关键词:间作; 秸秆还田; 竞争力; 相对拥挤指数; 产量 Effect of Straw Returning and Reduced Tillage on Interspecific Competition and Complementation in Wheat/Maize Intercropping System YIN Wen**, ZHAO Cai**, YU Ai-Zhong, CHAI Qiang*, HU Fa-Long, FENG Fu-Xue Gansu Provincial Key Laboratory of Arid Land Crop Science / Faculty of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
AbstractConservation tillage has the advantages of enhancing water use efficiency and reducing water/energy consumption simultaneously in common cropping systems. However, this technique has not been well studied and practiced in intercropping system. A field experiment was conducted in 2011 to 2012 growing seasons, in order to investigating the effects of different straw returning ways on crop yields, and interspecific competitiveness and complementation in wheat/maize intercropping systems. Three wheat straw returning treatments were designed, which were no-tillage with 25 cm straw standing (NTSS), no-tillage with 25 cm straw covering (NTS), and tillage with 25 cm straw incorporation (TIS). Conventional tillage (CT) was used as the control. In the intercropping system, the land use efficiency (LER) of reduced tillage treatments under straw returning condition increased compared with that of CT, showing the intercropping superiority (LER>1). Simultaneously, the competitiveness of wheat with maize in the whole wheat growing duration decreased in treatments NTSS, NTS and TIS by 37-54%, 108-141%, and 22-24%, respectively. Compared with monocropping maize, intercropping maize had higher rates of relative growth with the increased percentages of 54-59% in NTSS, 66-71% in NTS, 61-63% in TIS and 71-78% in CT. Clearly, NTS showed the most effect on maize growth after wheat harvest. In the intercropping system, the total yields of both crops were 6-10% (2011) and 4-12% (2012) higher in the straw returning treatments than in CT. NTS exhibited the most significant effect on enhancing yield. A quadratic relationship was observed between the total yield of intercropping system and the competitiveness of wheat versus maize, and high yields of both crops were obtained when the competitiveness ranged from 0.24 to 0.27. Our results showed that straw returning in combination with reduced tillage is feasible to regulate the interspecific competitiveness in wheat/maize intercropping system, and NTS treatment is recommended.
Keyword:Intercropping; Straw returning; Competitiveness; Relative crowding coefficient; Yield Show Figures Show Figures
