删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

播栽期对机插超级杂交籼稻分蘖成穗的影响及与气象因子的关系

本站小编 Free考研考试/2021-12-26

钟晓媛1, 赵敏1, 李俊杰2, 陈多1, 田青兰1, 王丽1, 黄光忠3, 任万军1,*
1四川农业大学 / 农业部西南作物生理生态与耕作重点实验室, 四川温江 611130

2成都市郫县气象局, 四川郫县 611730

3成都市郫县农村发展局, 四川郫县 611730

*通讯作者(Corresponding author): 任万军, E-mail: rwjun@126.com, Tel: 028-86290972 第一作者联系方式: E-mail: zhongxiaoyuan2015@163.com
收稿日期:2015-12-31 接受日期:2016-06-20网络出版日期:2016-07-28基金:本研究由国家粮食丰产科技工程项目(2013BAD07B13-02, 2011BAD16B05)和国家公益性行业(农业)科研专项(201303102)资助

摘要为探讨不同播栽期对机插超级杂交籼稻分蘖成穗的影响, 以2个超级杂交籼稻品种F优498和宜香优2115为材料, 设置3月21日(S1)、3月31日(S2)、4月10日(S3)、4月20日(S4)和4月30日(S5) 5个播期, 秧龄均为30 d, 移栽期依次为4月21日、5月1日、5月11日、5月21日和5月31日, 研究其分蘖发生成穗特点及与气象因子的关系。结果表明, 不同播栽期水稻产量差异显著, 随着播栽期推迟, 产量呈降低趋势, 早播S1的产量最高、迟播S5的产量最低。不同播栽期处理下水稻主茎对产量的贡献表现为(S1~S4) < S5, 一、二次分蘖总和对产量的贡献表现为(S1~S4) > S5, S1优势蘖位为第3~第6叶, 而S2~S5优势蘖位为第3~第5叶。随播栽期推迟, 分蘖发生和成穗叶位趋于集中, F优498一次分蘖发生在S1~S4以3/0~7/0为主, 而在S5以3/0~6/0为主; 宜香优2115 在S1以3/0~7/0为主, 在S2~S5以3/0~6/0为主。一次分蘖成穗率在S1以3/0~6/0为主, 而在S2~S5以3/0~5/0为主; 二次分蘖发生和成穗以第3~第4叶为主。气象因子对分蘖发生和成穗的影响为一、二次分蘖发生率与日平均相对湿度呈显著负相关, 而与平均气温日较差、积温、日照时数呈显著或极显著正相关; 一次分蘖成穗率与分蘖期日平均相对湿度、平均气温呈显著负相关, 与分蘖期平均气温日较差、积温、日照时数呈显著正相关, 与幼穗分化期日平均相对湿度呈显著负相关, 与抽穗开花期日照时数呈显著正相关。综合看来, 成都平原地区机插超级杂交籼稻在4月11日前播种5月11日前移栽有利于产量的提高, 在4月21日前播种5月21日前移栽有利于稳产, 在4月21日以后播种5月21日后移栽产量显著降低。

关键词:水稻; 机插; 分蘖成穗; 优势蘖位; 气象因子; 产量
Effect of Different Seeding and Transplanting Dates on Tillering Characteristics of Super IndicaHybrid Rice with Mechanized Seeding and Planting and Its Relationships with Meteorological Factors
ZHONG Xiao-Yuan1, ZHAO Min1, LI Jun-Jie2, CHEN Duo1, TIAN Qing-Lan1, WANG Li1, HUANG Guang-Zhong3, REN Wan-Jun1,*
1 College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Physiology, Ecology, and Cultivation in Southwest China, Wenjiang 611130, China

2 Pixian Meteorological Bureau, Pixian 611730, China

3 Pixian Bureau of Rural Development, Pixian 611730, China

Fund:This study was supported by the National Grain Bumper Science and Technology Project (2013BAD07B13-02) and China Special Fund for Agro-scientific Research in the Public Interest (201303102)
AbstractIn order to explore tillering characteristics and its relationships with meteorological factors in super indica hybrid rice with mechanized seeding and planting with different seeding and transplanting dates, a split plot field experiment was conducted using super indica hybrid rice F you 498 and Yixiangyou 2115 with seedling age of 30 days and treatments of five seeding dates including March 21 (S1), March 31 (S2), April 10 (S3), April 20 (S4), April 30 (S5), and five transplanting dates including April 21, May 1, May 11, May 21, and May 31. Rice yield was significantly different under different seeding and transplanting dates, and decreased with delaying sowing dates. Yield of rice seeded on March 21 was the highest, while that on April 30 was the lowest. The main stem contribution to yield was (S1-S4) < S5. The total contribution of primary tillers and secondary tillers group to yield was (S1-S4) > S5. Leaf 3 to leaf 6 with seeding date on S1, and leaves 3 to 5 from S2 to S5 were the superior leaf positions. Leaf positions of tiller emerging and earbearing tended to centralize with delaying sowing and transplanting dates. Primary tillers of F you 498 emerged mainly from 3/0 to 7/0 when seeding from S1 to S4, while emerged mainly from 3/0 to 6/0 when seeding on S5. Primary tillers of Yixiangyou 2115 emerged mainly from 3/0 to 7/0 when seeding on S1, while emerged mainly from 3/0 to 6/0 when seeding from S2 to S5. Primary tillers earbeared mainly from 3/0 to 6/0 when seeding on S1, while that was mainly from 3/0 to 5/0 when seeding from S2 to S5. Secondary tillers emerged and earbeared mainly from leaf 3 to leaf 4 on main stem. Primary and secondary tillers emerging rate was significantly negatively correlated with average relative humidity, while significantly positively correlated with average diurnal temperature range, accumulated temperature and average sunshine hours at tillering stage. The primary tiller earbearing rate was significantly negatively correlated with average relative humidity and average temperature at tillering stage, while significantly positively correlated with average diurnal temperature range at tillering stage, while significantly negatively correlated with average relative humidity at inflorescence differentiation stage, while significantly positively correlated with average sunshine hours. In comprehensive view, planting before May 11 will be more beneficial to higher yield, planting before May 21 will be in favour of stable yield, while planting after May 21 will decrease yield of rice in Chengdu plain.

