关键词:普通小麦; 兼抗型; 成株抗性; 条锈病; 叶锈病; 白粉病 Development, Field and Molecular Characterization of Advanced Lines with Pleiotropic Adult-Plant Resistance in Common Wheat LIU Jin-Dong1, YANG En-Nian2, XIAO Yong-Gui1, CHEN Xin-Min1, WU Ling2, BAI Bin3, LI Zai-Feng4, Garry M. Rosewarne2,5, XIA Xian-Chun1,*, HE Zhong-Hu1,5,* 1 Institute of Crop Science / National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
2 Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
3 Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
4 College of Plant Protection, Agricultural University of Hebei, Baoding 071001, China
5 CIMMYT-China Office, c/o CAAS, Beijing 100081, China
AbstractStripe rust, leaf rust, and powdery mildew are devastative fungal diseases of common wheat ( Triticum aestivum L.) in China, and breeding cultivars with pleiotropic adult-plant resistance is believed to be the most important solution to control these diseases effectively and environmental friendly. A total of 21 winter wheat advanced lines and 96 spring wheat advanced lines collected from adult-plant resistance breeding programs were used to estimate the level of resistance against the stripe rust, leaf rust and powdery mildew across several environments. Simultaneously, the distribution of pleiotropic resistance genes Lr34/Yr18/Pm38, Lr46/Yr29/Pm39, and Sr2/Yr30 were also detected using molecular marker closely linked to the target genes. The field test showed that 17 winter wheat lines (80.9%) and 85 spring wheat lines (88.5%) performed acceptable resistance against the three diseases. All the 21 winter wheat lines tested contain QPm.caas-4DL, of which seven contain QPm.caas-2BS and nine contain QPm.caas-2BL. Among the 96 spring wheat lines, 18 carry Lr34/Yr18/Pm38, 37 carry Lr46/Yr29/Pm39, and 29 lines possess Sr2/Yr30. These results indicate that molecular-marker-assistant selection in combination with conventional breeding is effective and applicable in developing pleiotropic adult-plant resistance cultivars, which provides a new thought for wheat resistance breeding.
Keyword: Triticum aestivum L.; Pleiotropic resistance; Adult-plant resistance; Stripe rust; Leaf rust; Powdery mildew Show Figures Show Figures
表2 冬小麦主要品系条锈病(SR)、叶锈病(LR)和白粉病(PM)的MDS值及兼抗型成株抗性基因 Table 2 Maximum disease severity (MDS) values of major winter wheat lines in response to stripe rust (SR), leaf rust (LR), and powdery mildew (PM) and the presence of pleiotropic resistance genes
品系 Line
来源 Origin
系谱 Pedigree
QTL
MDS
Lr34/Yr18 /Pm38
Lr46/Yr29 /Pm39
Sr2/Yr30
SR
LR
PM
Strampelli
意大利 Italy
Libero//SanPastore-14/Jacometti-49
3
11
23
+
-
-
平原50 Pingyuan 50
中国河南 Henan, China
不详 Unknown
5
20
37
-
+
-
百农64 Bainong 64
中国河南 Henan, China
百农8717/3/偃大2-629-52/ 石82-5594//百农84-4046-1 Bainong 8717/3/Yanda 2-629-52/ Shi 82-5594//Bainong 84-4046-1
4DL
32
18
12
-
-
-
鲁麦21 Lumai 21
中国山东 Shandong, China
鲁麦17/豫麦54 Lumai 17/Yumai 54
2BS/2BL
48
8
5
-
-
-
BFB9
中国北京 Beijing, China
鲁麦21/百农64 Lumai 21/Bainong 64
4DL/2BS/2BL
47
3
8
-
-
-
BFB10
中国北京 Beijing, China
鲁麦21/百农64 Lumai 21/Bainong 64
4DL/2BS/2BL
23
12
5
-
-
-
BFB12
中国北京 Beijing, China
