删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于变步长离散随机集的风险不确定性分析方法*

本站小编 Free考研考试/2021-12-25

在系统工程安全风险评估与决策过程中,不确定性问题受到广泛关注[1-2],其作为定量安全风险评估的一项重要内容,可以确定影响工程系统安全性的关键因素,同时为风险决策与系统优化设计提供指导。不确定性包括2类[3]:一类是由系统内部变异等行为偶然性产生的随机不确定性;另一类是由系统测量误差或专家知识的缺乏产生的认知不确定性。Ferson和Ginzburg[4]指出有必要提出一种能够充分刻画随机与认知不确定性的数学方法,并指出安全风险评估面临的4个严峻问题:①如何更加可信地描述可用信息;②如何说明不确定性传播过程中参数之间的依赖性、相关性,传统的随机独立性假设产生过于乐观的评估结果;③如何选择合适的不确定性传播框架[5];④如何利用随机与认知不确定性传播结果,辅助风险决策[6]
不确定性参数除了具有客观变量随机性外,同时还存在信息不完整、不精确性,如统计数据和专家信息等[7]。近30年来,各种不确定性分析理论出现,明确地将不完整性与随机性区分开来,如非可加集合函数,将集值与概率相结合,如Walley[8]提出的不精确概率,由概率函数组成的集合描述部分缺失概率信息。Dempster[9]在随机集的基础上提出更加具有约束性的理论—证据理论,由集值描述不完整信息,后经Shafer[10]和Smets[11]完善,形成主观非统计模式下的不确定性理论。再后来,出现了更具约束性的理论框架—可能性理论,该理论以可能性测度表征参数的不精确性,模糊集为其典型代表[12]。可能性理论也可解释为嵌套的随机集,使得不完整概率信息以连续函数表示并被分解为模糊区间的形式。
概率论作为常用的不确定性刻画与传播工具,其有效性受到许多****的质疑[7, 13-14];另外,当数据不充分、信息不完整时,单一概率无法有效刻画认知不确定性。对此,Zadeh[12]提出模糊集理论,在此基础上Yager[15]进一步提出模糊测度以刻画认知不确定性;Flage等[16]提出将概率与模糊集相结合的不确定性分析框架,并应用于故障树传播不确定性;Helton等[17]采用证据理论描述认知不确定性参数,并对参数敏感性进行了分析;Wang和Qiu[7]提出一种随机与区间数相结合的不确定性传播框架,分析稳态情形下的热传导不确定性问题。当风险模型中同时存在随机与认知不确定性时,Guyonnet等[18]提出一种概率与可能性分布相结合的混合不确定性分析框架;Tonon[19]提出基于随机集理论传播认知不确定性,对比了不同离散精度下相对误差对不确定性传播的影响。上述方法,只考虑1种或2种理论的结合来刻画传播随机与认知不确定性,并没有将异类不确定性信息建立统一的理论框架来研究混合不确定性传播问题。
离散随机集是一种广义的随机变量,离散随机集描述的是对区间的概率指配,且区间值比点值更具描述不精确性的能力。因此,随机集理论框架同时具备刻画参数的随机与认知不确定性。为此,针对上述Ferson和Ginzburg[4]提出的问题①和③,本文提出基于变步长离散随机集的风险混合不确分析方法,同时给出异类不确定性信息的统一随机集刻画框架,设计了一种变步长不确定性信息的随机焦元配置策略,对比分析了2种离散化策略,并进行讨论分析。针对不一致信息采用Dempster-Shafer(D-S)证据理论融合多源冲突信息。通过数值算例验证了本文方法的有效性和可行性。
1 不确定性刻画方法 1.1 随机集理论 随机集具有较强的不确定性信息处理能力。首先,随机集是指取值为集合的随机元,是概率论中随机变量概念的推广,因此具备描述事件的随机属性,即随机不确定性。另外,随机集的取值为集合或者区间数值,区别于概率论中的点值变量,具有描述不精确性的能力,具备描述主观知识的能力。又由于随机集不必知道概率分布中的方差、均值以及统计模型等信息,因此具备描述由于知识不完整情形下的主观不确定性,即认知不确定性能力。
在此,给出随机集的基本理论[20]
(Ω, σΩ, PΩ)为一概率空间,设实数域内非空集合X及其幂集(X),为可测空间,。随机集上的可测映射:,定义为焦元,为焦集。映射在(Γ, σΓ)生成的概率测度,定义为,即事件有概率。随机集是一集值随机变量,当的基数时,随机集称为有限随机集。
中元素F为单点时,随机集退化为随机变量,,随机集的精确概率PX(F)无法获取,其上、下界概率可由Dempster[9]信度函数和似真函数计算:
(1)

