删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于外定界椭球集员估计的纯方位目标跟踪*

本站小编 Free考研考试/2021-12-25

纯方位目标跟踪是仅利用目标方位角的信息对机动目标进行定位,即通过单个或多个被动传感器 (红外或声呐) 对受噪声污染的目标方位角信息进行持续测量,并利用相关的非线性滤波算法估计目标的运动参数 (位置、速度和加速度等),其属于被动无源定位跟踪,具有隐蔽性好和抗干扰能力强等优点[1-2]。由于单被动传感器对目标进行跟踪可能导致观测系统的不可观,基于三角定位原理,双基阵纯方位机动目标跟踪问题摆脱了对单基阵需要机动要求的限制,因此,基于双基阵的纯方位机动目标跟踪算法有较广的工程应用前景[3-7]
在纯方位目标跟踪问题中,所能获得的测量信息只有目标的方位角。由于测量与被估计量之间是强非线性映射 (反正切函数),只利用角度信息对目标进行被动跟踪定位是一个非线性状态估计问题。而针对非线性滤波问题,主要分为基于统计噪声假设的滤波算法和基于未知但有界 (Unknown-But-Bounded,UBB) 噪声假设的滤波算法。对于通常的机动目标跟踪问题,常把系统模型和量测方程所受到的噪声扰动视为随机变量,用一定的概率参数来对其进行描述,例如高斯噪声或有色噪声[8-10]。在统计噪声假设下,递推跟踪算法得到迅速发展。Aidala[11]分析了扩展Kalman滤波 (Extended Kalman Filter,EKF) 在纯方位目标跟踪中的性能,由于EKF的线性化的误差较大,其性能不稳定。鹿传国等[12]提出基于距离参数化的均方根容积卡尔曼滤波 (Cubature Kalman Filter,CKF) 算法;Leong等[13]提出了一种高斯和CKF纯方位跟踪算法;方君等[14]提出了一种强跟踪平方根CKF算法。以上基于CKF的跟踪算法计算时间都在秒级,而基于粒子滤波的纯方位跟踪滤波算法,计算时间也都在秒级[15-17]
以上机动目标跟踪算法都是基于统计噪声假设,但是当噪声的统计假设不成立时,将会影响跟踪算法的性能。而对于在线的实时跟踪测量系统,当仅能获得较少的传感器测量数据时,很难确定测量数据的噪声概率分布函数。与统计噪声假设的估计算法不同,基于未知但有界噪声假设的集员估计 (Set-Membership Estimation,SME) 算法只要求噪声有界,且噪声界已知,而不需要对噪声在界内的统计特性做任何假设[18]。集员估计所求出的是系统状态的一个可行集,可行集内的每个元素都可作为对系统状态的有效估计,可行集的中心可作为对状态的一个点估计,可行集的测度可作为衡量集员估计有效性的标准。通常选用凸集对可行集进行近似描述,如外定界椭球、多胞形、凸多面体等。由于其数学描述上的直观性和可在线快速递推计算的特点,已用于导航[19-20]、移动机器人定位[21]等领域,本文选择外定界椭球集员估计 (Ellipsoidal Outer-Bounding Set-Membership Estimation,EOB-SME) 算法用于目标跟踪。
EOB-SME与Kalman滤波类似,也分为时间更新和量测更新2个递推阶段,且在每个递推更新阶段分别有一个最优参数,通过不同的优化准则,来获得不同的最优椭球。Maksarov和Norton[22]给出包含2个椭球和或交的最小容积和最小迹的线性系统EOB-SME算法,但在求解椭球交时的计算较复杂。Scholte和Campbell[23]利用区间估计技术建立了非线性系统的扩展EOB-SME算法,但未得到最优的椭球结果。周波等[24]将UD分解方法运用到非线性系统的扩展EOB-SME中,改进了算法的数值稳定性和实时性。通过最小化估计误差的Lyapunov函数上界来求取量测更新的最优参数,笔者提出了一种针对线性系统的EOB-SME算法[25]
关于集员算法在机动目标跟踪中的应用,Fletcher等[26]在单基站情况下将最小体积椭球集合估计算法运用到纯方位目标跟踪系统,获得估计结果的精度低于Kalman滤波。Rahmati等[27]基于非最优椭球集员估计算法建立了一种机动目标跟踪算法。笔者针对随机和未知但有界双重噪声影响下的机动目标跟踪问题,给出了一个性能优于EKF的椭球集合滤波器[28]
为了将集员估计算法用于实时机动目标跟踪的非线性状态估计,本文提出了一种适用于纯方位目标跟踪的EOB-SME算法,该算法通过最小化估计误差Lyapunov函数的上界来求取量测更新的最优参数;利用区间分析技术估计非线性系统线性化后所产生的误差,将其用椭球进行外包后与量测方程噪声椭球组成新的量测噪声椭球。仿真结果表明:EOB-SME算法每次递推更新所得到的椭球集合均包含了目标真实的位置,提高了估计精度,同时计算耗时为毫秒级,从而验证了本文所提算法的可行性。
1 问题描述 定义1??定义椭球集合为
(1)

