删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于UMAC的RBF神经网络PID控制*

本站小编 Free考研考试/2021-12-25

精密装配过程中,装配动作需要多伺服运动轴协同工作,同时要求各运动轴运动准确度和精度高,响应时间快。通用电机运动控制器(Universal Motion and Automation Controller, UMAC)是一款强大、灵活和易用的可编程多轴运动控制器,其能广泛地满足从最简单到对性能要求极高的应用场合,如准确度、精度、速度、功率、是否组合或独立等要求。因此,UMAC广泛应用于机器人控制、食品加工、机床、印刷、激光切割、自动焊接等[1-2]。目前,将高性能的UMAC引入到精密装配系统进行协同装配的研究正受到越来越多的关注。
UMAC对精密伺服运动轴的控制主要采用传统的PID控制,这种控制方法原理比较简单,使用起来相对方便;同时它具有一定的自适应性和鲁棒性,常常被应用于各类工业环境[3-4]。然而,精密伺服运动控制场合对控制品质要求高,传统的PID控制很难适应由运动结构变化引起参数摄动、蠕变等,再加上运动系统负载的变化和干扰的存在,使获取高的控制品质变得更加困难[5-6]。针对这一问题,目前主要采用的方法是将模糊理论引入到UMAC的PID参数调节上,优化原传统的PID控制器,提高伺服系统控制品质。如白晶、王克选等将模糊控制与传统的PID控制相结合,设计了一种模糊PID控制器,基于被控对象的实时状态来动态调节PID控制器的参数[7-9]。模糊PID控制在一定程度上加强了系统的自适应性和鲁棒性,提高了被控系统的动静态性能,然而该方法在隶属度函数的选取方面需要经验,其使用规则比较复杂。
为了解决目前控制方法下系统自适应性和鲁棒性不强,动静态性能不理想的问题,本文提出了将径向基函数(RBF)神经网络引入到UMAC中PID控制器的参数调节上。RBF神经网络是一种高效的前馈式神经网络,其具有强大的非线性映射能力,同时能够自主学习、调整自适应于环境变化。在对模型进行训练的过程中,它能最佳地逼近于实际(线性/非线性)模型并获取全局最优解。同时,相较于模糊理论,不需要隶属度函数调节经验并且使用规则简便,因此被广泛应用于模型预测[10-12]
在利用RBF神经网络PID进行控制的过程中,本文首先利用RBF神经网络对被控对象模型进行实时动态预测,然后根据预测结果对UMAC的PID控制器的3个参数Kp(比例增益Ixn30)、Ki(积分增益Ixn33)、Kd(微分增益Ixn31)进行动态调整,实现了伺服系统的自适应性和鲁棒性加强,以及动静态性能的提高。
1 系统描述 1.1 基于UMAC的伺服系统 图 1为基于UMAC的伺服系统结构。在该系统中,工控机负责向UMAC发送位置控制指令,UMAC负责接收伺服电机实际位置和指令位置,做差值比较并向伺服驱动器发送伺服电机转动方向和脉冲信息,驱动设备则根据脉冲和方向信息对信号进行SVPWM调制,驱动伺服电机转动。
图 1 基于UMAC的伺服系统结构 Fig. 1 Structure of servosystem based on UMAC
图选项




1.2 PMSM数学模型及仿真模型的建立 PMSM数学模型是在不影响控制性能前提下,忽略电机铁心的饱和,永磁材料导磁率为零,不计涡流和磁滞损耗,三相绕组是对称均匀的,绕组中感应电势波形是正弦波的条件下建立的[13-15]
在假设条件下,PMSM的转子为圆筒形(Ld=Lq=L),LdLqd-q轴定子电感,得到d-q旋转坐标系下PMSM的状态方程为
(1)

式中:R为电枢绕组电阻;uduqd-q轴定子电压;idiqd-q轴定子电流;ψf为转子磁场等效磁链;J为转动惯量;Bf为黏滞摩擦系数;ωr为转子角速度;ω=pnωr为转子电角速度,pn为极对数;TL为负载扰动。
采用id≡0的控制方式得PMSM的解耦线性状态方程为
(2)

