14%[8], 但底墒不足的年份也会减产[9]。因此, 传统的垄覆沟播虽然在小麦生长期内有效增加了降水的收集、减少了土壤水分蒸发损失, 却未考虑休闲季降水管理, 难以保证小麦持续增产。针对这一问题, 在传统垄覆沟播的基础上, 我们提出了夏休闲季继续利用残膜覆盖垄面、秸秆覆盖沟内的休闲季集雨保水模式。渭北旱源的长期定位田间试验表明, 这种方式提高了休闲效率, 有利于土壤水分恢复, 使小麦播种时0~300 cm土层贮水提高5%~7%[6], 产量提高15%~41%, 水分利用率提高10%~30%[10], 但籽粒蛋白质含量却降低14%~17%[11]。这是由于目前的垄覆沟播栽培, 在播种前将肥料撒于地表, 然后通过旋耕作业将其与表层土壤混匀, 而被薄膜分开的两行小麦行距较宽, 难以充分吸收薄膜下面的养分所致, 也与表层混施肥料增加了氮素挥发损失有关[12]。可见, 为了确保垄覆沟播的增产效果, 改善小麦品质, 在加强休闲季集雨保水、合理确定氮肥用量的基础上, 还应优化施肥位置。针对旱地小麦垄覆沟播栽培中肥料撒施导致生育后期供肥不足问题, 在黄土高原典型旱地小麦种植区, 通过连续3年的定位试验, 研究优化施肥位置对小麦产量、营养品质和水分利用的影响, 以期为旱地小麦丰产、优质、高效生产提供依据和参考。 1 材料与方法1.1 试验地块土壤养分和降水量分布特征2013年9月至2016年9月, 在陕西省永寿县御驾宫乡御中村(34° 43′ N, 108° 10′ E) 4个农户的田块进行连续3年的定位试验。试验区属典型的半湿润易旱区, 冬小麦-夏休闲是当地的主要种植制度。土壤为土垫旱耕人为土, 试验开始时耕层基本理化性状见表1。试验期间的降水量见图1, 与多年平均值(年降水量530 mm, 休闲季降水量310 mm)相比, 2014年3月降水增加12 mm, 但5月至6月降水减少33 mm, 休闲季降水增加28 mm (集中在9月), 属偏旱年份; 2015年3月降水增加34 mm, 5月至6月降水增加28 mm, 休闲季降水减少25 mm, 属偏湿润年份; 2016年2月至6月降水减少65 mm, 休闲季降水减少151 mm, 属偏旱年份。 表1 Table 1 表1(Table 1)
表1 2013年试验开始时各地块0~20 cm和20~40 cm土层的土壤基本理化特性 Table 1 Basic properties of 0-20 cm and 20-40 cm soil layers at the beginning of experiment in 2013
地块 Plot
土层 Soil layer
pH
有机质 Organic matter (g kg-1)
硝态氮 Nitrate N (mg kg-1)
铵态氮 Ammonium N (mg kg-1)
速效磷 Available P (mg kg-1)
速效钾 Available K (mg kg-1)
I
0-20 cm
8.3
12.6
11.3
1.2
23.3
101
20-40 cm
8.4
9.1
15.2
0.6
4.6
73
II
0-20 cm
8.4
12.0
15.3
0.2
26.1
107
20-40 cm
8.4
8.3
18.1
0.3
8.4
72
III
0-20 cm
8.2
12.7
11.7
0.1
29.3
136
20-40 cm
8.4
9.5
13.8
0.4
8.5
76
IV
0-20 cm
8.3
13.5
16.4
0.7
20.3
132
20-40 cm
8.4
9.8
20.1
0.4
8.4
90
表1 2013年试验开始时各地块0~20 cm和20~40 cm土层的土壤基本理化特性 Table 1 Basic properties of 0-20 cm and 20-40 cm soil layers at the beginning of experiment in 2013
图1 小麦生长季和休闲季的月降水量Fig. 1 Monthly precipitation during wheat growing and fallow period 折线为1992-2016年连续24年降水量的平均值。 The line shows the average precipitation of 24 years from 1992 to 2016.
1.2 试验设计共设置传统平作、垄覆沟播和膜侧施肥3个处理(图2)。传统平作在播种前1周人工将肥料撒于地表, 并立即旋耕使肥料混入0~15 cm土壤, 采用机械条播、行距20 cm播种, 翌年小麦收获时留茬15 cm, 收获后2~3周翻耕40 cm, 夏闲期地表裸露无覆盖。垄覆沟播的施肥方式同传统平作, 即播种前1周将肥料撒于地表, 并旋耕使肥料与0~15 cm土壤混匀, 但播种时采用旱地小麦覆膜播种机一次完成起垄覆膜播种, 垄宽30 cm、高8 cm, 垄上覆膜, 沟宽30 cm, 沟内播种2行小麦、行距20 cm, 翌年小麦收获时留茬25 cm、秸秆还田于沟内, 夏休闲季不揭膜, 保持残膜覆盖垄面、秸秆覆于沟内, 集雨保墒。膜侧施肥是在垄覆沟播的基础上定位施肥, 即旋耕前不施肥, 播种时采用旱地小麦覆膜施肥播种一体机一次完成施肥起垄覆膜播种, 用机械将肥料定位条施于播种行侧、膜下、种侧下5 cm处, 其他管理同垄覆沟播。 图2 Fig. 2
图2 田间试验不同处理示意图Fig. 2 Schematic diagram of the three treatments in the field experiments CP: 传统平作; RF: 垄覆沟播; RFF: 膜侧施肥。 CP: conventional cropping pattern with no plastic film mulching and uniform fertilization; RF: ridge mulching, furrow seeding and uniform fertilization; RFF: ridge mulching, furrow seeding, and located and side-striped fertilization under plastic film.
