删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于频控阵的稳健Capon波束形成*

本站小编 Free考研考试/2021-12-25

近年来,相控阵由于其灵活的波束扫描方式,被广泛应用于通信、雷达以及导航系统等方面[1]。但是相控阵的波束导向矢量在相同角度不同距离上是固定的[2],即相控阵仅具有角度分辨力,不具有距离分辨力。为了克服这种缺点,频控阵(Frequency Diverse Array,FDA)在2006年的国际雷达会议上第一次被提出[3]。这种阵列通过在阵元间引入相对于载频十分微小的频率增量,使阵列的方向图空间分布距离-角度二维相关,从而使阵列具有更大的应用潜力,如对距离依赖干扰的抑制,对相同角度不同距离的目标的定位及跟踪等。
FDA一经提出就引起广泛的关注,大量文献对其结构特性进行了分析研究。文献[4]对FDA方向图的时间与角度的周期性进行研究; 文献[5-6]指出FDA与正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)[7-8]和多输入多输出(Multiple-Input Multiple-Output,MIMO)[9-10]不同,是一种体制的创新,由于阵元间频偏这一自由度的扩展,从而使阵列的方向图随距离、角度、时间变化,从而具有了距离依赖干扰抑制能力,新的雷达可控自由度催生更先进的信号处理技术。
干扰是现代雷达完成探测任务面临的严峻挑战,FDA的诞生为抑制干扰提供了新的思路,文献[11]将FDA与MIMO结合,并提出一种基于直接数据域的稳健波束形成方法,从而区分出目标和干扰信号。文献[12]提出一种基于样本选择的欺骗干扰抑制方法,在一定条件下能够对抗主瓣干扰。
自适应波束形成是阵列信号处理的一个主要方面[13],常规Capon波束形成器能够有效接收目标信号并抑制干扰,但前提是目标方向准确已知,而实际应用中,导向矢量误差的存在及有限的样本导致波束形成器性能严重下降。为了解决上述问题,国内外****提出了许多改进的自适应波束形成算法。对角加载算法能够提高常规Capon波束形成器的稳健性,但加载系数难以确定[14]。基于特征空间的波束形成算法能够减缓常规波束形成器对指向误差的敏感性,但在低信噪比条件下,信号-干扰子空间难以正确估计导致算法性能下降[15]。文献[16]提出一种基于不确定集约束的波束形成方法,该方法将导向矢量限定在一个椭圆形的不确定集内,可以证明这种方法属于对角加载范畴,区别在于加载系数与导向矢量误差产生联系,通过求解不确定集选择合适的加载系数,对于导向矢量失配具有稳健性。
目前对于自适应波束形成的研究主要是基于相控阵进行,对于FDA自适应波束形成很少涉及。因此,本文基于FDA这一新的雷达体制,采用文献[17]中所给出的3种FDA接收信号处理机制,考虑到距离不确定性带来的导向矢量失配问题,比如目标运动造成距离测不准等,运用稳健Capon波束形成(RCB)算法,分析在指向误差存在情况下算法的稳健性。
1 FDA信号模型 1.1 FDA发射信号 假设一均匀线阵频控阵列(ULA-FDA),每个阵元的物理性质完全相同,但阵元的频率依次递增,其结构如图 1所示。
图 1 均匀线阵FDA Fig. 1 Uniform linear array frequency diverse array
图选项




窄带条件下,各阵元发射信号可表示为
(1)

式中:发射频率fn=f0+nΔf, n=0, 1, …, N-1,f0、ΔfN分别为载频、频偏和阵元总数。
设空间中一个目标到阵元0的斜距为R0,角度为θ,阵元n发射的信号到达目标的信号可表示为
(2)

式中:Rn=R0ndsin θd为阵元间距;c为光速。
为使阵列的波束指向目标位置,采用移相器加权,第n通道的权系数为
(3)

则到达目标的信号可表示为
(4)

式中:wt为发射阵列通道权矢量,即
(5)

s(t, θ, R0)为信号构成的矢量,即
(6)

可以得到
(7)

式中:ωcdfc/c;exp(jΦ0)包含阵列信号的相位信息,这里不作讨论。图 2为ULA-FDA的发射方向图,参数如表 1所示。
图 2 ULA-FDA发射方向图 Fig. 2 Transmitting beampattern of ULA-FDA
图选项