式中:aRn为椭球集合的中心;对称正定矩阵σ2PRn×n为椭球的形状矩阵,变量σ2R+为标量。
假设在二维平面直角坐标系中,机动目标运动模型可由一个线性状态方程和一个非线性观测方程描述。采用匀加速运动来描述目标的时间状态方程:
(2)

式中:k时刻目标的状态,包括位置、速度和加速度;wk-1为状态方程噪声;FCA为状态转移矩阵。
(3)

其中:T为采样间隔。
虽然匀加速模型是用来模拟目标进行匀加速运动时的运动模型,即,但在实际情况中,加速度的变化不可能为零,可将加速度的变化视为未知但有界的噪声。
量测方程为
(4)

式中:θi,k (i=1, 2) 为双基阵的方位角;xi,kyi,k (i=1, 2) 为双基阵传感器的位置坐标;xS,kyS,k为目标的位置坐标;vk为量测噪声;h (xk) 为观测向量。
假设过程噪声wk和量测噪声vk分别位于以下椭球集合内:
(5)

(6)

式中:Wk-1Vk为已知的对称正定矩阵。
图 1所示,点T表示机动目标,S1和S2表示双基阵传感器,假设基阵S1位于坐标系原点,已知S1和S2的距离为D。当每个基阵的传感器测量到对目标的方位角后,由于传感器的量测噪声未知但有界,因此2个基阵传感器的测量范围将确定一个目标所位于的几何区域,即由传感器测量误差构成的可行集。用一个外定界椭球将其包围,即构成了包含目标的椭球集合,使目标椭球集合随着递推更新逐渐缩小,从而能够更有效地确定目标的位置。
图 1 未知但有界噪声下双基阵纯方位机动目标跟踪 Fig. 1 Bearing-only maneuvering target tracking with two sensors under unknown-but-bounded noises
图选项




2 外定界椭球集员估计 2.1 外定界椭球集员估计基本算法 考虑机动目标运动模型式 (2) 和式 (4),线性化量测方程式 (4) 可得
(7)

式中:?h (xk)/?x为量测函数h (·) 的梯度;O (xk2) 为高阶项,即线性化误差。
先从几何角度概述EOB-SME的两步递推更新,再给出各个步骤的递推方程。假设在k-1时刻,状态向量xk-1包含在椭球之中:
(8)

由系统状态方程和有界过程噪声假设可知,一步预测状态位于状态转移椭球和过程噪声椭球E (0, Wk-1) 的Minkowski和中,即
(9)

式中:为状态转移椭球;运算符⊕表示椭球的Minkowski和。
通常,2个椭球的矢量和是1个凸集但并不是1个椭球,需要构造1个椭球来包含矢量和的凸集,即
(10)

式中:为时间更新椭球。
定义量测椭球集合为
(11)

式中:Hk为量测矩阵。
k时刻获得量测椭球集合Sk后,状态xk应位于时间更新椭球与量测椭球集合Sk与的交集,即
(12)