表2 Table 2 表2(Table 2)
表2 4个田块3年的施肥量 Table 2 Fertilizer application rates for four plots in the three years
年度 Year
肥料种类 Fertilizer type
施肥量 Fertilizer rate (kg km-2)
I
II
III
IV
2013-2014
N
157
162
171
166
P2O5
61
38
30
74
K2O
41
41
30
32
2014-2015
N
145
150
163
156
P2O5
56
35
30
69
K2O
37
38
30
30
2015-2016
N
154
155
151
157
P2O5
59
36
30
70
K2O
40
39
30
30
I~IV代表4个定位地块。I to IV represent the four fixed plots.
表2 4个田块3年的施肥量 Table 2 Fertilizer application rates for four plots in the three years
表3 膜侧施肥对小麦籽粒产量和生物量的影响 Table 3 Effects of RFF cropping pattern on grain yield and biomass of wheat
年度 Year
处理 Treatment
地上部生物量 Shoot biomass (kg hm-2)
穗数 Spike number (104hm-2)
穗粒数 Grain number per spike
千粒重 1000-grain weight (g)
籽粒产量 Grain yield (kg hm-2)
2013-2014
传统平作 CP
9365± 991 c
333± 19 c
25.8± 1.3 a
45.2± 1.4 a
4373± 281 c
垄覆沟播 RF
10197± 697 b
361± 40 b
26.2± 2.3 a
44.9± 0.6 a
4789± 265 b
膜侧施肥 RFF
11710± 929 a
429± 24 a
23.6± 1.2 a
46.1± 1.4 a
5193± 350 a
2014-2015
传统平作 CP
12438± 1358 b
471± 37 b
30.6± 4.2 a
32.2± 2.9 a
5249± 1171 a
垄覆沟播 RF
13175± 914 ab
483± 22 ab
31.0± 2.3 a
33.9± 4.5 a
5545± 916 a
膜侧施肥 RFF
13700± 554 a
521± 30 a
30.1± 4.6 a
32.3± 6.0 a
5564± 1232 a
2015-2016
传统平作 CP
9723± 651 b
326± 31 b
33.5± 3.6 a
46.1± 2.8 a
5620± 241 b
垄覆沟播 RF
10264± 959 b
412± 23 a
28.1± 1.7 b
45.8± 1.7 a
5973± 505 b
膜侧施肥 RFF
11526± 1021 a
440± 20 a
30.5± 2.2 ab
45.7± 1.7 a
6901± 467 a
年度平均
传统平作 CP
10508± 665 c
377± 20 c
30.0± 0.9 a
41.2± 1.5 a
4955± 454 c
Average across
垄覆沟播 RF
11212± 463 b
419± 19 b
28.4± 0.3 a
41.5± 1.4 a
5368± 360 b
years
膜侧施肥 RFF
12312± 650 a
463± 13 a
28.1± 2.0 a
41.4± 2.3 a
5953± 386 a
变异来源(F值)
处理 Treatment (T)
18.2* *
42.8* *
2.1
0.1
19.8* *
Source of variance
年度 Year (Y)
33.7* *
32.8* *
7.7*
43.5* *
3.9
(F-value)
处理× 年度 T× Y
0.9
4.1*
2.2
0.4
2.7
Data are mean± SD of the four plots, and different small letters after the data of each year or average indicate significant difference among treatments at P < 0.05. * and * * indicate statistical significance of variance at P< 0.05 and P< 0.01, respectively. CP: conventional cropping pattern with no plastic film mulching and uniform fertilization; RF: ridge mulching, furrow seeding and uniform fertilization; RFF: ridge mulching, furrow seeding, and side-dressing fertilization under plastic film. 数据为4个地块的平均值± 标准差, 同一年度或年度间平均数据后的不同小写字母表示处理间差异显著(P< 0.05)。* 和* * 分别表示方差在P< 0.05和P< 0.01水平显著。
表3 膜侧施肥对小麦籽粒产量和生物量的影响 Table 3 Effects of RFF cropping pattern on grain yield and biomass of wheat
图3 膜侧施肥对小麦群体茎蘖数(A)和地上部干物质积累量(B)的影响Fig. 3 Effects of RFF cropping pattern on population stem and tillers (A) and shoot dry matter accumulation (B) of wheat CP: 传统平作; RF: 垄覆沟播; RFF: 膜侧施肥。SD: 苗期; WT: 越冬期; JT: 拔节期; AT: 开花期。误差线表示标准差, 其上标注的不同字母表示同一生育期内处理间差异显著(P< 0.05)。 CP: conventional cropping pattern with no plastic film mulching and uniform fertilization; RF: ridge mulching, furrow seeding and uniform fertilization; RFF: ridge mulching, furrow seeding, and side-dressing fertilization under plastic film. SD: seedling stage; WT: wintering stage; JT: jointing stage; AT: anthesis stage. The error bar indicates standard deviation, above which different letters indicate significant difference among treatments at a growing stage (P < 0.05).