间作为资源需求特性不同的作物提供了从时间和空间利用生态位分异的基础[1], 促成了种间互补对相关资源的高效利用[2], 或者一种作物对另外一种作物直接提供资源形成了种间互补[3], 并且在短生育期作物收获后, 可形成时间和空间上的补偿效应, 使作物在间作共生期内由竞争造成的早期生长抑制得以恢复[4, 5]。传统观念认为, 竞争不利于间作群体产量的形成, 而互补是间作优势的重要基础, 间作组分作物可以互补利用相关资源, 生态位分离对间作资源利用的促进作用大于种间竞争[6]。在两种或两种以上作物组成的复合间作体系中, 作物间竞争与互补是影响产量的重要原因, 也是多熟种植体系的重要研究内容。然而, 目前生产实践中仍缺乏通过配对作物种间竞争力的调控而提高间作群体生产力的理论依据。 保护性耕作是一项有助于保护农田水土、增加农田有机质含量的农业栽培技术, 它具有减少能源消耗、减少土壤污染、抑制土壤盐渍化、恢复受损农田生态系统等作用[7]。目前, 水资源不足对种植业生产制约作用日趋加剧, 间作节水已成为多熟种植领域亟待解决的难题之一。研究表明, 秸秆还田可以有效抑制蒸发、减少径流、保持水土、改善土壤结构、调节地温、增加产量和提高水分利用效率[8, 9], 同时可以增加土壤碳固存, 减少农田碳排放, 增加作物氮素利用, 降低土壤硝态氮损失, 保证作物产量[10, 11]。Monneveux等[9]认为, 在秸秆还田基础上实施少耕可以改变土壤生态条件, 必然会引起不同作物生长发育的差异。另外, 由两种作物组成的复合群体, 其适应特性随所在环境的变化而变化, 必然会产生种间竞争与互补效应[12, 13]。虽然理论上将秸秆还田技术应用于间作体系可以降低土壤无效耗水, 提高产量和水分利用效率, 对限量供水条件下的高产、节水多熟种植模式充分利用光、热等自然资源, 缓解水资源供需矛盾具有重要意义, 但是, 对这种生产技术的整合模式还未开展深入的试验研究, 缺乏理论依据和数据支撑。本研究在典型干旱绿洲灌区, 以小麦间作玉米为研究体系, 将秸秆还田和少耕集成到间作模式中, 并且量化两种措施对间作作物竞争力的影响, 揭示竞争力与复合群体生产力间的相关关系, 旨在为通过间作作物竞争力的调控而提高复合群体增产效应提供理论依据。 1 材料与方法1.1 试验区概况甘肃农业大学绿洲农业科研教学基地(37° 30′ N, 103° 5′ E)试验区位于河西走廊东端, 属寒温带干旱气候区, 海拔1506 m, 无霜期约155 d, 多年平均降雨量约156 mm、年蒸发量约2400 mm, 年平均气温7.2℃, ≥ 0℃和≥ 10℃的积温分别为3513.4℃和2985.4℃; 日照时数2945 h。试验地土壤为沙壤土, 0~30 cm耕层土壤容重1.57 g cm-3, 含有机质14.31 g kg-1、全氮为0.68 g kg-1、全磷1.41 g kg-1、铵态氮1.78 mg kg-1、硝态氮12.51 mg kg-1。2011年度小麦和玉米全生育期的降水量分别为65.8 mm和179.1 mm, 2012年度的全生育期降水量分别为40.5 mm和128.5 mm。该区域传统耕作方式为深耕翻埋, 无效耗水高。 1.2 试验设计供试小麦(Triticum aestivum L.)品种为永良4号, 玉米(Zea maysL.)品种为武科2号。2009年布置预备试验, 设3种小麦秸秆还田处理; 自2010年开始为正式试验, 设小麦单作、玉米单作、小麦间作玉米3种种植方式, 本文采用2011年与2012年度的数据。每种种植方式中均设3种小麦秸秆还田处理和传统耕作处理, 即25 cm高茬收割立茬免耕、25 cm高茬等量秸秆覆盖免耕、25 cm高茬等量秸秆翻压、小麦低茬收割翻耕, 秸秆还田量为单作4200 kg hm-2, 间作2100 kg hm-2, 以传统耕作的玉米-小麦轮作(单作)为对照。各处理3次重复, 小区随机排列。3种小麦秸秆还田方式均在小麦收获时进行设计, 单作小麦进行以上处理后轮作玉米, 单作玉米轮作小麦; 小麦/玉米间作为带间轮作, 在玉米出苗后, 二至三叶期间苗, 四至五叶期定苗。其他管理措施同高产田。 小麦季播种日期分别为2011年3月28日与2012年3月19日, 收获日期分别为2011年7月22日与2012年7月18日; 玉米季播种日期分别为2011年4月17日与2012年4月20日, 收获日期分别为2011年9月28日与2012年10月2日。单作播种密度, 小麦为675.00万株 hm-2, 玉米为8.25万株 hm-2, 玉米覆膜, 小区面积48 m2。间作的作物带宽均为80 cm, 小麦种6行, 行距12 cm, 播种密度为375.00万株 hm-2; 玉米种2行, 行距40 cm, 株距24 cm, 覆膜, 播种密度5.25万株 hm-2, 每个小区种3个自然带, 小区面积48 m2。 按当地农民习惯施肥。单作小麦, 施纯氮225 kg hm-2和P2O5 150 kg hm-2, 全作基肥; 单作玉米, 纯氮360 kg hm-2, 按播前︰大喇叭口期︰灌浆期3︰6︰1比例分施, P2O5225 kg hm-2全作基肥; 小麦间作玉米, 小麦带纯氮225 kg hm-2, P2O5150 kg hm-2, 全作基肥; 玉米带纯氮450 kg hm-2, 基追分配比例同单作玉米, P2O5270 kg hm-2, 全作基肥。不同种植模式灌溉制度如表1。其他管理措施同高产田。 表1 Table 1 表1(Table 1)
表1 不同种植模式的灌溉时期和灌溉量 Table 1 Irrigation stages and amounts of different cropping patterns (mm)
种植模式 Cropping pattern
越冬前 Before wintering
小麦 Wheat
小麦收获后 After wheat harvest
玉米 Maize
总量 Total
苗期 Seedling
孕穗期 Booting
灌浆期 Filling
开花期 Flowering
灌浆期 Filling
单作玉米 Monocropping maize
120
—
90
75
90
75
75
525
单作小麦 Monocropping wheat
120
75
90
75
—
—
—
360
小麦/玉米间作 Wheat/maize intercropping