鲁麦21/百农64 Lumai 21/Bainong 64
4DL/2BS
46
33
5
-
-
-
BFB13
中国北京 Beijing, China
鲁麦21/百农64 Lumai 21/Bainong 64
4DL/2BS
32
17
4
-
-
-
BFB14
中国北京 Beijing, China
鲁麦21/百农64 Lumai 21/Bainong 64
4DL/2BS
25
10
10
-
-
-
BFB15
中国北京 Beijing, China
鲁麦21/百农64 Lumai 21/Bainong 64
4DL
34
29
4
-
-
-
BFB16
中国北京 Beijing, China
鲁麦21/百农64 Lumai 21/Bainong 64
4DL
20
20
4
-
-
-
BFB19
中国北京 Beijing, China
鲁麦21/百农64 Lumai 21/Bainong 64
4DL/2BL
16
21
4
-
-
-
BFB20
中国北京 Beijing, China
鲁麦21/百农64 Lumai 21/Bainong 64
4DL/2BL
50
26
7
-
-
-
BFB24
中国北京 Beijing, China
鲁麦21/百农64 Lumai 21/Bainong 64
4DL
43
36
6
-
-
+
BFB25
中国北京 Beijing, China
鲁麦21/百农64 Lumai 21/Bainong 64
4DL/2BL
40
30
4
-
-
-
SD11P421
中国山东 Shandong, China
平原50/烟农19* 3 Pingyuan 50/Yannong 19* 3
4DL
58
26
40
-
-
-
SD11P423
中国山东 Shandong, China
平原50/烟农19* 3 Pingyuan 50/Yannong 19* 3
4DL
52
18
38
-
-
-
“ QTL” stands for pleiotropic resistance QTL, which were mapped by Lan et al.[23, 24]. QTL 4DL is an abbreviation forQPm.caas-4DL, and the rest may be inferred by analogy. The MDS values were the averages over four, four, and two environments for SR, LR, and PM diseases, respectively. Resistance were graded with high resistance (MDS < 20), moderate resistance (20 ≤ MDS < 50); moderate susceptibility (50 ≤ MDS < 70), and high susceptibility (MDS ≥ 70). Symbols “ +” and “ -” indicate the presence and absence of the pleiotropic resistance gene, respectively. “ QTL” 指兼抗型QTL, 由Lan等[23, 24]鉴定, 其中QPm.caas-4DL缩写为4DL, 余此类推。MDS数据分别为4个(SR)、4个(LR)和2个(PM)环境的平均值, 抗病性等级分为高抗(MDS < 20)、中抗(20 ≤ MDS < 50)、中感(50 ≤ MDS < 70)和高感(MDS ≥ 70)。+和-分别表示兼抗基因存在和不存在。
表2 冬小麦主要品系条锈病(SR)、叶锈病(LR)和白粉病(PM)的MDS值及兼抗型成株抗性基因 Table 2 Maximum disease severity (MDS) values of major winter wheat lines in response to stripe rust (SR), leaf rust (LR), and powdery mildew (PM) and the presence of pleiotropic resistance genes
表3 Table 3 表3(Table 3)
表3 主要春小麦品系条锈病(SR)、叶锈病(LR)和白粉病(PM)的最大病害严重度(MDS)及兼抗型成株抗性基因 Table 3 Maximum disease severity (MDS) values of major spring wheat lines in response to stripe rust (SR), leaf rust (LR), and powdery mildew (PM) and the presence of pleiotropic resistance genes
The MDS values were the averages over two environments for the three diseases. Resistance were graded with high resistance (MDS < 20), moderate resistance (20 ≤ MDS < 50); moderate susceptibility (50 ≤ MDS < 70), and high susceptibility (MDS ≥ 70). Symbols “ +” and “ -” indicate the presence and absence of the pleiotropic resistance gene, respectively, whereas the letter “ h” indicates heterozygous genotype. 3种病害的MDS数据均为2个环境的平均值, 抗病性等级分为高抗(MDS < 20)、中抗(20≤ MDS < 50)、中感(50 ≤ MDS < 70)和高感(MDS ≥ 70)。+和-分别表示兼抗基因存在和不存在; h表示杂合基因型。
表3 主要春小麦品系条锈病(SR)、叶锈病(LR)和白粉病(PM)的最大病害严重度(MDS)及兼抗型成株抗性基因 Table 3 Maximum disease severity (MDS) values of major spring wheat lines in response to stripe rust (SR), leaf rust (LR), and powdery mildew (PM) and the presence of pleiotropic resistance genes
4 结论在多个环境下对由兼抗型成株抗性育种方法培育的高代品系进行田间成株期条锈病、叶锈病和白粉病抗性鉴定, 并检测其含有的兼抗基因。在选育出的21份冬小麦品系和96份春小麦品系中, 分别有17份和85份兼抗3种病害, 且具有优良农艺性状, 有望成为抗病育种中的重要材料。本研究为我国小麦兼抗型成株抗性育种提供了可行的育种方法和优良的育种材料。 The authors have declared that no competing interests exist.