表4 膜侧施肥对小麦营养器官全氮含量和籽粒蛋白质含量的影响 Table 4 Effects of RFF cropping pattern on total N content in vegetative organs and grain protein content of wheat
处理 Treatment
营养器官全氮含量 Total N content in vegetative organs (g kg-1)
籽粒蛋白质含量 Grain protein content (%)
拔节期 Jointing
开花期 Anthesis
收获期 Harvest
根系 Root
茎叶 Stem + leaf
根系 Root
茎叶 Stem + leaf
穗 Spike
根系 Root
茎叶 Stem + leaf
颖壳 Glume
2013-2014
传统平作 CP
14.3± 1.4 b
25.8± 0.8 a
11.4± 0.7 b
13.9± 0.5 b
16.9± 0.6 a
8.3± 0.3 b
7.6± 0.9 a
6.6± 0.4 a
14.1± 0.6 a
垄覆沟播 RF
15.4± 1.3 b
24.1± 1.1 b
11.6± 0.7 b
14.2± 0.4 b
18.0± 0.6 a
8.2± 0.4 b
7.0± 0.7 a
7.3± 0.3 a
13.1± 0.6 b
膜侧施肥 RFF
18.4± 1.2 a
25.9± 1.1 a
13.0± 0.4 a
14.9± 0.3 a
17.7± 0.7 a
9.5± 0.4 a
7.1± 0.4 a
7.5± 0.1 a
14.4± 0.7 a
2014-2015
传统平作 CP
16.3± 1.0 b
37.6± 0.8 a
9.0± 0.4 c
15.8± 0.7 b
19.7± 1.4 a
7.7± 0.7 b
12.1± 1.1 a
11.3± 4.0 a
11.7± 0.2 b
垄覆沟播 RF
16.5± 0.9 b
34.2± 1.5 b
10.3± 0.6 b
16.2± 0.4 b
20.1± 0.6 a
8.2± 0.7 b
10.0± 0.7 b
8.3± 2.7 b
11.7± 0.3 b
膜侧施肥 RFF
17.3± 1.0 a
34.3± 0.6 b
11.5± 0.4 a
17.6± 0.6 a
19.5± 0.9 a
9.0± 0.5 a
12.3± 1.2 a
11.1± 3.0 a
12.4± 0.5 a
2015-2016
传统平作 CP
7.9± 0.6 ab
20.1± 1.5 a
5.7± 0.5 b
10.9± 1.2 ab
15.6± 0.5 a
5.7± 0.8 b
3.7± 0.6 ab
6.2± 0.5 a
12.7± 0.2 a
垄覆沟播 RF
7.5± 0.7 b
19.7± 0.6 a
6.2± 0.4 b
9.7± 0.9 b
15.1± 0.3 ab
5.6± 0.6 b
3.5± 0.2 b
5.1± 0.7 b
11.5± 0.5 b
膜侧施肥 RFF
8.8± 0.7 a
20.0± 0.9 a
7.1± 0.6 a
11.5± 0.7 a
14.5± 0.4 b
7.0± 0.3 a
4.4± 0.7 a
6.5± 0.6 a
12.5± 0.3 a
年度平均 Average across years
传统平作 CP
12.8± 0.6 b
27.8± 0.6 a
8.7± 0.1 c
13.5± 0.6 b
17.4± 0.4 a
7.2± 0.3 b
7.8± 0.4 a
8.1± 1.5 a
12.8± 0.3 a
垄覆沟播 RF
13.2± 0.6 b
26.0± 0.4 b
9.4± 0.2 b
13.4± 0.4 b
17.7± 0.4 a
7.4± 0.4 b
6.8± 0.5 b
6.9± 1.2 b
12.1± 0.4 b
膜侧施肥 RFF
14.8± 0.9 a
26.7± 0.5 ab
10.5± 0.2 a
14.7± 0.2 a
17.3± 0.3 a
8.5± 0.1 a
7.9± 0.6 a
8.3± 1.3 a
13.1± 0.5 a
变异来源(F值) Source of variance (F-value)
处理 Treatment (T)
22.7* *
6.7*
42.8* *
22.4* *
1.4
21.8* *
8.2*
25.0* *
32.8* *
年度 Year (Y)
191.6* *
266.7* *
99.9* *
74.5* *
12.8* *
31.7* *
100.6* *
7.9*
74.8* *
处理× 年度 T× Y
4.9* *
2.5
1.6
3.9*
1.9
0.7
2.4
11.3* *
4.4*
Data are mean± SD of the four plots, and different small letters after the means of each year or that of yearly average indicate significant difference among treatments at P< 0.05. * and * * indicate statistical significance of variance at P< 0.05 and P< 0.01, respectively. CP: conventional cropping pattern with no plastic film mulching and uniform fertilization; RF: ridge mulching, furrow seeding and uniform fertilization; RFF: ridge mulching, furrow seeding, and side-dressing fertilization under plastic film. 数据为4个地块的平均值± 标准差, 同一年度或年度平均数据后的不同小写字母表示处理间差异显著(P< 0.05)。* 和* * 分别表示方差在P< 0.05和P< 0.01水平显著。
表4 膜侧施肥对小麦营养器官全氮含量和籽粒蛋白质含量的影响 Table 4 Effects of RFF cropping pattern on total N content in vegetative organs and grain protein content of wheat
表5 膜侧施肥对小麦氮素积累、转运及其对籽粒的贡献率的影响 Table 5 Effects of RFF cropping pattern on accumulation and translocation of nitrogen and its contribution proportion to wheat grain
年度 Year
处理 Treatment
花前氮素积累量 N accumulation before anthesis (kg hm-2)
转运量 Translation amount (kg hm-2)
转运率 Translation proportion (%)
贡献率 Contribution proportion (%)
2013-2014
传统平作 CP
103± 9 c
62± 5 b
61± 3 a
65± 3 a
垄覆沟播 RF
111± 8 b
69± 6 b
62± 4 a
71± 4 a
膜侧施肥 RFF
130± 13 a
79± 10 a
61± 3 a
67± 4 a