同样,量测椭球集合与时间更新椭球的交集通常不是一个椭球,需要构造量测更新椭球来包含这个交集,即
(13)

结合双基阵目标跟踪,EOB-SME的量测更新过程如图 2所示。在时刻k,假设已知时间更新椭球,根据双基站传感器的测量误差,当获得量测集合后,用量测更新椭球来外包时间更新椭球与量测集合的交集。
图 2 双基阵纯方位测量下的量测更新过程 Fig. 2 Observation update process under bearing-only measurement with two sensors
图选项




定义2??闭凸集Ω的支撑函数s (η) 为
(14)

(15)

定理1??EOB-SME的时间更新和量测更新递推方程如下:
1) 时间更新。若已知状态xk-1位于椭球内,根据过程方程和过程噪声椭球可得
(16)

(17)

(18)

式中:参数pk∈(0, 1);σk|k-12 > 0。
2) 量测更新。若已知量测椭球集合Sk和时间更新椭球,则可得
(19)

(20)

(21)

(22)

(23)

(24)

式中:参数λk∈(0, 1);σk2 > 0。
证明
1) 证明时间更新递推方程。假设时间更新椭球具有如下形式:
(25)

根据椭球支撑函数应有以下关系成立:
(26)


(27)

因为,只需证明式 (28) 成立:
(28)

若令
(29)

由不等式 (1-p-1) b12+(1+p) b22≥(b1+b2)2 可得
(30)

σk|k-12=σk-12,可得
(31)

则按照式 (25) 构造的椭球可包含2个椭球的矢量和,时间更新递推方程证明完毕。
2) 证明量测更新递推方程。当可获得量测椭球集合Sk时,假设量测更新椭球为
(32)

则包含量测椭球集合与时间更新椭球集合交集的椭球为
(33)

,则有
(34)

式中:
(35)

根据式 (22) 和式 (23) 有
(36)

,有
(37)

则按式 (32) 构造的椭球可以包含2个椭球的交集,量测更新递推方程证明完毕。
从定理1的时间更新和量测更新递推方程可以看出,尽管EOB-SME与Kalman滤波有着同样的预测-校正结构,但是它们之间有着根本不同的意义:Kalman滤波的估计结果是一个点,而EOB-SME的结果是一个椭球可行集。椭球可行集的大小可作为评估估计精度的指标。可认为椭球可行集的中心是一个最小-最大估计,即最小化估计值与真值之间的最大误差。
Kalman滤波中,估计误差的协方差矩阵表示点估计结果在随机噪声假设下的不确定度;而EOB-SME中的σ2P表示椭球可行集估计结果在有界噪声假设下的不确定度。根据所要最小化椭球尺寸的准则不同,将得到不同的最优参数。
2.2 最优参数的选择 通常情况下,采用最小化椭球的体积det (σ2P) 或椭球的迹tr (σ2P) 来求得时间更新或量测更新的最优参数pkλk。通常选择最小迹准则来求取时间更新最优参数pk
(38)

由于求解包含量测椭球集合与时间更新椭球集合交集的椭球较为复杂,所以对于求解量测更新参数λk,采用最小化椭球体积或迹准则都比较复杂。由于σk2可视为状态估计误差的Lyapunov函数的上界,即,而σk2的上界可表示为
(39)

式中:的最大特征值,
定理2[28]??假设初始参数为σ0|02≤1,,关于参数λk最小化可得
(40)

式中:λk∈(0, 1)。
由定理2可知,当时,量测更新最优参数λk=0,从集员估计的角度可认为此时获得的量测数据yk对系统状态xk的估计没有帮助,即此时的量测数据yk包含冗余的信息,不需要进行量测更新,这表明了算法具有选择更新能力。同时,通过最小化σk2的上界来获得最优参数λk,可避免最小化椭球体积或迹时的复杂运算,缩短计算时间,便于在线对目标的状态进行估计。
3 外定界椭球集员估计跟踪算法 为了提高EOB-SME跟踪算法对双基阵目标状态估计的精度,首先将量测方程在状态的一步预测估计点处进行一阶泰勒展开,用区间分析技术构造一个椭球来外包线性化后所产生的高阶项误差;再将该椭球与量测噪声椭球进行直和,得到新的量测噪声椭球。
定义区间变量,则每个状态分量所位于的不确定区间为
(41)