表 1 仿真参数 Table 1 Simulation parameters
参数 数值
ULA-FDA阵元总数N 12
载频f0/GHz 10
频偏Δf/kHz 4.5
阵元间距d c/(2f0)
目标位置 (30°, 50 km)


表选项






1.2 FDA接收信号 根据1.1节分析,通道n发射的信号经过加权到达远场目标后,反射回到接收阵列,则FDA第m通道接收的回波信号可表示为
(8)

式中:阵列的发射阵元与接收阵元数相同。
2 三种接收信号处理机制 2.1 第1种接收信号处理机制 这种接收信号处理机制的接收通道中,每个阵元接收所有发射阵元的信号信息,通过接收通道中加入的滤波器hm(1)(fm),使第m接收通道只允许载频为fm的发射信号通过,再经过波束形成器调整各通道的权矢量,最终得到期望的信号,回波信号经过滤波器后为
(9)

然后,对各个通道进行加权,其中接收通道权矢量为
(10)

则可以得到输出信号为
(11)

2.2 第2种接收信号处理机制 这种接收信号处理机制通过在接收通道中加入滤波器h(2)(f0~fN-1),从而接收每一个接收通道中的所有信号,此时接收信号权矢量wr(2)与第1种接收信号权矢量相同,在滤波器后同样接入波束形成器,调整各通道的权矢量,则经过滤波器后的信号为
(12)

再对接收信号通过权矢量w(2)r加权,得到输出信号为
(13)

2.3 第3种接收信号处理机制 这种接收信号处理机制是3种机制中最有效率的一种,通过在接收通道中加入滤波器组Hm,每一个滤波器组中包含N个窄带滤波器hn,每一个窄带滤波器hn后接入波束形成器并做矢量合成。这种处理机制可以看作在每个接收通道中接入了滤波器hnm(3)(fnm),接收每一个接收通道中的所有信号,对接收到的信号按照通道编号进行重排,可得到一组N×N的数据,由此可得到经过滤波器的回波信号为
(14)

对于重排后的接收信号权矢量为
(15)

式中:
(16)

(17)

再对信号通过权矢量wr(3)加权,得到输出信号为
(18)

经过变形,可得第3种处理机制的闭式解为
(19)

3 稳健Capon波束形成算法 波束形成功能的实现有一个重要前提,就是目标位置与干扰位置必须精确已知。但在实际应用中,由于估计的期望信号位置存在偏差,即存在指向误差,会使目标的导向矢量存在失配,进而引起波束形成器性能的下降,甚至失效[18]。为了解决导向矢量失配的问题,本文采用Li等[16]提出的稳健的Capon波束形成模型,并对其给出闭式解,得到修正后的目标导向矢量。模型可表示为
(20)

式中:‖·‖表示二范数;ε为限定导向矢量最大失配量;as为真实的导向矢量;为估计的导向矢量; R为样本协方差矩阵。对式(20)应用拉格朗日乘子法求解,则可得到
(21)

其中:λ为拉格朗日乘子,将式(21)变形为
(22)

接收信号的样本协方差矩阵可分解为
(23)

式中:Q为干扰个数;σs2为期望信号功率;σJk2aJk(k=1, 2, …, Q)分别为第k个干扰信号的功率和导向矢量;σn2为噪声功率。结合式(22)、式(23),采用矩阵求逆定理,可以得到
(24)

对干扰加噪声数据协方差矩阵特征分解得
(25)

式中:ΛJ=diag{β1, β2,…,βQ}为干扰子空间特征值矩阵; UJ=[μ1, μ2, …, μQ]为干扰子空间特征向量; Un=[μQ+1, μQ+2, …, μN]为噪声子空间特征向量。一般情况下,干扰的强度远大于噪声,目标信号导向矢量在干扰子空间的投影很小,可得到
(26)

其中:p为正整数;an=UnHas为真实目标信号导向矢量在噪声子空间的投影。同理
(27)

式中:为估计的目标信号导向矢量在噪声子空间的投影。将式(26)和式(27)代入式(24)得
(28)

式中:。当ε较小时可得
(29)

代入式(28)可得
(30)

因此,可以得到修正后的目标导向矢量估计值
(31)

利用求出的修正后的导向矢量解析解,替换常规Capon波束形成器中的目标信号导向矢量,可得到对应权矢量为
(32)

