关键词:种植方式; 栽培方式; 垄畦(厢)栽培; 垄宽; 厢宽 Effect of Ridge & Terraced Cultivation on Rice Yield and Root Trait ZHENG Hua-Bin1,2, YAO Lin2,3, LIU Jian-Xia2,3, HE Hui2,3, CHEN Yang1,2, HUANG Huang1,2,* 1College of Agronomy, Hunan Agricultural University, Changsha 410128, China
2Observation Station of Crop Cultivation Science in Central China, Ministry of Agriculture, Changsha 410128, China
3College of Bio-science & Technology, Hunan Agricultural University, Changsha 410128, China
Fund: AbstractA field experiment was conducted in Changsha city of Hunan Province in 2011 and 2012 to find out a cultivation technique of ridge & terraced cultivation (RTC) for improving rice yield and root trait. Super hybrid rice Yliangyou 1, hybrid rice Shanyou 63 and conventional rice Huanghuazhan were used in the mid-rice season. The cultivation patterns were designed as ridge & terranced cultivation (T1, ridge width 60 cm; T2, ridge width 120 cm), bed cultivation (T3, bed width 70 cm; T4, bed width 140 cm; T5, bed width 230 cm), and traditional cultivation (T0). The characteristics of grain yield formation and root character under different cultivation patterns were analyzed. Results showed that ridge & terraced cultivation (T1) and bed cultivation (T3) could increase grain yield compared with traditional cultivation (T0), T1 had the highest yield, which was 22.2% (17.1%-27.2%) higher than that of T0, the next was T3, with the yield 10.4% (5.8%-15.0%) higher than that of T0. However, increasing range of yield declined gradually with the increase of ridge width or bed width. The important reason for increasing yield by using the two cultivation techniques was higher effective panicles and spikelets per panicles, better root trait (root oxidation ability, root surface absorption area and soil porosity) and higher dry matter accumulation after full heading stage. Meanwhile, root anatomical structure showed that the thickness of root cortex was decreased and the size of root vascular cylinder and vessel areas was increased in RTC, so that the capacity of water absorption was enhanced.
Keyword:Planting pattern; Cultivation model; Bed cultivation; Ridge width; Bed width Show Figures Show Figures
图1 3种栽培模式的水分运动及损失路径的示意图a: 平作栽培模式; b: 垄作梯式栽培模式; c: 垄畦(厢)栽培方式。①植物蒸腾的水分损失; ②水面和棵间蒸发的水分损失; ③水分侧渗运动路径; ④地下渗透的水分损失。Fig. 1 A sketch of water movement & losses path among three cultivation modelsa: traditional cultivation model; b: ridge & terrace cultivation model; c: bed cultivation model. ①water loss via plant transpiration; ②water loss via water surface and soil evaporation; ③movement path of water lateral infiltration; ④water loss via underground infiltration.
