删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于可能性矩的混合不确定性全局灵敏度分析*

本站小编 Free考研考试/2021-12-25

灵敏度分析对于指导工程设计具有重要意义。一般来说,灵敏度分析可分为局部灵敏度分析和全局灵敏度分析。局部灵敏度分析能够度量输入参数的微小扰动对输出响应的影响,但其依赖输入参数名义值的选取,缺乏全局性与计算的稳定性[1-2]。全局灵敏度是在整个参数空间中考虑输入参数的不确定性对输出的影响,因此能够从整体上反映模型输入不确定性对模型输出不确定性的影响[1],进而为减小输出不确定性提供指导。
目前,随机不确定性灵敏度分析方法已经发展得相对成熟,如非参数方法的指标[3-4]、基于方差的全局灵敏度指标[5-6]、矩独立的全局灵敏度指标[7-8],但同时考虑模糊和随机不确定性的灵敏度分析则相对研究较少。文献[9]通过将模糊变量在其每个隶属水平下近似处理为均匀分布的随机变量,建立了模糊随机混合不确定性灵敏度指标来分别度量模糊输入变量和随机输入变量对输出响应概率密度函数的影响程度。由于本质上并不能确定模糊变量在某个隶属水平下的取值规律,因此这种近似处理方式不甚合理。在同时包含随机不确定性和模糊不确定性结构系统中,模型输出将具有模糊性和随机性,Li等[10]通过有条件和无条件地输出响应的一阶、二阶概率矩的差异,建立了基于输出一阶、二阶概率矩的模糊输入变量和随机输入变量的灵敏度指标。但其仅考虑了模糊变量固定在其最大似然值处对输出响应的影响,并未对模糊变量在其整个可能取值范围内进行全局考虑。Greegar和Manohar[11]固定模糊变量于其名义值点处,然后通过求解有条件和无条件的输出特征之间的差异,建立混合输入不确定性全局灵敏度指标,同样对模糊变量没有进行考虑其全局的取值规律。在客观输入变量具有主观分布参数的全局灵敏度分析过程中,Li[12]和陈超[13]等通过固定模糊变量的隶属水平,从不同角度建立了主观分布参数的灵敏度指标。从直观上讲,这种固定方式反映了模糊变量的隶属水平对输出响应特征的影响,并不能完全代表该模糊变量整个取值特征对输出响应特征的重要性。
针对目前混合不确定性灵敏度研究存在的一些问题,本文结合模糊集合理论,从输出的可能性矩的角度出发,提出了混合输入不确定作用下的全局灵敏度新指标。不同于以往的模糊变量的固定方式,本文依据模糊变量的全局取值规律来固定模糊变量本身。因此,由于固定某个模糊输入变量而造成的有条件输出响应特征和无条件输出响应特征的之间的差异应该为该模糊输入变量的函数,进而输出响应特征之间的差异本质上为一个模糊变量,对该模糊变量求可能性均值即可从全局角度考虑条件模糊输入变量对输出响应特征的重要性。本文还讨论了所提指标的一些数学性质并介绍了指标的求解步骤。为了减少计算成本,采用Kriging代理模型来提高计算效率。最后通过算例验证了本文所提方法的准确性和高效性。
1 模糊数可能性矩的定义 对于一个模糊数A,在某一隶属水平γ下,其取值范围为一个固定区间[a1(γ), a2(γ)],Christer和Robert[14]定义了模糊数的可能性期望与可能性方差,其形式分别为
(1)

对于一个模糊数A,Saeidifar和Pasha[15]进一步定义模糊数高阶可能性中心矩为
(2)

式中:k为可能性矩的阶次。类似于随机数,模糊数2阶中心矩即为可能性方差,3阶、4阶中心矩分别可以用来计算可能性偏度和可能性峰度。
2 混合输入对输出影响的定性分析 当结构系统的功能响应函数Y=g(XR)中只含有随机变量XR时,系统输出响应量Y只具有随机性,此时输出响应量的各阶概率矩均为确定的值。当结构系统的功能响应函数Y=g(XF)中只含有模糊变量XF时,系统输出响应量Y只具有模糊性,此时输出响应量的各阶可能性矩同样为确定的值。
而当结构或系统的输入变量X中同时含有随机变量和模糊变量时:假设结构中有n(n=nR+nF)个基本变量X=(X1, X2, …, Xn),其中前nR个变量XR=(X1, X2, …, XnR)为相互独立的随机变量,其概率密度函数(PDF)分别为fXRi(xRi)(i=1, 2, …, nR);后nF个变量XF=(XnR+1, XnR+2, …, Xn)为相互独立的模糊性变量,其隶属函数分别为μXFj(xFj)(j=nR+1, nR+2, …, nR+nF)。由于结构的响应量函数g(XR, XF)为模糊变量XF和随机变量XR的函数,此时输出响应量Y将同时具有模糊性和随机性。
对于模型Y=g(XR, XF),输出响应量的概率矩可表示为
(3)

式中:f(XR)(xR)为XR的联合概率密度函数;αkYYk(k>2) 阶中心距,则此时输出响应量的各阶概率矩均为由隶属函数表示的模糊变量。
对于模型Y=g(XR, XF),当随机向量XR任取某一实现值xR*时,输出响应为其余nF个模糊变量的函数,此时输出响应为一模糊变量,可得输出响应的可能性矩为一确定的值。因此,输出响应Y的可能性矩为XR的函数,即输出响应量的各阶可能性矩为由概率密度函数描述的随机变量。
从上述分析可以看出,对于模糊随机混合不确定性灵敏度分析,可以从输出响应的概率矩和可能性矩两方面来考虑。本文从输出响应的可能性矩角度,以输出响应的可能性期望为例,讨论模糊和随机输入变量对输出响应量可能性矩的影响。
3 混合不确定性下的灵敏度指标 3.1 随机输入变量灵敏度指标 对于模型Y=g(XR, XF),关于输出响应求可能性期望M=M(Y),则所得响应的可能性期望值为一个随机变量,其PDF记为fM(m),可能性期望的随机性是由模型中随机输入变量引起的。当固定某个随机输入变量XRi时,输出响应的随机性会发生变化,由于模型中模糊变量和随机变量的相互作用,输出响应的模糊性同时也会变化。因此,输出响应的可能性期望的PDF会发生变化。此时输出响应可能性期望的条件PDF记为fM|XRi(m)。fM|XRi(m)与fM(m)之间的面积差异大小可以衡量变量XRi对输出响应可能性期望PDF的影响。
(4)