Keyword:Rice; Mechanized planting; Tillering with earbearing; Superior leaf position; Meteorological factor; Yield
Show Figures
Show Figures






单位面积穗数是水稻产量构成要素之一, 分蘖数量与成穗率对其有显著影响[1]。分蘖能力不仅受水稻自身遗传特性影响, 而且与栽培措施密切相关, 众多研究表明, 秧苗素质[2]、株行距配置[3]、肥水管理[4]、栽插方式[5, 6, 7]、穴苗数[8]、化控措施[9, 10]等均可影响分蘖发生率与成穗率, 进而影响最终产量。成穗率是表征群体合理发展的重要指标[11]。群体发展动态越合理, 成穗率越高, 越易获得高产[12]。适宜条件下, 充分利用有限分蘖叶位, 争取分蘖早发多发, 是提高单株成穗数和穗部质量、培育高产群体的显著特征之一[13, 14]。前人对水稻分蘖发生和成穗及其与产量的关系进行了较多研究, 表明不同级次和叶位分蘖的发生与成穗规律有较大差异[1, 7, 8, 15, 16, 17]。随农业种植结构调整和农村劳动力向城镇转移, 从事稻作生产的劳动力短缺现象日趋明显, 水稻生产迫切需要向机械化方向发展[18, 19, 20], 机械化种植已成为水稻种植的主要方式[21, 22]。对有关栽培方式、密度配置等对机插苗分蘖成穗规律的影响, 以往****研究较多[7, 8, 9], 成都平原近年来超级杂交籼稻品种的机插栽培方式发展迅速, 但有关机插超级杂交籼稻维持高产的适宜播栽期的研究尚少, 且各叶位分蘖成穗的特点尚不清楚。为此, 试验在周年菜(油、麦)-稻两熟制条件下, 研究不同播栽期机插超级杂交籼稻的分蘖发生与成穗规律、不同级次和叶位分蘖的穗部性状及与气象因子的关系, 以期为四川盆地超级杂交稻机械化高产栽培提供理论指导和实践依据。
1 材料与方法1.1 供试材料与种植条件试验于2014— 2015年在四川省成都市郫县三道堰镇(30° 51′ N, 103° 55′ E)进行, 该地属亚热带湿润性季风气候区; 前茬为蔬菜, 土壤为轻壤土, 含有机质23.99 g kg-1、全氮1.33 g kg-1、全钾28.9 g kg-1、速效氮178.43 mg kg-1、速效磷58.39 mg kg-1和速效钾63.96 mg kg-1
供试品种F优498 (2014年被农业部认定为超级稻品种), 生育期150.0 d主茎叶片数16~17叶, 伸长节间数5~6个; 宜香优2115 (2015年被农业部认定为超级稻品种), 生育期156.7 d, 主茎叶片数17叶, 伸长节间数6个。
1.2 试验设计与田间管理采用二因素裂区设计, 播栽期为主区, 两年均设置3月21日(S1)、3月31日(S2)、4月10日(S3)、4月20日(S4)和4月30日(S5)共5个播期, 秧龄为30 d, 移栽期依次为4月21日、5月1日、5月11日、5月21日和5月31日; 品种为副区, 为F优498 (V1)和宜香优2115 (V2)。用营养土和钵型毯状秧盘在温室大棚内育秧(四川川龙全自动水稻育秧播种流水线播种), 机插(井关PZ60乘坐式水稻插秧机)行穴距为30 cm × 20 cm, 各小区用塑料薄膜包埂隔离, 单独肥水管理。小区面积18 m2, 重复3次。移栽时秧苗叶龄2.3~3.6叶, 白根数7.8~10.0根, 茎基粗1.6~2.2 mm, 无分蘖。栽后4~5 d定苗, 苗数为每穴3苗。施纯氮180 kg hm-2, 按基蘖肥:穗肥 = 6:4, 以基肥:分蘖肥 = 7:3、穗肥以促花肥:保花肥 = 6:4施用。按N:P2O5:K2O = 2:1:2确定磷、钾肥施用量, 磷肥作基肥一次性施用, 钾肥按基肥:穗肥(促花肥) = 5:5施用, 其他管理措施按当地高产栽培要求实施。苗期大棚温光湿度和大田期气象数据如表1所示。
表1
Table 1
表1(Table 1)
表1 不同播栽期处理秧苗和田间生育期间的气象资料 Table 1 Meteorological data during the seeding and growth stage with different seeding and transplanting dates
品种
Variety
处理Treatment苗期 Seeding stage大田生育期 Growth stage in the field
平均温度Average
temperature (℃)
湿度
Relative
humidity (%)
光照强度
Light intensity (µ mol m-2 s-1)
总降雨量
Total rainfall (mm)
积温
Accumulated
temperature (℃)
总日照时数Total sunshine hours (h)
2014
F优498
F you 498
S120.1086.0966.4743.403064.71410.50
S220.8084.6567.8756.403109.81387.30
S321.2283.0949.4738.103068.01374.90
S421.1882.9534.4739.703040.51346.70
S522.3384.2220.6733.203051.11346.50
宜香优2115
Yixiangyou 2115
S120.1086.0966.4755.303294.51428.90
S220.8084.6567.8745.103301.61399.30
S321.2283.0949.4764.233235.01378.70
S421.1882.9534.4743.033191.41371.10
S522.3384.2220.6743.233116.01365.90
2015
F优498
F you 498
S121.1681.3466.2503.503222.10562.60
S221.5081.4562.0611.103229.00529.90
S322.4680.1653.8603.903178.40475.00
S423.9177.1839.8639.203146.80422.60
S524.7976.9027.2602.403117.20408.00
宜香优2115
Yixiangyou 2115
S121.1681.3466.2638.203473.80573.60
S221.5081.4562.0627.403481.80537.80
S322.4680.1653.8630.923404.90485.10
S423.9177.1839.8605.923284.70440.80
S524.7976.9027.2606.723215.60430.90

表1 不同播栽期处理秧苗和田间生育期间的气象资料 Table 1 Meteorological data during the seeding and growth stage with different seeding and transplanting dates

1.3 测定内容与方法1.3.1 分蘖发生与成穗的追踪调查 栽后 5 d从每小区选取长势比较一致的连续20株(2015年15株)秧苗, 用红绳圈定并标记叶龄。每5 d在主茎和分蘖上挂标签, 标记分蘖级次、叶位和叶龄, 成熟期根据标签将各级分蘖分开, 单独收获和考种, 测定穗粒数、结实率和粒重, 单独称重计算各茎蘖穗重和单株产量, 并统计成穗数。0表示主茎, X/0分蘖指着生在主茎第X叶位上的一次分蘖。各叶位分蘖发生率(%) = 该叶位分蘖实际发生数量/观察株数× 100; 各叶位分蘖成穗率(%) = 该叶位分蘖成穗数/分蘖实际发生数× 100 [7]
1.3.2 产量及产量构成因素 成熟期从每小区选取60穴考察有效穗数, 按平均有效穗数从每个小区取5穴, 考察每穗总粒数、实粒数、空秕粒数、千粒重、结实率等产量构成因素。各小区单打实收调查产量(按13.5%含水量折算)。
1.3.3 气象数据收集 用JL-18空气温湿光记录仪监测苗期温室大棚内苗床的温度、湿度和光照强度, 大田气象数据均取自郫县气象局三道堰站地面气象观测资料, 分别统计分蘖期、幼穗分化期、抽穗开花期平均气温(average temperature, ta)、平均气温日较差(average diurnal temperature range, Δ t)、积温(accumulated temperature, t)、日平均日照时数(average sunshine duration, sa)、日平均相对湿度(average relative humidity, ha)。
1.4 统计分析应用Microsoft Excel 2007、DPS7.5和Graphpad Prism5.0处理分析数据和作图, 用LSD (least significant difference tests)比较样本平均数的差异显著性, 表2表3表4均为2年数据平均值。
表2
Table 2
表2(Table 2)
表2 不同播栽期机插超级杂交籼稻分蘖发生蘖位及发生率 Table 2 Tiller leaf position and emerging rate of mechanical superindica hybrid rice with different seeding and transplanting dates (%)
叶位
Leaf position
F优498 F you 498均值
Mean
宜香优2115 Yixiangyou 2115均值
Mean
S1S2S3S4S5S1S2S3S4S5
一次分蘖 Primary tiller
2/031.025.616.46.419.719.8 b60.344.526.410.434.635.2 a
3/091.583.674.591.195.787.3 b97.593.687.098.198.194.8 a
4/099.298.2100.098.9100.099.3 a100.0100.0100.099.299.299.7 a
5/099.2100.0100.0100.0100.099.8 a100.0100.0100.0100.0100.0100.0 a
6/099.1100.099.2100.095.698.8 a99.297.899.298.388.196.5 a
7/097.498.184.772.658.982.4 a86.963.956.364.738.362.0 b
8/052.822.611.115.51.720.7 a19.702.03.905.1 b
9/06.1000.901.4 a2.500000.5 a
二次分蘖 Secondary tiller
212.610.67.00.86.87.6 b30.919.612.54.714.616.5 a
347.037.033.638.532.037.6 b56.748.849.352.151.251.6 a
444.631.828.939.736.936.4 a40.635.038.245.837.139.3 a
524.212.516.818.711.016.6 a25.822.519.924.96.419.9 a
68.10.50.42.502.3 a1.3001.700.6 b
S1: March 21; S2: March 31; S3: April 10; S4: April 20; S5: April 30. Values within a row followed by a different small letter are significantly different at P< 5%.
S1: 3月21日; S2: 3月31日; S3: 4月10日; S4: 4月20日; S5: 4月30日。标以不同小写字母的值差异达5%显著水平。