根据式(2)建立PMSM传递模型,如图 2所示。
图 2 PMSM传递模型 Fig. 2 Transfer model of PMSM
图选项




2 仿真分析 2.1 RBF神经网络PID控制原理 RBF神经网络是由Moody和Darken[16]在20世纪80年代末提出的一种神经网络,其是具有单隐层的三层前馈网络。由于模拟了人脑中局部调整、相互覆盖接受域的神经网络结构,因此,RBF神经网络是一种局部逼近网络,已证明它能以任意精度逼近任意连续函数[17]

2.1.1 网络结构 RBF神经网络是一种三层前向网络,如图 3所示,由输入到输出的映射是非线性的,而隐含层到输出空间的映射是线性的,从而大大加快了学习速度并避免局部极小问题。
图 3 RBF神经网络结构 Fig. 3 Structure of RBF neural network
图选项





2.1.2 被控对象Jacobin信息的辨识算法 在RBF神经网络结构中,x=[x1, x2, …, xn]T为网络的输入向量。设RBF神经网络的径向基向量h=[h1, h2, …, hm]Thj为高斯基函数。
(3)

式中:cj=[cj1, cj2, …, cji, …, cjn]T(i=1, 2, …, n)为网络的第j个节点的中心矢量;bj为节点j的基宽度参数,且为大于零的数。
设神经网络的基宽向量为
(4)

神经网络的权向量为
(5)

辨识神经网络的输出为
(6)

辨识器的性能指标函数为
(7)

根据梯度下降法,输出权、节点中心及节点基宽度参数的迭代算法如下:
(8)

(9)

(10)

(11)

(12)

(13)

式中:η为学习速率;α为动量因子。
Jacobin阵(即为对象的输出对控制输入变化的灵敏度信息)算法为
(14)

式中:xju(k)。
控制器的输入误差为
(15)

式中:r(k)为系统输入;c(k)为系统输出。
RBF神经网络的整定指标为
(16)

比例增益Kp、积分增益Ki、微分增益Kd采用梯度下降法进行调整:
(17)

(18)

(19)

(20)

(21)

(22)

式中:kpkikd为PID整定的初值;为被控对象的Jacobian信息,由式(14)可得。
在MATLAB/Simulink下,利用S-函数对RBF神经网络PID控制算法进行编程实现,并将其引入到对PMSM的控制中得到基于RBF神经网络PID控制的PMSM伺服仿真模型,如图 4所示。图中:Kω为速度放大器的增益;KpfKωf分别为位置、速度反馈增益。
图 4 RBF神经网络PID控制的PMSM伺服仿真模型 Fig. 4 Servo simulation model of PMSM based on RBF neural network tuning PID control
图选项




2.2 仿真实验及结果分析 根据某型PMSM电机,设置仿真参数R=0.012 07 Ω,L=2.79 mH,pn=4,ψf=0.076 45 Wb,Bf=0.000 1 N/(m/s)。给定幅值为1 000 counts的阶跃位置信号,并在t=1 s处给定负载扰动信号TL=0.2 N·m,得到传统PID控制、模糊PID控制和RBF神经网络PID控制下的位置阶跃响应曲线如图 5所示。图中:tr1tr2tr3分别为传统PID控制、模糊PID控制和RBF神经网络PID控制下的位置阶跃响应上升时间;ts1ts2ts3分别为传统PID控制、模糊PID控制和RBF神经网络PID控制下的位置阶跃响应调节时间(2%)。
图 5 传统PID控制、模糊PID控制、RBF神经网络PID控制下位置阶跃响应曲线 Fig. 5 Step response of position by traditional PID control, fuzzy PID control and RBF neural network tuning PID control
图选项




通过仿真结果对比可知,相较于传统的PID控制和模糊PID控制,RBF神经网络PID控制响应时间快,调节时间短;在外加扰动情况下,RBF神经网络PID控制仍能很好地对输入信号进行跟随,具有较强的自适应性和鲁棒性。
利用RBF神经网络对PID控制器参数进行调节可以解决现有UMAC中自适应性和鲁棒性差、系统动静态性能不理想的问题,因此将RBF神经网络方法引入UMAC的PID参数调节中,下面将基于嵌入式PLC对该算法进行实现。
3 控制实现 3.1 UMAC的PID控制器 UMAC提供了带有速度和加速度前馈的PID+陷波滤波控制器,使用者可以针对被控对象的要求直接对相应的参数进行调节,从而达到控制系统所需要的性能[18]。UMAC的PID控制器原理如图 6所示。
图 6 UMAC的PID算法原理图 Fig. 6 PID algorithm schematic diagram of UMAC
图选项