(2)

且有
(3)

F确定时,FcF的补,式(3)等号成立。显然,信度函数和似真函数是一双重模糊测度,满足如下关系:
(4)

(5)

为有限随机集时,随机集与D-S证据体, 同构[21],式(1)与式(2)可写为
(6)

(7)

为处理变量之间的相互关系,引入随机关系X=?i=1dXi,随机关系(?, ρ)是定义在边缘随机集(, mi)上的笛卡儿乘积:

映射f考虑了边缘随机集的依赖性,若(, mi)相互独立时,
已知映射g:X→Y,随机集(, m)经映射g并利用扩展原则得到原像(?, ρ)[22]
(8)

(9)

式中:Rj?的焦元;Aid-维笛卡儿乘积。Rj的计算涉及到一个全局优化问题,通常采用顶点法、采样法和优化法等[23]
根据文献[20]对随机集与概率包络上下界的关系,有如下关系:
(10)

(11)

式中:Y为随机集(?, ρ)的辨识框架。
1.2 D-S证据理论 n个相互独立的元素命题集构成辨识框架ΘΘ的幂集合2Θ中含有元素的个数为2N,记为[9]
(12)

定义1??已知存在辨识框架Θ,则定义信度函数Bel如下:
(13)

(14)

式中:Bel(B)为所有包含于B的元素信度之和。
定义2??已知存在辨识框架Θ,则定义似真函数Pl如下:
(15)

(16)

在概率理论框架下,事件A的概率与其补集之和等于1;在证据理论框架下,事件A的信度与其信度补集之和小于1。其次,信度函数与似真函数存在以下关系:
(17)

(18)

m1m2为相互独立的信度函数,XY合成新的证据焦元采用加法原则生成一个新的概率分配(BPA)[24],D-S证据合成规则为[25]
(19)

(20)

式中:Km1m2的冲突系数;K=0时,m1m2无冲突;K=1时,m1m2完全冲突。
2 混合不确定性的随机集刻画 Dubois等[26]提出将概率分布转化为可能性分布,然后在可能性框架下进行统一处理。反之,Oussalah[27]提出将可能性分布转为概率分布的思路。但是,将概率分布转化为可能性分布将丢失信息,同理,可能性分布转化为概率分布将增加额外信息,且丢失和增加的信息无法量化与获取,因此有必要提出一种通用的不确定性信息分析框架,本文提出采用随机集理论作为混合不确定性传播理论框架,将异类不确定性信息转化为统一的随机集来刻画。
2.1 概率分布的随机集刻画 概率密度函数PDF(x), x为变量且有界表示为。将分为k个子区间,表示为, i∈[1, 2, …, k]},且假设辨识框架Θ,其焦元集为Δi={Ai=(x)},则其焦元的BPA为[28]
(21)

x为无界参数,即xR,记为Ix=[-∞, +∞],则需要估计一个区间
(22)

使得x以极高的概率包含于Ix。若记
(23)

则根据实际需要确定限值δ≥0,使
(24)

然后,再按以上x有界的方法将概率分布信息转化为随机集表示。
2.2 概率包络的随机集刻画 概率分布参数在不精确情形下,通常采用区间值的描述。例如已知x服从正态分布N(μ, σ2),其中μ∈[α, β], σ∈[χ, γ],则概率分布曲线变为概率包络(p-box)的形式。
设参数x的累积概率分布函数为CDF(x),其概率包络上界为CDF(x),下界为CDF(x),则可通过平均离散法(Averaging Diseretization Method, ADM)或外离散法(Outer Discretization Method, ODM)把概率包络信息转化为随机集表示[19]

2.2.1 平均离散法 将p-box上、下界CDF(x)、CDF(x)的CDF轴值域[0, 1]离散化为n个子区间,各区间长度Mj>0(j=1, 2, …, n),且M0=0,则x的第j个焦元为区间数值
(25)

BPA为
(26)

n个子区间距离相等,即Mj=1/n,则相应的随机集焦元和BPA为
(27)

(28)


2.2.2 外离散法 将p-box上、下界CDF(x)、CDF(x)的值域[0, 1]离散化为n个子区间,各区间长度Mj>0(j=1, 2, …, n),且M0=0,则x的第j个焦元为
(29)

同理,BPA分配为
(30)

式中:
n个子区间距离相等,即
(31)

则离散化后的随机集焦元和BPA分配为
(32)