2 结果与分析2.1 种植方式对水稻产量及产量构成的影响表1表明, 与平作栽培(T0)相比, 2年的试验表明T1和T3均可提高水稻产量, 但随着垄宽或厢宽的增加, 产量增幅逐渐下降。其中以T1的产量最高, 比T0平均增产22.2% (17.1%~27.2%), 其次T3平均增产了10.4% (5.8%~15.0%), 最后是T2、T4和T5。进一步分析其产量构成因子可知, T1的优势主要体现在有效穗数上, 与平作栽培相比, 平均增加15.4% (9.7%~21.1%), 每穗粒数、结实率和千粒重差异不显著; T3 (2011年)的优势则主要体现在有效穗数和每穗粒数上, 与T0相比, 分别平均增加12.4%和3.4%。 垄作梯式栽培随着垄宽的增加(60 cm→120 cm), 平均产量由T1的9.16 t hm-2(9.10~9.22 t hm-2)下降到T2的7.93 t hm-2 (7.62~8.25 t hm-2), 进一步分析其产量构成因子可知, 主要表现在有效穗数上, T1的有效穗比T2高18.8% (16.9%~20.8%), 其他产量构成差异不明显。垄厢栽培也表现出同样的现象(厢宽70 cm→140 cm→230 cm), 平均产量由T3的 8.28 t hm-2 (8.22~8.34 t hm-2)下降到T4的7.66 t hm-2 (7.62~7.69 t hm-2)和T5的7.58 t hm-2 (7.32~7.84 t hm-2), 进一步分析其产量构成因子可知, 主要表现在有效穗数上, T3的有效穗比T4高6.4% (0.7%~12.2%)和比T5高10.4% (6.9%~14.0%), 其他产量构成差异不明显。 2011年Y两优1号的产量显著高于汕优63; Y两优1号的结实率和收获指数显著高于汕优63, 但千粒重显著低于汕优63。 2.2 种植方式对干物质和叶面积的影响随着生育进程, 各种植方式的干物质积累量逐渐增大, 图2表明, 2年试验中以T1的干物质积累量最高, 成熟期平均为2068.7 g m-2(1898.8~2238.6 g m-2), 其次为T3的干物质积累量1701.4 g m-2 (1625.6~1777.1 g m-2)。进一步分析积累过程发现, 与T0相比, T1和T3生长前期(分蘖期至齐穗期)的干物质积累量占总干物质量比例分别低8.3% (3.2%~13.4%)和12.6% (4.0%~21.1%), 但生长后期(齐穗期至成熟期)则高8.3% (3.2%~13.4%)和12.6% (4.0%~21.1%)。垄作梯式栽培随着垄宽(60 cm→120 cm) 表1 Table 1 表1(Table 1)
表1 种植模式对水稻产量及产量构成的影响 Table 1 Effect of cropping pattern on rice yield and yield components
处理 Treatment
产量 Grain yield (t hm-2)
有效穗数 Effective panicles (m-2)
每穗粒数 Spikelets per panicle
粒重 Grain weight (mg)
结实率 Grain filling (%)
收获指数 HI
2011
T0
7.25 d
232.90 c
163.79 a
29.91 a
70.75 a
0.48 a
T1
9.22 a
282.14 a
168.22 a
29.81 a
68.44a b
0.48 a
T2
8.25 bc
241.43 c
168.45 a
30.16 a
68.54a b
0.48 a
T3
8.34 ab
261.87 b
169.43 a
30.01 a
66.39 ab
0.48 a
T4
7.62 bcd
233.38 c
165.45 a
30.03 a
66.04 ab
0.48 a
T5
7.32 cd
229.76 c
178.74 a
29.95 a
65.26 b
0.49 a
LSD0.05
0.962
20.082
15.515
0.427
5.112
0.0283
H
8.05 ab
245.16 a
171.49 a
28.88 b
67.41 ab
0.49 b
X
7.49 b
249.47 a
162.82 a
32.29 a
65.04 b
0.45 c
Y
8.46 a
246.10 a
172.73 a
28.76 b
70.26 a
0.51 a
LSD0.05
0.680
14.200
10.971
0.302
3.615
0.020
2012
T0
7.77 bc
259.5 b
148.76 ab
28.37 b
77.40 a
0.45 b
T1
9.10 a
284.6 a
152.08 a
29.38 ab
79.33 a
0.48 a
T2
7.62 c
235.6 c
148.09 ab
29.57 ab
77.70 a
0.46 ab
T3
8.22 b
258.6 b
146.73 ab
28.56 b
79.11 a
0.48 a
T4
7.69 c
256.9 b
139.08 b
30.16 a
77.78 a
0.47 ab
T5
7.84b c
242.0b c
154.48 a
29.42 ab
76.89 a
0.46 ab
LSD0.05
0.455
21.015
9.913
1.280
2.457
0.0294
H
8.00 a
276.6 a
151.61 a
26.29 c
80.67 a
0.49 a
X
8.04 a
237.9 c
142.29 b
31.77 a
80.17 a
0.45 b
Y
8.07 a
254.1 b
150.72 a
29.67 b
73.28 b
0.45 b
LSD0.05
0.322
14.859
7.010
0.905
2.750
0.016
种植方式T
***
***
ns
ns
ns
ns
品种V
*
*
*
***
ns
***
种植方式×品种T×V
ns
ns
ns
ns
ns
ns
T0: 平作栽培; T1、T2: 水稻垄作梯式栽培技术(依次为60 cm垄宽+5 cm沟、120 cm垄宽+10 cm沟); T3、T4、T5: 水稻垄厢栽培技术(依次为70 cm厢宽+20 cm厢沟; 140 cm厢宽+25 cm厢沟; 230 cm厢宽+35 cm厢沟)。H: 黄华占; X: 汕优63; Y: Y两优1号。数据后相同字母表示为差异不显著(LSD法)。***, *, ns分别表示差异在 P<0.001, P<0.05水平显著和不显著。 T0: traditional cultivation model; T1, T2: ridge & terrace cultivation model (T1: 60 cm ridge width + 5 cm ditch, T2: 120 cm ridge width + 10 cm ditch); T3, T4, T5: bed cultivation model (T3: 70 cm bed width + 20 cm ditch, T4: 140 cm bed width + 25 cm ditch, T5: 230 cm bed width + 35 cm ditch). H: Huanghuazhan; X: Shanyou 63; Y: Yliangyou 1. Data followed by the same letter are not significantly different according to LSD(0.05). ***, *, ns: significant at P<0.001, P<0.05, and not significant, respectively.