4 仿真分析 仿真1??3种接收信号处理机制的接收方向图
实验的基本参数与1.1节发射方向图相同,如图 3所示,图中绿点代表目标位置。从仿真结果可以看出,第1种和第3种接收信号处理机制都在目标位置形成了高增益,处理机制有效,而第2种处理机制未能在目标位置形成高增益,即主瓣位置发生偏移,不能有效接收目标信号,处理机制不具有实际意义。第3种处理机制相对于第1种处理机制而言,波束的高增益更集中,更有利于目标信号的接收,避免引入其他干扰及噪声。
图 3 不同处理机制接收方向图(仿真1) Fig. 3 Receiving beampattern of different processing mechanism (Simulation 1)
图选项




仿真2??第1种、第3种处理机制存在误差时的性能
由于第2种处理机制不具有实际意义,不作讨论。图 4仿真的是存在指向误差,未使用波束形成算法,第1种、第3种处理机制下的接收方向图。从图中可以看出,当存在指向误差时,目标的导向矢量失配,2种机制都未能在目标位置形成高增益,波束主瓣发生偏移,在这种情况下,信号处理机制性能下降。
图 4 不同处理机制接收方向图(仿真2) Fig. 4 Receiving beampattern of different processing mechanism (Simulation 2)
图选项




仿真3??RCB算法在第1种、第3种处理机制中的应用考虑空间中一个干扰信号位于(-65°,90 km),在强干扰环境下,令信噪比SNR=0,干噪比JNR=10 dB,快拍数为500,最大失配参数ε=2.5,目标的距离、角度估计误差分别为ΔR=1 km,Δθ=2°。图 5仿真的是误差存在时,利用RCB算法,在第1种处理机制下的发射、接收、发射-接收方向图,图 6为在目标位置处,距离维和角度维的发射-接收方向图。
图 5 基于RCB的发射、接收和发射-接收方向图(机制1) Fig. 5 Transmitting, receiving and transmitting-receiving beampattern based on RCB (Mechanism 1)
图选项




图 6 目标位置距离维和角度维发射-接收方向图(机制1) Fig. 6 Transmitting-receiving beampattern of range dimension and angle dimension at target position (Mechanism 1)
图选项




图 5图 6可以看出,利用第1种处理机制,在误差存在情况下,应用RCB算法能够在目标位置形成高增益,在干扰位置形成零陷,验证了算法在第1种处理机制的有效性。
同理,可以得到第3种处理机制下的发射、接收、发射-接收方向图,目标位置距离维和角度维的发射-接收方向图,如图 7图 8所示。
图 7 基于RCB的发射、接收和发射-接收方向图(机制3) Fig. 7 Transmitting, receiving and transmitting-receiving beampattern based on RCB (Mechanism 3)
图选项




图 8 目标位置距离维和角度维发射-接收方向图(机制3) Fig. 8 Transmitting-receiving beampattern of range dimension and angle dimension at target position (Mechanism 3)
图选项




图 7图 8可以看出,RCB算法在第3种处理机制下的有效性。实际上,第3种机制属于FDA-MIMO范畴,而FDA-MIMO雷达在实际中的合理性和可行性,已经被大多数****所接受,而第1种处理机制在实际应用中功率损失严重,可行性受限。
5 结论 本文介绍了ULA-FDA的结构,仿真说明了其发射方向图的距离-角度二维相关特性。
1) 引入了3种接收信号处理机制,对其结构进行理论推导及分析,仿真结果验证了第1种、第3种处理机制的有效性,并在此基础上,引申到在指向误差存在的情况下,即估计的目标导向矢量与真实的目标导向矢量存在偏差。
2) 应用稳健的Capon波束形成算法,对估计的目标导向矢量进行“纠偏”,使波束在目标位置形成高增益,仿真结果验证了算法的有效性。