(33)

2.3 可能性分布的随机集刻画 Florea等[29]系统地研究了可能性分布到随机集的描述过程,并给出了对应的距离测度判据。
u为定义在离散域Θ上的模糊集,αi为模糊隶属函数μu(θ)的象,θ?Θ,且有
(34)

则模糊集u的随机集描述为(, mi),且
(35)

u为定义在连续域Θ上的模糊集,先将Θ离散为M个嵌套焦元,再用上述离散法将μu(θ)表示为随机集描述。
2.4 区间分布的随机集刻画 针对单一区间分布信息A=[a, b],可作为独立焦元来处理,且有m(A)=1,当有n个区间分布信息时,且区间信度未知,则每一区间信息作为一个独立焦元Aim(Ai)=1/n。若区间信息的信度不等,通常采用D-S证据合成公式对信度区间信息进行融合。例如:对参数x,给出2组区间信息描述,如表 1所示。
表 1 参数x的证据区间信息 Table 1 Evidence interval information of parameter x
区间信息 焦元1 焦元2 焦元3
区间1 m([0.5, 1.0])=0.3 m([1.0, 1.4])=0.2 m([1.2, 2.0])=0.5
区间2 m([0.6, 1.0])=0.2 m([0.5, 1.4])=0.4 m([1.0, 2.0])=0.4


表选项






利用式(19)的D-S证据合成公式对区间信息进行合成,结果如表 2所示。
表 2 参数x的联合证据区间信息 Table 2 Combination of evidence interval information of parameter x
焦元A [0.6, 1.0] [0.5, 1.0] [1.0, 1.4] [1.2, 1.4] [1.2, 2.0]
m(A) 0.081 1 0.162 2 0.216 2 0.270 3 0.270 3


表选项






当区间信息存在高度不一致时,D-S证据合成公式存在合成悖论难题,针对这一问题,许多****做了改进,确保冲突信息的合成结果更为合理。
3 混合不确定性传播方法 3.1 离散随机集步长配置策略 文献[19]分析了基于随机集的可靠性分析方法,采用均匀离散步长将概率包络分布信息转化为随机集的处理框架,但存在截尾相对误差大的不足。为此,本文提出一种不确定性变量分布的变步长离散化方法,步长分配原则确保变量分布在截尾部分具有相对较密的离散点,不失一般性,给出具有对称特性的正态累积分布为例说明,具体步骤如下:
步骤1??正态分布的累计分布包络曲线上、下界CDFCDF,如图 1所示,取值域1/2为分界点,设离散区间数为n
图 1 p-box的离散化方法 Fig. 1 Discretization method of p-box
图选项




步骤2??以分界点下半部分[0, 1/2]为例,区间[CDF(0), CDF(1/2)]与[CDF(0), CDF(1/2)]各离散为n/2个区间,与坐标轴交点为 αi,0=α1 < α2 < … < αn/2=1/2。
步骤3??焦元区间Ai=[CDF-1( αi),CDF-1(αi+1)],其BPA为Mi=αi+1αi,不失一般性,设焦元区间呈等差数列分布,且α1=d,则
(36)

图 1(a)(b)分别为p-box的变步长外离散法(VODM)与变步长平均离散法(VADM)随机集刻画,其中,n=10。
3.2 混合不确定性传播框架 工程系统风险评估中,各种类型的不完整、不精确信息通常采用不同理论框架进行刻画与处理。随机集同时具备处理随机性与不完整信息的能力,在随机集理论框架下构建风险的统一模型。设系统的风险模型为
(37)

式中:X为确定性变量;U为不确定性变量,受不完整、不精确性的影响,既包含随机不确定性变量又包含认知不确定性变量,其描述可为随机变量、可能性变量、区间变量、证据变量等。采用基于随机集的混合不确定性刻画方法将U用随机集表示为(ζui, Mui),则
(38)

由于确定性变量已知,式(37)可写为
(39)

若不确定性变量存在不一致、冲突,在随机集描述框架下,采用D-S证据合成公式融合冲突信息。假设(, MUi), i=1, 2, 3是来自U1U2U3的随机集描述,则通过式(19)和式(20)得融合后的随机焦元为
(40)

在此,给出基于离散变步长随机集的混合不确定性传播框架如图 2所示。
图 2 混合不确定性传播框架流程 Fig. 2 Flowchart of hybrid uncertainty propagation
图选项