2014-2015
传统平作 CP
159± 21 b
66± 11 b
42± 9 c
70± 6 b
垄覆沟播 RF
167± 6 b
87± 6 a
52± 5 a
87± 11 a
膜侧施肥 RFF
202± 9 a
96± 22 a
47± 10 b
90± 11 a
2015-2016
传统平作 CP
118± 12 b
95± 13 b
81± 4 ab
86± 11 ab
垄覆沟播 RF
119± 8 b
97± 6 b
82± 3 a
91± 8 a
膜侧施肥 RFF
140± 3 a
107± 4 a
78± 3 b
81± 8 b
年度平均
传统平作 CP
127± 12 b
75± 7 c
61± 3 b
74± 6 b
Average across years
垄覆沟播 RF
132± 7 b
84± 3 b
65± 3 a
82± 3 a
膜侧施肥 RFF
157± 7 a
96± 8 a
63± 4 ab
80± 4 a
变异来源(F值)
处理 Treatment (T)
48.5* *
22.8* *
3.3
4.3*
Source of variance
年度 Year (Y)
193.0* *
14.4* *
48.4* *
18.9* *
(F-value)
处理× 年度 T× Y
1.1
2.1
3.0*
2.2
Data are mean± SD of the four plots, and different small letters after the means of each year or that of yearly average indicate significant difference among treatments at P< 0.05. * and * * indicate statistical significance of variance at P< 0.05 and P< 0.01, respectively. CP: conventional cropping pattern with no plastic film mulching and uniform fertilization; RF: ridge mulching, furrow seeding and uniform fertilization; RFF: ridge mulching, furrow seeding, and side-dressing fertilization under plastic film. 数据为4个地块的平均值± 标准差, 同一年度或年度平均数据后的不同小写字母表示处理间差异显著(P< 0.05)。* 和* * 分别表示方差在P< 0.05和P< 0.01水平显著。
表5 膜侧施肥对小麦氮素积累、转运及其对籽粒的贡献率的影响 Table 5 Effects of RFF cropping pattern on accumulation and translocation of nitrogen and its contribution proportion to wheat grain
表6 膜侧施肥对不同生育时期0~40 cm土层土壤硝态氮含量的影响 Table 6 Effects of RFF cropping pattern on nitrate-N content in 0-40 cm soil layer at different growing stages (mg kg-1)
年度 Year
处理 Treatment
拔节期 Jointing
开花期 Anthesis
收获期 Harvest
2013-2014
传统平作 CP
34.5± 19.5 a
13.8± 6.2 b
8.5± 3.2 b
垄覆沟播 RF
37.2± 25.2 a
13.9± 2.8 b
14.7± 3.7 b
膜侧施肥 RFF
26.0± 15.8 a
27.7± 2.3 a
23.8± 4.4 a
2014-2015
传统平作 CP
8.5± 5.2 b
3.0± 1.5 c
5.0± 2.6 b
垄覆沟播 RF
20.9± 2.8 a
7.7± 2.9 b
6.0± 1.1 b
膜侧施肥 RFF
26.6± 2.4 a
12.5± 4.0 a
10.3± 1.9 a
2015-2016
传统平作 CP
—
4.5± 1.1 c
9.5± 1.6 b
垄覆沟播 RF
—
9.0± 1.7 b
8.8± 1.4 b
膜侧施肥 RFF
—
19.2± 7.9 a
22.2± 4.9 a
年度平均
传统平作 CP
21.5± 10.8 a
7.1± 2.1 c
7.7± 1.3 c
Average across years
垄覆沟播 RF
29.1± 14.1 a
10.2± 0.9 b
9.8± 0.8 b
膜侧施肥 RFF
26.3± 8.8 a
19.8± 5.3 a
18.8± 2.4 a
变异来源(F值)
处理 Treatment (T)
1.2
30.4* *
87.2* *
Source of variance (F-value)
年度 Year (Y)
3.3
9.1*
8.3*
处理× 年度 T× Y
3.6
1.0
5.8*
Data are mean± SD of the four plots, and different small letters after the means of each year or that of yearly average indicate significant difference among treatments at P< 0.05. * and * * indicate statistical significance of variance at P< 0.05 and P< 0.01, respectively. CP: conventional cropping pattern with no plastic film mulching and uniform fertilization; RF: ridge mulching, furrow seeding and uniform fertilization; RFF: ridge mulching, furrow seeding, and side-dressing fertilization under plastic film. “ — ” data are not available. 数据为4个地块的平均值± 标准差, 同一年度或年度平均数据后的不同小写字母表示处理间差异显著(P< 0.05)。* 和* * 分别表示方差在P< 0.05和P< 0.01水平显著。— 表示该时期未测定。
表6 膜侧施肥对不同生育时期0~40 cm土层土壤硝态氮含量的影响 Table 6 Effects of RFF cropping pattern on nitrate-N content in 0-40 cm soil layer at different growing stages (mg kg-1)
表7 膜侧施肥对小麦生育期土壤水分消耗和水分利用效率的影响 Table 7 Effects of RFF cropping pattern on soil water consumption during growing period and water use efficiency (WUE) of wheat
年度 Year
处理 Treatment
播前底墒 Soil water storage before seeding stage (mm)