此时SXRiXRi的函数,为一个随机变量。对SXRi求平均,并进行归一化处理,可得到随机输入变量XRi的灵敏度指标δXRi
(5)

δXRi进一步可写为Copula函数的形式,来表达输出响应Y的可能性期望与XRi的相关性大小。
(6)

式中:c(u, vi)为(M, XRi)的Copula密度函数。
根据上述单个随机输入变量灵敏度指标δXRi的定义可给出一组随机输入变量(XRi1, XRi2, …, XRim)(1≤imnR m>1, ij(j=1, 2, …, m)∈(1, 2, …, nR))的灵敏度指标δXRi1, XRi2, …, XRim
(7)

式中:

3.2 模糊输入变量灵敏度指标 对于模型Y=g(XR, XF),响应的可能性期望为一个随机变量,其PDF记为fM(m)。固定某个模糊变量XFi时,输出响应的模糊性会发生变化,同时由于模型中模糊变量和随机变量的相互作用,输出响应的随机性因此也会变化。所以,固定某个模糊变量XFi后,有条件输出响应可能性期望的PDF与无条件输出响应可能性期望的PDF会有差异,输出响应的条件PDF记为fM|XFi(m)。fM|XFi(m)与fM(m)之间的面积差异大小SXFi可以衡量变量XFi对输出响应可能性期望的PDF的影响。
(8)

由于XFi为模糊变量,此时SXFiXFi的函数,所以SXFi为一个模糊变量。关于SXFi求可能性期望,并进行归一化处理,则可得模糊输入变量XFi的灵敏度指标δXFi
(9)

式中:SXFi(γ)和SXFi(γ)分别表示在隶属水平γSXFi的和上界和下界。
根据上述单个模糊输入变量灵敏度指标δXFi的定义可给出一组模糊输入变量(XFi1, XFi2, …, XFim)(1≤imnF, m>1, ij(j=1, 2, …, m)∈(1, 2, …, nF))的灵敏度指标δXFi1, XFi2, …, XFim
(10)

上述指标体系还可以根据需要扩展到输入变量对响应量可能性方差或更高阶可能性矩的影响上,进而满足不同的工程实际要求。
3.3 灵敏度指标的数学性质 以上所提灵敏度指标具有下列数学性质:
性质1????0≤δi<1。
证明????类似于Borgonovo[1]提出的矩独立指标,可知,因此:
(11)

证毕
性质2????如果输入变量Xi独立于输出响应的可能性期望,则δi=0。
证明????如果输入变量独立于输出响应的可能性期望,则有条件和无条件的输出响应可能性期望的PDF重合,所以δi=0。????????????????????????????证毕
性质3????若δij=δi,则输入变量Xj独立于输出响应的可能性期望。
证明????若输出响应的可能性期望依赖于变量Xi,但独立于变量Xj,则fM|Xi, Xj(m)=fM|Xi(m)。所以:
(12)

证毕
4 灵敏度指标的求解方法 4.1 灵敏度指标一般求解方法
4.1.1 随机输入变量灵敏度指标的求解方法 由上述分析可知,求解随机输入变量灵敏度指标步骤如下:
1) 将随机输入变量在其整个分布范围内抽样,通过不确定性传递和优化算法得到输出响应量隶属函数,求得输出响应的可能性期望,进而估计响应量可能性期望的无条件概率密度函数fM(m)。
2) 根据XRi的概率密度函数抽取其样本,将XRi固定在其中一个样本点(记为xRi*)处,其余的输入变量仍在整个分布范围内变化抽样,通过不确定性传递和优化算法得到此时响应量可能性期望的条件概率密度函数fM|XRi(m)。此时,便可以得到fM|XRi(m)和fM(m)在XRi=xRi*处的差异面积SXRi*
3) 重复这个过程,最终得到SXRi的均值,进而得到δXRi的估计值。

4.1.2 模糊输入变量灵敏度指标的求解方法 由上述分析可知,求解模糊输入变量灵敏度指标步骤如下:
1) 将随机输入变量在其整个分布范围内抽样,通过不确定性传递和优化算法得到输出响应量的可能性期望,进而估计响应量可能性期望的无条件概率密度函数fM(m)。
2) 同样将随机输入变量在其整个分布范围内变化抽样。固定某个模糊输入变量XFi的隶属水平γ,根据XFi的隶属函数可得此时XFi∈[XFi(γ), XFi(γ)],XFi在区间[XFi(γ), XFi(γ)]内任取一实现值xFi*,可通过不确定性传递和优化算法求得输出响应的可能性期望的有条件概率密度函数fM|xFi*(m)。此时,便可以得到fM|XFi(m)和fM(m)在XFi=xFi*处的面积差异SXFi*,当XFi遍历区间[XFi(γ), XFi(γ)]时,便可得到SXFi的一个区间[SXFi(γ), SXFi(γ)]。
3) 遍历XFi的隶属水平,即可相应地得到SXFi的隶属函数,进而得到SXFi的可能性期望值和δXFi的估计值。
由上述分析可知,求解随机输入变量灵敏度指标时,需要双重循环抽样以及单层优化求解SXRi的均值。求解模糊输入变量的灵敏度指标时,需要单层抽样,但是需要双重优化来求解SXFi的均值。求解所提指标的一般方法计算量较大。为了提高计算效率,本文采用Kriging代理模型法来近似代理原功能函数,模型代理以后所有的计算过程不变,但可以大大减少计算成本,Kriging代理模型法详细步骤见4.2节。
4.2 Kriging代理模型法 Kriging代理模型法是一种具有很强全局近似能力的逼近技术,它借助某一点周围的已知信息的加权线性组合来估计该点的未知信息[16]。Kriging代理模型法可以用来逼近模型。