表2 不同播栽期机插超级杂交籼稻分蘖发生蘖位及发生率 Table 2 Tiller leaf position and emerging rate of mechanical superindica hybrid rice with different seeding and transplanting dates (%)

表3
Table 3
表3(Table 3)
表3 不同播栽期机插超级杂交籼稻分蘖成穗蘖位及成穗率 Table 3 Panicle leaf position and earbearing tiller percentage of mechanical super indica hybrid rice with different seeding and transplanting dates (%)
叶位
Leaf position
F优498 F you 498平均值
Mean
宜香优2115 Yixiangyou 2115平均值
Mean
S1S2S3S4S5S1S2S3S4S5
一次分蘖 Primary tiller
2/095.280.063.956.064.870.8 a93.176.997.658.380.881.3 a
3/097.894.796.096.995.396.1 b99.199.1100.098.999.199.2 a
4/099.198.197.8100.0100.099.0 a98.3100.099.198.9100.099.3 a
5/098.997.298.997.590.396.5 a99.2100.099.1100.085.296.7 a
6/090.661.969.074.934.766.2 a78.347.148.361.031.453.2 b
7/039.08.75.69.52.313.0 a15.04.08.91.13.26.4 b
8/011.82.103.303.4 a7.100001.4 a
9/0000000.0 a16.700003.3 a
二次分蘖 Secondary tiller
226.08.25.70.06.49.27 b40.321.527.113.419.224.3 a
323.513.017.016.28.715.7 b32.529.126.033.029.930.1 a
423.14.74.014.49.911.2 a12.411.88.015.99.111.5 a
54.801.7001.3 a11.11.30002.5 a
66.900000 a000001.4 a

表3 不同播栽期机插超级杂交籼稻分蘖成穗蘖位及成穗率 Table 3 Panicle leaf position and earbearing tiller percentage of mechanical super indica hybrid rice with different seeding and transplanting dates (%)

表4
Table 4
表4(Table 4)
表4 不同播栽期下各蘖位茎蘖对产量的贡献率 Table 4 Contribution of stem and tillers in each leaf position to yield with different seeding and transplanting dates (%)
叶位
Leaf position
F优498 F you 498平均
Mean
宜香优2115 Yixiangyou 2115平均
Mean
FF-value
S1S2S3S4S5S1S2S3S4S5SVS× V
主茎 Main stem
20.12 d25.30 b25.97 ab22.79 c27.34 a24.30 a18.54 c21.29 b22.68 ab21.67 b24.71 a21.78 b27.22* 25.96* 1.55
一次分蘖 Primary tiller
2/03.834.804.8210.683.315.498.626.704.831.754.455.27
3/015.9415.9015.0118.9920.6117.2916.8618.2618.4518.6121.5018.74
4/018.1621.4822.2619.6623.6321.0416.2621.1421.7521.0021.4920.33
5/014.3519.0019.7312.7717.1216.6014.0817.4118.4318.2816.9317.03
6/012.569.049.207.204.198.4410.166.266.708.082.936.83
7/04.341.060.431.030.181.410.920.460.490.180.070.42
8/00.820.070.180.470.09
9/00.060.010.140.03
合计Total70.07 abc71.35 ab71.44 a70.33 abc69.04 bc70.45 a67.50 bc70.23 ab70.66 a67.90 bc67.36 c68.73 b2.8358.91* 0.28
二次分蘖 Secondary tiller
20.540.530.190.340.324.401.461.450.270.731.66
33.822.191.693.691.042.487.125.404.136.006.305.79
44.970.630.642.312.252.161.821.451.083.950.901.84
50.370.060.090.620.080.190.18
60.110.02
合计 Total9.81 a3.35 bc2.59 c6.00 b3.62 bc5.07 b13.96 a8.40 bc6.66 c10.42 ab7.93 bc9.47 a10.12* 89.77* 0.05
S1: March 21; S2: March 31; S3: April 10; S4: April 20; S5: April 30. Values within a row followed by a different small letter are significantly different at P< 5%. * , * * denote significance in variance analysis at the 0.05 and 0.01 probability levels, respectively.
S1: 3月21日; S2: 3月31日; S3: 4月10日; S4: 4月20日; S5: 4月30日。标以不同小写字母的值差异达5%显著水平。* , * * 分别表示方差分析在0.05和0.01水平上显著。

表4 不同播栽期下各蘖位茎蘖对产量的贡献率 Table 4 Contribution of stem and tillers in each leaf position to yield with different seeding and transplanting dates (%)