式中:Pk|k-1i,i的上标i表示矩阵的第 (i, i) 个元素。
线性化误差的区间为
(42)

再用椭球来包含线性化误差的区间,即
(43)

式中:上标+和-表示区间变量的最大和最小值。
最终得到新的量测噪声椭球为
(44)

(45)

基于EOB-SME跟踪算法如下:
1) 在初始时刻设置初始参数P0σ02=1。
2) 在时刻k,根据定理1中的时间更新式 (16)~式 (18) 进行目标状态的一步预测估计,时间更新最优参数采用式 (38) 进行计算。
3) 先根据式 (7) 对量测方程进行一阶线性化展开。当获得量测集合后,根据定理2进行选择量测更新判断,若,即不进行量测更新,则Pk=Pk|k-1σk2=σk|k-12。否则,根据式 (40) 计算量测更新最优参数λk,根据式 (41)~式 (45) 计算新量测噪声椭球,再根据定理1中的量测更新式 (19)~式 (24) 进行量测更新。
4) 继续更新直到跟踪过程结束。
4 仿真试验 仿真初始条件设置如下:2个基阵之间的距离D=1000 m,目标初始状态为x0=(2000 m, 3.42 m/s, 0, 10000 m, -9.39 m/s, 0)TP0=[100, 50, 10, 100, 50, 10],σ0=1。过程椭球噪声的矩阵为W=diag (10, 10, 10,10, 10, 10),量测椭球噪声的矩阵为V=diag (0.1°, 0.1°)。采样周期为0.1 s,仿真时间为200 s。在以上仿真条件下,通过50次Monte Carlo仿真,对比EKF算法、CKF算法和本文提出的EOB-SME算法在双基阵情况下的跟踪效果。将椭球集合的中心作为点估计结果。定义均方根误差为

图 3所示为未知但有界的量测噪声,所有噪声均位于椭球内部。图 4给出了机动目标的实际速度和加速度变化曲线。
图 3 未知但有界的量测噪声 Fig. 3 Unknown-but-bounded measurement noises
图选项




图 4 机动目标的速度和加速度曲线 Fig. 4 Maneuvering target velocity and acceleration curves
图选项




图 5为不同算法对目标在x方向上的位置、速度和加速度均方根误差曲线。对于目标x方向上的位置估计,EOB-SME算法在跟踪阶段开始时,误差较大,随着跟踪过程的递推更新,逐渐减小。在跟踪后期,EOB-SME算法的x方向位置误差最小。而对于x方向上的速度和加速度估计,EKF算法的估计误差最大,CKF算法与EOB-SME算法在x方向速度的估计上误差比较接近,但CKF算法对于x方向加速度的估计在初期误差较大,随着跟踪递推的更新,在跟踪后期的误差逐渐与EOB-SME算法接近。
图 5 不同算法对目标在x方向上的位置、速度和加速度均方根误差曲线 Fig. 5 Position, velocity and acceleration root mean square error curves of target in the x direction for different algorithms
图选项




图 6为不同算法对目标在y方向上的位置、速度和加速度均方根误差曲线。可以看出,由于目标在y方向上做较大的机动,EKF算法对位置、速度和加速度3个状态分量的均方根误差都较大。而CKF算法对目标的速度和加速度在跟踪初期均方根误差较大。随着跟踪的递推更新,CKF算法的均方根误差与EOB-SME算法的均方根误差曲线逐渐接近。
图 6 不同算法对目标在y方向上的位置、速度和加速度均方根误差曲线 Fig. 6 Position, velocity and acceleration root mean square error curves of target in the y direction for different algorithms
图选项