图 6中:IM为积分模式(Ixn34);Kvff为速度前馈增益(Ixn32);Kaff为加速度前馈增益(Ixn35)。陷波滤波器的系数分别为:n1Ixn36;n2Ixn37;d1Ixn38;d2Ixn39(I为UMAC的设置变量,xn为对应的电机编号)。由图 6可以推出控制器的输出为
(23)

式中:R(z)为给定位置;C(z)为实际反馈位置。
在此,忽略陷波滤波器对UMAC的影响,可以得出UMAC主要由常规的PID控制器部分和速度、加速度部分组成。
3.2 PLC程序的设计与实现 在利用RBF神经网络实现对UMAC的PID参数的调整上,主要通过UMAC的嵌入式PLC程序实现。UMAC的嵌入式PLC程序可以通过反馈通道实时地获取位置反馈,再与给定位置进行比较获取位置误差,根据位置误差再相应地对UMAC的3个PID参数比例增益Kp、积分增益Ki、微分增益Kd进行调整,其具体实现步骤如下:
步骤1?首先,根据手动整定信息,设置kpkikd的初值;然后,设置RBF神经网络的输入层节点数n、隐含层节点数m、学习速率η、动量因子α
步骤2?采样获取r(k)、c(k)的值,计算e(k)=r(k)-c(k)。
步骤3?对RBF神经网络的输入层参数进行归一化处理,包括u(k)-u(k-1),c(k),c(k-1),e(k)-e(k-1),e(k),e(k)-2e(k-1)+e(k-2),u(k-1),Kp(k-1),Ki(k-1),Kd(k-1)。
步骤4?根据梯度下降法,对输出权wj(k)、节点中心cji(k)及节点基宽度参数bj(k)进行迭代计算。
步骤5?计算待预测模型的Jacobian信息。
步骤6?采用梯度下降法计算Δkp、Δki、ΔkdKv(k)、Ki(k)、Kd(k),返回步骤2。
以上步骤可由图 7来表示。
图 7 RBF神经网络PID控制PLC程序流程图 Fig. 7 PLC program flowchart of RBF neural network tuning PID control
图选项




4 实验验证 图 8为精密装配系统,其主要由多轴协同运动精密装配平台和以UMAC为核心的控制系统组成。
图 8 精密装配系统 Fig. 8 Precise assembly system
图选项




图 9为精密装配系统下基于UMAC的单轴伺服运动实验子系统。该实验子系统主要由PC、UMAC、某型伺服电机、24 V开关电源和中间继电器等部分组成。
图 9 基于UMAC的伺服系统 Fig. 9 Servosystem based on UMAC
图选项




在实验子系统下,分别进行了传统PID控制、模糊PID控制和RBF神经网络PID控制下的伺服系统位置阶跃响应实验和正弦跟踪实验,并对伺服电机期望转动位置、实际转动位置和跟随误差进行了实时采集。
1) 给定的阶跃位置信号为
(24)

式中:A1为阶跃信号幅值,取1 000 counts;T1为阶跃信号保持时间,取500 ms。
图 10可知,RBF神经网络PID控制下的伺服电机位置阶跃响应上升时间由传统PID控制下的0.164 s和模糊PID控制下的0.118 s减小到了0.017 s,峰值时间由传统PID控制下的0.196 s和模糊PID控制下的0.131 s减小到了0.023 s,调节时间由传统PID控制下的0.216 s和模糊PID控制下的0.142 s减小到了0.025 s(1%),电机响应速度变快。
图 10 给定位置条件下位置阶跃响应曲线 Fig. 10 Position step response curves under given position condition
图选项




2) 给定的正弦位置信号为
(25)

式中:A2为正弦信号幅值,取1 000 counts;f为正弦信号频率,取1 Hz。正弦信号重复周期数为2。
通过对比传统PID控制、模糊PID控制、RBF神经网络PID控制下伺服电机位置正弦响应曲线(见图 11),RBF神经网络PID控制下的位置动态跟随最大误差由传统PID控制下的188 counts和模糊PID控制下的120 counts减小到了39 counts,且误差波动较小,平稳性更好,电机动态跟随性能显著提高。
图 11 给定位置条件下位置正弦响应曲线 Fig. 11 Position sinusoidal response curves under given position condition
图选项