步骤1??混合不确定性信息获取,包括概率分布、可能性分布、p-box以及区间分布信息等。
步骤2??选择合理的变步长离散化策略,对步骤1获取的混合不确定性信息统一进行随机集刻画,并在随机集框架下,针对不一致冲突信息进行合成策略选择与不确定性信息融合。
步骤3??采用随机扩展原则进行混合不确定性传播,传播模型为R= (U),输入随机集向量为U=[(ζu1, Mu1), (ζu2, Mu2), …, (ζuN, MuN)]。
步骤4 ??判断相对误差ΔE,如果不满足要求,则重新进行不确定性信息的离散策略优化。
步骤5??若符合要求,计算风险不确定性包络曲线。
为表征风险包络曲线的不确定性度,Kolmogorov和Fomin[30]给出了定量化的计算公式:
(41)

式中:fg为风险包络曲线函数。
为描述改变离散策略对输出不确定性的影响,定义风险包络相对误差:
(42)

(43)

式中:infRA与infRB分别为离散策略A与离散策略B下输出不确定性包络下界;supRA与supRB分别为离散策略A与离散策略B下输出不确定性包络上界。
4 实例分析 4.1 质量-弹簧-阻尼系统模型 质量-弹簧-阻尼系统如图 3所示,激励为Ycos(ωt),相应函数为[31]
(44)

图 3 质量-弹簧-阻尼系统 Fig. 3 Mass-spring-damper system
图选项




式中:m为振荡器的质量;c为阻尼系数;k为弹性系数;Yω分别为载荷幅度和频率。系统的稳态放大系数为
(45)

其中:参数mckω互相独立,mk为概率分布,c为区间分布,ω为可能性分布。
各参数具体信息如下:m服从对称三角概率分布,其中mmin=10,mmod=11,mmax=12。c服从区间分布且相互独立,c1=[5,10],c2=[15,20],c3=[25,25]。k来自3个独立的三角概率分布,且三角概率分布如表 3所示。表 3中,min表示概率分布下界,mod表示概率分布众数,max表示概率分布上界。ω服从可能性分布,且有ω1=[2, 2.3],ωm=[2.5, 2.7],ωr=[3, 3.5];其中,下标l表示可能性分布下界,m表示可能性分布最大可能值,r表示可能性分布上界。
表 3 不确定性参数k Table 3 Uncertainty parameter k
参数 min mod max
k1 [100,110] [160,170] [210,220]
k2 [90,110] [150,180] [210,220]
k3 [80,120] [130,180] [200,230]


表选项






4.2 混合不确定性信息的随机集刻画 为分析Ds的不确定性,需要将4.1节中4类不确定性参数转化为随机集描述,并计算其焦元及其BPA。
对概率分布参数m,按照2.1节方法,将[mmin, mmax]离散为n个子区间Am, i=[ai, bi],每一个子区间[ai, bi]为随机集焦元;并定义p(m)为m的概率密度函数(PDF),Fm(m)为m的累计分布函数,则焦元Am, i的BPA为
(46)

为对比不同离散精度对不确定性传播的影响,设离散精度n分别等于10和20,得到m的随机集焦元及其BPA如图 4(a)(b)所示,表 4n=10时的随机集焦元及其BPA。
图 4 参数m的随机集刻画 Fig. 4 Random set representation of parameter m
图选项




表 4 参数m的焦元及其BPA Table 4 Focal elements and BPA of parameter m
参数 Am, i Mm(Am, i)
1 [10, 10.2] 0.01
2 [10.2, 10.4] 0.05
3 [10.4, 10.6] 0.11
4 [10.6, 10.8] 0.15
5 [10.8, 11] 0.17
6 [11, 11.2] 0.18
7 [11.2, 11.4] 0.16
8 [11.4, 11.6] 0.12
9 [11.6, 11.8] 0.08
10 [11.8.12] 0.02


表选项






区间参数c的随机集刻画下,焦元Ac, 1=[5,10],Ac, 2=[5,10],Ac, 3=[5,10],且区间参数相互独立,其BPA分配相等,即m(Ac, 1)=m(Ac, 1)=m(Ac, 1)=1/3。
对参数k,首先将3个参数k由概率分布离散为随机集的表示形式,每一个参数离散化后由BelPl构成不确定性包络曲线,然后对参数k的包络曲线依p-box转化为随机集。参数k1按照VADM法得到随机集包络曲线如图 5(a)(b)所示。
图 5 参数k1的VADM法随机集刻画 Fig. 5 Random set representation of parameter k1 based on VADM
图选项