表1 种植模式对水稻产量及产量构成的影响 Table 1 Effect of cropping pattern on rice yield and yield components
的增加, 干物质积累量由T1的2068.7 g m-2 (1898.8~2238.6 g m-2)下降到T2的1550.2 g m-2 (1521.7~1587.6 g m-2), 垄厢栽培也表现出类似的趋势。两年结果表明齐穗期前汕优63的干物质积累量比Y两优1号和黄华占显著高23.6% (13.6%~36.7%), 但随着生育进程, 差异逐渐缩小, 成熟期汕优63、Y两优1号和黄华占的干物质积累量分别为1667.3、1722.05和1701.7 g m-2, 差异不显著。 垄作栽培能提高水稻生育前期叶面积的扩展, 与传统平作相比, T1和T2的叶面积指数分别高77.7% (463.%~109.1%)和10.4% (3.4%~17.3%), 但随着其他处理分蘖的增加, 叶面积逐渐增大, 处理间差异逐渐减小甚至消失。垄厢栽培的叶面积变化规律基本与T0保持一致。品种方面, 从分蘖期至齐穗期汕优63的叶面积指数均显著高于Y两优1号和黄华占(图2)。 图2 Fig. 2
图2 不同种植方式对水稻群体干物质和叶面积指数的变化MT: 分蘖期; PI: 幼穗分化期; FL: 齐穗期; FL+15: 齐穗后15 d; MA: 成熟期。其他缩写同表1。Fig. 2 Variation of dry matter and leaf area index (LAI) under different cultivation modelsMT: mid-tillering; PI: panicle initiation; FL: full heading; FL+15: 15 days after full heading; MA: maturity stage. Other abbreviations are the same as those given in Table 1.
Table 3 Effect of cultivation model on root α-NA oxidizing ability
处理Treatment
2011
2012
分蘖期a Mid-tilleringa
幼穗分化期 Panicle initiation
齐穗期 Full heading
分蘖期 Mid-tillering
幼穗分化期 Panicle initiation
齐穗期 Full heading
T0
17.3 a
30.2 ab
12.9 ab
—
19.8 a
7.2 bc
T1
16.6 a
32.6 ab
17.0 a
—
27.5 a
11.1 a
T2
16.9 a
31.4 b
11.4 ab
—
26.8 a
8.1 abc
T3
15.3 ab
50.9 a
17.5 a
—
28.8 a
7.2 bc
T4
13.0 b
36.0 ab
5.8 b
—
20.6 b
10.6 ab
T5
16.2 a
30.6 b
9.8 ab
—
—
10.6 ab
H
17.5 a
36.9 a
7.1 a
—
18.0 a
6.7 a
X
16.4 ab
28.4 a
16.5 a
—
12.0 a
10.2 a
Y
13.8 b
41.5 a
8.6 a
—
14.1 a
9.5 a
a: 用氯化三苯基四氮唑(TTC)法测定。数据后相同字母表示为差异不显著(LSD法)。缩写同表1。a: determined with triphenyltetrazolium chloride (TTC) method. Data followed by the same letter are not significantly different according to LSD(0.05). Abbreviations are the same as those given in Table 1.表4 表4
表4 种植方式对根表面吸附面积的影响 Table 4 Effect of different planting pattern on root surface absorption area
处理 Treatment
比表面积 Specific surface area (m2 cm-3)
活性吸附面积 Root active absorption area (m2 cm-3)
活性吸附面积比例 Percentage of root active absorption area (%)
分蘖期 MT
幼穗分化期 PI
齐穗期 FH
分蘖期 MT
幼穗分化期 PI
齐穗期 FH
分蘖期 MT
幼穗分化期 PI
齐穗期 FH
2011
T0
1.54 ab
1.54 a
1.58 ab
0.76 a
0.76 a
0.79 ab
49.31 a
49.56 ab
49.94 a
T1
1.52 ab
1.51 a
1.75 a
0.74 a
0.75 a
0.86 a
49.47 a
49.30 b
49.65 ab
T2
1.53 ab
1.52 a
1.70 ab
0.75 a
0.76 a
0.84 ab
49.64 a