120
75
90
75
90
75
75
600
表1 不同种植模式的灌溉时期和灌溉量 Table 1 Irrigation stages and amounts of different cropping patterns (mm)
表2 小麦/玉米间作体系不同耕作处理的土地当量比 Table 2 Land equivalent ratio of different tillage patterns in the wheat/maize intercropping system
处理 Treatment
2011
2012
高茬收割立茬免耕 NTSS
1.629 a
1.623 a
高茬等量秸秆覆盖免耕 NTS
1.621 a
1.618 a
高茬等量秸秆还田翻压 TIS
1.616 a
1.610 a
传统耕作 CT
1.539 b
1.576 a
Values within a column followed by different letters are significantly different at the 0.05 probability level. NTSS: no-tillage with 25 cm straw standing; NTS: no-tillage with 25 cm straw covering; TIS: tillage with 25 cm straw incorporation; CT: conventional tillage. 数据后不同字母表示在0.05概率水平下不同处理间差异显著。
表2 小麦/玉米间作体系不同耕作处理的土地当量比 Table 2 Land equivalent ratio of different tillage patterns in the wheat/maize intercropping system
表3 小麦收获后玉米的恢复效应 Table 3 Recovering effect of maize after wheat harvest in the wheat/maize intercropping under different tillage patterns
处理 Treatment
2011
2012
7/22-8/14
8/15-9/3
9/4-10/1
平均 Mean
7/17-8/11
8/12-9/3
9/4-10/1
平均 Mean
间作 Intercropping
高茬收割立茬免耕 NTSS
0.0081 c
0.0481 b
0.0239 a
0.0267 c
0.0124 c
0.0366 a
0.0227 b
0.0239 c
高茬等量秸秆覆盖免耕 NTS
0.0121 b
0.0471 b
0.0245 a
0.0279 b
0.0128 c
0.0374 a
0.0262 a
0.0255 b
高茬等量秸秆还田翻压 TIS
0.0134 b
0.0465 b
0.0206 b
0.0270 bc
0.0135 c
0.0389 a
0.0183 c
0.0235 c
传统耕作 CT
0.0132 b
0.0520 a
0.0248 a
0.0300 a
0.0175 b
0.0376 a
0.0262 a
0.0271 a
单作 Monocropping
高茬收割立茬免耕 NTSS
—
—
—
—
0.0170 b
0.0182 b
0.0112 d
0.0155 d
高茬等量秸秆覆盖免耕 NTS
—
—
—
—
0.0165 b
0.0174 b
0.0109 d
0.0149 d
高茬等量秸秆还田翻压 TIS
—
—
—
—
0.0209 a
0.0120 c
0.0107 d
0.0145 d
传统耕作 CT
0.0232 a
0.0134 c
0.0140 c
0.0168 d
0.0206 a
0.0155 b
0.0115 d
0.0159 d
Data are the average relative growth rates (RGR kg kg-1d-1) of three replicates. Values within a column followed by different letters are significantly different at the 0.05 probability level. Conventional tillage in monocropping treatment had two rotation plots of wheat-maize and maize-wheat patterns in 2011-2012. Treatments are abbreviated as in Table 1. 表中数据为相对生长率(RGR kg kg-1d-1), 3个小区的平均值, 数据后不同字母表示同一年度中所有处理在0.05概率水平下差异显著。单作为2011-2012两个生长季, 传统耕作有小麦-玉米和玉米-小麦两个轮作小区, 分别计算RGR。
表3 小麦收获后玉米的恢复效应 Table 3 Recovering effect of maize after wheat harvest in the wheat/maize intercropping under different tillage patterns
图1 不同耕作方式下小麦相对于玉米竞争力的动态 NTSS: 高茬收割立茬免耕; NTS: 高茬等量秸秆覆盖免耕; TIS: 高茬等量秸秆还田翻压; CT: 传统耕作。Fig. 1 Dynamics of competitiveness of wheat to maize in the intercropping system under different tillage patterns NTSS: no-till with straw standing; NTS: no-till with straw covering; TIS: tillage with straw incorporation, CT: conventional tillage.