同理,可计算出k2k3的随机集刻画。在此需要指出,对概率包络曲线的离散化是通过离散CDF轴实现随机集的刻画。而单一概率分布曲线通过离散目标参数坐标轴,且单一概率分布较高离散精度刻画下的随机集包含于较低离散精度刻画下的随机集,经随机扩展原则映射后其结果具有同样包含属性[19]。而概率包络的随机集离散化,随机集的包含性与离散精度无关,因此仅仅通过提高离散精度来减小不确定性的目的并不可取。
由于参数k同时具备不精确性和不一致性,在随机集描述框架下,对k1k2k3采用D-S证据理论进行不确定性合成,通过式(19)合成后的随机集刻画,图 6(a)(b)给出了基于VADM法的随机集刻画,当n=10时,产生55个焦元,n=20时,产生216个焦元。
图 6 参数k的VADM法随机集刻画 Fig. 6 Random set representation of parameterk based on VADM
图选项




对频率参数ω,同时受不一致和不精确性影响,VODM法分别得到ω的随机集刻画如图 7(a)(b)所示。
图 7 参数ω的VODM法随机集刻画 Fig. 7 Random set representation of parameter ω based on VODM
图选项




4.3 结果分析 在此,得到4个不确定性参数的随机焦元及其BPA。分别采用均匀与变步长离散化方法,通过式(8)和式(9)、以及式(9)与随机映射得到不同离散精度、不同离散步长策略下Ds的不确定性输出包络曲线如图 8图 9所示,以及Ds的期望μ与不确定性测度d表 5所示。另外,为对比分析不同离散策略对输出Ds的影响,给出部分Ds包络曲线下界及其相对误差如表 6表 7
图 8 均匀步长离散策略下系统Ds响应 Fig. 8 Response of system Ds under uniform step discretization strategy
图选项




图 9 变步长离散策略下系统Ds响应 Fig. 9 Response of system Ds under variable step discretization strategy
图选项




表 5 不同离散策略下期望μ及其不确定性测度d Table 5 Expectation μ and uncertainty measure d under different discretization strategies
离散策略 μ d
ODM(n=10) [1.217 1, 2.716 9] 2.538
VODM(n=10) [1.305 7, 2.693 4] 2.515
ADM(n=10) [1.450 2, 2.399 6] 2.137
VADM(n=10) [1.542 2, 2.373 2] 2.028
ODM(n=20) [1.221 8, 2.708 5] 2.374
VODM(n=20) [1.307 4, 2.682 1] 2.297
ADM(n=20) [1.455 7, 2.396 2] 2.029
VADM(n=20) [1.544 1, 2.366 8] 1.912


表选项






表 6 均匀步长离散策略下Ds的下界及其相对误差ΔEA-Binf Table 6 Lowerbound of Ds and relative errors ΔEA-Binf under uniform step discretization strategy
DsODM ADM
n=10 n=20 ΔEinfA-B/% n=10 n=20 ΔEinfA-B/%
1.3 0.033 6 0.035 2 -4.7 0.110 3 0.114 6 -3.90
1.5 0.095 4 0.097 8 -2.52 0.140 1 0.143 1 -2.14
2 0.312 5 0.316 6 -1.31 0.351 5 0.351 8 -0.09
3 0.665 3 0.669 0 -0.56 0.715 4 0.717 8 -0.34
4 0.962 1 0.961 9 0.08 0.905 0 0.904 5 0.05
5 0.975 5 0.975 2 0.02 0.975 2 0.975 0 0.01


表选项






表 7 变步长离散策略下Ds的下界及其相对误差ΔEA-Binf Table 7 Lowerbound of Ds and relative errors ΔEA-Binf under variable step discretization strategy
DsVODM VADM
n=10 n=20 ΔEinfA-B/% n=10 n=20 ΔEinfA-B/%
1.3 0.043 5 0.044 7 -2.76 0.136 5 0.138 2 -1.26
1.5 0.112 3 0.113 3 -0.89 0.157 1 0.158 4 -0.83
2 0.335 7 0.338 1 -0.71 0.371 5 0.373 5 -0.54
3 0.622 8 0.626 2 -0.55 0.816 3 0.818 7 -0.29
4 0.916 5 0.916 1 0.03 0.951 4 0.951 1 0.03
5 0.979 4 0.979 0 0.02 0.987 2 0.987 0 0.01