4.2.1 Kriging法中的抽样阶段 Kriging法对试验点的预测需要知道一系列观测点X(k)={X1(k)X2(k), …, Xn(k)}(k=1, 2, …, NtNt为训练点的个数)(称为训练点(TP))的信息,其预测能力取决于训练点所携带的信息量。若所携带的信息量足够反映整个参数空间,那么预测结果将会较为准确。但达到足够的信息量需要大量的样本,这导致计算成本的大幅度增加。因此,训练点的选取对Kriging法的预测能力有至关重要的影响。
相比较于传统的蒙特卡罗随机抽样,拉丁超立方抽样[17]是一种多维分层抽样方法,它对样本数量较为节省,尤其是当输出结果能用一个线性函数很好地逼近的情况下。应用拉丁超立方抽样得到一组输入变量样本X(k)(k=1, 2, …, Nt)。根据函数关系Y=g(X)可计算得到训练点处的输出响应值:
(13)

式中:YTP为训练点向量对应的输出响应值。
根据训练点和与之对应的输出响应的信息,Kriging代理模型法可以构造出g(X)近似模型。

4.2.2 Kriging法的基本理论 通常情况下,Kriging模型由线性回归部分和非参数随机部分组成[18-19]。描述如下:
(14)

式中:β=[β1, β2, …, βM]T为回归系数;q(X)=[q1(X), q2(X), …, qM(X)]T为回归模型基函数;h(X)为高斯随机部分,服从N(0, σ2),且(Xi, Xj)的方差可定义如下:
(15)

其中:R(Xi, Xj)为相关方程,对近似精确程度起决定性作用。Koehler和Owen[20]提供了若干可供选择的相关方程,其中高斯相关方程最为通用。
(16)

式中:εk为相关性参数;XkiXkj分别为向量XiXj的第k个分量。相关方程反映了参数空间中2个点的相似程度。若点XkiXkj之间的距离很小,那么这2个点携带的信息就很相似,这表征了2个点的高相似度。因此,相关方程能更为有效地被用来收集试验点周围训练点的信息。
由于未知参数βσ2依赖于相关性参数εk,根据最大似然估计理论[20],易得
(17)

根据文献[20-21],未知参数βσ2可估计如下:
(18)

(19)

式中:为训练点的相关矩阵;Q=[q(X1), q(X2), …, q(XNt)]为基函数矩阵;L为样本点处输出响应矢量。因此,Kriging模型的构建可以转化为一个非线性无约束寻优过程。
故对于试验点Xg(X)模型的最佳无偏估计为
(20)

式中:r(X)=[R(X, X1), R(X, X2), …, R(X, XNt)]T为试验点与训练点之间的相关性向量。
式(20) 中的第2项是第1项的插值残留项,因此,输出响应统计特征能被精准地估计。尽管构建Kriging模型非常复杂,但其得到了广泛的应用,同时发展了DACE工具箱[21]。本文指标的求解就是基于此工具箱。
由上述分析可知,采用Kriging代理模型法需要Nt个训练点,因此,上述方法调用原始模型次数为Nt次。采用Kriging代理模型法可大大提高指标计算效率。
5 算例 本节通过一个数值算例和2个工程算例,分别通过一般方法和Kriging代理模型法计算上文所提指标,验证了所提方法的准确性和高效性。
算例1????考虑线性模型g(x)=2x1-3x2+x3+2x4,其中x1x2为相互独立的正态随机变量,均值向量μ=(3, 4), 标准差向量σ=(1, 1)。x3x4均为模糊变量,隶属函数分别为μX3(x3)=exp[-(x3-62)/2]和μX4(x4)=exp[-(x3-3)2/2]。
分别用一般方法和Kriging代理模型法计算关于输出响应的可能性期望的灵敏度指标,计算结果如表 1所示。
表 1 算例1各输入变量的灵敏度指标值 Table 1 Sensitivity index values of input variables in Example 1
随机变量灵敏度指标值
一般方法Kriging法
x10.211 30.211 3
x20.408 70.408 7
x30.048 20.048 2
x40.094 70.094 8


表选项






表 1计算结果可以看出,随机变量对输出可能性期望影响排序为x2x1,模糊变量对输出可能性期望影响排序为x4x3。应用Kriging代理模型计算结果与一般方法计算结果一致。一般方法计算量为108次,而应用Kriging代理模型计算量仅为100次,采用Kriging代理模型法极大地提高了计算效率。
算例2????如图 1所示的流体管道,根据管道的蓄水能力建立极限状态方程为[22]
图 1 流体管道系统示意图 Fig. 1 Schematic diagram of a sewer pipe system
图选项





其中:各变量是描述管道性能的参数, 其中K=0.9。假设C1C2C3为模糊变量,隶属函数为μXi(xi)=exp[-(xic)2/2σ2],隶属函数的参数如表 2所示;Y(Y1Y2Y3)为与摩擦因子负相关的参数,W为与沉淀率正相关的参数,均值向量μ=(8.59, 7.01),标准差向量σ=(2, 0.862)。
表 2 算例2各模糊变量参数值 Table 2 Parameter values of fuzzy variables in Example 2
随机变量模糊变量cσ
x1C10.8250.070
x2C20.8250.070
x3C30.9000.050


表选项






分别用一般方法和Kriging代理模型法计算关于输出的可能性期望的灵敏度指标,可得计算结果如表 3所示。
表 3 算例2各输入变量的灵敏度指标值 Table 3 Sensitivity index values of input variables in Example 2
参数灵敏度指标值
一般方法Kriging法
C10.004 90.004 9
C20.004 90.004 9
C30.004 30.004 3
Y0.764 20.764 2
W0.053 70.053 7


表选项






表 3计算结果可以看出,随机变量对输出可能性期望影响排序为YW,模糊变量对输出可能性期望影响排序为C3C1=C2。应用Kriging代理模型计算结果与一般方法计算结果一致。一般方法计算量为108次,而应用Kriging代理模型计算量仅为200次,采用Kriging代理模型法极大地提高了计算效率。
算例3????如图 2所示的屋架,屋架的上弦杆和其他压杆采用钢筋混凝土杆,下弦杆和其他拉杆采用钢杆。设屋架承受均布载荷q作用,将均布载荷q化成节点载荷后有P=ql/4。结构力学分析可得C点沿垂直地面方向的位移为ΔC=,其中AcAsEcEsl分别为混凝土和钢杆的横截面积、弹性模量和长度。考虑屋架的安全性和适用性,以屋架顶端C点的向下挠度不大于3 cm为约束条件建立结构的极限状态函数。假设所有变量之间相互独立,EcEs为模糊随机变量,它们的隶属函数为
图 2 屋架结构的简单示意图 Fig. 2 Schematic diagram of a roof truss structure
图选项