49.39 ab
49.36 ab
T3
1.56 ab
1.52 a
1.53 b
0.75 a
0.77 a
0.76 b
49.49 a
49.22 b
49.31 ab
T4
1.50 a
1.56 a
1.54 ab
0.77 a
0.75 a
0.76 ab
49.59 a
49.22 b
49.28 ab
T5
1.57 a
1.53 a
1.55 ab
0.76 a
0.77 a
0.77ab
49.52 a
49.86 a
49.20 b
H
1.53 a
1.53 a
1.57 a
0.76 a
0.76 a
0.78 a
49.43 a
49.53 a
49.56 a
X
1.54 a
1.53 a
1.55 a
0.76 a
0.76 a
0.77 a
49.63 a
49.42 a
49.69 a
Y
1.54 a
1.54 a
1.66 a
0.76 a
0.76 a
0.82 a
49.42 a
49.37 a
49.14 a
2012
T0
1.69 a
1.58 a
1.58 a
0.84 a
0.79 a
0.79 a
49.74 ab
49.75 a
49.84 a
T1
1.59 a
1.58 a
1.58 a
0.79 a
0.79 a
0.80 a
49.57 b
49.73 a
49.72 a
T2
1.65 a
1.58 a
1.58 a
0.82 a
0.79 a
0.80 a
49.81 a
49.68 a
49.72 a
T3
1.69 a
1.58 a
1.58 a
0.84 a
0.79 a
0.78 a
49.60 ab
49.97 a
49.66 a
T4
1.58 a
1.58 a
1.58 a
0.79 a
0.79 a
0.79 a
49.81 a
49.77 a
49.74 a
T5
1.59 a
1.59 a
1.58 a
0.79 a
0.79 a
0.79 a
49.87 ab
49.81 a
49.62 a
H
1.58 b
1.58 a
1.58 a
0.79 b
0.79 a
0.79 a
49.69 a
49.72 a
49.71 a
X
1.72 a
1.58 a
1.58 a
0.79 b
0.79 a
0.78 a
49.78 a
49.77 a
49.80 a
Y
1.58 b
1.58 a
1.58 a
0.86 a
0.79 a
0.79 a
49.62 a
49.86 a
49.64 a
Table 3 Effect of cultivation model on root α-NA oxidizing ability
处理Treatment
2011
2012
分蘖期a Mid-tilleringa
幼穗分化期 Panicle initiation
齐穗期 Full heading
分蘖期 Mid-tillering
幼穗分化期 Panicle initiation
齐穗期 Full heading
T0
17.3 a
30.2 ab
12.9 ab
—
19.8 a
7.2 bc
T1
16.6 a
32.6 ab
17.0 a
—
27.5 a
11.1 a
T2
16.9 a
31.4 b
11.4 ab
—
26.8 a
8.1 abc
T3
15.3 ab
50.9 a
17.5 a
—
28.8 a
7.2 bc
T4
13.0 b
36.0 ab
5.8 b
—
20.6 b
10.6 ab
T5
16.2 a
30.6 b
9.8 ab
—
—
10.6 ab
H
17.5 a
36.9 a
7.1 a
—
18.0 a
6.7 a
X
16.4 ab
28.4 a
16.5 a
—
12.0 a
10.2 a
Y
13.8 b
41.5 a
8.6 a
—
14.1 a
9.5 a
表4 种植方式对根表面吸附面积的影响 Table 4 Effect of different planting pattern on root surface absorption area
处理 Treatment
比表面积 Specific surface area (m2 cm-3)
活性吸附面积 Root active absorption area (m2 cm-3)
活性吸附面积比例 Percentage of root active absorption area (%)
分蘖期 MT
幼穗分化期 PI
齐穗期 FH
分蘖期 MT
幼穗分化期 PI
齐穗期 FH
分蘖期 MT
幼穗分化期 PI
齐穗期 FH
2011
T0
1.54 ab
1.54 a
1.58 ab
0.76 a
0.76 a
0.79 ab
49.31 a
49.56 ab
49.94 a
T1
1.52 ab
1.51 a
1.75 a
0.74 a
0.75 a
0.86 a
49.47 a
49.30 b
49.65 ab
T2
1.53 ab
1.52 a
1.70 ab
0.75 a
0.76 a
0.84 ab
49.64 a
49.39 ab
49.36 ab
T3
1.56 ab
1.52 a
1.53 b
0.75 a
0.77 a
0.76 b
49.49 a
49.22 b