表选项






1) 对比图 8图 9,并结合表 5数据得出,离散步长分配策略不变情况下,提高离散精度可提高随机焦元的取值精细程度,但是对不确定性测度影响较小。如采用VODM法,离散精度提高一倍时,焦元数目提高17.3倍,相对误差变化仅为0.42%。
2) 由图 8图 9以及表 6得出,不确定性输出相对误差于包络曲线左侧截尾部分最大,其原因是在均匀步长离散化策略下,离散随机集与原包络曲线的误差造成。为减小截尾误差需通过配置更多的离散点来逐渐逼近原包络曲线,但是,随着离散点的增多,产生的计算代价呈指数增长,因此,在不增加离散点的情况下优化离散点步长策略很有必要。另外,当Ds < 4时,相对误差ΔEinfA-B为负;当Ds≥4时,相对误差ΔEinfA-B为正,得出当输入随机集的包含关系未知时,仅仅提高离散精度,并不能解决输出不确定性的包含关系。
3) 通过对比表 6表 7,离散步长不改变情况下,通过改变离散步长分配策略,Ds输出不确定性相对误差可有效减小,其中,VODM法减小29.5%,VADM法减小23.7%。同时改变离散步长和离散步长分配策略情况下,VODM法相对误差减小33.4%,VADM法相对误差减小25.3%。
4) 由图 8图 9可以看出,ADM法不确定性测度小于ODM法输出的不确定性测度,ODM法输出不确定性包络曲线完全包络ADM法输出不确定性包络曲线,无论是通过提高离散精度还是改变离散步长分配策略,此包络性质不变,即ODM分析法产生较保守的不确定性估计。
5 结论 定量风险评估中不确定性刻画与传播对工程系统风险决策、安全性设计具有极其重要的意义。
1) 本文针对参数信息不完整、不一致性,建立了基于随机集理论的统一不确定性传播框架,实现了异类信息统一刻画与传播。
2) 为减小截尾相对误差,提出了一种变步长随机焦元分配策略,通过对比分析,合理选择离散点与步长配置,可有效减小截尾相对误差。
3) 若要得到更加保守的评估或设计结果,可采用ODM离散化方法;若要得到更加精细化的焦元刻画以及较小不确定性测度,可采用ADM法,并通过提高离散精度与改变离散步长策略实现。
4) 通过非线性机械系统位移响应物理与现象模型算例,验证了本文所提方法的可行性与有效性,该方法可以被用于其它工程实际问题的风险与可靠性评估不确定性分析,有一定的工程应用价值。