根据位置阶跃响应实验和正弦跟踪实验结果可知,与传统的PID控制和模糊PID控制相比,RBF神经网络PID控制可以有效地提高被控伺服电机的动静态性能,提升控制品质。
5 结论 本文基于UMAC,将RBF神经网络引入到了PID控制器的参数调节上,对伺服电机进行了控制。
1) 通过仿真实验对比可知,相较于传统的PID控制和模糊PID控制,RBF神经网络PID控制响应时间快,调节时间短;在外加扰动情况下,RBF神经网络PID控制仍能很好地对输入信号进行跟随,具有较强的自适应性和鲁棒性。
2) 通过位置阶跃响应实验可知,RBF神经网络PID控制下的伺服电机位置阶跃响应上升时间由传统PID控制下的0.164 s和模糊PID控制下的0.118 s减小到了0.017 s, 峰值时间由传统PID控制下的0.196 s和模糊PID控制下的0.131 s减小到了0.023 s,调节时间由传统PID控制下的0.216 s和模糊PID控制下的0.142 s减小到了0.025 s(1%),电机响应速度变快。
3) 通过正弦跟踪实验可知,RBF神经网络PID控制下的位置动态跟随最大误差由传统PID控制下的188 counts和模糊PID控制下的120 counts减小到了39 counts,且误差波动较小,平稳性更好,电机动态跟随性能显著提高。
RBF神经网络PID控制有效地提高了基于UMAC的电机伺服系统的动静态性能,提升了系统的控制品质。