49.31 ab
T4
1.50 a
1.56 a
1.54 ab
0.77 a
0.75 a
0.76 ab
49.59 a
49.22 b
49.28 ab
T5
1.57 a
1.53 a
1.55 ab
0.76 a
0.77 a
0.77ab
49.52 a
49.86 a
49.20 b
H
1.53 a
1.53 a
1.57 a
0.76 a
0.76 a
0.78 a
49.43 a
49.53 a
49.56 a
X
1.54 a
1.53 a
1.55 a
0.76 a
0.76 a
0.77 a
49.63 a
49.42 a
49.69 a
Y
1.54 a
1.54 a
1.66 a
0.76 a
0.76 a
0.82 a
49.42 a
49.37 a
49.14 a
2012
T0
1.69 a
1.58 a
1.58 a
0.84 a
0.79 a
0.79 a
49.74 ab
49.75 a
49.84 a
T1
1.59 a
1.58 a
1.58 a
0.79 a
0.79 a
0.80 a
49.57 b
49.73 a
49.72 a
T2
1.65 a
1.58 a
1.58 a
0.82 a
0.79 a
0.80 a
49.81 a
49.68 a
49.72 a
T3
1.69 a
1.58 a
1.58 a
0.84 a
0.79 a
0.78 a
49.60 ab
49.97 a
49.66 a
T4
1.58 a
1.58 a
1.58 a
0.79 a
0.79 a
0.79 a
49.81 a
49.77 a
49.74 a
T5
1.59 a
1.59 a
1.58 a
0.79 a
0.79 a
0.79 a
49.87 ab
49.81 a
49.62 a
H
1.58 b
1.58 a
1.58 a
0.79 b
0.79 a
0.79 a
49.69 a
49.72 a
49.71 a
X
1.72 a
1.58 a
1.58 a
0.79 b
0.79 a
0.78 a
49.78 a
49.77 a
49.80 a
Y
1.58 b
1.58 a
1.58 a
0.86 a
0.79 a
0.79 a
49.62 a
49.86 a
49.64 a
Table 3 Effect of cultivation model on root α-NA oxidizing ability
a: 用氯化三苯基四氮唑(TTC)法测定。数据后相同字母表示为差异不显著(LSD法)。缩写同表1。 a: determined with triphenyltetrazolium chloride (TTC) method. Data followed by the same letter are not significantly different according to LSD(0.05). Abbreviations are the same as those given in Table 1.
种植方式对根表面吸附面积的影响 Table 4 Effect of different planting pattern on root surface absorption area
数据后相同字母表示为差异不显著(LSD法)。其他缩写同表1。 Data followed by the same letter are not significantly different according to LSD(0.05). MT: mid-tillering; PI: panicle initiation; FH: full heading. Other abbreviations are the same as those given in Table 1. 表5 Table 5 表5(Table 5)
表5 种植方式对根系孔隙度的影响(2011年) Table 5 Effect of planting pattern on soil porosity in 2011
处理 Treatment
分蘖期 Mid-tillering
幼穗分化期 Panicle initiation
齐穗期 Full heading
T0
16.68 a
16.69 a
13.98 c
T1
21.30 a
21.31 a
36.63 ab
T2
13.92 a
13.92 a
13.88 c
T3
19.17 a
19.16 a
39.65 a
T4
15.28 a
15.30 a
18.99 bc
T5
10.40 a
10.43 a
37.46 ab
H
17.80 a
17.81 a
24.64 b
X
16.84 a
16.84 a
15.06 b
Y
13.73 a
13.74 a
40.44 a
数据后相同字母表示为差异不显著(LSD法)。缩写同表1。 Data followed by the same letter are not significantly different according to LSD(0.05). Abbreviations are the same as those given in Table 1.