参考文献
[1] GIANG P H. Decision making under uncertainty comprising complete ignorance and probability[J].International Journal of Approximate Reasoning, 2015, 62: 27–45.DOI:10.1016/j.ijar.2015.05.001
[2] SONG S, LU Z, LI W, et al. The uncertainty importance measures of the structural system in view of mixed uncertain variables[J].Fuzzy Sets & Systems, 2014, 243: 25–35.
[3] HELTON J C. Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty[J].Journal of Statistical Computation & Simulation, 2007, 57(1): 3–76.
[4] FERSON S, GINZBURG L R. Different methods are needed to propagate ignorance and variability[J].Reliability Engineering & System Safety, 1996, 54(2): 133–144.
[5] BAUDRIT C. Comparing methods for joint objective and subjective uncertainty propagation with an example in risk assessment[C]//Proceedings of 4th International Symposium on Imprecise Probabilities and Their Application (ISIPTA'05), 2005: 31-40.
[6] GUYONNET D, BAUDRIT C, DUBOIS D. Postprocessing the hybrid method for addressing uncertainty in risk assessments[J].Journal of Environmental Engineering, 2005, 131(12): 1750–1754.DOI:10.1061/(ASCE)0733-9372(2005)131:12(1750)
[7] WANG C, QIU Z. Hybrid uncertain analysis for steady-state heat conduction with random and interval parameters[J].International Journal of Heat & Mass Transfer, 2015, 80(80): 319–328.
[8] WALLEY P. Statistical reasoning with imprecise probabilities[M].London: Chapman and Hall, 1991: 12-231.
[9] DEMPSTER A P. Upper and lower probabilities induced by a multi-valued mapping[J].Annals of Mathematical Statistics, 1967, 38(2): 325–339.DOI:10.1214/aoms/1177698950
[10] SHAFER G. A mathematical theory of evidence[J].Technometrics, 1978, 20(1): 1–242.DOI:10.1080/00401706.1978.10489609
[11] SMETS P. The normative representation of quantified beliefs by belief functions[J].Artificial Intelligence, 1997, 92(1-2): 229–242.DOI:10.1016/S0004-3702(96)00054-9
[12] ZADEH L A. Fuzzy sets as a basis for a theory of possibility[J].Fuzzy Sets & Systems, 1978, 1(1): 3–28.
[13] BAUDRIT C, COUSO I, DUBOIS D, et al. Joint propagation of probability and possibility in risk analysis:Towards a formal framework[J].International Journal of Approximate Reasoning, 2007, 45(1): 82–105.DOI:10.1016/j.ijar.2006.07.001
[14] AVEN T. On how to define, understand and describe risk[J].Reliability Engineering & System Safety, 2010, 95(6): 623–631.
[15] YAGER R R. Uncertainty representation using fuzzy measures[J].IEEE Transactions on Systems Man & Cybernetics Part B (Cybernetics), 2002, 32(1): 13–20.
[16] FLAGE R, BARALDI P, ZIO E, et al. Probability and possibility-based representations of uncertainty in fault tree analysis[J].Risk Analysis, 2013, 33(1): 121–133.DOI:10.1111/risk.2013.33.issue-1
[17] HELTON J C, JOHNSON J D, OBERKAMPF W L, et al. Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty[J].Reliability Engineering & System Safety, 2006, 91(10): 1414–1434.
[18] GUYONNET D, BOURGINE B, DUBOIS D, et al. Hybrid approach for addressing uncertainty in risk assessments[J].Journal of Environmental Engineering, 2003, 129(1): 68–78.DOI:10.1061/(ASCE)0733-9372(2003)129:1(68)
[19] TONON F. Using random set theory to propagate epistemic uncertainty through a mechanical system[J].Reliability Engineering & System Safety, 2004, 85(1): 169–181.
[20] MOLCHANOV I. Theory of random sets[M].Berlin: Springer, 2006: 31-210.
[21] BERNARDINI A. What are the random and fuzzy sets and how to use them for uncertainty modelling in engineering systems[M].Berlin: Springer, 1999: 63-125.
[22] DUBOIS D, PRADE H. Random sets and fuzzy interval analysis[J].Fuzzy Sets & Systems, 1991, 42(1): 87–101.
[23] ALVAREZ D A. On the calculation of the bounds of probability of events using infinite random sets[J].International Journal of Approximate Reasoning, 2006, 43(3): 241–267.DOI:10.1016/j.ijar.2006.04.005
[24] SADIQ R, NAJJARAN H, KLEINER Y. Investigating evidential reasoning for the interpretation of microbial water quality in a distribution network[J].Stochastic Environmental Research and Risk Assessment, 2006, 21(1): 63–73.DOI:10.1007/s00477-006-0044-7
[25] GRABISCH M. Dempster-Shafer and possibility theory[M].Berlin: Springer, 2016: 377-437.
[26] DUBOIS D, FOULLOY L, MAURIS G, et al. Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities[J].Reliable Computing, 2004, 10(4): 273–297.DOI:10.1023/B:REOM.0000032115.22510.b5
[27] OUSSALAH M. On the probability/possibility transformations:A comparative analysis[J].International Journal of General System, 2000, 29(5): 671–718.DOI:10.1080/03081070008960969
[28] 锁斌, 程永生, 曾超, 等. 基于证据理论的异类信息统一表示与建模[J].系统仿真学报, 2013, 25(1): 6–11.
SUO B, CHENG Y S, ZENG C, et al. Unified method of describing and modeling heterogeneous information based on evidence theory[J].Journal of System Simulation, 2013, 25(1): 6–11.(in Chinese)
[29] FLOREA M C, JOUSSELME A L, GRENIER D, et al. Approximation techniques for the transformation of fuzzy sets into random sets[J].Fuzzy Sets & Systems, 2008, 159(3): 270–288.
[30] KOLMOGOROV A N, FOMIN S. Elements of the theory of functions and functional analysis.Vol.1, Metric and normed spaces[M].Rochester: Graylock Press, 1957: 372-389.
[31] OBERKAMPF W L, HELTON J C, JOSLYN C A, et al. Challenge problems:Uncertainty in system response given uncertain parameters[J].Reliability Engineering & System Safety, 2004, 85(1): 11–19.