Wellings CR, McIntosh R A, Hussain M. A new source of resistance to Puccinia striiformis f. sp. tritici in spring wheats (Triticum aestivum). , 1988, 100: 288-296[本文引用:1]
[2]
Conner RL, Kuzyk AD, SuH. Impact of powdery mildew on the yield of soft white spring wheat cultivars. Can J Plant Sci, 2003, 83: 725-728[本文引用:1]
[3]
何中虎, 兰彩霞, 陈新民, 邹裕春, 庄巧生, 夏先春. 小麦条锈病和白粉病成株抗性研究进展和展望. 中国农业科学, 2011, 44: 2193-2215He ZH, Lan CX, Chen XM, Zou YC, Zhuang QS, Xia XC. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Sci Agric Sin, 2011, 44: 2193-2215 (in Chinese with English abstract)[本文引用:6]
[4]
Zhao XL, Zheng TC, Xia XC, He ZH, Liu DQ, Yang WX, Yin GH, Li ZF. Molecular mapping of leaf rust resistance gene LrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet, 2008, 117: 1069-1075[本文引用:1]
[5]
Gustafson GD, ShanerG. Influence of plant age on the expression of slow-mildewing resistance in wheat (Triticum aestivum). Phytopathology, 1982, 72: 746-749[本文引用:1]
[6]
Singh RP, Huerta-EspinoJ, BhavaniS, Herrera-Foessel S A, Singh D, Singh P K, Velu G, Mason R E, Jin Y, Njau P, Crossa J. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica, 2011, 179: 175-186[本文引用:1]
[7]
Rosewarne GM, Herrera-Foessel S A, Singh R P, Huerta-Espino J, Lan C X, He Z H. Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet, 2013, 126: 2427-2449[本文引用:3]
Li ZF, Lan CX, He ZH, Singh RP, Rosewarne GM, Chen XM, Xia XC. Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci, 2014, 54: 1907-1925[本文引用:3]
[10]
LillemoM, AsalfB, Singh RP, Huerta-EspinoJ, Chen XM, He ZH, BjørnstadÅ. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet, 2008, 116: 1155-1166[本文引用:3]
[11]
Lagudah ES, McFadden H, Singh R P, Huerta-Espino J, Bariana H S, Spielmeyer W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet, 2006, 114: 21-30[本文引用:2]
[12]
梁丹, 杨芳萍, 何中虎, 姚大年, 夏先春. 利用 STS 标记检测CIMMYT小麦品种(系)中Lr34/Yr18, Rht-B1b和Rht-D1b基因的分布. 中国农业科学, 2009, 42: 17-27LiangD, Yang FP, He ZH, Yao DN, Xia XC. Characterization of Lr34/Yr18, Rht-B1b, Rht-D1b genes in CIMMYT wheat cultivars and advanced lines using STS markers. Sci Agric Sin, 2009, 42: 17-27 (in Chinese with English abstract)[本文引用:1]
[13]
Krattinger SG, Lagudah ES, SpielmeyerW, Singh RP, Huerta-EspinoJ, McFadden H, Bossolini E, Selter L L, Keller B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323: 1360-1363[本文引用:1]
[14]
Rosowarne GM, Singh RP, Huerta-EspinoJ, William HM, BouchetS, CloutierS, McFadden H, Lagudah E S. Leaf tip necrosis, molecular markers and β-proteasome subunits associated with the slow rusting resistance gene Lr46/Yr29. Theor Appl Genet, 2006, 112: 500-508[本文引用:1]
[15]
Singh RP. Genetic association of leaf rust resistance gene Lr34 with adult-plant resistance to stripe rust in bread wheat. Phytopathology, 1992, 82: 835-838[本文引用:1]
[16]
LillemoM, Joshi AK, PrasadR, Chand R, Singh RP. QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theor Appl Genet, 2013, 126: 711-719[本文引用:1]
[17]
Skovmand B, Wilcoxson RD, Shearer BL, Stucker RE. Inheritance of slow rusting to stem rust in wheat. Euphytica, 1978, 27: 95-107[本文引用:1]
[18]
MagoR, Brown-GuediraG, DreisigackerS, BreenJ, JinY, SinghR, AppelsR, Lagudah ES, EllisJ, SpielmeyerW. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet, 2011, 122: 735-744[本文引用:3]
[19]
Herrera-Foessel SA, Lagudah ES, Huerta-EspinoJ, HaydenM, Bariana HS, Singh RP. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet, 2011, 122: 239-249[本文引用:1]