2 结果与分析2.1 不同播栽期对机插超级杂交籼稻分蘖发生蘖位及发生率的影响由表2可知, 不同播栽期下水稻分蘖发生蘖位数及各蘖位分蘖发生率差异明显。机插用钵型毯状秧盘育秧, 育秧环节密度较大, 同时也受机械植伤的影响, 主茎第1叶位分蘖缺失, 分蘖发生的初始叶位部分从第2叶位开始, 主要从第3叶位开始。F优498不同播栽期处理下, S1~S4一次分蘖发生率以3/0~7/0较高, 平均分蘖发生率达93.4%; S5一次分蘖发生率以3/0~6/0较高, 平均分蘖发生率为97.8%; 第2和第8叶位一次分蘖发生率表现为S1和S2高于后面播栽期处理, 第9叶位很少发生一次分蘖; 二次分蘖发生率低, 主要以第3~第4叶位为主。宜香优2115的S1期一次分蘖发生率以3/0~7/0较高, 平均分蘖发生率达96.7%, S2~S5一次分蘖发生率以3/0~6/0较高, 平均分蘖发生率达97.6%; 第7叶位一次分蘖发生率表现为S1~S4高于S5, 第8~第9叶位则很少发生分蘖; 二次分蘖发生叶位主要在第2~第5叶位, S1和S2以第2~第5叶位为主, S3和S4以第3~第5叶位为主, S5则以第3~第4叶位为主。
2.2 不同播栽期对机插超级杂交籼稻分蘖成穗蘖位及成穗率的影响由表3可知, 随着播栽期推迟, 分蘖成穗蘖位数趋向集中, 除S1外, 其他4个播栽期处理下二次分蘖成穗蘖位数较发生蘖位数均减少。F优498早播栽处理S1一次分蘖成穗率以2/0~6/0较高, S2以2/0~5/0较高, S3~S5以3/0~5/0较高, 这5个播栽期下平均分蘖成穗率达95.9%; 二次分蘖成穗率较低, 二次分蘖成穗蘖位S1主要为第2~第4叶, S2和S3主要为第3叶, S4主要为第2~第3叶位, 而S5的第2~第6叶位二次分蘖成穗率均低于10.0%。宜香优2115早播栽处理S1一次分成穗率以2/0~6/0较高, S2~S3以2/0~5/0较高, S4以3/0~5/0为主, S5以2/0~5/0较高, 这5个播栽期下平均分蘖成穗率达95.4%; 6/0叶位一次分蘖成穗率表现为S1> S4> S3> S2> S5; 二次分蘖成穗率S1以第2~第5叶为主, S2和S4 以第2~第4叶为主, S3和S5以第2和第3叶为主。
2.3 不同播栽期对机插超级杂交籼稻产量的影响表4表明, 主茎对产量的贡献受播栽期的影响达到极显著水平, 分蘖对产量的贡献受播栽期和品种的影响达显著或极显著水平。不同穗源对产量的贡献, F优498主茎表现为S1< S4< S2< S3< S5, 宜香优2115主茎表现为S1< S2< S4< S3< S5, 整体看来主茎表现为(S1~S4)< S5。一、二次分蘖总和以(S1~S4)对产量贡献较大, 而S5对产量贡献较小, 二次分蘖对产量贡献以第3~第4叶位为主。随着播栽期推迟, 高贡献率叶位更集中, S1对产量贡献率以3/0~6/0为主, 其他播栽期处理以3/0~5/0叶位为主, 4/0对产量贡献最大, 而6/0表现为(S1~S4)对产量贡献大, S5对产量贡献小。S1播栽期第3~第6叶位分蘖对产量的贡献为68.60%, 这些叶位一次分蘖群对产量的贡献为61.01%; S2~S5播栽期第3~第5叶位分蘖对产量的贡献分别为61.47%、61.62%、62.73%和65.89%。表5表明, 产量和有效穗数受播栽期和品种的影响达到极显著或显著水平。两年产量整体表现为随播栽期推迟, 呈降低趋势, 即S1显著高于其他后面4个播栽期, S5产量最低; 2014年群体有效穗数表现为S5> S1> S4> S2> S3; 而2015年则随播栽期推迟而呈现降低趋势, 表现为S1最多、S5最少。不同播栽期处理下, F优498有效穗数均少于宜香优2115, 而产量却均高于宜香优2115。
表5
Table 5
表5(Table 5)
表5 不同播栽期下机插超级杂交籼稻产量 Table 5 Grain yield of mechanical superindica hybrid rice cultivar with different seeding and transplanting dates
处理
Treatment
品种
Variety
20142015
产量
Grain yield
(t hm-2)
有效穗数
Number of effective panicles (panicle m-2)
产量
Grain yield
(t hm-2)
有效穗数
Number of effective panicles (panicle m-2)
S1F优498 F you 49812.58 a216.53 b14.18 a261.39 b
宜香优2115 Yixiangyou 211512.49 a238.24 a12.97 b282.50 a
S2F优498 F you 49812.33 a215.18 a13.55 a231.44 b
宜香优2115 Yixiangyou 211512.33 a223.70 a11.75 b244.33 a
S3F优498 F you 49812.19 a198.80 b12.00 a213.89 b
宜香优2115 Yixiangyou 211511.78 a221.30 a11.53 a232.33 a
S4F优498 F you 49812.11 a217.23 b11.98 a209.56 a
宜香优2115 Yixiangyou 211511.31 b233.99 a10.05 b212.34 a
S5F优498 F you 49811.38 a224.26 a10.64 a196.67 b
宜香优2115 Yixiangyou 211510.26 b232.31 a9.42 b206.55 a
处理
Treatment
品种
Variety
20142015
产量
Grain yield
(t hm-2)
有效穗数
Number of effective panicles (panicle m-2)
产量
Grain yield
(t hm-2)
有效穗数
Number of effective panicles (panicle m-2)
S112.53 a227.38 a13.58 a271.95 a
S212.33 ab219.44 ab12.65 b237.89 b
S311.99 ab210.05 b11.77 c223.11 c
S411.71 b225.61 a11.02 d210.95 d
S510.82 c228.29 a10.03 e201.61 e
F
F-value
播期 Sowing time (S)11.85* * 5.62* 122.08* * 295.85* *
品种 Variety (V)9.30* 21.55* * 90.96* * 101.60* *
播期× 品种 S × V7.07* * 0.873.466.28* *
S1: March 21; S2: March 31; S3: April 10; S4: April 20; S5: April 30. Values within a row followed by a different small letter are significantly different at the 0.05 probability level. * , * * denote significance in variance analysis at the 0.05 and 0.01 probability levels, respectively.
S1: 3月21日; S2: 3月31日; S3: 4月10日; S4: 4月20日; S5: 4月30日。标以不同小写字母的值差异达0.05显著水平。* , * * 分别表示方差分析在0.05和0.01水平上显著。

表5 不同播栽期下机插超级杂交籼稻产量 Table 5 Grain yield of mechanical superindica hybrid rice cultivar with different seeding and transplanting dates