图 7为机动目标的运动轨迹。可以看出,EOB-SME算法的估计结果是一个椭球集合,机动目标的真实位置始终被椭球集合所包围。在目标转弯的时刻,目标的速度和加速度变化较剧烈,同时椭球的体积也会增大,表明此刻对目标状态估计结果的不确定性增大。到跟踪后期,由于目标不再进行机动,椭球体积逐渐缩小。
图 7 机动目标的位置和椭球可行集 Fig. 7 Position of maneuvering target and ellipsoid feasible set
图选项




表 1为EKF算法、CKF算法和EOB-SME算法对目标位置、速度和加速度估计的平均均方根误差。可以看出,CKF算法对目标x方向位置的均方根误差最小,EOB-SME算法对目标x方向的速度和加速度的均方根误差最小。而在对目标y方向各状态的估计中,EOB-SME算法的均方根误差最小。
表 1 目标状态估计的平均均方根误差 Table 1 Average RMSE of target state estimation
算法位置/m 速度/(m·s-1) 加速度/(m·s-2)
x方向 y方向 x方向 y方向 x方向 y方向
EKF 0.334 0.267 0.752 0.370 2.983 0.415
CKF 0.324 0.141 0.610 0.374 0.999 0.314
EOB-SME 0.329 0.121 0.567 0.272 0.550 0.284


表选项






表 2列出了EKF算法、CKF算法和EOB-SME算法的单次递推运行时间。由于CKF算法的计算量较大,所以其耗时最多,超过了1 ms。而EOB-SME算法的计算时间在1 ms以内,适合于在线实时的机动目标跟踪中应用。
表 2 每次递推更新的算法平均运行时间 Table 2 Average run time at each recursive update step for different algorithmsms
ms
算法 EKF CKF EOB-SME
运行时间 0.207 2.343 0.791


表选项






5 结论 本文针对在未知但有界噪声假设下的双基阵纯方位机动目标跟踪问题,提出了一种基于EOB-SME算法, 该算法通过最小化估计误差的Lyapunov函数上界来求取量测最优参数,降低了计算量;同时,通过用椭球对量测方程线性化后所产生的误差进行外包,与量测噪声椭球组成新的量测噪声椭球。在未知但有界噪声假设下,该算法对纯方位机动目标状态估计的精度优于EKF算法和CKF算法,并且计算时间为毫秒级。
在双基阵纯方位目标跟踪问题中,基站之间基线测量的精度和基阵之间的相对空间位置将会影响跟踪的效果。如何优化双基站的空间布局,在有基线偏差的情况下如何提高跟踪系统的性能,是值得进一步研究的课题。