AcAsql为随机变量,分布参数参见表 4
表 4 屋架结构随机变量的数值特征 Table 4 Numerical characteristics of random variables in roof truss structure
随机变量分布类型均值标准差
q/(N·m-1)正态20 0001 400
l/m正态120.12
As/m2正态9.82×10-45.982×10-5
Ac/ m2正态0.040.004 8


表选项






分别用一般方法和Kriging代理模型法计算关于输出的可能性期望的灵敏度指标,可得计算结果如表 5所示。
表 5 算例3各输入变量基于输出可能性期望的灵敏度指标值 Table 5 Sensitivity index values of input variables based on output possibilistic expectation in Example 3
参数灵敏度指标值
一般方法Kriging法
q0.339 40.339 1
l0.673 90.673 6
Ac0.144 40.144 3
Ec0.012 00.011 9
As0.158 50.158 4
Es0.029 10.029 0


表选项






表 5的计算结果可以看到,随机输入变量对输出响应可能性期望的重要性排序为:δlδqδAsδAc,模糊输入变量对输出响应可能性期望的重要性排序为:δEsδEc。采用Kriging代理模型计算结果与一般方法的重要性排序一致,指标值非常接近。一般方法计算量为108次,而应用Kriging代理模型计算量仅为200次,采用Kriging代理模型法极大地提高了计算效率。
6 结论 1) 通过分析混合不确定性下输出响应的特征,指出混合不确定性作用下响应输出的概率矩为一个模糊变量,而可能性矩为一个随机变量。
2) 基于模糊变量可能性矩的定义,以输出响应的一阶可能性中心距为例,比较输出响应有条件和无条件可能性期望的概率密度函数的平均差异,分别建立了随机输入变量和模糊输入变量关于输出响应的可能性期望的灵敏度指标。类似地可以将所提指标扩展来衡量输入变量对输出响应的高阶可能性矩的影响。
3) 为了高效求解所提指标,本文采用了Kriging代理模型法,该方法只需对原始模型进行一次代理即可较精确求解所提指标,因此大大较少了计算量。

参考文献
[1] BORGONOVO E. Measuring uncertainty importance:Investigation and comparison of alternative approaches[J].Risk Analysis, 2006, 26(5): 1349–1361.DOI:10.1111/risk.2006.26.issue-5
[2] HAMBY D M. A review of techniques for parameter sensitivity analysis of environmental models[J].Environmental Monitoring and Assessment, 1994, 32(2): 135–154.DOI:10.1007/BF00547132
[3] SALTELLI A, MARIVOET J. Non-parametric statistics in sensitivity analysis for model output:A comparison of selected techniques[J].Reliability Engineering & System Safety, 1990, 28(2): 229–253.
[4] STORLIE C B, SWILER L P, HELTON J C, et al. Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models[J].Reliability Engineering & System Safety, 2009, 94(11): 1735–1763.
[5] SOBOL I M. Sensitivity estimates for nonlinear mathematical models[J].Mathematical Modeling and Computational Experiment, 1993, 1(4): 407–414.
[6] SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J].Mathematics and Computers in Simulation, 2001, 55(1): 271–280.
[7] BORGONOVO E. A new uncertainty importance measure[J].Reliability Engineering & System Safety, 2007, 92(6): 771–784.
[8] LIU Q, HOMMA T. A new computational method of a moment-independent uncertainty importance measure[J].Reliability Engineering & System Safety, 2009, 94(7): 1205–1211.
[9] SONG S F, LU Z Z, CUI L J. A generalized Borgonovo's importance measure for fuzzy input uncertainty[J].Fuzzy Sets & Systems, 2012, 189(1): 53–62.
[10] LI L Y, LU Z Z, LI W. Importance measure system of fuzzy and random input variables and its solution by point estimates[J].Science China Technological Sciences, 2011, 54(8): 2167–2179.DOI:10.1007/s11431-011-4402-4
[11] GREEGAR G, MANOHAR C. Global response sensitivity analysis of uncertain structures[J].Structural Safety, 2016, 58(10): 94–104.
[12] LI L Y, LU Z Z. Importance analysis for model with mixed uncertainties[J].Fuzzy Sets & Systems, 2017, 310(6): 90–107.
[13] 陈超, 吕震宙. 模糊分布参数的全局灵敏度分析新方法[J].工程力学, 2016, 2(3): 25–33.
CHEN C, LV Z Z. A new method for global sensitivity analysis of fuzzy distribution parameters[J].Engineering Mechanics, 2016, 2(3): 25–33.(in Chinese)
[14] CHRISTER C, ROBERT F. On possibilistic mean value and variance of fuzzy numbers[J].Fuzzy Sets & Systems, 2012, 122(2): 315–326.
[15] SAEIDIFAR A, PASHA E. The possibilistic moments of fuzzy numbers and their applications[J].Journal of Computational & Applied Mathematics, 2009, 223(2): 1028–1042.
[16] KAYMAZ I. Application of Kriging method to structural reliability problems[J].Structural Safety, 2005, 27(2): 133–151.DOI:10.1016/j.strusafe.2004.09.001
[17] OLSSON A, SANDBERG G, DAHLBLOM O. On Latin hypercube sampling for structural reliability analysis[J].Structural Safety, 2003, 25(2): 47–68.
[18] LV Z Y, LU Z Z, WANG P. A new learning function for Kriging and its applications to solve reliability problems in engineering[J].Computers & Mathematics with Applications, 2015, 70(5): 1182–1197.
[19] PIERRIC K, BRUNO S, NADèGE V, et al. A new surrogate modeling technique combining Kriging and polynomial chaos expansions -Application to uncertainty analysis in computational dosimetry[J].Journal of Computational Physics, 2015, 286(10): 103–117.
[20] KOEHLER J R, OWEN A B. 9 computer experiments[J].Handbook of Statistics, 1996, 13(2): 261–308.
[21] ZHANG L G, LU Z Z, WANG P. Efficient structural reliability analysis method based on advanced Kriging model[J].Applied Mathematical Modelling, 2015, 39(2): 781–793.DOI:10.1016/j.apm.2014.07.008
[22] ROBERT H S, MARK A C. System reliability and sensitivityfactors via the MPPSS method[J].Probabilistic Engineering Mechanics, 2005, 20(2): 148–157.DOI:10.1016/j.probengmech.2005.02.001


闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛鎾茬閸ㄦ繃銇勯弽顐粶缂佲偓婢跺绻嗛柕鍫濇噺閸e湱绱掗悩闈涒枅闁哄瞼鍠栭獮鎴﹀箛闂堟稒顔勯梻浣告啞娣囨椽锝炴径鎰﹂柛鏇ㄥ灠濡﹢鏌涢…鎴濇灀闁圭ǹ鍟村娲川婵犲孩鐣烽悗鍏夊亾闁归棿绀佺粻鏍ㄤ繆閵堝懏鍣洪柡鍛叀楠炴牜鈧稒岣跨粻姗€鏌i埡浣规崳缂佽鲸鎸婚幏鍛槹鎼淬倗鐛ラ梻渚€娼荤紞鍥╃礊娴e壊鍤曞┑鐘崇閸嬪嫰鏌i幘铏崳妞は佸洦鈷戦柛蹇氬亹閵堟挳鏌¢崨顔剧疄闁诡噯绻濆畷鎺楁倷缁瀚肩紓鍌欑椤戝牆鈻旈弴銏″€块柛褎顨嗛悡娆撴煕閹存瑥鈧牜鈧熬鎷�2濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姵澹嗙槐鎺斺偓锝庡亾缁扁晜绻涘顔荤盎閹喖姊洪崘鍙夋儓妞ゆ垵娲ㄧ划娆掔疀濞戞瑢鎷洪梺闈╁瘜閸樺ジ宕濈€n偁浜滈柕濞垮劜椤ャ垻鈧娲滈弫濠氬春閳ь剚銇勯幒鎴濐仾闁抽攱鍨块弻娑樷槈濮楀牆浼愭繝娈垮櫙缁犳垿婀佸┑鐘诧工閹冲孩绂掓潏鈹惧亾鐟欏嫭绀冩俊鐐扮矙瀵偊骞樼紒妯轰汗閻庤娲栧ú銈夌嵁濡ゅ懏鈷掑〒姘e亾婵炰匠鍛床闁割偁鍎辩壕褰掓煛瀹擃喒鍋撴俊鎻掔墢閹叉悂寮崼婵婃憰闂佹寧绻傞ˇ顖炴倿濞差亝鐓曢柟鏉垮悁缁ㄥジ鏌涢敐鍕祮婵﹨娅i幏鐘诲灳閾忣偅顔勯梻浣规偠閸庢粓宕惰閺嗩亪姊婚崒娆戝妽閻庣瑳鍛床闁稿本顕㈠ú顏勵潊闁靛牆鎳愰敍娑㈡⒑閸︻厼鍔嬫い銊ユ閸╂盯骞嬮敂鐣屽幈濠电娀娼уΛ妤咁敂閳哄懏鐓冪憸婊堝礈濞嗘垹绀婂┑鐘叉搐缁犳牠姊洪崹顕呭剱缂傚秴娲弻宥夊传閸曨偂绨藉┑鐐跺亹閸犳牕顫忛搹瑙勫磯闁靛ǹ鍎查悵銏ゆ⒑閻熸澘娈╅柟鍑ゆ嫹
濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倻鎲搁悧鍫濈瑲闁稿顦甸弻鏇$疀鐎n亖鍋撻弴銏″€峰┑鐘插閸犳劗鈧箍鍎卞Λ娆撳矗韫囨稒鐓忛柛顐g箥濡插綊鏌嶉柨瀣伌闁哄本绋戦埥澶婎潨閸繀绱g紓鍌欑劍椤ㄥ棛鏁Δ浣衡攳濠电姴娴傞弫鍐煥濠靛棙澶勯柛鎺撶☉椤啴濡堕崘銊т痪濠碘槅鍋勯崯顖炲箞閵娾晛鐒垫い鎺戝閻撳繘鏌涢锝囩畺闁挎稑绉垫穱濠囶敃閵忕媭浼冮梺鍝勭焿缁查箖骞嗛弮鍫晬婵犲﹤鎲涢敐澶嬧拺闁告縿鍎辨牎闂佺粯顨堟慨鎾偩閻戣棄顫呴柕鍫濇噽椤旀帒顪冮妶鍡樷拻闁哄拋鍋婂畷銏ゅ箹娴e厜鎷洪梺鍛婄☉閿曘儳绮堢€n偆绠惧ù锝呭暱濞诧箓宕愰崼鏇熺叆婵犻潧妫欓ˉ鎾趁瑰⿰鍕煉闁哄瞼鍠撻埀顒佺⊕宀h法绮婚弽褜鐔嗛悹鍝勬惈椤忣偆绱掓潏銊ョ闁逞屽墾缂嶅棙绂嶇捄浣曠喖鍩€椤掑嫭鈷戠紒顖涙礃閺夊綊鏌涚€n偅灏い顏勫暣婵″爼宕卞Δ鈧ḿ鎴︽⒑缁嬫鍎愰柟鐟版喘瀵顓奸崶銊ョ彴闂佸搫琚崕鍗烆嚕閺夊簱鏀介柨鐔哄Х閻e搫霉濠婂啰鍩g€殿喛顕ч濂稿醇椤愶綆鈧洭姊绘担鍛婂暈闁圭ǹ顭烽幃鐑藉煛娴g儤娈惧銈嗙墬缁嬫垿顢氶柆宥嗗€垫繛鎴烆仾椤忓懐顩叉い鏍ㄥ焹閺€浠嬫煟閹邦剙绾ч柍缁樻礀闇夋繝濠傚缁犵偟鈧鍠楅悡锟犮€佸Δ鍛妞ゆ巻鍋撻柍褜鍓欓悥濂稿蓟閿濆绠涙い鏃囧Г濮e嫰姊虹涵鍛棄闁稿﹤娼″璇测槈閵忕姈褔鏌涢妷顔句虎闁靛繈鍊栭ˉ鍡楊熆鐠轰警鍎戠紒