2.4 机插超级杂交籼稻分蘖发生成穗与气象因子的关系2.4.1 气象因子对机插超级杂交籼稻不同蘖位分蘖发生率与成穗率的影响 由表6可知, 不同播栽期处理间机插杂交籼稻不同叶位一次分蘖发生率要受分蘖期气象因子的影响。2/0叶位一次分蘖发生率随分蘖期相对湿度、平均气温日较差、积温、日照时数升高而上升, 随日平均气温升高而下降; 第2~第5叶位二次分蘖发生率随相对湿度、平均气温升高而降低, 随平均气温日较差、积温、日照时数升高而上升。由表7可知, 不同播栽期处理下机插杂交籼稻各叶位分蘖成穗率主要受分蘖期、幼穗分化期和抽穗开花期气象因子的影响。2/0叶位一次分蘖成穗率随分蘖期、抽穗开花期平均气温日较差、日照时数升高而上升; 3/0叶位一次分蘖成穗率随分蘖期平均气温日较差、积温升高而上升; 随幼穗分化期相对湿度升高而下降; 5/0叶位一次分蘖成穗率随幼穗分化期平均气温日较差升高而下降, 随抽穗开花期平均气温升高而下降; 6/0叶位一次分蘖成穗率随幼穗分化期平均气温日较差、平均气温、日照时数升高而下降, 随抽穗开花期平均气温日较差、平均气温升高而上升; 第2、第3叶位二次分蘖成穗率随分蘖期积温升高而上升。
表6
Table 6
表6(Table 6)
表6 机插超级杂交籼稻不同叶位一、二次分蘖发生率与分蘖期气象因子的关系 Table 6 Relationship between meteorological factors and primary and secondary tillering rate in different leaf positions of mechanical super indica hybrid rice
叶位
Leaf position
气象因子
Meteorological factor
拟合方程
Fitted equation
趋势
Trend
R2
一次分蘖 Primary tiller
2/0平均相对湿度haY= -0.0479X2+4.75X-66.350.31* *
平均气温日较差Δ tY= -4.4161X2+94.10X-458.550.30*
平均气温taY= -5.7272X+150.320.29*
积温tY= 0.0003X2-0.46X+198.250.53* *
平均日照saY= 10.3130X-5.060.23*
二次分蘖 Secondary tiller
2平均相对湿度haY= -1.3087X+105.900.42* *
平均气温日较差Δ tY= -0.8451X2+23.31X-128.740.42* *
平均气温taY= 0.2392X2-13.71X+195.250.39* *
积温tY= 0.0002X2-0.41116X+187.310.65* *
平均日照时数saY= 1.8033X2-6.06X+11.900.38* *
3平均相对湿度haY= 0.0931X2-15.26X+658.340.40* *
平均气温日较差Δ tY= -3.8385X2+84.34X-400.860.44* *
平均气温taY= 0.7199X2-36.72X+498.770.44* *
平均日照时数saY= -5.7014X2+53.365X-63.040.42* *
4平均相对湿度haY= -1.33X+133.680.31* *
平均气温日较差Δ tY= -2.0397X2+45.76X-207.360.30*
平均气温taY= -0.2277X2+5.53X+24.580.37* *
平均日照时数saY= 6.90X+16.060.24* *
5平均相对湿度haY= 0.0395X2-6.64X+290.250.39* *
平均气温日较差Δ tY= 6.69X-37.320.42* *
平均气温taY= 0.5845X2-27.12X+329.350.28* *
积温tY= 0.05X-35.940.30* *
平均日照时数saY= 6.31X-1.660.42* *
↓ : Decrease; ↑ : Increase. ha: average relative humidity; Δ t: average diurnal temperature range; ta:average temperature; t: accumulated temperature .
↓ : 下降; ↑ : 上升。

表6 机插超级杂交籼稻不同叶位一、二次分蘖发生率与分蘖期气象因子的关系 Table 6 Relationship between meteorological factors and primary and secondary tillering rate in different leaf positions of mechanical super indica hybrid rice

表7
Table 7
表7(Table 7)
表7 机插超级杂交籼稻不同叶位一、二次分蘖成穗率与气象因子的关系 Table 7 Relationship between meteorological factors and primary and secondary earbearing rate in different leaf positions of mechanical super indica hybrid rice
叶位
Leaf position
发育时期
Growth stage
气象因子
Meteorological factor
拟合方程
Fitted equation
趋势
Trend
R2
一次分蘖 Primary tiller
2/0分蘖期 TS平均气温日较差Δ tY= 13.51X-45.720.23*
分蘖期 TS积温tY= 0.13X-59.980.22*
分蘖期 TS平均日照时数saY= -4.5346X2+46.72X-23.060.24*
抽穗开花期 FS积温tY= -0.0058X2+4.46X-762.610.22*
抽穗开花期 FS平均日照时数saY= 5.53X+53.440.21*
3/0分蘖期 TS平均气温日较差Δ tY= -0.6645X2+14.24X+23.810.22*
分蘖期 TS积温tY= 0.006X+78.560.24*
幼穗分化期 IDS平均相对湿度haY= 0.0955X2+13.95X-410.160.26*
5/0幼穗分化期 IDS平均气温日较差Δ tY= -3.1546X2+57.08X-162.420.37*
6/0幼穗分化期 IDS平均气温日较差Δ tY= 1.9236X2-52.61X+385.310.42* *
幼穗分化期 IDS平均气温taY= -2.5044X2+105.25X-989.830.47* *
幼穗分化期 IDS平均日照时数saY= 0.4993X2-15.97X+119.250.36* *
抽穗开花期 FS平均气温日较差Δ tY= -1.2626X2+31.16X-118.490.24*
抽穗开花期 FS平均气温taY= 9.20X-175.590.30* *
二次分蘖 Secondary tiller
2分蘖期 TS积温tY= 0.10X-96.090.52* *
抽穗开花期 FS积温tY= -0.0036X2+3.11X-649.140.29*
3分蘖期 TS积温tY= 0.07X-56.990.34* *
幼穗分化期 IDS平均气温日较差Δ tY= 1.0460X2-22.37X+119.380.26*
TS: tillering stage; IDS: Inflorescence differentiation stage; FS: flowering stage.

表7 机插超级杂交籼稻不同叶位一、二次分蘖成穗率与气象因子的关系 Table 7 Relationship between meteorological factors and primary and secondary earbearing rate in different leaf positions of mechanical super indica hybrid rice

2.4.2 气象因子对机插超级杂交籼稻一、二次分蘖群分蘖发生率与成穗率的影响 不同播栽期处理下机插超级杂交籼稻一、二次分蘖群发生率主要受分蘖期气象因子的影响, 而其成穗率则受分蘖期、幼穗分化期和抽穗开花期气象因子的影响。一次分蘖发生率与分蘖期相对湿度呈显著负相关, 而与平均气温日较差、积温、日照时数呈显著正相关; 而一次分蘖成穗率与分蘖期相对湿度、平均气温呈显著负相关, 与分蘖期平均气温日较差、积温、日照时数呈显著正相关, 与幼穗分化期相对湿度呈显著负相关, 与抽穗开花期日照时数呈显著正相关。二次分蘖发生率与分蘖期相对湿度、平均气温呈极显著负相关, 而与平均气温日较差、日照时数呈极显著正相关, 与积温呈显著正相关; 二次分蘖成穗率与分蘖期积温呈显著正相关(图1图2)。
图1
Fig. 1
Figure OptionViewDownloadNew Window
图1 气象因子对机插超级杂交籼稻一次分蘖发生率和成穗率的影响
A: 分蘖期相对湿度(%); B: 分蘖期平均气温日较差(℃); C: 分蘖期平均气温(℃); D: 分蘖期积温(℃); E: 分蘖期平均日照时数(h); F: 幼穗分化期相对湿度(%); G: 抽穗开花期平均日照时数(h)。Fig. 1 Effect of meteorological factors on primary tiller emerging and earbearing rate of mechanical indica hybrid rice
A: average relative humidity of tillering stage (%); B: average diurnal temperature range of tillering stage (℃); C: average temperature of tillering stage (℃); D: accumulated temperature of tillering stage (℃); E: average sunshine duration of tillering stage (h); F: average relative humidity of inflorescence differentiation stage (%); G: average sunshine duration of flowering stage (h).

图2
Fig. 2
Figure OptionViewDownloadNew Window
图2 分蘖期气象因子对机插超级杂交籼稻二次分蘖发生率和成穗率的影响
A: 分蘖期相对湿度(%); B: 分蘖期平均气温日温较差(℃); C: 分蘖期平均气温(h); D: 分蘖期积温(℃); E: 分蘖期平均日照时数(h)。Fig. 2 Effect of meteorological factors of tillering stage on secondary tiller emerging and earbearing rate of mechanical super indica hybrid rice
A: average relative humidity (%); B: average diurnal temperature range (℃); C: average temperature (℃); D: accumulated temperature (℃); E: average sunshine duration (h).