ForrestK, PujolV, BulliP, PumphreyM, WellingsC, Herrera-FoesselS, Huerta-EspinoJ, SinghR, LagudahE, HaydenM, SpielmeyerW. Development of a SNP marker assay for the Lr67 gene of wheat using a genotyping by sequencing approach. Mol Breed, 2014, 34: 2109-2118[本文引用:1]
[22]
Singh RP, William HM, Huerta-EspinoJ, RosewarneG. Wheat rust in Asia: Meeting the challenges with old and new technologies. In: New Directions for a Diverse Planet. 2004, 26[本文引用:1]
[23]
Lan CX, Liang SS, Wang ZL, YanJ, ZhangY, Xia XC, He ZH. Quantitative trait loci mapping for adult-plant resistance against powdery mildew in Chinese wheat cultivar Bainong 64. Phytopathology, 2009, 99: 1121-1126[本文引用:4]
[24]
Lan CX, Ni XW, YanJ, ZhangY, Xia CX, Chen XM, He ZH. Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Mol Breed, 2010, 25: 615-622[本文引用:3]
[25]
BaiB, He ZH, Asad MA, Lan CX, ZhangY, Xia XC, YanJ, Chen XM, Wang CS. Pyramiding adult-plant powdery mildew resistance QTLs in bread wheat. , 2011, 63: 606-611[本文引用:4]
[26]
伍玲, 夏先春, 朱华忠, 李式昭, 郑有良, 何中虎. CIMMYT 273个小麦品种抗病基因Lr34/Yr18/Pm38的分子标记检测. 中国农业科学, 2010, 43: 4553-4561WuL, Xia XC, Zhu HZ, Li SZ, Zheng YL, He ZH. Molecular characterization of Lr34/Yr18/Pm38 in 273 CIMMYT wheat cultivars and lines using functional markers. Sci Agric Sin, 2010, 43: 4553-4561 (in Chinese with English abstract)[本文引用:1]
[27]
Li ZF, Xia XC, He ZH, LiX, Zhang LJ, Wang HY, Meng QF, Yang WX, Li GQ, Liu DQ. Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Dis, 2010, 94: 45-53[本文引用:1]
[28]
Peterson RF, Campbell AB, Hannah AE. A diagrammatic scale for estimating rust intensity of leaves and stems of cereals. , 1948, 26: 496-500[本文引用:1]
[29]
RenY, Li ZF, He ZH, WuL, BaiB, Lan CX, Wang CF, ZhouG, Zhu HZ, Xia XC. QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor Appl Genet, 2012, 125: 1253-1262[本文引用:1]
[30]
Lan CX, Liang SS, Zhou XC, ZhouG, Lu QL, Xia XC, He ZH. Identification of genomic regions controlling adult plant stripe rust resistance to in Chinese wheat land race Pingyuan 50 through bulked segregant analysis. Phytopathology, 2010, 100: 313-318[本文引用:2]
[31]
Lu YM, Lan CX, Liang SS, Zhou XC, LiuD, ZhouG, Lu LQ, Jing JX, Wang MN, Xia XC, He ZH. QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor Appl Genet, 2009, 119: 1349-1359[本文引用:2]
[32]
KaurJ, Bariana HS. Inheritance of adult plant stripe rust resistance in wheat cultivars Kukri and Sunco. , 2010, 92: 391-394[本文引用:2]
[33]
Rosewarne GM, Singh RP, Huerta-EspinoJ, Herrera-Foessel S A, Forrest K L, Hayden M J, Rebetzke G J. Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet, 2012, 124: 1283-1294[本文引用:2]
[34]
Lan CX, Rosewarne GM, Singh RP, Herrera-Foessel S A, Huerta-Espino J, Basnet B R, Yang E N. QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin# 1. Mol Breed, 2014, 34: 789-803[本文引用:1]
[35]
刘金栋, 陈新民, 何中虎, 伍玲, 白斌, 李在峰, 夏先春. 小麦慢白粉病QTL对条锈病和叶锈病的兼抗性. 作物学报, 2014, 40: 1557-1564Liu JD, Chen XM, He ZH, WuL, BaiB, Li ZF, Xia XC. Resistance of slow mildewing genes to stripe rust and leaf rust in common wheat. Acta Agron Sin, 2014, 40: 1557-1564 (in Chinese with English abstract)[本文引用:1]
[36]
张勇, 申小勇, 张文祥, 陈新民, 阎俊, 张艳, 王德森, 王忠伟, 刘悦芳, 田宇兵, 夏先春, 何中虎. 高分子量谷蛋白5+10亚基和1B/1R易位分子标记辅助选择在小麦品质育种中的应用. 作物学报, 2012, 38: 1743-1751ZhangY, Shen XY, Zhang WX, Chen XM, YanJ, ZhangY, Wang DS, Wang ZW, Liu YF, Tian YB, Xia XC, He ZH. Marker-Assisted Selection of HMW-Glutenin 1Dx5+1Dy10 Gene and 1B/1R Translocation for Improving Industry Quality in Common Wheat. Acta Agron Sin, 2012, 38: 1743-1751 (in Chinese with English abstract)[本文引用:1]