参考文献
[1] 刘忠, 周丰, 石章松, 等. 纯方位目标运动分析[M].北京: 国防工业出版社, 2009: 4.LIU Z, ZHOU F, SHI Z S, et al. Bearing-only target motion analysis[M].Beijng: National Defense Industry Press, 2009: 4.(in Chinese)
[2] BAR-SHALOM Y, LI X R, KIRUBARAJAN T. Estimation with application to tracking and navigation[M].New York: John Wiley & Sons, Inc, 2001: 9.
[3] 胡科强, 袁志勇, 周浩. 双基阵纯方位被动定位跟踪方法[J].舰船科学技术, 2012, 34(5): 83–86.HU K Q, YUAN Z Y, ZHOU H. Methods on the performance of bearing-only target tracking based two arrays[J].Ship Science and Technolgy, 2012, 34(5): 83–86.(in Chinese)
[4] 徐本连. 双 (多) 基纯方位目标定位跟踪算法研究[D]. 南京: 南京理工大学, 2006: 1-4.XU B L.The algorithm study on bearings-only target localization and tracking using two or more observer[D].Nanjing:Nanjing University of Science and Technology, 2006:1-4(in Chinese).
[5] XU B L, CHEN Q L, WU Z Y, et al. Analysis and approximation of performance bound for two-observer bearings-only tracking[J].Information Sciences, 2008, 178(8): 2059–2078.DOI:10.1016/j.ins.2007.12.004
[6] 吴卫华, 江晶, 范雄华, 等. WGS-84坐标系下双机纯角度无源定位及性能分析[J].红外与激光工程, 2015, 44(2): 654–661.WU W H, JIANG J, FAN X H, et al. Performance analysis of passive location by two airborne platforms with angle-only measurements in WGS-84[J].Infrared and Laser Engineering, 2015, 44(2): 654–661.(in Chinese)
[7] 冉华明, 周锐, 吴江, 等. 双机协同无源目标跟踪轨迹优化[J].北京航空航天大学学报, 2015, 41(1): 160–166.RAN H M, ZHOU R, WU J, et al. Trajectory optimization of two air crafts in collaborative passive target tracking[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 160–166.(in Chinese)
[8] 任波, 闫向远. 纯角度跟踪非线性预测滤波算法研究[J].弹箭与制导学报, 2014, 34(2): 6–8.REN B, YAN X Y. Bearing-only tracking nonlinear prediction filter algorithm research[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(2): 6–8.(in Chinese)
[9] 许兆鹏, 韩树平. 一种双基阵纯方位机动目标被动跟踪方法[J].舰船科学技术, 2012, 34(11): 100–103.XU Z P, HAN S P. Research on an algorithm for passive tracking of maneuvering target based on two arrays bearings[J].Ship Science and Technolgy, 2012, 34(11): 100–103.(in Chinese)
[10] JAUFFRET C, PILLON D, PIGNOL A C. Bearings-only maneuvering target motion analysis from a nonmaneuvering platform[J].IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1934–1949.DOI:10.1109/TAES.2010.5595605
[11] AIDALA V J. Kalman filter behavior in bearings-only tracking application[J].IEEE Transactions on Aerospace and Electronic Systems, 1979, 15(1): 29–39.
[12] 鹿传国, 冯新喜, 张迪. 基于改进容积卡尔曼滤波的纯方位目标跟踪[J].系统工程与电子技术, 2012, 34(1): 28–33.LU C G, FENG X X, ZHANG D. Pure bearing tracking based on improved cubature Kalman filter[J].Systems Engineering and Electronics, 2012, 34(1): 28–33.(in Chinese)
[13] LEONG P H, ARULAMPALAM S, LAMAHEWA T A, et al. A Gaussian-sum based cubature Kalman filter for bearing-only[J].IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1161–1176.DOI:10.1109/TAES.2013.6494405
[14] 方君, 戴邵武, 许文明, 等. 基于ST-SRCKF的超高速强机动目标跟踪算法[J].北京航空航天大学学报, 2016, 42(8): 1698–1708.FANG J, DAI S W, XU W M, et al. Highly maneuvering hypervelocity-target tracking algorithm based on ST-SRCKF[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1698–1708.(in Chinese)