表5 种植方式对根系孔隙度的影响(2011年) Table 5 Effect of planting pattern on soil porosity in 2011
表6 种植方式对根横截面积和导管直径及面积的影响(Y两优1号, 齐穗期, 2011年) Fig. 6 Effect of cultivation model on root cross sectional areas and vessel diameter and areas in 2011 (Yliangyou 1 at full heading stage)
处理 Treatment
根横截面积 Root cross sectional areas (×106 μm2)
大导管直径 Large vessel diameter (μm)
小导管直径 Small vessel diameter (μm)
大导管面积 Large vessel areas (×104 μm2)
小导管面积 Small vessel areas (×103 μm2)
导管总面积 All vessel areas (×104 μm2)
T0
2.04 ab
48.3
15.7
0.96
2.38
1.19 c
T1
1.53 c
53.6
15.6
1.27
2.76
1.55 ab
T2
1.74 bc
53.8
17.3
1.28
3.48
1.63 a
T3
2.28 a
51.3
15.6
1.06
2.61
1.32 bc
T4
2.24 a
48.9
17.4
0.94
3.04
1.24 c
T5
2.16 ab
49.2
15.7
0.98
2.87
1.26 c
H
1.96 ab
53.6
16.3
1.21
3.10
1.52 a
X
1.79 b
49.8
14.2
1.04
1.96
1.24 b
Y
2.25 a
49.2
18.2
0.99
3.51
1.34 ab
数据后相同字母表示为差异不显著(LSD法)。缩写同表1。 Data followed by the same letter are not significantly different according to LSD(0.05). Abbreviations are the same as those given in Table 1.
表6 种植方式对根横截面积和导管直径及面积的影响(Y两优1号, 齐穗期, 2011年) Fig. 6 Effect of cultivation model on root cross sectional areas and vessel diameter and areas in 2011 (Yliangyou 1 at full heading stage)
图3 种植方式对水稻根表皮细胞排列的影响(Y两优1号, ×100, 齐穗期, 2011年)Fig. 3 Effect of cultivation mode on the arrangement rice root epidermal cells (Yliangyou 1, ×100, full heading stage, in 2011)
缩写同表1。Abbreviations are the same as those given in Table 1. 图4 Fig. 4
ArmstrongW, BeckettP M. Root aeration in unsaturated soil: A multi-shelled mathematical model of oxygen diffusion and distribution with and without sectoral wet-soil blocking of the diffusion path. , 1985, 100: 293-311[本文引用:1][JCR: 6.736]
[2]
邓丹, 吴可为, 邓泓. 根区通氧状况对水稻幼苗生长及吸收镉的影响. , 2009, 29: 2520-2526DengD, WuK W, DengH. Effects of root zone oxygenation on growth and Cd accumulation in paddy rice (Oryza sativa L. ). , 2009, 29: 2520-2526 (in Chinese with English abstract)[本文引用:1]
[3]
赵锋, 徐春梅, 张卫建, 章秀福, 程建平, 王丹英. 根际溶氧量与氮素形态对水稻根系特征及氮素积累的影响. , 2011, 25: 195-200ZhaoF, XuC M, ZhangW J, ZhangX F, ChengJ P, WangD Y. Effects of rhizosphere dissolved oxygen and nitrogen form on root characteristics and nitrogen accumulation of rice. , 2011, 25: 195-200 (in Chinese with English abstract)[本文引用:1][CJCR: 1.494]
[4]
章秀福, 王丹英, 屈衍艳, 李华. 垄畦栽培水稻的植株形态与生理特性研究. , 2005, 31: 742-748ZhangX F, WangD Y, QuY Y, LiH. Morphological and physiological characteristics of raised bed-cultivated rice. , 2005, 31: 742-748 (in Chinese with English abstract)[本文引用:2][CJCR: 1.667]
[5]
章秀福, 王丹英, 邵国胜. 垄畦栽培水稻的产量、品质效应及其生理生态基础. , 2003, 17: 343-348ZhangX F, WangD Y, ShaoG S. Effects of rice ridge cultivation on grain yield and quality and its physiological and ecological mechanisms. , 2003, 17: 343-348 (in Chinese with English abstract)[本文引用:2][CJCR: 1.494]