图2 不同耕作方式下小麦间作玉米群体相对拥挤指数的动态 处理缩写同图1。Fig. 2 Dynamics of relative crowding coefficient in wheat/maize intercropping system under different tillage patterns Treatments are abbreviated as in Figure 1.
表4 不同处理小麦、玉米产量及产量构成 Table 4 The component factors on grain yield of wheat and maize under different treatments
处理 Treatment
小麦 Wheat
玉米 Maize
实际产量 HY (kg hm-2)
穗数 SN (m-2)
穗粒数 KNS
千粒重 TKW (g)
实际产量 HY (kg hm-2)
穗数 EN (m-2)
穗粒数 KNS
千粒重 TKW (g)
单作 Monocropping
高茬收割立茬免耕 NTSS
6700.5 ab
599.2 ab
27.3 b
43.9 b
13054.7 a
8.0 ab
542.4 a
355.3 a
高茬等量秸秆覆盖免耕 NTS
6858.3 a
612.3 a
29.5 a
45.9 a
13304.4 a
8.7 a
553.0 a
358.4 a
高茬等量秸秆还田翻压 TIS
6495.7 bc
572.1 bc
26.4 b
43.3 bc
12086.9 b
7.7 ab
480.7 b
341.3 ab
传统耕作 CT
W-M
6383.4 c
558.5 c
26.1 b
42.0 c
11716.3 b
7.4 b
441.1 c
329.6 b
M-W
6205.8
568.2
35.0
43.1
12706.4
7.9
513.9
323.1
间作2011 Intercropping in 2011
高茬收割立茬免耕 NTSS
5432.1 a
391.2 ab
34.0 a
47.3 a
10398.4 b
7.5 ab
456.6 ab
300.4 ab
高茬等量秸秆覆盖免耕 NTS
5192.9 b
409.3 a
32.1 b
45.0 b
10972.4 a
7.8 a
476.2 a
307.8 a
高茬等量秸秆还田翻压 TIS
5199.1 b
367.8 b
31.4 bc
44.6 b
10369.3 b
7.4 ab
443.0 b
293.9 ab
传统耕作CT
4899.1 c
357.6 b
29.6 d
42.3 c
9806.4 c
7.1 b
397.2 c
289.4 b
间作2012 Intercropping in 2012
高茬收割立茬免耕 NTSS
4991.3 a
319.3 b
36.4 a
49.3 a
10620.7 ab
7.5 ab
454.2 ab
348.8 ab
高茬等量秸秆覆盖免耕 NTS
4687.5 b
332.7 a
36.1 a
46.1 b
11376.9 a
7.8 a
467.8 a
355.0 a
高茬等量秸秆还田翻压 TIS
4771.5 b
310.5 bc
36.3 a
46.5 b
10172.9 b
7.2 b
441.1 b
332.5 c
传统耕作CT
4505.0 c
301.9 c
35.9 a
44.8 c
9856.6 b
7.1 b
394.3 c
325.8 c
Conventional tillage in monocropping treatment had two rotation plots of wheat-maize (W-M) and maize-wheat (M-W) patterns in 2011-2012. In each cropping system, except the M-W treatment due to different harvest years, values followed by different letters are significantly different at P< 0.05. Treatments are abbreviated as in Table 1. HY: harvest yield; SN: spike number; EN: ear number; KNS: kernel number per spike; TKW: thousand-kernel weight. 单作为2011-2012两个生长季, 传统耕作有小麦-玉米(W-M)和玉米-小麦(M-W)两个轮作小区。数据后不同字母表示同一种植模式内处理间有显著差异(P< 0.05), M-W小区测产年份与其他处理不同, 因此未作显著性测验。
表4 不同处理小麦、玉米产量及产量构成 Table 4 The component factors on grain yield of wheat and maize under different treatments
图3 小麦对玉米全生育期的平均竞争力与籽粒产量间的相关性Fig. 3 Relationship between competitiveness of wheat to maize during whole growth period and grain yield in intercropping systems
表5 小麦玉米共生期不同生育时期竞争力与籽粒产量的相关系数 Table 5 Correlation coefficients between seasonal competitiveness and grain yield in wheat/maize intercropping system
指标 Parameter
2011
2012
C2
C3
C4
C5
产量 Yield
C2
C3
C4
C5
产量 Yield
C1
0.333
0.422
0.499
0.677*
-0.519