[15] 陈辉, 韩崇昭. 纯方位距离参数化概率假设密度和势概率假设密度滤波器[J].控制理论与应用, 2015, 32(5): 579–590.CHEN H, HAN C Z. Bearings-only range-parameterized probability hypothesis density and cardinalized probability hypothesis density filter[J].Control Theory and Applications, 2015, 32(5): 579–590.(in Chinese)
[16] 孔云波, 冯新喜, 鹿传国, 等. 改进高斯混合粒子滤波的纯方位目标跟踪算法[J].宇航学报, 2012, 33(7): 971–977.KONG Y B, FENG X X, LU C G, et al. An improved Gaussian mixture particle filter based targets tracking algorithm for bearing-only tracking system[J].Journal of Astronautics, 2012, 33(7): 971–977.(in Chinese)
[17] 李银伢, 谭维茜, 盛安冬. 改进型粒子滤波算法在多站纯方位被动跟踪中的应用[J].控制理论与应用, 2011, 28(8): 1081–1086.LI Y Y, TAN W Q, SHENG A D. Application of improved particle filter algorithm to bearings-only passive tracking in multiple stations[J].Control Theory and Applications, 2011, 28(8): 1081–1086.(in Chinese)
[18] SCHWEPPE F C. Recursive state estimation unknown but bounded errors and system inputs[J].IEEE Transactions on Automatic Control, 1968, 13(1): 22–28.DOI:10.1109/TAC.1968.1098790
[19] 孙先仿, 王世纪, 张海. 扩展集员滤波在捷联惯导大方位失准角初始对准中的应用[J].中国惯性技术学报, 2008, 16(5): 505–508.SUN X F, WANG S J, ZHANG H. Application of extended set-membership filter in SINS initial alignment of large azimuth misalignment[J].Journal of Chinese Inertial Technology, 2008, 16(5): 505–508.(in Chinese)
[20] 江涛, 钱富才. 基于ESMF算法的GPS信号多普勒频率估计[J].控制与决策, 2016, 31(2): 378–384.JIANG T, QIAN F C. Estimated Doppler frequency of GPS signal based on ESMF[J].Control and Decision, 2016, 31(2): 378–384.(in Chinese)
[21] 宋大雷, 吴冲, 齐俊桐, 等. 基于MIT规则的自适应扩展集员估计方法[J].自动化学报, 2012, 38(11): 1847–1860.SONG D L, WU C, QI J T, et al. A MIT-based nonlinear adaptive set-membership filter for ellipsoidal estimation[J].Acta Automatica Sinica, 2012, 38(11): 1847–1860.DOI:10.3724/SP.J.1004.2012.01847(in Chinese)
[22] MAKSAROV D G, NORTON J P. State bounding with ellipsoidal set description of the uncertainty[J].International Journal of Control, 1996, 65(5): 847–866.DOI:10.1080/00207179608921725
[23] SCHOLTE E, CAMPBELL M E. A nonlinear set-membership filter for on-line applications[J].International Journal of Robust and Nonlinear Control, 2003, 13(15): 1337–1358.DOI:10.1002/(ISSN)1099-1239
[24] ZHOU B, HAN J D, LIU G J. A UD factorization-based nonlinear adaptive set-membership filter for ellipsoidal estimation[J].International Journal of Robust and Nonlinear Control, 2008, 18(16): 1513–1531.DOI:10.1002/rnc.v18:16
[25] LIU Y S, ZHAO Y, WU F L. Ellipsoidal state-bounding-based set-membership estimation for linear system with unknown-but-bounded disturbances[J].IET Control Theory and Applications, 2016, 10(4): 431–442.DOI:10.1049/iet-cta.2015.0654
[26] FLETCHER K F, ARULAMPALAM S M, EVANS J R, et al. Ellipsoidal set based tracking with nonlinear measurements[J].IEE Proceeding-Radar, Sonar and Navigation, 2005, 152(5): 335–344.DOI:10.1049/ip-rsn:20045108
[27] RAHMATI H, KHALOOZADEH H, AYATI M.Maneuvering target tracking method based on unknown but bounded uncertainties[C]//18th IFAC World Congress.Milano:IFAC Press, 2011:4290-4295.
[28] LIU Y S, ZHAO Y.Ellipsoidal set filter combined set-membership and statistics uncertainties for bearing-only maneuvering target tracking[C]//IEEE/ION Position Lacation and Navigation Symposium.Piscataway, NJ:IEEE Press, 2014:753-759.