3 讨论3.1 机插超级杂交籼稻分蘖发生与成穗的播期效应适宜的单位面积有效穗数是高产群体的显著特征[24], 提高成穗率是优化群体质量的重要途径[18], 且与分蘖发生叶位数、分蘖发生率和分蘖成穗率密切相关。水稻分蘖是由植株分蘖节上各叶的腋芽(分蘖芽)在适宜的条件下, 遵循N-3的叶蘖同伸规律形成的, 充分利用有效分蘖叶位, 争取早发多发, 是提高单株成穗数和群体茎蘖成穗率, 培育高产群体的一个有效措施[24, 25]。水稻腋芽萌发形成分蘖至穗[26]的过程受多种因素影响, 秧苗素质[27]、种植方式[7, 8]、密度配置[9, 15, 16]、水肥运筹等[5, 28]均会影响分蘖消长, 最终影响分蘖成穗率。雷小龙等[6]研究认为机插一次分蘖群以3/0~8/0发生为主, 且3/0~6/0分蘖成穗率较高, 二次分蘖群成穗以第3~第5叶为主。李杰等[7]研究认为机插一次分蘖群发生以3/0~7/0为主, 4/0~7/0是分蘖发生与成穗的优势叶位, 二次分蘖发生以第4~第5叶为主。本研究表明, 随着播栽期推迟, 一次分蘖发生与成穗叶位数减少且趋于集中, F优498一次分蘖发生在S1~S4播栽期以3/0~7/0为主, 而在S5播栽期以3/0~6/0为主, 宜香优2115的S1播栽期以3/0~7/0为主, 而S2~S5播栽期以3/0~6/0为主; 二次分蘖发生集中在第3~第4叶位; 一次分蘖成穗率S1播栽期以3/0~6/0为主, 而S2~S5播栽期以3/0~5/0为主; 二次分蘖成穗率以第3~第4叶为主。研究结果与前人的不尽一致[6, 7, 15, 16, 17, 29], 可能是因为播期时间设置的长短不同, 播期间气候差异性较大, 不同播栽期处理下其生育期内所遇到的温光资源不同, 使得其分蘖发生和成穗差异大。钟楚等[30]研究表明分蘖期较多的日照时数和较大的平均气温日较差有利于有效穗数的增加, 而气温升高对有效穗数不利。较低的光强会严重降低分蘖数, 而日照时数增加、光照条件改善, 则会促进分蘖数增加[31]。本研究表明一次分蘖发生率和成穗率以及二次分蘖发生率与分蘖期平均气温日较差、积温和日照时数呈显著正相关, 而一次分蘖成穗率与平均气温呈显著负相关。早播栽处理虽然温度较低, 早晚温度差异大, 但日照时数相对较长, 更长的生长期能利用较多的温光资源, 分蘖发生持续时间长, 分蘖期的积温就较高, 分蘖叶位和分蘖数增加, 最终获得更高的分蘖成穗数; 而晚播栽处理则相反。本研究表明一、二次分蘖发生率和成穗率与分蘖期相对湿度呈显著负相关, 其可能原因是相对湿度从侧面反映了降雨量情况, 阴雨天气温度低, 光照条件变弱, 不利于水稻分蘖, 最终也不利于水稻分蘖成穗。因此生产上应结合当地多年气象资料选择适宜的播栽期, 充分利用温光资源, 并充分利用有效分蘖叶位, 提高一、二次分蘖发生率和成穗率。
3.2 不同播栽期机插超级杂交籼稻蘖位与产量的关系及其在高产栽培中的应用近几十年来, 分蘖与产量的关系经历了“ 主茎穗为主” → “ 主茎分蘖并重” → “ 依靠分蘖” 的过程, 生产技术和施肥水平的提高以及大穗型杂交稻品种的推广, 使依靠分蘖提高群体的分蘖成穗率夺取高产成为可能[26]。郭振华等[32]通过徐稻3号机插超高产群体研究发现, 分蘖对产量贡献达73.02%。水稻主茎有效蘖位上存在若干个“ 优势蘖位” , 对产量贡献程度为中部蘖位> 下部蘖位> 上部蘖位, 中部蘖位有较强蘖位优势[33]。本研究结果中, S1播栽期分蘖发生与成穗主要是第3~第6叶位, 这些叶位分蘖对产量的贡献为68.60%, 因此S1播栽期的优势叶位为第3~第6叶位; S2~S5播栽期第3~第5叶位分蘖成穗率高, 对产量的贡献分别为61.47%、61.62%、62.73%和65.89%, 这些叶位可作为优势叶位, 雷小龙等[7]认为机插稻优势叶位为第3~第6叶, 本研究中S1机插优势叶位与其结果相同, 而S2~S5则不相同, 这可能是由于播栽期推迟, 使得后面播栽期第6叶位成穗率减少, 最终导致对产量贡献率减小; 而本研究结果与韦还和等[22]、袁奇等[20]、李杰等[7]研究结果也不尽相同, 他们发现机插优势叶位为第4~第7叶, 其可能原因是籼稻与粳稻本身遗传特性、品种分蘖力、播栽期的不同。因此, S1优势叶位为第3~第6叶位, S2~S5优势叶位为第3~第5叶位, 这些叶位分蘖发生率和成穗率高, 对产量贡献率大, 说明应在适宜的播栽期, 充分利用优势叶位, 通过改善农艺措施提高分蘖的发生和成穗, 提高分蘖穗部经济性状的质量是获得高产的主要途径。

4 结论不同播栽期机插超级杂交籼稻分蘖发生与成穗规律不同。早播栽处理分蘖发生和成穗叶数多, 而迟播栽处理则相反; 早播栽处理一次分蘖发生以3/0~7/0叶位为主, 迟播栽处理以3/0~6/0叶位为主, 早播栽处理成穗叶位主要集中在3/0~6/0叶位, 而迟播栽处理成穗叶位则主要集中在3/0~5/0叶位, 二次分蘖发生和成穗以第3~第4叶为主; 一次分蘖对产量贡献率表现为早播栽处理S1优势分蘖位为第3~第6叶, 其他播栽处理为第3~第5叶, 二次分蘖以第3~第4叶优势较强。一次、二次分蘖发生率和一次分蘖成穗率与分蘖期相对湿度呈显著负相关, 而与平均气温日较差、积温、日照时数呈显著正相关。因此在成都平原进行机插超级杂交籼稻的种植, 应当选择适宜的播栽期, 充分利用温光资源, 充分利用优势叶位, 通过改善农艺措施, 提高分蘖的发生和成穗, 最终提高产量。成都平原机插超级杂交籼稻在4月11日前播种5月11日前移栽有利于机插超级杂交籼稻产量的提高, 而在4月21日前播种5月21日前移栽有利于稳产, 在4月21日以后播种5月21日以后产量则显著降低。
The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。The authors have declared that no competing interests exist.