鈾€鍋撳┑鐘垫暩婵挳宕愰幖浣告辈闁挎繂妫庢禍婊堝箹濞n剙鐒烘繛鍫熸礋閺屾洟宕惰椤忣參鏌涢埡鍐ㄤ槐妞ゃ垺锕㈤幃娆忣啅椤旇崵妫繝鐢靛У椤旀牠宕归柆宥呯闁规儼妫勯拑鐔兼煥閻斿搫孝闁绘劕锕弻宥嗘姜閹殿喖濡介梺璇茬箣缁舵艾顫忓ú顏勫窛濠电姴瀚崰娑㈡⒑缁嬫鍎愰柟鐟版搐椤繒绱掑Ο璇差€撻梺鍛婄缚閸庤櫕顨欏┑鐘垫暩閸嬫﹢宕犻悩璇插耿闁归偊浜濋惈蹇涙⒒娴h櫣甯涢柛鏃€顨婂顐﹀传閵壯傜瑝闂佸搫鍟悧濠囨偂濞嗘挻鐓欐い鏍ф閼活垰鈻撻崼鏇熲拺鐎规洖娲ㄧ敮娑欐叏婵犲倻绉烘鐐茬墦婵℃悂濡锋惔锝呮灁闁归濞€楠炴捇骞掑┑鍥ㄧグ闂傚倸鍊烽悞锕傚箖閸洖纾圭憸蹇曞垝婵犳艾绠婚悹鍥蔼閹芥洟姊虹紒妯活梿婵炲拑缍侀幆灞解枎閹惧鍘电紓浣割儏閻忔繈顢楅姀銈嗙厵妞ゆ梻鏅幊鍥ㄦ叏婵犲嫬鍔嬮悗鐢靛帶閳诲酣骞嬮悩妯荤矌缁辨挻鎷呴崫鍕戯綁鏌eΔ浣圭妞ゃ垺宀搁弫鎰緞濡粯娅囬梻浣稿暱閻忓牓寮插⿰鍫熷€靛┑鐘崇閳锋垹鎲搁悧鍫濈瑨濞存粈鍗抽弻娑樜熼崫鍕ㄦ寖缂備緡鍠楅悷鈺佺暦閻旂⒈鏁嶆繛鎴炲笚鐎氬ジ姊绘担鍛婅础閺嬵亝绻涚€电ǹ鍘撮柛鈹垮劜瀵板嫰骞囬鐘插箰闂備礁澹婇崑鎺楀磻閸曨剚娅犻悗鐢电《閸嬫挾鎲撮崟顒傤槬缂傚倸绉撮敃銉︾┍婵犲偆娼扮€光偓婵犲唭顏勨攽閻樻剚鍟忛柛銊ゅ嵆婵″爼骞栨担姝屾憰濠电偞鍨惰彜婵℃彃鐗婇幈銊ノ旈埀顒勬偋婵犲洤鏋侀柛鎾楀懐锛濇繛杈剧到閹碱偅鐗庨梺姹囧焺閸ㄦ娊宕戦妶澶婃槬闁逞屽墯閵囧嫰骞掗崱妞惧闂備浇顕х换鎴︽嚌妤e啠鈧箓宕归鍛缓闂侀€炲苯澧存鐐插暢椤﹀湱鈧娲栧畷顒勬箒闂佸搫顦扮€笛囧窗濡皷鍋撶憴鍕閺嬵亪鎽堕弽顬″綊鏁愭径瀣彸闂佹眹鍎烘禍顏勵潖缂佹ɑ濯村〒姘煎灡閺侇垶姊虹憴鍕仧濞存粠浜滈~蹇旂鐎n亞顦板銈嗙墬缁嬫帒鈻嶉弽顓熲拺闁告繂瀚埢澶愭煕濡湱鐭欓柟顔欍倗鐤€婵炴垶鐟ч崢閬嶆⒑閺傘儲娅呴柛鐕佸灣缁牓鍩€椤掆偓椤啴濡惰箛鏇炵煗闂佸搫妫欑粩绯村┑鐘垫暩婵兘寮崨濠冨弿濞村吋娼欓崹鍌炴煕閿旇骞樼紒鈧繝鍌楁斀闁绘ê寮堕幖鎰版煟閹烘垹浠涢柕鍥у楠炴帒顓奸崼婵嗗腐闂備焦鍓氶崹鍗灻洪悢鐓庤摕闁哄洢鍨归獮銏′繆閵堝倸浜鹃梺鍝勬4缂嶄線寮婚敍鍕勃闁告挆鍕灡婵°倗濮烽崑鐐垫暜閿熺姷宓侀悗锝庡枟閸婂鏌涢埄鍐夸緵婵☆値鍐f斀闁挎稑瀚禍濂告煕婵犲啰澧遍柡渚囧櫍閹瑩宕崟顓犲炊闂備礁缍婇崑濠囧窗濮樿埖鍎楁繛鍡楃箚閺€浠嬫煟濡搫绾у璺哄閺屾稓鈧綆鍋勬慨宥夋煛瀹€瀣М濠殿喒鍋撻梺闈涚箚閸撴繂袙閸曨垱鐓涘ù锝呮憸婢э附鎱ㄦ繝鍕笡闁瑰嘲鎳愮划娆撳箰鎼粹檧鍋撻姘f斀闁绘﹩鍠栭悘顏堟煥閺囨ê鐏╅柣锝囧厴椤㈡稑鈽夊鍡楁闂佽瀛╃粙鎺楁晪婵炲瓨绮犻崹璺侯潖濞差亜宸濆┑鐘插閻e灚绻濆▓鍨仴濡炲瓨鎮傞獮鍡涘籍閸繍娼婇梺鎸庣☉鐎氼喛鍊存繝纰夌磿閸嬫垿宕愰弽顓炵婵°倕鎳庣粣妤呭箹濞n剙鐏い鈺傚絻铻栭柨婵嗘噹閺嗙偤鏌i幘瀵告创闁哄本鐩俊鐑芥晲閸涱収鐎撮梻浣圭湽閸斿秹宕归崸妤€钃熼柨婵嗩槹閸嬪嫰鏌涘▎蹇fЧ闁绘繃妫冨铏光偓鍦У椤ュ銇勯敂鐐毈闁绘侗鍠栬灒闁兼祴鏅濋ˇ鈺呮⒑缂佹◤顏勭暦椤掑嫷鏁嗛柕蹇娾偓鑼畾闂佺粯鍔︽禍婊堝焵椤掍胶澧悡銈嗙節闂堟稒顥戦柡瀣Ч閺岋繝宕堕埡浣锋喚缂傚倸鍊瑰畝鎼