参考文献
[1] WANG W Q. Subarray-based frequency diverse array radar for target range-angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3057-3067. DOI:10.1109/TAES.2014.120804
[2] GAO K D, WANG W Q, CAI J Y, et al. Decoupled frequency diverse array range-angle-dependent beampattern synthesis using non-linearly increasing frequency offsets[J]. IET Microwaves, Antennas & Propagation, 2016, 10(8): 880-884.
[3] ANTONIK P, WICKS M C, GRIFFITHS H D, et al.Frequency diverse array radars[C]//Proceedings of the IEEE Radar Conference.Piscataway, NJ: IEEE Press, 2006: 215-217.
[4] SECMEN M, DEMIR S, HIZAL A, et al.Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]//Proceedings of the IEEE Radar Conference.Piscataway, NJ: IEEE Press, 2007: 427-430.
[5] WANG W Q. Overview of frequency diverse array in radar and navigation applications[J]. IET Radar, Sonar & Navigation, 2015, 10(6): 1001-1012.
[6] WANG W Q. Frequency diverse array antenna:New opportunities[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 145-152. DOI:10.1109/MAP.2015.2414692
[7] WANG Z B, TIGREK F, KRASNOV O, et al. Interleaved OFDM radar signals for simultaneous polarimetric measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2085-2099. DOI:10.1109/TAES.2012.6237580
[8] ZHANG T X, XIA X G, KONG L J. IRCI free range reconstruction for SAR imaging with arbitrary length OFDM pulse[J]. IEEE Transactions on Signal Process, 2014, 62(18): 4748-4759. DOI:10.1109/TSP.2014.2339796
[9] AHMED S, ALOUINI M S. MIMO-radar waveform covariance matrix for high SINR and low side-lobe levels[J]. IEEE Transactions on Signal Process, 2014, 62(8): 2056-2065. DOI:10.1109/TSP.2014.2307282
[10] CUI G L, LI H B, RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 343-353. DOI:10.1109/TSP.2013.2288086
[11] XU J W, XU Y H, LIAO G S.Direct data domain based adaptive beamforming for FDA-MIMO radar[C]//Proceedings of IEEE Statistical Signal Processing Workshop.Piscataway, NJ: IEEE Press, 2016: 1-5.
[12] XU J W, KANG J L, LIAO G S, et al.Mainlobe deceptive jammer suppression with FDA-MIMO radar[C]//Proceedings of IEEE 10th Sensor Array and Multichannel Signal Processing Workshop.Piscataway, NJ: IEEE Press, 2018: 504-508.
[13] 张小飞, 陈华伟, 仇小锋, 等. 阵列信号处理及MATLAB实现[M]. 北京: 电子工业出版社, 2015: 50-55.
ZHANG X F, CHEN H W, QIU X F, et al. Array signal processing and MATLAB implementation[M]. Beijing: Publishing House of Electronics Industry, 2015: 50-55. (in Chinese)
[14] XU J W, LIAO G S, ZHU S Q.Robust adaptive beamforming based on response vector optimization[C]//Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing.Piscataway, NJ: IEEE Press, 2014: 6043-6046.
[15] FENG Y, LIAO G S, XU J W, et al. Robust adaptive beamforming against large steering vector mismatch using multiple uncertainty sets[J]. Signal Processing, 2018, 152: 320-330. DOI:10.1016/j.sigpro.2018.06.017
[16] LI J, STOICA P, WANG Z S. On robust Capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702-1715. DOI:10.1109/TSP.2003.812831
[17] JONES A M, RIGLING B D.Frequency diverse array radar receiver architectures[C]//2012 International Waveform Diversity & Design Conference.Piscataway, NJ: IEEE Press, 2012: 211-217.
[18] 陈明建, 罗景青, 唐希雯, 等. 最差性能最优的稳健宽带Capon波束形成算法[J]. 宇航学报, 2013, 34(3): 434-441.
CHEN M J, LUO J Q, TANG X W, et al. Robust broadband Capon beamforming algorithm based on worst case performance optimization[J]. Journal of Astronautics, 2013, 34(3): 434-441. DOI:10.3873/j.issn.1000-1328.2013.03.020 (in Chinese)