参考文献View Option
原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

[1]许轲, 唐磊, 张洪程, 郭保卫, 霍中洋, 戴其根, 魏海燕, 韦还和. 不同机械直播方式对水稻分蘖特性及产量的影响. 农业工程学报, 2014, 30(13): 43-52
Xu K, Tang L, Zhang H C, Guo B W, Huo Z Y, Dai Q G, Wei H Y, Wei H H. Effect of different mechanical direct seeding methods on tiller characteristics and yield of rice. Trans CSAE, 2014, 30(13): 43-52 (in Chinese with English abstract)[本文引用:2]
[2]柴楠, 高向达, 任淑娟. 育秧床温调控剂及分蘖促进剂在水稻上的应用研究. 北方水稻, 2012, 42(3): 31-35
Chai N, Gao X D, Ren S J. Applied research on regulatory medicament of seedbed and tillering promoters on rice. North Rice, 2012, 42(3): 31-35 (in Chinese with English abstract)[本文引用:1]
[3]王建林, 徐正进. 插秧质量与株行距配置对水稻分蘖及穗重的影响. 沈阳农业大学学报, 2003, 34: 401-405
Wang J L, Xu Z J. Effect of seedling quantity and row spacing on the tillers and panicle weight of rice. J Shenyang Agric Univ, 2003, 34: 401-405 (in Chinese with English abstract)[本文引用:1]
[4]俞爱英, 林贤青, 曾孝元, 吴增琪, 朱贵平. 不同灌溉方式对水稻分蘖成穗规律及产量影响研究. 灌溉排水学报, 2007, 26(1): 66-68
Yu A Y, Lin X Q, Zeng X Y, Wu Z Q, Zhu G P. Studies of different water managements on tillers and panicles and mechanism of high-yield of rice. J Irrig Drainage, 2007, 26(1): 66-68 (in Chinese with English abstract)[本文引用:1]
[5]余珺, 陶光灿, 郭兴强, 尹士采, 谢光辉. 黄淮平原麦茬直播稻分蘖发生规则及其与产量构成的关系. 中国农业科学, 2008, 41: 678-686
Yu J, Tao G C, Guo X Q, Yin S C, Xie G H. Tillering pattern and its effects on yield of rice directly sown after winter wheat in the Huang-Huai plain. Sci Agric Sin, 2008, 41: 678-686 (in Chinese with English abstract)[本文引用:2]
[6]雷小龙, 刘利, 刘波, 黄光忠, 马荣朝, 任万军. 杂交籼稻机械化种植的分蘖特性. 作物学报, 2014, 40: 1044-1055
Lei X L, Liu L, Liu B, Huang G Z, Ma R C, Ren W J. Tillering characteristics of indica hybrid rice under mechanized planting. Acta Agron Sin, 2014, 40: 1044-1055 (in Chinese with English abstract)[本文引用:3]
[7]李杰, 张洪程, 龚金龙, 常勇, 吴桂成, 郭振华, 戴其根, 霍中洋, 许轲, 魏海燕. 稻麦两熟地区不同栽培方式超级稻分蘖特性及其与群体生产力的关系. 作物学报, 2011, 37: 309-320
Li J, Zhang H C, Gong J L, Chang Y, Wu G C, Guo Z H, Dai Q G, Huo Z Y, Xu K, Wei H Y. Tillering characteristics and its relationships with population productivity of super rice under different cultivation methods in rice-wheat cropping areas. Acta Agron Sin, 2011, 37: 309-320 (in Chinese with English abstract)[本文引用:9]
[8]宋云生, 张洪程, 戴其根, 杨大柳, 郭保卫, 朱聪聪, 霍中洋, 许轲, 魏海燕, 胡加敏, 吴爱国, 蒋晓鸿. 水稻机栽钵苗单穴苗数对分蘖成穗及产量的影响. 农业工程学报, 2014, 30(10): 37-47
Song Y S, Zhang H C, Dai Q G, Yang D L, Guo B W, Zhu C C, Huo Z Y, Xu K, Wei H Y, Hu J M, Wu A G, Jiang X H. Effect of rice potted-seedlings per hole by mechanical transplanting on tillers emergence, panicles formation and yield. Trans CSAE, 2014, 30(10): 37-47 (in Chinese with English abstract)[本文引用:4]
[9]刘杨, 顾丹丹, 许俊旭, 丁艳峰, 王强盛, 李刚华, 刘正辉, 王绍华. 细胞分蘖素对水稻分蘖芽生长及其分蘖相关基因表达的调控. 中国农业科学, 2012, 45: 44-51
Liu Y, Gu D D, Xu J X, Ding Y F, Wang Q S, Li G H, Liu Z H, Wang S H. Effect of cytokinins on the growth of rice tiller buds and the expression of the genes regulating rice tillering. Sci Agric Sin, 2012, 45: 44-51 (in Chinese with English abstract)[本文引用:3]
[10]刘杨, 丁艳峰, 王强盛, 李刚华, 许俊旭, 刘正辉, 王绍华. 植物生长调节剂对水稻分蘖芽生长和内源激素变化的调控效应. 作物学报, 2011, 37: 670-676
Liu Y, Ding Y F, Wang Q S, Li G H, Xu J X, Liu Z H, Wang S H. Effect of plant growth regulators on the growth of rice tiller bud and the changes of endogenous hormones. Acta Agron Sin, 2011, 37: 670-676 (in Chinese with English abstract)[本文引用:1]
[11]蒋彭炎, 洪晓富, 冯来定, 马跃芳, 史济林, 倪竹如, 刘智宏. 水稻中期群体成穗率与后期群体光合效率的关系. 中国农业科学, 1994, 27(6): 8-14
Jiang P Y, Hong X F, Feng L D, Ma Y F, Shi J L, Ni Z R, Liu Z H. Relation between percentage of ear-bearing of colony in the middle phase and photosynthesis efficiency in the late in rice. Sci Agric Sin, 1994, 27(6): 8-14 (in Chinese with English abstract)[本文引用:1]
[12]凌启鸿, 张洪程, 苏祖芳, 凌励. 水稻叶龄模式. 北京: 科学出版社, 1994. pp 84-85
Ling Q H, Zhang H C, Su Z F, Ling L. Leaf Age Model of Rice. Beijing: Science Press, 1994. pp 84-85(in Chinese)[本文引用:1]
[13]凌启鸿. 水稻精确定量栽培理论与技术. 北京: 中国农业出版社, 2007. pp 76-87
Ling Q H. Theory and technology of rice precise and quantitative cultivation. Beijing: China Agriculture Press, 2007. pp 76-87(in Chinese)[本文引用:1]
[14]凌启鸿, 苏祖芳, 张海泉. 水稻成穗率与群体质量的关系及其影响因素的研究. 作物学报, 1995, 21: 463-469
Ling Q H, Su Z F, Zhang H Q. Relationship between earbearing tiller percentage and population quality and its influential factors in rice. Acta Agron Sin, 1995, 21: 463-469 (in Chinese with English abstract)[本文引用:1]
[15]袁奇, 于林惠, 石世杰, 邵建国, 丁艳锋. 机插秧每穴栽插苗数对水稻分蘖与成穗的影响. 农业工程学报, 2007, 23(10): 121-125
Yuan Q, Yu L H, Shi S J, Shao J G, Ding Y F. Effects of different tiller production planting seedlings per hillon outgrowth and quantities of for machine-transplanted rice. Trans CSAE, 2007, 23(10): 121-125 (in Chinese with English abstract)[本文引用:3]
[16]凌励. 机插水稻分蘖发生特点及配套高产栽培技术改进的研究. 江苏农业科学, 2005, (3): 14-19
Ling L. Occurrence of tiller of machine-tranplanted rice and development of its cultural technology for high yield. J Jiangsu Agric Sci, 2005, (3): 14-19 (in Chinese with English abstract)[本文引用:3]