王法宏, 杨洪宾, 徐成忠, 李升东, 司纪升. 垄作栽培对小麦植株形态和产量性状的影响. , 2007, 33: 1038-1040WangF H, YangH B, XuC Z, LiS D, SiJ S. Effect of raised bed planting on plant morphological characters and grain yield of winter wheat. , 2007, 33: 1038-1040 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[8]
任小龙, 贾志宽, 陈小莉, 韩娟, 韩清芳, 丁瑞霞. 半干旱区沟垄集雨对玉米光合特性及产量的影响. , 2008, 34: 838-845RenX L, JiaZ K, ChenX L, HanJ, HanQ F, DingR X. Effects of ridge and furrow planting for rainfall harvesting on photosynthetic characteristics and yield in corn in Semi-Arid Regions. , 2008, 34: 838-845 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[9]
李儒, 崔荣美, 贾志宽, 韩清芳, 路文涛, 侯贤清. 不同沟垄覆盖方式对冬小麦土壤水分及水分利用效率的影响. , 2011, 44: 3312-3322LiR, CuiR M, JiaZ K, HanQ F, LuW T, HouX Q. Effects of different furrow-ridge mulching ways on soil moisture and water use efficiency of winter wheat. , 2011, 44: 3312-3322 (in Chinese with English abstract)[本文引用:2][CJCR: 1.889]
[10]
赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业与科技出版社, 2002ZhaoS J, ShiG A, DongX C. Laboratory Guide for Plant Physiology. Beijing: China Agricultural Science and Technology Press, 2002 (in Chinese)[本文引用:1]
[11]
ColmerT D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland , paddy and deep-water rice (Oryza sativa L. ). , 2003, 91: 301-309[本文引用:1][JCR: 0.657]
[12]
DasD K, JatR L. Influence of three soil water regimes on root porosity and growth of four rice varieties. , 1977, 69: 197-210[本文引用:1][JCR: 1.518]
[13]
PezeshkiS R, DelauneR D. Responses of Spartina alterniflora and Spartina patens to rhizosphere oxygen deficiency. , 1996, 17: 365-378[本文引用:1][JCR: 1.621]
[14]
敖和军, 王淑红, 邹应斌, 彭少兵, 唐启源, 方远祥, 肖安民, 陈玉梅, 熊昌明. 超级杂交稻干物质生产特点与产量稳定性研究. , 2008, 41: 1927-1936AoH J, WangS H, ZouY B, PengS B, TangQ Y, FangY X, XiaoA M, ChenY M, XiongC M. Study on yield stability and dry matter characteristics of super hybrid rice. , 2008, 41: 1927-1936 (in Chinese with English abstract)[本文引用:1][CJCR: 1.889]
[15]
杨建昌, 王朋, 刘立军, 王志琴, 朱庆森. 中籼水稻品种产量与株型演进特征研究. , 2006, 32: 949-955YangJ C, WangP, LiuL J, WangZ Q, ZhuQ S. Evolution characteristics of grain yield and plant type for mid-season indica rice cultivars. , 2006, 32: 949-955 (in Chinese with English abstract)[本文引用:1][CJCR: 1.667]
[16]
MohapatraP K, SahuS K. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches. , 1991, 42: 871-879[本文引用:1][JCR: 5.242]
[17]
高良艳, 周鸿飞. 水稻产量构成因素与产量的分析. , 2007, (1): 26-28GaoL Y, ZhouH F. Relationship between yield component factors and yield in rice. , 2007, (1): 26-28 (in Chinese with English abstract)[本文引用:1][CJCR: 0.3962]