相关话题/系统 计算 测量 椭球 传感器

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 网络控制系统有限频域故障检测和容错控制*
    随着控制系统向规模化、集成化方向发展,大量的交互数据影响着控制系统的可靠性和安全性。网络控制系统中系统各个部分之间的数据传输通过网络实现[1],可有效解决数据交互问题,具有结构灵活、可扩展性和可维护性好的优点,在航空航天、机器人控制和车辆工程等领域获得了广泛的应用。但是其产生的时延[2-4]、丢包[ ...
    本站小编 Free考研考试 2021-12-25
  • 高空平台通信系统中基于预测的小区切换算法*
    基于高空平台(HighAltitudePlatformStations,HAPS)的空基无线通信系统是目前国际上正处于研究阶段的新型通信系统[1]。高空平台一般指固定工作在相对于地球高度在20~50km的平流层范围的飞行器平台,如飞机、飞艇等[2]。受到空间气流的影响和位置姿态保持技术的限制,高空平 ...
    本站小编 Free考研考试 2021-12-25
  • 烟气覆盖表面红外温度测量的实验分析*
    在很多领域中,物体表面的温度都是非常重要的监测参数,对其进行在线连续稳定测量具有重要的实用价值[1-2]。目前,实际应用中一般都采用接触式的测量方法,如热电偶、热电阻等[3-4]。接触式测温的测量精度高,但会对被测物体原本温度场产生影响,且氧化、还原和腐蚀等恶劣测温条件会造成热电偶等测温元件的损坏。 ...
    本站小编 Free考研考试 2021-12-25
  • 气液鼓泡床反应器中气泡行为光纤探针测量方法*
    鼓泡床反应器是一种气体为离散相、液体为连续相的两相流反应器,具有相间面积高、传质和传热速率快等特点,在工业上有广泛应用[1],对于固体为细颗粒的气液固反应体系,固体细颗粒较均匀地悬浮于液相中,液固可近似看作拟均相,故一般又称为气液(浆)鼓泡床反应器。气相以气泡形式与液相接触,气泡上升过程中会频繁发生 ...
    本站小编 Free考研考试 2021-12-25
  • 基于机会策略的多态系统视情更换决策*
    对于复杂多态系统,为有效的减少维修资源消耗,降低系统故障带来的运行风险,需要对其进行视情维修。视情维修(condition-basedmaintenance)是从系统或部件状态性能的角度,发现其具有失效征兆时而进行的有针对性维修[1]。此外对系统内部件进行维修分析时,还需要考虑部件间的经济相关性,经 ...
    本站小编 Free考研考试 2021-12-25
  • 激光光谱法尿素水溶液液膜多参数同步测量*
    液膜现象广泛存在于各种工业过程中[1-7]。例如汽车尾气脱硝的选择性催化还原(SelectiveCatalyticReduction,SCR)系统中尾气排放管上液膜的形成[8]。在SCR系统中,利用喷射装置在汽车尾气混合管中喷射车用尿素水溶液(尿素含量32.5%),尿素水溶液在高温下发生水解和热解反 ...
    本站小编 Free考研考试 2021-12-25
  • 新型非接触式径向C4D传感器优化设计*
    基于电导检测的流体参数测量是流体参数测量领域的经典方法之一,然而现有的电导测量技术多采用接触式的测量方法,电极表面与管道内被测流体直接接触,易发生电极极化、电化学腐蚀等问题[1-8],从而对测量造成了不利的影响,限制了其在工业测量中的应用。电容耦合式非接触电导检测(CapacitivelyCoupl ...
    本站小编 Free考研考试 2021-12-25
  • ERT/UTT双模态传感器尺寸优化仿真*
    过程层析成像(ProcessTomography,PT)通过安装在被测容器周围的传感器阵列,在容器内形成覆盖被测空间的敏感场,通过场内介质对敏感场调制作用,利用传感器阵列获取被测对象信息,再通过图像重建算法再现被测容器内部的介质分布。PT技术在化工、石油、冶金与物料运输等工业生产过程中有广泛的应用前 ...
    本站小编 Free考研考试 2021-12-25
  • 基于近场散射的颗粒粒径分布测量*
    颗粒粒径及分布是目前颗粒测量的主要内容之一[1]。颗粒粒径的测量方法发展至今已有很多,早在20世纪80年代,各种颗粒测量仪器已达400多种。就其测量原理,可分为筛分法、显微镜法、沉降法、电感应法及光散射法等。在颗粒粒径的众多测量方法中,光散射法以其特有的优势--适用性强、粒径测量范围宽、测量重复性好 ...
    本站小编 Free考研考试 2021-12-25
  • 光学原位法探针测量超低减排烟气*
    近些年来,我国人与环境关系日趋紧张,环境污染问题日益突出。我国的能源结构一直以煤为主,从而造成了化工厂、燃煤锅炉、冶金厂和水泥窑炉等工业源的排放烟气中所含的SO2、NOx、颗粒物含量偏高,而我国大气污染物的主要来源又是这些燃煤锅炉、化工厂、冶金厂和水泥窑炉等的燃烧污染物。此外,从使用方式上看,煤炭消 ...
    本站小编 Free考研考试 2021-12-25