土壤水分消耗 Soil water consumption (mm)
水分利用效率 WUE (kg hm-2 mm-1)
0-100 cm
100-200 cm
0-200 cm
2013-2014
传统平作 CP
396± 33 a
81± 15 a
26± 9 a
106± 23 a
12.1± 1.4 c
垄覆沟播 RF
396± 33 a
83± 20 a
27± 15 a
110± 23 a
12.8± 0.4 b
膜侧施肥 RFF
396± 33 a
86± 12 a
26± 8 a
112± 15 a
13.7± 1.3 a
2014-2015
传统平作 CP
529± 35 a
156± 8 a
67± 48 a
222± 55 a
11.2± 2.2 b
垄覆沟播 RF
522± 31 a
136± 14 b
69± 43 a
204± 37 ab
12.2± 2.0 a
膜侧施肥 RFF
539± 24 a
137± 10 b
58± 42 b
195± 37 b
13.1± 2.9 a
2015-2016
传统平作 CP
451± 19 ab
153± 10 a
59± 12 b
212± 20 b
13.8± 1.1 b
垄覆沟播 RF
446± 16 b
143± 15 a
72± 7 ab
220± 20 ab
15.0± 1.8 b
膜侧施肥 RFF
468± 8 a
150± 10 a
86± 4 a
227± 14 a
16.5± 1.1 a
年度平均
传统平作 CP
456± 13 b
130± 6 a
51± 15 a
170± 15 a
12.4± 1.0 c
Average across
垄覆沟播 RF
454± 20 b
122± 8 b
56± 17 a
166± 12 a
13.4± 1.0 b
years
膜侧施肥 RFF
468± 12 a
124± 4 ab
57± 15 a
170± 12 a
14.4± 1.0 a
变异来源(F值)
处理 Treatment (T)
4.9*
2.7
0.6
0.2
17.6* *
Source of variance
年度 Year (Y)
22.3* *
35.3* *
6.2*
16.1* *
4.0
(F-value)
处理× 年度 T× Y
0.6
3.6*
1.6
4.5*
0.4
Data are mean ± SD of the four plots, and different small letters after the means of each year or that of yearly average indicate significant difference among treatments at P< 0.05. * and * * indicate statistical significance of variance at P< 0.05 and P< 0.01, respectively. CP: conventional cropping pattern with no plastic film mulching and uniform fertilization; RF: ridge mulching, furrow seeding and uniform fertilization; RFF: ridge mulching, furrow seeding, and side-dressing fertilization under plastic film. 数据为4个地块的平均值± 标准差, 同一年度或年度平均数据后的不同小写字母表示处理间差异显著(P< 0.05)。* 和* * 分别表示方差在P< 0.05和P< 0.01水平显著。
表7 膜侧施肥对小麦生育期土壤水分消耗和水分利用效率的影响 Table 7 Effects of RFF cropping pattern on soil water consumption during growing period and water use efficiency (WUE) of wheat
表8 膜侧施肥对休闲季土壤蓄水量(SWH)和下季播前土壤贮水量(SWS)的影响 Table 8 Effects of RFF cropping pattern on soil water harvest (SWH) during fallow period and soil water storage (SWS) before seeding of next wheat season (mm)
处理 Treatment
降水量 Precipitation
收获期SWS SWS at harvest
休闲季SWH SWH during fallow period
下季播前SWS SWS before seeding of next season
全生育期 Growth duration
返青-收获 Reviving-harvest
休闲季 Fallow period
2013-2014
传统平作 CP
256
183
340
290± 7 a
232± 39 b
529± 38 a
垄覆沟播 RF
256
183
340
287± 18 a
234± 33 b
522± 22 a
膜侧施肥 RFF
256
183
340
287± 26 a
251± 33 a
539± 23 a
2014-2015
传统平作 CP
246
212
287
307± 28 b
144± 26 a
451± 19 ab
垄覆沟播 RF
246
212
287
318± 27 b
128± 24 ab
446± 16 b
膜侧施肥 RFF
246
212
287
344± 29 a
124± 32 b
468± 8 a
2015-2016
传统平作 CP
185
80
158
239± 9 a
35± 15 b
273± 18 b
垄覆沟播 RF
185
80
158
226± 21 a
70± 4 a
295± 24 a
膜侧施肥 RFF
185
80
158
231± 17 a
66± 4 a
297± 21 a
年度平均 Average across years
传统平作 CP
229
158
262
278± 10 a
137± 16 b
416± 12 b
垄覆沟播 RF
229
158
262
277± 22 a
144± 15 ab
421± 16 b
膜侧施肥 RFF
229
158
262
287± 23 a
147± 21 a
434± 16 a
变异来源(F值) Source of variance (F-value)
处理 Treatment (T)
—
—
—
2.0
4.7*
5.1*
年度 Year (Y)
—
—
—
117.3* *
68.2* *
157.1* *
处理× 年度 T× Y
—
—
—
3.3
9.2* *
1.1