参考文献
[1] 夏链, 俞晓慧, 韩江, 等. 基于UMAC的工业机器人运动控制系统设计[J]. 合肥工业大学学报(自然科学版), 2015, 38(8): 1009-1012.
XIA L, YU X H, HAN J, et al. Design of motion control system of industrial robot based on UMAC[J]. Journal of Hefei University of Technology(Natural Science), 2015, 38(8): 1009-1012. DOI:10.3969/j.issn.1003-5060.2015.08.001 (in Chinese)
[2] SPIESER A, IVANOV A. Design of an electrochemical micromachining machine[J]. International Journal of Advanced Manufacturing Technology, 2015, 78(5-8): 737-752. DOI:10.1007/s00170-014-6332-3
[3] 刘金琨. 先进PID控制MATLAB仿真[M]. 北京: 电子工业出版社, 2011: 301-319.
LIU J K. MATLAB simulmion of advanced PID control[M]. Beijing: Electronic Industry Press, 2011: 301-319. (in Chinese)
[4] 赵凤姣, 厉虹. PID控制器改进方法研究[J]. 控制工程, 2015, 22(3): 425-431.
ZHAO F J, LI H. Research on improved methods of PID controller[J]. Control Engineering of China, 2015, 22(3): 425-431. (in Chinese)
[5] 廖洪波, 范世珣, 黑墨, 等. 光电稳定平台伺服系统动力学建模与参数辨识[J]. 光学精密工程, 2015, 23(2): 477-484.
LIAO H B, FAN S X, HEI M, et al. Modeling and parameter identification for electro-optical stabilized platform servo systems[J]. Optics and Precision Engineering, 2015, 23(2): 477-484. (in Chinese)
[6] HUANG W L, KUO F C, CHOU S C, et al. High-performance and high-precision servo control of a single-deck dual-axis PMLSM stage[J]. International Journal of Advanced Manufacturing Technology, 2017, 90(1-4): 865-874. DOI:10.1007/s00170-016-9355-0
[7] 王克选, 李新国. 基于PMAC的模糊自整定PID算法设计[J]. 计算机仿真, 2013, 30(9): 331-334.
WANG K X, LI X G. Design of fuzzy self-regulation PID algorithm based on PMAC[J]. Computer Simulation, 2013, 30(9): 331-334. DOI:10.3969/j.issn.1006-9348.2013.09.077 (in Chinese)
[8] 白晶, 于喜红, 秦现生. 基于PMAC的码垛机器人模糊PID算法研究[J]. 机械设计与制造工程, 2016, 45(3): 46-49.
BAI J, YU X H, QIN X S. Study on fuzzy PID algorithm for palletizing robot based on PMAC[J]. Machine Design and Manufacturing Engineering, 2016, 45(3): 46-49. DOI:10.3969/j.issn.2095-509X.2016.03.010 (in Chinese)
[9] TIAN C X, LI X W, HU Z. The study of fuzzy self-regulation PID algorithm based on PMAC[J]. Machinery & Electronics, 2010, 57(10): 60-63.
[10] SONG Y, LIU Y, ZHU H. A PMSM speed controller based on RBF neural network and single neuron PID[J]. Electronics World, 2017, 38(2): 122-126.
[11] 江维, 吴功平, 曹琪, 等. 输电线路带电作业机器人机械手RBF神经网络控制[J]. 东北大学学报(自然科学版), 2017, 38(10): 1388-1393.
JIANG W, WU G P, CAO Q, et al. RBF neural network control of live operation robot manipulator for high voltage transmission line[J]. Journal of Northeastern University(Natural Science), 2017, 38(10): 1388-1393. DOI:10.12068/j.issn.1005-3026.2017.10.005 (in Chinese)
[12] 周佳, 卢少武, 周凤星. 伺服位置控制参数的RBF神经网络自整定研究[J]. 组合机床与自动化加工技术, 2016(3): 75-77.
ZHOU J, LU S W, ZHOU F X. Study on position control parameters auto-tuning of servo system based on RBF neural network[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(3): 75-77. (in Chinese)
[13] 舒志兵, 周玮, 李运华. 交流伺服运动控制系统[M]. 北京: 清华大学出版社, 2006: 66-82.
SHU Z B, ZHOU W, LI Y H. AC servo motion control system[M]. Beijing: Tsinghua University Press, 2006: 66-82. (in Chinese)
[14] ABU-RUB H, IQBAL A, GUZINSKI J. High performance control of AC drives with MATLAB/Simulink models[M]. New York: Wiley, 2012.
[15] KUNG Y S, NGUYEN V Q, HUANG C C, et al.Simulink/ModelSim co-simulation of sensorless PMSM speed controller[C]//Industrial Electronics and Applications.Piscataway, NJ: IEEE Press, 2012: 1405-1410.
[16] DARKEN C, MOODY J.Fast adaptive k-means clustering: Some empirical results[C]//IJCNN International Joint Conference on Neural Networks.Piscataway, NJ: IEEE Press, 1990: 233-238.
[17] 李文鹏.基于UMAC的超精密机床数控系统设计及参数自整定研究[D].哈尔滨: 哈尔滨工业大学, 2016: 45-57.
LI W P.Design of ultra-precision machine tool numerical control system and auto-tuning for parameter based on UMAC[D].Harbin: Harbin Institute of Technology, 2016: 45-57(in Chinese).
[18] 吴晓明, 马立廷, 郑协, 等. 改进的RBF神经网络PID算法在电液伺服系统中应用[J]. 机床与液压, 2015, 43(11): 63-66.
WU X M, MA L T, ZHENG X, et al. Improved RBF neural network PID control strategy used in electro-hydraulic servo system[J]. Machine Tool & Hydraulics, 2015, 43(11): 63-66. DOI:10.3969/j.issn.1001-3881.2015.11.018 (in Chinese)