-0.173
0.475
0.464
0.491
-0.050
C2
0.426
0.448
0.675*
-0.222
0.443
0.518
0.741*
-0.227
C3
0.869*
0.962*
-0.611*
0.253
0.605*
-0.598*
C4
0.846*
-0.564*
0.633*
-0.449
C5
-0.219
-0.239
C1-C5 indicate the competitiveness of wheat to maize at different growth stages. The sampling dates were May 8, May 28, June 24, July 9, and July 22 in 2011 and May 5, May 29, June 27, July 7, and July 17 in 2012. * Significant at the 0.05 probability level. C1~C5表示不同取样时期小麦对玉米的竞争力, 其中2011年度取样日期依次为5月8日、5月28日、6月24日、7月9日和7月22日, 2012年度取样日期依次为5月5日、5月29日、6月27日、7月7日和7月17日。* 表示0.05概率水平下显著。
表5 小麦玉米共生期不同生育时期竞争力与籽粒产量的相关系数 Table 5 Correlation coefficients between seasonal competitiveness and grain yield in wheat/maize intercropping system
Takim FO. Advantages of maize-cowpea intercropping over sole cropping through competition indices. , 2012, 1: 53-59[本文引用:1]
[3]
Vand ermeer JH. New York: Cambridge University Press, 1989[本文引用:1]
[4]
LiL, Sun JH, Zhang FS, Li XL, Yang SC, RengelZ. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. , 2001, 71: 123-137[本文引用:1][JCR: 2.474]
[5]
Tsay JS, FukaiS, Wilson GL. Effects of relative sowing time of soybean on growth and yield of cassava in cassava /soybean intercropping. , 1988, 19: 227-239[本文引用:1][JCR: 2.474]
[6]
WoldeamlakiA, BastiaansL, Struik PC. Competition and niche differentiation in barley (Hordeum vulgare) and wheat (Triticum aestivum) mixtures under rainfed conditions in the Central Highland s of Eritrea. , 2001, 49: 95-112[本文引用:1]
[7]
张海林, 高旺盛, 陈阜, 朱文珊. 保护性耕作研究现状、发展趋势及对策. , 2005, 10(1): 16-20Zhang HL, Gao WS, ChenF, Zhu WS. Prospects and present situation of conservation tillage. , 2005, 10(1): 16-20 (in Chinese with English abstract)[本文引用:1][CJCR: 0.686]
[8]
Sun HY, Shao LW, Liu XW, Miao WF, Chen SY, Zhang XY. Determination of water consumption and the water-saving potential of three mulching methods in a jujube orchard. , 2012, 43: 87-95[本文引用:1][JCR: 2.8]
[9]
MonneveuxP, QuillerouE, Sanchez1 C, Lopez-Cesati J. Effect of zero tillage and residues conservation on continuous maize cropping in a subtropical environment. , 2006, 279: 95-105[本文引用:2][JCR: 2.638]
[10]
Al-Kaisi MM, YinX. Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybean rotation. , 2005, 34: 437-445[本文引用:1][JCR: 2.353]
[11]
MarielaF, ClaudiaH, JorgeE, Fernand o DL, Armand oG, LucD, NeleV, BramG. Conservation agriculture, increased organic carbon in the top-soil macro-aggregates and reduced soil CO2 emissions. , 2012, 355: 183-193[本文引用:1][JCR: 2.638]
[12]
Cahill JF. Fertilization effects on interaction between above- and below-ground competition in an old field. , 1999, 80: 466-480[本文引用:1][JCR: 5.175]