Data are mean ± SD of the four plots, and different small letters after the means of each year or that of yearly average indicate significant difference among treatments at P< 0.05. * and * * indicate statistical significance of variance at P< 0.05 and P< 0.01, respectively. CP: conventional cropping pattern with no plastic film mulching and uniform fertilization; RF: ridge mulching, furrow seeding and uniform fertilization; RFF: ridge mulching, furrow seeding, and side-dressing fertilization under plastic film. “ — ” data are not available. 数据为4个地块的平均值± 标准差, 同一年度或年度平均数据后的不同小写字母表示处理间差异显著(P< 0.05)。* 和* * 分别表示方差在P< 0.05和P< 0.01水平显著。
表8 膜侧施肥对休闲季土壤蓄水量(SWH)和下季播前土壤贮水量(SWS)的影响 Table 8 Effects of RFF cropping pattern on soil water harvest (SWH) during fallow period and soil water storage (SWS) before seeding of next wheat season (mm)
4 结论与传统平作相比, 垄覆沟播可以提高小麦产量和水分利用效率, 但降低了小麦籽粒蛋白质含量。在垄覆沟播的基础上膜侧施肥显著提高小麦籽粒蛋白质含量和水分利用效率, 且在偏旱年份显著提高籽粒产量。膜侧施肥与垄覆沟播相比还能提高开花和收获期的土壤硝态氮含量和小麦根系全氮含量, 提高开花期茎叶全氮含量, 促进营养器官花前氮素的积累及其向籽粒的转运, 这是其提高小麦籽粒蛋白质含量的主要原因。 The authors have declared that no competing interests exist.
中华人民共和国国家统计局. 2014National Bureau of Statistics of China. 2014 (in Chinese)[本文引用:1]
[2]
Wang FH, He ZH, SayreK, Li SD, Si JS, FengB, Kong LG. Wheat cropping systems and technologies in China. , 2009, 111: 181-188[本文引用:1]
[3]
Zhang SL, SadrasV, Chen XP, Zhang FS. Water use efficiency of dryland wheat in the Loess Plateau in response to soil and crop management. , 2013, 151: 9-18[本文引用:1]
[4]
孙敏, 温斐斐, 高志强, 任爱霞, 邓妍, 赵维峰, 赵红梅, 杨珍平, 郝兴宇, 苗果园. 不同降水年型旱地小麦夏闲期耕作的蓄水增产效应. , 2014, 40: 1459-1469SunM, Wen FF, Gao ZQ, Ren AX, DengY, Zhao WF, Zhao HM, Yang ZP, Hao XY, Miao GY. Effects of farming practice during fallow period on soil water storage and yield of dryland wheat in different rainfall years. , 2014, 40: 1459-1469 (in Chinese with English abstract)[本文引用:2]
[5]
陈辉林, 田霄鸿, 王晓峰, 曹玉贤, 吴玉红, 王朝辉. 不同栽培模式对渭北旱塬区冬小麦生长期间土壤水分、温度及产量的影响. , 2010, 30: 2424-2433Chen HL, Tian XH, Wang XF, Cao YX, Wu YH, Wang ZH. Effects of different cultivation models on soil water, soil temperature and yield during the winter wheat growth in the Weibei dry highland . , 2010, 30: 2424-2433 (in Chinese with English abstract)[本文引用:1]
[6]
HeG, Wang ZH, Li FC, DaiJ, LiQ, XueC, Cao HB, WangS, Malhi SS. Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China. , 2016, 171: 1-9[本文引用:5]
[7]
柴守玺, 杨长刚, 张淑芳, 陈恒洪, 常磊. 不同覆膜方式对旱地冬小麦土壤水分和产量的影响. , 2015, 41: 787-796Chai SX, Yang CG, Zhang SF, Chen HH, ChangL. Effects of plastic mulching modes on soil moisture and grain yield in dryland winter wheat. , 2015, 41: 787-796 (in Chinese with English abstract)[本文引用:2]
[8]
李廷亮, 谢英荷, 任苗苗, 邓树元, 单杰, 雷震宇, 洪坚平, 王朝辉. 施肥和覆膜垄沟种植对旱地小麦产量及水氮利用的影响. , 2011, 31: 212-220Li TL, Xie YH, Ren MM, Deng SY, ShanJ, Lei ZY, Hong JP, Wang ZH. Effects of fertilization and plastic film mulched ridge-furrow cultivation on yield and water and nitrogen utilization of winter wheat on dryland . , 2011, 31: 212-220 (in Chinese with English abstract)[本文引用:1]
[9]
高艳梅, 孙敏, 高志强, 崔凯, 赵红梅, 杨珍平, 郝兴宇. 不同降水年型旱地小麦覆盖对产量及水分利用效率的影响. , 2015, 48: 3589-3599Gao YM, SunM, Gao ZQ, CuiK, Zhao HM, Yang ZP, Hao XY. Effects of mulching on grain yield and water use efficiency of dryland wheat in different rainfall years. , 2015, 48: 3589-3599 (in Chinese with English abstract)[本文引用:4]
[10]
薛澄, 王朝辉, 李富翠, 赵护兵, 周玲, 李小涵. 渭北旱塬不同施肥与覆盖栽培对冬小麦产量形成及土壤水分利用的影响. , 2011, 44: 4395-4405XueC, Wang ZH, Li FC, Zhao HB, ZhouL, Li XH. Effects of different fertilization and mulching cultivation methods on yield and soil water use of winter wheat on Weibei dryland . , 2011, 44: 4395-4405 (in Chinese with English abstract)[本文引用:1]