相关话题/信号 干扰 空间 文献 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 动力涡轮转子结构系统力学特性稳健设计方法*
    涡轴/涡桨发动机动力涡轮转子是具有大长径比、多支点支承、质量/刚度分布不均匀的高速转子结构系统,其连接结构力学特性和支承刚度在工作过程中的分散性直接影响转子系统动力特性的稳健性。由于动力涡轮转子工作转速一般位于弯曲振型临界转速之上,故称为高速柔性转子系统[1]。连接结构力学特性随载荷环境改变,由此引 ...
    本站小编 Free考研考试 2021-12-25
  • 航空发动机转子结构布局优化设计方法*
    目前,中国航空燃气涡轮发动机的研制正处于从测绘仿制到自主研发的过渡发展阶段,由于对结构设计的基础理论研究不足,在设计上大多依赖于传统的工程设计经验。而对于一台高性能、高可靠性的航空发动机来讲,单纯依靠长期积累的设计经验或测绘仿制不能满足其先进性的需求。所谓布局优化设计,即是结构构型的合理设计,只有合 ...
    本站小编 Free考研考试 2021-12-25
  • 一种新的非高斯随机振动信号的模拟方法*
    工程中常将随机振动信号假设服从高斯分布[1-2],并且通过功率谱密度(PSD)作为试验条件。然而实际中,结构所受到的振动激励很多不满足高斯分布的假设,比如路面载荷[3]、加载在结构上的波浪载荷[4]以及输电线系统受到的风载[5],而PSD仅仅可以表征信号的低阶统计量,不能够完全表征其高阶统计量,并且 ...
    本站小编 Free考研考试 2021-12-25
  • 基于空间两点的视觉自主着陆导引算法设计*
    垂直起降无人机(UAVofthetypeVerticalTakeOffandLanding,VTOLUAV)被越来越广泛地运用到动目标跟踪、紧急着降以及危险救援等任务[1-2]中,这对其导引效率与精度要求越来越高[3]。由于GPS信号的局限性,基于视觉传感器的导引方式受到了越来越多的关注[4-5]。 ...
    本站小编 Free考研考试 2021-12-25
  • 芯片互联结构断裂失效的试验研究与统计分析*
    电子设备在军事及航空航天领域应用越来越广泛,其可靠性要求也不断提高。随着集成电路的设计技术和制造水平的提升,大型电子设备集成度越来越高,功能越来越复杂[1-2]。同时,电子芯片技术也得到了迅猛的发展,芯片越来越小型化、集成化,其内部的互联结构,即焊点的数目众多且尺寸微小。焊点作为起机械支撑和电气连接 ...
    本站小编 Free考研考试 2021-12-25
  • 基于改进的动态Kriging模型的结构可靠度算法*
    当现有的可靠性分析方法应用于复杂的工程结构时,往往面临巨大的挑战[1],功能函数通常是高度非线性甚至是隐式的,而且需要借助有限元分析(FiniteElementAnalysis,FEA)进行评估,计算量大,计算时间长[2-3]。一阶可靠度算法(FirstOrderReliabilityMethodo ...
    本站小编 Free考研考试 2021-12-25
  • 基于航路点布局的多目标网络结构优化方法*
    中国空域呈现碎片化、多元化特征,且部分区域航路网络结构与飞行流量分布的矛盾十分突出[1]。为了规避障碍空域,同时避免因节点失效而导致的网络崩溃,需进行航路网络结构优化。航路网络结构优化指通过调整航路点及航段的数量和位置以改变原有网络的性质和布局,从而实现优化目标[2]。根据规模大小,航路网络结构优化 ...
    本站小编 Free考研考试 2021-12-25
  • 高速转子连接结构刚度损失及振动特性*
    现代航空发动机为了控制结构质量在总体布局上采取了多种措施。涡轴发动机为减少支点和承力框架,多采用涡轮级间共用承力框架,使得燃气发生器转子多采用1-0-1大跨度支承方案。高转速大跨度的燃气发生器转子的工作转速位于多阶临界转速以上,且最大工作转速靠近弯曲临界,在工作过程中会产生一定的弯曲变形,为准刚性转 ...
    本站小编 Free考研考试 2021-12-25
  • 航空发动机承力结构隔振设计方法及试验*
    随着航空发动机推重比/功重比的不断提高,转子承力结构设计愈发轻质化,更多使用薄壁板壳结构,使其振动模态更加密集复杂并表现出一定的几何非线性[1]。同时承力结构在工作时承受多种振动载荷(如转子不平衡激励、传动齿轮啮合的机械激励等),具有复杂的振动特征。在多频交互激励的振动环境下,承力结构自身以及分布其 ...
    本站小编 Free考研考试 2021-12-25
  • 氢氧发动机真空羽流干扰试验研究*
    航天器在执行飞行任务时,往往需要使用多台发动机共同工作提供更大推力或实现复杂机动,例如高空火箭配备的发动机组、卫星平台的推力器阵列等。距离不太远的多台发动机同时工作时产生的多股羽流在膨胀过程中发生气体相互碰撞、流场形态改变、气流参数变化的现象,称为羽流干扰(或羽流相互作用)。羽流干扰会造成羽流流场结 ...
    本站小编 Free考研考试 2021-12-25