[13]
Dhima KV, Lithourgidis AS, Vasilakoglou IB, Dordas CA. Competition indices of common vetch and cereal intercrops in two seeding ratio. , 2007, 100: 249-256[本文引用:2][JCR: 2.474]
[14]
Willey RW. Intercropping its importance and research needs: I. Competition and yield advantage. , 1979, 32: 1-10[本文引用:2]
[15]
LiL, Sun JH, Zhang FS, Li XL, RengelZ, Yang SC. Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. , 2001, 71: 173-181[本文引用:1][JCR: 2.474]
[16]
Zhang FS, LiL. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. , 2003, 248: 305-312[本文引用:1][JCR: 2.638]
[17]
Midmore MD, RocaJ, Berrios ID. Potato (Solanum spp. ) in the hot tropics: IV. Intercropping with maize and the influence of shade on potato microenvironment and crop growth. , 1988, 18: 145-157[本文引用:1][JCR: 2.474]
[18]
樊志龙, 陶志强, 柴强, 于爱忠, 黄鹏. 少耕秸秆覆盖对小麦间作玉米产量和水分利用的影响. , 2012, 31(1): 109-112Fan ZL, Tao ZQ, ChaiQ, Yu AZ, HuangP. Yield and water use efficiency of wheat corn intercropping with reduced tillage and wheat straw mulching. , 2012, 31(1): 109-112 (in Chinese with English abstract)[本文引用:1][JCR: 1.126]
[19]
Gao ZQ, YinJ. Effects of tillage and mulch methods on soil moisture in wheat fields of Loess Plateau, China. , 1999, 9: 161-168[本文引用:1][JCR: 1.232][CJCR: 0.8103]
[20]
DomzalH, Slowinska-JurkiewicaA. Effects of tillage and weather conditions on structure and physical properties of soil and yield of winter wheat. , 1987, 10: 225-241[本文引用:1][JCR: 2.367]
[21]
冯福学, 黄高宝, 于爱忠, 柴强, 陶明, 李杰. 不同保护性耕作措施对武威绿洲灌区冬小麦水分利用的影响. , 2009, 20: 1060-1065Feng FX, Huang GB, Yu AZ, ChaiQ, TaoM, LiJ. Effects of different conservation tillage measures on winter wheat water use in Wuwei oasis irrigated area. , 2009, 20: 1060-1065 (in Chinese with English abstract)[本文引用:1][CJCR: 1.742]
[22]
卜玉山, 苗果园, 邵海林, 王建程. 对地膜和秸秆覆盖玉米生长发育与产量的分析. , 2006, 32: 1090-1093Bu YS, Miao GY, Shao HL, Wang JC. Analysis of growth and development and yield of corn mulched with plastic film and straw. , 2006, 32: 1090-1093 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[23]
王喜庆, 李生秀, 高亚军. 地膜覆盖对旱地春玉米生理生态和产量的影响. , 1998, 24: 348-353Wang XQ, Li SX, Gao YJ. Effect of plastic film mulching on ecophysiology and yield of the spring maize on the arid land . , 1998, 24: 348-353 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[24]
齐万海, 柴强. 不同隔根方式下间作小麦玉米的竞争力及产量响应. , 2010, 18: 31-34Qi WH, ChaiQ. Yield response to wheat/maize competitiveness in wheat/maize intercropping system under different root partition patterns. , 2010, 18: 31-34 (in Chinese with English abstract)[本文引用:1]