[11]
李强, 王朝辉, 李富翠, 戴健, 李孟华, 何刚, 曹群虎, 段长林, 鱼昌为. 氮肥管理与地膜覆盖对旱地冬小麦产量和氮素利用效率的影响. , 2014, 40: 93-100LiQ, Wang ZH, Li FC, DaiJ, Li MH, HeG, Cao QH, Duan CL, Yu CW. Effects of nitrogen fertilizer management on yield and nitrogen use efficiency in winter wheat growth on dryland with plastic film mulching. , 2014, 40: 93-100 (in Chinese with English abstract)[本文引用:3]
[12]
吕殿青, 高华, 方日尧, 谷洁, 李旭晖. 渭北旱塬冬小麦产区提前深耕一次深施肥料的肥水效应与理论分析. , 2009, 15: 269-275Lyu DQ, GaoH, Fang RY, GuJ, Li XH. Effect of water- fertilizer and theoretical analysis of deep plough-deep fertilization at one earlier time in winter wheat growing regions of Weibei rainfed cropland s. , 2009, 15: 269-275 (in Chinese with English abstract)[本文引用:2]
[13]
Ju XT, Christie CP. Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: a case study on the North China Plain. , 2011, 124: 450-458[本文引用:1]
[14]
曹寒冰, 王朝辉, 师渊超, 杜明叶, 雷小青, 张文忠, 张璐, 蒲岳建. 渭北旱地冬小麦监控施氮技术的优化. , 2014, 47: 3826-3838Cao HB, Wang ZH, Shi YC, Du MY, Lei XQ, Zhang WZ, ZhangL, Pu YJ. Optimization of nitrogen fertilizer recommendation technology based on soil test for winter wheat on Weibei dryland . , 2014, 47: 3826-3838 (in Chinese with English abstract)[本文引用:1]
[15]
Zhang YP, Zhang YH, Wang ZM, Wang ZJ. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. , 2011, 123: 187-195[本文引用:1]
[16]
DaiJ, Wang ZH, Li FC, HeG, WangS, LiQ, Cao HB, Luo LC, Zan YL, Meng XY, Zhang WW, Wang RH, Malhi SS. Optimizing nitrogen input by balancing winter wheat yield and residual nitrate in soil in a long-term dryland field experiment in the Loess Plateau of China. , 2015, 181: 32-41[本文引用:1]
[17]
霍中洋, 葛鑫, 张洪程, 戴其根, 许轲, 龚振恺. 不同氮肥施用方式对专用型小麦氮素吸收和利用的影响. , 2004, 30: 449-454Huo ZY, GeX, Zhang HC, Dai QG, XuK, Gong ZK. Effect of different nitrogen application types on N-absorption and N-utilization rate of specific use cultivars of wheat. , 2004, 30: 449-454 (in Chinese with English abstract)[本文引用:1]
[18]
朱新开, 周君良, 封超年, 郭文善, 彭永欣. 不同类型专用小麦籽粒蛋白质及其组分含量变化动态差异分析. , 2005, 31: 342-347Zhu XK, Zhou JL, Feng CN, Guo WS, Peng YX. Differences of protein and its component accumulation in wheat for different end uses. , 2005, 31: 342-347 (in Chinese with English abstract)[本文引用:1]
[19]
方日尧, 赵惠青, 同延安. 渭北旱原冬小麦深施肥沟播综合效应研究. , 2000, 16(1): 49-52Fang RY, Zhao HQ, Tong YA. Research on integrated effect deep application of fertilizer and furrow-sowing winter wheat on Weibei rainfed highland . , 2000, 16(1): 49-52 (in Chinese with English abstract)[本文引用:2]
[20]
段文学, 于振文, 石玉, 张永丽, 赵俊晔. 施氮深度对旱地小麦耗水特性和干物质积累与分配的影响. , 2013, 39: 657-664Duan WX, Yu ZW, ShiY, Zhang YL, Zhao JY. Effects of nitrogen application depth on water consumption characteristics and dry matter accumulation and distribution in rainfed wheat. , 2013, 39: 657-664 (in Chinese with English abstract)[本文引用:2]
[21]
江尚焘, 王火焰, 周健民, 陈照明, 刘晓伟, 贾云生. 磷肥施用方式及类型对冬小麦产量和磷素吸收的影响. , 2016, 27: 1503-1510Jiang ST, Wang HY, Zhou JM, Chen ZN, Liu XW, Jia YS. Effects of phosphorus fertilizer application methods and types on the yield and phosphorus uptake of winter wheat. , 2016, 27: 1503-1510 (in Chinese with English abstract)[本文引用:1]
[22]
Oury FX, GodinC. Yield and grain protein concentration in bread wheat: how to use the negative relationship between the two characters to identify favorable genotypes?, 2007, 157: 45-57[本文引用:1]