[17]韦还和, 李超, 张洪程, 孙玉海, 孟天瑶, 杨筠文, 马荣荣, 王晓燕, 戴其根, 霍中洋, 许轲, 魏海燕. 水稻甬优12超高产群体分蘖特性及其群体生产力的关系. 作物学报, 2014, 40: 1819-1829
Wei H H, Li C, Zhang H C, Sun Y H, Meng T Y, Yang J W, Ma R R, Wang X Y, Dai Q G, Huo Z Y, Xu K, Wei H Y. Tillering characteristics and its relation with population productivity of super-high yield rice population of Yongyou 12. Acta Agron Sin, 2014, 40: 1819-1829 (in Chinese with English abstract)[本文引用:2]
[18]朱德峰, 陈惠哲, 徐一成. 我国水稻种植机械化的发展前景与对策. 北方水稻, 2007, (5): 13-18
Zhu D F, Chen H Z, Xu Y C. Counterm easure and perspective of mechanization of rice planting in China. North Rice, 2007, (5): 13-18 (in Chinese with English abstract)[本文引用:2]
[19]陈文宽, 李兰图, 孙沁谷, 刘松. 成都平原农地资源劳动力承载力研究. 农业经济问题, 2011, (3): 27-30
Chen W K, Li L T, Sun Q G, Liu S. Study on capacity of farmland resource and labor of Chengdu plain. Issues Agric Economic, 2011, (3): 27-30( in Chinese with English abstract)[本文引用:1]
[20]杨凡, 齐振宏, 王景旭, 周未. 西南4省(区)水稻投入产出模型分析. 中国农业大学学报, 2011, 16(4): 164-168
Yang F, Qi Z H, Wang J X, Zhou M. Rice input-output model analysis in four provinces of Southwest China. J China Agric Univ, 2011, 16(4): 164-168 (in Chinese with English abstract)[本文引用:2]
[21]袁钊和, 陈巧敏, 杨新春. 论我国水稻抛秧、插秧、直播机械化技术的发展. 农业机械学报, 1998, 29(3): 181-183
Yuan Z H, Chen Q M, Yang X C. Development of mechanized cast-transplanting, transplanting and seeding in China. Trans CSAM, 1998, 29(3): 181-183(in Chinese with English abstract)[本文引用:1]
[22]顾建清, 徐嘉梁, 戴晶, 朱阿多, 袁继栋. 不同水稻机械化种植方案技术经济分析. 中国农机化, 2012, (5): 37-40
Gu J Q, Xu J L, Dai J, Zhu A D, Yuan J D. Technical and economic analysis of different mechanized rice planting schemes. Chin Agric Mech, 2012, (5): 37-40 (in Chinese with English abstract)[本文引用:2]
[23]曾研华, 张玉屏, 王亚梁, 向镜, 陈惠哲, 朱德峰. 籼粳杂交稻枝梗和颖花形成的播期效应. 中国农业科学, 2015, 48: 1300-1310
Zeng Y H, Zhang Y P, Wang Y L, Xiang J, Chen H Z, Zhu D F. Effects of sowing date on formation of branches and spikelets in indica-japonica hybrid rice. Sci Agric Sin, 2015, 48: 1300-1310 (in Chinese with English abstract)[本文引用:1]
[24]凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000. pp 107-144
Ling Q H. Crop Population Quality. Shanghai: Shanghai Science and Technology Press, 2000. pp 107-144(in Chinese)[本文引用:2]
[25]Samonte S O P B, Wilson L T, Tabien R E. Maximum node production rate and main culm node number contributions to yield and yield-related traits in rice. Field Crops Res, 2006, 96: 313-319[本文引用:1]
[26]Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Ming W, Luo D, Han B, Li J Y. Control of tillering in rice. Nature, 2003, 422: 618-621[本文引用:2]
[27]Pasuquin E, Lafarge T, Tubana B. Transplangting young seedings in irrigated rice fields: Early and high tiller production enhanced grain yield. Field Crops Res, 2008, 105: 141-155[本文引用:1]
[28]郑永美, 丁艳锋, 王强盛, 李刚华, 王慧芝, 王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响. 作物学报, 2008, 34: 513-519
Zheng Y M, Ding Y F, Wang Q S, Li G H, Wang H Z, Wang S H. Effect of nitrogen applied before transplanting on tillering and nitrogen utilization in rice. Acta Agron Sin, 2008, 34: 513-519 (in Chinese with English abstract)[本文引用:1]
[29]赵海燕, 姚凤梅, 张勇, 徐宾, 袁静, 胡亚南, 许吟隆. 长江中下游水稻开花灌浆期气象要素与结实率和粒重的相关性分析. 中国农业科学, 2006, 39: 1765-1771
Zhao H Y, Yao F M, Zhang Y, Xu B, Yuan J, Hu Y N, Xu Y L. Correlation analysis of rice seed setting rate and weight of 1000-grain and agro-meteorology over the middle and lower reaches of the Yangtze River. Sci Agric Sin, 2006, 39: 1765-1771 (in Chinese with English abstract)[本文引用:1]
[30]钟楚, 朱颖墨, 朱勇, 朱斌, 张茂松, 徐梦莹. 云南不同类型一季稻产量形成及其与气象因子的关系. 应用生态学报, 2013, 24: 2831-2842
Zhong C, Zhu Y M, Zhu Y, Zhu B, Zhang M S, Xu M L. Yield formation of different single-season rice (Oryza sativa L. ) types and its relationships with meteorological factors in Yunnan Province of Southwest China. Chin J Appl Ecol, 2013, 24: 2831-2842 (in Chinese with English abstract)[本文引用:1]
[31]蔡昆争, 骆世明. 不同生育期遮光对水稻生长发育和产量形成的影响. 应用生态学报, 1999, 10: 193-196
Cai K Z, Luo S M. Effect of shading on growth, development and yield formation of rice. Chin J Appl Ecol, 1999, 10: 196-196 (in Chinese with English abstract)[本文引用:1]
[32]郭振华, 荆爱霞, 李华, 王永芳, 於永杰, 钱宗华, 李杰, 钱银飞, 霍中洋, 张洪程. 南方粳型超级稻不同方式超高产栽培的分蘖特性及其与产量形成的关系. 中国稻米, 2012, 18(1): 45-49
Guo Z H, Jing A X, Li H, Wang Y F, Yu Y J, Qian Z H, Li J, Qian Y F, Huo Z Y, Zhang H C. Tillering characteristics and its relationship with yield formation of different ways of super- high-yield cultivation of southern japonica super rice. China Rice, 2012, 18(1): 45-49 (in Chinese with English abstract)[本文引用:1]
[33]周汉良, 鲁学林, 郑秋玲. 水稻中位蘖位的分蘖规律与生产力研究. 华北农学报, 2000, 15(2): 112-117
Zhou H L, Lu X L, Zheng Q L. Studies on tiller regularity of middle tillering part and productive forces of rice. Acta Agric Boreali-Sin, 2000, 15(2): 112-117 (in Chinese with English abstract)[本文引用:1]
相关话题/气象 作物 生育 质量 资源