佹偂椤愶箑鐐婇柕濞р偓濡插牓鎮楅悷鐗堝暈缂佽鍟存俊鐢稿礋椤栨氨顔掑┑掳鍊愰崑鎾绘煕閻曚礁鐏︽い銏$懇閺佹捇鏁撻敓锟�20婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁炬儳顭烽弻锝呂熷▎鎯ф缂備胶濮撮悘姘跺Φ閸曨喚鐤€闁圭偓鎯屽Λ鈥愁渻閵堝骸浜濇繛鍙夅缚閹广垹鈹戠€n偒妫冨┑鐐村灥瀹曨剟宕滈幍顔剧=濞达絽鎼牎闂佹悶鍔屽ḿ鈥愁嚕婵犳艾围闁糕剝锚瀵潡姊鸿ぐ鎺戜喊闁稿繑锕㈠畷鎴﹀箻濠㈠嫭妫冮崺鈧い鎺戝閻撴繈鏌¢崘銊у妞ゎ偄鎳橀弻锝呂熼悜姗嗘¥闂佺娅曢幑鍥Χ椤忓懎顕遍柡澶嬪灩椤︺劑姊洪崘鍙夋儓闁挎洏鍎甸弫宥夊川椤栨粎锛濋梺绋挎湰閻熝囁囬敂濮愪簻闁挎棁顕ч悘锔姐亜閵忊€冲摵妞ゃ垺锕㈡慨鈧柣姗€娼ф慨锔戒繆閻愵亜鈧牕顔忔繝姘;闁规儳顕弧鈧梺閫炲苯澧撮柡灞芥椤撳ジ宕ㄩ銈囧耿闂傚倷鑳剁划顖氼潖婵犳艾鍌ㄧ憸鏂款嚕閸涘﹦鐟归柍褜鍓熷濠氬即閵忕娀鍞跺┑鐘茬仛閸旀牗鏅ラ梻鍌欒兌鏋Δ鐘叉憸缁棁銇愰幒鎴f憰濠电偞鍨崹褰掑础閹惰姤鐓忓┑鐐茬仢閸旀碍銇勯鐔告珚婵﹦鍎ょ€电厧鈻庨幋鐘虫缂傚倸鍊哥粔鎾晝椤忓牏宓侀柛鎰╁壆閺冨牆绀冮柍杞扮劍閻庮參姊绘担鍛婂暈婵炶绠撳畷锝嗘償閵娿儲杈堥梺璺ㄥ枔婵敻鍩涢幋锔界厱婵犻潧妫楅顏呫亜閵夛箑鐏撮柡灞剧〒閳ь剨缍嗛崑鍛暦鐏炵偓鍙忓┑鐘插暞閵囨繄鈧娲﹂崑濠傜暦閻旂厧鍨傛い鎰癁閸ャ劉鎷洪梺鍛婄☉閿曘儵鍩涢幇鐗堢厽婵°倕鍟埢鍫燁殽閻愭彃鏆i柡浣规崌閹晠鎼归锝囧建闂傚倷绀侀幉鈥趁洪敃鍌氱婵炲棙鎸婚崑鐔访归悡搴f憼闁抽攱鍨垮濠氬醇閻旀亽鈧帞绱掗悩鍐插摵闁哄本鐩獮妯尖偓闈涙憸閻ゅ嫰姊虹拠鈥虫灀闁逞屽墯閺嬪ジ寮告惔銊︾厵闂侇叏绠戦弸銈嗐亜閺冣偓濞叉ḿ鎹㈠┑瀣潊闁挎繂妫涢妴鎰渻閵堝棗鐏ユ俊顐g〒閸掓帡宕奸妷銉у姦濡炪倖甯掔€氼參宕愰崹顐ょ闁割偅绻勬禒銏$箾閸涱厾效闁哄矉绻濋崺鈧い鎺戝绾偓闂佺粯鍨靛Λ妤€鈻撻锔解拺闁告稑锕ユ径鍕煕鐎n偄娴€规洏鍎抽埀顒婄秵閸犳鎮¢弴銏$厸闁搞儯鍎辨俊鍏碱殽閻愮摲鎴炵┍婵犲洤鐭楀璺猴功娴煎苯鈹戦纭锋敾婵$偠妫勯悾鐑筋敃閿曗偓缁€瀣亜閹邦喖鏋庡ù婊勫劤闇夐柣妯烘▕閸庢粎绱撳鍡欏ⅹ妞ゎ叀娉曢幑鍕倻濡粯瀚抽梻浣呵圭换鎴犲垝閹捐钃熸繛鎴欏焺閺佸啴鏌ㄥ┑鍡橆棤妞わ负鍔戝娲传閸曨剙顎涢梺鍛婃尵閸犳牠鐛崘顭戞建闁逞屽墴楠炲啫鈻庨幘鎼濠电偞鍨堕〃鍛此夊杈╃=闁稿本鐟ㄩ崗灞解攽椤旂偓鏆╅柡渚囧櫍閸ㄩ箖骞囨担鍦▉濠电姷鏁告慨鐢告嚌妤e啯鍊峰┑鐘叉处閻撱儲绻濋棃娑欘棡闁革絿枪椤法鎲撮崟顒傤槹濠殿喖锕ュ浠嬪箠閿熺姴围闁告侗鍠氶埀顒佸劤閳规垿鎮欓幓鎺旈獓闂佹悶鍔屽ḿ锟犵嵁婵犲伣鏃堝礃閳轰胶锛忛梺鑽ゅ仦缁嬪牓宕滃┑瀣€跺〒姘e亾婵﹨娅e☉鐢稿川椤斿吋閿梻鍌氬€哥€氼剛鈧碍婢橀悾鐑藉即閵忕姷顓洪梺鎸庢濡嫰鍩€椤掑倹鏆柡灞诲妼閳规垿宕卞☉鎵佸亾濡や緡娈介柣鎰缂傛氨绱掓潏銊ユ诞闁诡喒鏅涢悾鐑藉炊瑜夐幏浼存⒒娴e憡鎯堝璺烘喘瀹曟粌鈹戦崱鈺佹闂佸憡娲﹂崑鈧俊鎻掔墛缁绘盯宕卞Δ浣侯洶婵炲銆嬮幏锟�
相关话题/指标 计算 概率 结构 系统