相关话题/概率 信息 系统 传播 计算

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 涡轮泵流体静压轴承性能计算与试验研究*
    重复使用是航天运载动力系统的发展方向,作为液体火箭发动机的“心脏”,涡轮泵的性能和可靠性与发动机的重复使用性能密切相关,而支撑涡轮泵主轴的轴承是限制涡轮泵重复使用性能的关键因素之一。传统的滚动轴承在火箭发动机涡轮泵中低温、低黏度、高速、重载环境下的严重磨损问题和DN值的限制,使之不能满足重复使用涡轮 ...
    本站小编 Free考研考试 2021-12-25
  • 考虑真实时变环境应力的系统可靠性评估*
    随着科学技术的发展,产品结构日益复杂,产品可靠性评估的精度要求也越来越高,预测真实时变环境下产品的可靠性一直是一个极大的挑战。工作环境或操作条件极大地影响了系统并造成了其部件的寿命减少或性能退化[1],与温和的环境条件相比,严峻的环境条件将加快系统及其部件的失效或性能退化过程[2]。传统可靠性评估方 ...
    本站小编 Free考研考试 2021-12-25
  • 实时单核和谐周期分区系统时间窗口分配算法*
    目前,航空电子系统正飞速从联合架构(federatedavionics)向综合模块航电(IntegrateModularAvionics,IMA)架构转换[1]。IMA架构在一台共享的计算平台上部署拥有多个航电子系统功能的高集成度分区系统,即各个分系统共享软件(操作系统)和硬件资源。这种架构已经广泛 ...
    本站小编 Free考研考试 2021-12-25
  • 分层网络控制系统的分布式H控制*
    网络控制系统是一类利用网络构成闭环的自动控制系统[1]。由于网络的介入,改变了自动控制系统点对点连接的传统模式,简化了系统的连接,降低了成本,便于维护与升级,因此在工业控制、航空航天、汽车、机器人等领域得到了广泛的应用。与此同时,由于网络带宽有限,分时复用等特征,改变了控制系统信息传输的方式,带来了 ...
    本站小编 Free考研考试 2021-12-25
  • 小型飞机自动着舰系统设计准则适用性分析*
    航空母舰(简称航母)搭载有不同种类、功能各异的舰载机以实现多种作战任务。随着无人机技术的发展,航母上应用了越来越多的小尺寸无人机进行战场监控、数据中继等任务。这类飞机通常被划分为Ⅰ类飞机,采用撞网、钩拦阻索等方式回收。这些回收方式都需要飞机在自动着舰系统(AutomaticCarrierLandin ...
    本站小编 Free考研考试 2021-12-25
  • 基于时域信息的粒径分布及光学常数重建*
    参与性介质是指具备吸收、散射性质的物质组成的介质系统的总称,其普遍存在于石油化工、生物制药、建材生产、红外探测、卫星遥感等诸多领域中[1-4]。气溶胶粒子是一种典型的参与性介质,其粒径分布和光学常数一般可以通过实验测量方法分别获得,但是这对于实验条件提出了一定的要求。参与性介质粒径分布和光学常数与入 ...
    本站小编 Free考研考试 2021-12-25
  • K-均值聚类在CCERT系统流型辨识中的应用*
    两相流广泛存在于航空航天、化工和石油等领域中,例如航空发动机轴承腔中的油液则是以油气两相流的形式存在,其流动状态对航空发动机的工作影响很大[1]。流型是影响两相流的流动特性和传热、传质性能的重要因素[2]。因此,对于两相流流型的准确辨识具有重要意义。现有的两相流流型辨识方法大多基于图像重建法和目测法 ...
    本站小编 Free考研考试 2021-12-25
  • 工业总线标准电容层析成像系统设计*
    由2种或者2种以上不同“相”的物质组成的流体称为多相流,在航空航天领域广泛存在,如航空发动机附件机匣内的多相流[1],航空发动机的废弃物排放过程中的多相流和液体火箭发动机推进剂雾化过程中的多相流等。随着航空航天领域的快速发展,对其中的多相流过程可视化与参数准确测量提出更高的要求。然而,多相流过程中的 ...
    本站小编 Free考研考试 2021-12-25
  • 多激励频率模式的磁感应层析成像系统*
    医学影像成像方法是借助某种介质与人体组织之间的相互作用,通过成像的方法将人体组织、器官的密度、结构和状况以图像方式表现出来的技术。医生可通过经验结合影像成像结果对病人状况进行分析诊断,因此X射线断层成像(X-RayComputedTomography,X-CT)、磁共振成像(MagneticReso ...
    本站小编 Free考研考试 2021-12-25
  • 考虑等待时间约束的不完美生产系统的产出优化*
    在半导体、钢铁、化工等实际生产系统中,在制品(WorkInProcess,WIP)在进行某些工序加工之前的等待时间往往不能超过设定的阈值,即存在等待时间约束(queuetimeconstraints)。若超出该约束,则产品直接废弃或需要返工,这将降低生产效率。此外,设备劣化程度的加剧将会导致产品缺陷 ...
    本站小编 Free考研考试 2021-12-25