[23]
RuidischM, BartschS, KetteringJ, HuweB, FreiS. The effect of fertilizer best management practices on nitrate leaching in a plastic mulched ridge cultivation system. , 2013, 169: 21-32[本文引用:2]
[24]
Rao SC, Dao TH. Fertilizer placement and tillage effects of nitrogen assimilation by wheat. , 1992, 84: 1028-1032[本文引用:1]
[25]
Duan WX, ShiY, Zhao JY, Zhang YL, Yu ZW. Depth of nitrogen fertilizer placement affects nitrogen accumulation, translocation and nitrate-nitrogen content in soil of rainfed wheat. , 2015, 9: 237-256[本文引用:1]
[26]
李鑫, 巨晓棠, 张丽娟, 万云静, 刘树庆. 不同施肥方式对土壤氨挥发和氧化亚氮排放的影响. , 2008, 19: 99-104LiX, Ju XT, Zhang LJ, Wan YJ, Liu SQ. Effects of different fertilization modes on soil ammonia volatilization and nitrous oxide emission. , 2008, 19: 99-104 (in Chinese with English abstract)[本文引用:1]
[27]
Liu TQ, Fan DJ, Zhang XX, ChenJ, Li C F. Cao C G. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. , 2015, 184: 80-90[本文引用:3]
[28]
冯波, 孔令安, 张宾, 司纪升, 李升东, 王法宏. 施氮量对垄作小麦氮肥利用率和土壤硝态氮含量的影响. , 2012, 38: 1107-1114FengB, Kong LA, ZhangB, Si JS, Li SD, Wang FH. Effect of nitrogen application level on nitrogen use efficiency in wheat and soil nitrate-N content under bed planting condition. , 2012, 38: 1107-1114 (in Chinese with English abstract)[本文引用:1]
[29]
赵允格, 邵明安, 张兴昌. 成垄压实施肥对氮素运移及氮肥利用率的影响. , 2004, 15: 68-72Zhao YG, Shao MA, Zhang XC. Impact of localized compaction and ridge fertilization on field nitrate transport and nitrate use efficiency. , 2004, 15: 68-72 (in Chinese with English abstract)[本文引用:1]
[30]
杨云马, 孙彦铭, 贾良良, 孟春香, 贾树龙. 氮肥基施深度对夏玉米产量、氮素利用及氮残留的影响. , 2016, 22: 830-837Yang YM, Sun YM, Jia LL, Meng CX, Jia SL. Effect of base nitrogen application depth on summer maize yield, nitrogen utilization efficiency and nitrogen residue. , 2016, 22: 830-837[本文引用:1]
[31]
Li SX, Wang ZH, Li SQ, Gao YJ, Tian XH. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. , 2013, 116: 39-49[本文引用:1]
[32]
王彩绒, 田霄鸿, 李生秀. 沟垄覆膜集雨栽培对冬小麦水分利用效率及产量的影响. , 2004, 37: 208-214Wang CR, Tian XH, Li SX. Effects of plastic sheet-mulching on ridge for rainwater-harvesting cultivation on WUE and yield of winter wheat. , 2004, 37: 208-214 (in Chinese with English abstract)[本文引用:1]
[33]
范颖丹, 柴守玺, 程宏波, 陈玉章, 杨长刚, 黄彩霞, 常磊, 逄蕾. 覆盖方式对旱地冬小麦土壤水分的影响. , 2013, 24: 3137-3144Fan YD, Chai SX, Cheng HB, Chen YZ, Yang CG, Huang CX, ChangL, PangL. Effects of mulching on soil moisture in a dryland winter wheat field, northwest China. , 2013, 24: 3137-3144 (in Chinese with English abstract)[本文引用:1]
[34]
Wang XB, Cai DX, Hoogmoed WB, OenemaO, Perdok UD. Developments in conservation tillage in rained regions of North China. , 2007, 93: 239-250[本文引用:1]
[35]
Gan YT, Siddique K H M, Turner N C, Li X G, Niu J Y, Yang C, Liu L P, Chai Q. , 118: 429-476[本文引用:1]
[36]
ZhangP, WeiT, Wang HX, WangM, Meng XP, Mou SW, ZhangR, Jia ZK, Han QF. Effects of straw mulch on soil water and winter wheat production in dryland farming. , 2015, 5: 10725[本文引用:2]
[37]
廖允成, 温晓霞, 韩思明, 贾志宽. 黄土台原旱地小麦覆盖保水技术效果研究. , 2003, 36: 548-552Liao YC, Wen XX, Han SM, Jia ZK. Effect of mulching of water conservation for dryland winter wheat in the loess tableland . , 2003, 36: 548-552 (in Chinese with English abstract)[本文引用:1]