相关话题/控制 系统 运动 信号 实验

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 舰载机牵引系统路径规划方法*
    作为航空母舰的主要装备,舰载机是保持其海上战场优势的重要武器。舰载机出行与回收的安全性和高效性是衡量航母作战和综合支援能力的重要技术指标[1]。作为舰载机起降的飞行甲板,与机场相比是一个相对狭小的起降场地。例如,作为目前最大的航空母舰,尼米兹级航母的飞行甲板长332.9m,宽76.8m,相对一般机场 ...
    本站小编 Free考研考试 2021-12-25
  • 线性伪谱模型预测能量最优姿态机动控制方法*
    现代空间任务通常要求飞行器具有良好的姿态机动能力[1]。空间飞行器的姿态机动是指飞行器在外太空作大角度的姿态调整[2]。相比于人造卫星、空间站等航天器,空间飞行器(如亚轨道飞行器、动能拦截器、轨道再入攻击器等,以下简称飞行器)的姿态机动存在以下特点:①姿态机动角度大、时间短;②一般为主动控制,多采用 ...
    本站小编 Free考研考试 2021-12-25
  • 一种三维激光扫描系统的设计及参数标定*
    移动机器人对未知环境进行信息获取和地图构建,是实现其自主导航的前提和基础。激光测距传感器因其精度高、测距速度快和获取信息直观等特点成为移动机器人环境建模的一种主要手段,在防撞、测量、导航和安防等方面发挥着重要的作用[1-4]。其中,二维激光测距传感器通过单线扫描获取激光发射点与物体的距离信息,可形成 ...
    本站小编 Free考研考试 2021-12-25
  • 基于非线性模型预测的绳系系统系绳摆振控制*
    绳系卫星系统是由系绳连接绳端卫星构成的空间系统[1]。绳系卫星系统表现出了广阔的应用前景,如空间发电、构建空间结构和拖拽离轨等,是近年来航天研究热点之一[2]。空间绳系拖拽离轨是借助飞网等机构抓捕,并利用系绳连接主星和目标,由主星机动,实现目标拖拽转移的新概念在轨操作技术[3-5]。在空间碎片主动移 ...
    本站小编 Free考研考试 2021-12-25
  • 复杂背景下目标散射信号测量与提取技术*
    美国佐治亚技术研究所(GTRI)电磁测试场采集了T72坦克的一系列三维成像数据,并将其作为MSTAR(Man-portableSurveillanceandTargetAcquisitionRadar)公用数据库予以发布[1]。在数据采集过程中,雷达置于一个固定高塔的电梯平台上,转台置于距离高塔15 ...
    本站小编 Free考研考试 2021-12-25
  • 基于时变增益ESO的多航天器SO(3)姿态协同控制*
    多航天器姿态协同是指通过设计恰当的协同控制律,利用航天器之间的信息交互使得各航天器姿态保持一致。在航天器控制领域,姿态协同具有广泛的应用前景。多颗小卫星通过对卫星间的相对姿态进行协调,可以协同工作完成复杂的任务,具有成本低、研制周期短、应用方式灵活等优点[1];在航天器交会对接、卫星捕获等航天作业中 ...
    本站小编 Free考研考试 2021-12-25
  • 基于空间隔离的低轨卫星系统频谱共享方法*
    在现今的无线通信系统中,卫星通信由于其自身特点,能够覆盖到海洋和偏远山区等地区,而这些地区是传统通信方式出于成本与技术条件考虑无法覆盖的。根据轨道高度不同,将轨道高度在500~2000km范围的称为低轨(LEO)卫星,5000~20000km的称为中轨(MEO)卫星,而飞行高度大于20000km的称 ...
    本站小编 Free考研考试 2021-12-25
  • 水下机械手不确定遥操作自适应双边控制*
    具有力觉感知的主从双边遥操作机械手系统在水下排雷、排爆及水下样本采集中的应用具有重要意义,其避免了操作者直接处于危险区域,减少了操作人员心理压力,并具有精细化操作的特点。从机械手位于工作区域直接与操作对象交互,跟踪主机械手的运动信号并将与环境交互力信号传送至本地主机械手,使操作者在操作本地主机械手的 ...
    本站小编 Free考研考试 2021-12-25
  • 基于增益调度的航空发动机分散鲁棒控制*
    航空发动机是一个包含多个子系统的复杂非线性对象。这些子系统通过复杂的气动热力联系相互耦合。传统发动机控制系统通常采用集中控制。但如文献[1]所述,由于耦合系统的物理布局限制及高维性,集中控制既不经济,也没有必要。文献[2]指出集中控制系统可靠性不高,在任何工作点的任意单点故障都会导致整个系统的失效。 ...
    本站小编 Free考研考试 2021-12-25
  • 同轴旋转圆台环隙流动机制及实验研究*
    两同轴旋转圆柱环隙内的流动称为泰勒库特流,是一百多年来历久弥新的研究对象,对于研究湍流、流体稳定性等有重要学术意义[1]。泰勒库特流具有在狭小空间内存在高剪切力的流动特点,可广泛应用于工业中掺混、碾磨、萃取等设备[2-7]。两同轴旋转圆台环隙的流动是经典泰勒库特流的一种扩展研究。圆台环隙内流动相比于 ...
    本站小编 Free考研考试 2021-12-25