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 冲压空气涡轮泵的温控节流孔计算方法*
    冲压空气涡轮(RAT)应急系统是飞机安全的最后保障,在飞机发动机和电源功能全部丧失的情况下,RAT应急能源系统将空气的动能转换为电能/液压能,提供飞机基本操纵所需能源。RAT系统一般由冲压涡轮、液压泵/发电机和收放装置组成,共有2个工作状态:①收回状态,液压泵静止,不输出功率;②伸出状态,RAT弹出 ...
    本站小编 Free考研考试 2021-12-25
  • 基于遗传算法的飞行管理系统余度配置优化方法*
    飞行管理系统(以下简称飞管系统)是现代航空装备电子系统的基本组成部分,其实现了飞机飞行过程中全过程控制与管理,是保障飞机安全性的重要系统[1]。飞管系统安全性设计过程中,预算和后续维修保障成本是2个主要制约因素[2]。航空装备研制、装备使用、维护过程中,在保证多种约束条件同时满足的情况下,如何尽可能 ...
    本站小编 Free考研考试 2021-12-25
  • 一种航天器太阳电池阵供电能力计算方法*
    航天器依靠太阳电池阵为设备供电,电池阵供电能力是影响航天器方案设计以及飞行任务规划的重要因素[1-3]。在航天器设计阶段,太阳电池阵供电能力分析可以优化帆板构型和布局,运营阶段,结合航天器轨道和姿态进行供电能力分析,可优化飞行任务规划,确保航天器能量平衡[4-5]。航天器电池阵供电能力受太阳光入射角 ...
    本站小编 Free考研考试 2021-12-25
  • 重点区域入侵安防设备系统可靠性建模方法*
    当前安防系统应用广泛,正在形成完整的产业价值链。在经历了模拟监控、数字监控、网络监控以及智能监控4个发展阶段后[1],安防系统的复杂度越来越高,与此同时也带来了故障率升高的问题,最终影响系统的防范效果。随着用户对安防效果要求的提高,许多****针对防范效果进行研究,逐渐将可靠性分析和计算应用于各种安 ...
    本站小编 Free考研考试 2021-12-25
  • 腐蚀环境下铜薄膜传感器金属结构裂纹监测*
    飞机在服役期间,作为主承力构件的金属结构,特别是在结构连接处,具有应力水平高、磨损程度大、使用年限长等特点,在疲劳载荷和腐蚀环境的耦合作用下极有可能产生裂纹,对飞行安全构成严重的威胁。因此,实现对疲劳裂纹的实时在线监测,判断其损伤程度,发出预警信息,对确保飞机的飞行安全具有重要意义[1-2]。目前, ...
    本站小编 Free考研考试 2021-12-25
  • AVB网络流量整形帧模型端到端延迟计算*
    音视频桥接技术(AVB)是由IEEE802.1AVB工作组(AVBTG)[1]定义的音视频流服务技术,已被车载电子系统等关键嵌入式领域考虑采用[2-4],是很具潜力的下一代实时网络标准[5-8]。AVB采用基于信用量的整形(CBS)算法对音视频流量进行整形,通过对不同类型流量设定统一的逻辑带宽进行限 ...
    本站小编 Free考研考试 2021-12-25
  • 动态系统失效的不确定性分析及其高效算法*
    在航空航天、核反应堆控制、汽轮机械等工程领域,系统的安全性能越来越受到工程技术人员的关注。与此同时,系统设计也日趋大型化和复杂化。这些都对系统的可靠性设计分析提出了更高的要求。系统由多个元器件按照特定关系连接构成,系统工作状态与元器件工作状态密切相关。一般情况下,元器件失效率为定值。然而,系统设备中 ...
    本站小编 Free考研考试 2021-12-25
  • 基于相关性分析的结构可靠性加严试验方法*
    可靠性验证试验是产品可靠性设计的考核环节。对于有高可靠性要求的结构类产品,通常无法按照系统级别较低的电子产品那样设计较大样本的验证试验来考核其可靠性指标。因此,如何降低试验样本量就成为结构可靠性验证的一个突出工程问题。关于可靠性验证试验中样本量缩减问题的研究,温玉全等[1]针对火工品提出基于试验熵的 ...
    本站小编 Free考研考试 2021-12-25
  • 输入输出受限的无人机防滑刹车系统容错控制*
    近20年来,无人机容错技术得到了长足的发展,特别针对大中型轮式起降无人机的机电系统容错理论也进行了深入的研究。刹车系统作为无人机的起飞着陆子系统的组成部分,对于保障无人机安全起飞、着陆及纠偏起到重要的作用。防滑刹车系统的可靠与否,直接关系到无人机载具的起降安全和任务完成程度。执行机构部分失效型故障普 ...
    本站小编 Free考研考试 2021-12-25
  • 可靠性全局灵敏度指标的空间分割高效方法*
    灵敏度分析主要研究的是:模型的输出不确定性是如何分配到输入不确定性的[1]。目前,灵敏度分析主要分为3类:局部灵敏度[2-3]、区域灵敏度[4-5]和全局灵敏度[6]。全局灵敏度以其能够从全局的角度衡量随机输入变量对输出不确定性的影响而被广为应用。全局灵敏度分析的模型主要分为3类:非参模型[7](相 ...
    本站小编 Free考研考试 2021-12-25