删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

双电磁航天器编队构型保持自适应控制

本站小编 Free考研考试/2021-12-25

?卫星编队飞行技术在合成孔径雷达、空间干涉仪以及在轨组装等方面具有明显优势.考虑到发射成本和能量消耗,目前编队飞行任务大多采用被动形式的编队控制方式,即相对运动过程中较少使用推力器对编队构型进行控制.随着空间任务朝着多样化和复杂化的方向发展,对卫星编队飞行的相对轨道控制能力提出了更高的要求,主动形式的卫星编队控制方式逐渐受到重视.但采用基于冲量原理的火箭发动机进行编队构型控制存在以下几个方面的缺点:①火箭发动机喷射出的羽流会影响临近卫星上的观测器件;②所携带的推进剂,既增加了卫星发射成本,也成为限制卫星在轨寿命的主要因素.
采用星间电磁力[1, 2]、静电力[3]和洛伦兹力[4]等非接触力的无工质推进方式逐渐得到关注.利用航天器之间的电磁力进行相对轨道控制的编队称为电磁航天器编队.由于控制力的产生基于电磁场之间的相互作用,不需要消耗燃料,所以电磁航天器编队飞行能够很好地克服上述问题.
美国麻省理工学院和马里兰大学对电磁航天器编队飞行的可行性、地面试验和在轨验证等进行了长期深入的研究.Miller等[1, 2, 5]首次提出电磁编队飞行的概念,并研究了在TPF计划中采用电磁编队飞行技术的可行性.Hashimoto等[6]提出采用超导线圈进行电磁编队.Elias等[7]针对两颗电磁航天器相对运动提出了一种非线性动力学模型.Ahsun和Miller等[8, 9]提出了n颗电磁航天器编队的非线性自适应控制律.2013年8月3日,美国马里兰大学的RINGS项目中的两颗电磁航天器搭载HTV-4飞船进入国际空间站进行在轨试验,分别对电磁编队飞行技术和星间电能无线传输技术进行验证,这是电磁航天器编队飞行技术第一次在轨飞行试验[10].
近年来国内****也对电磁航天器编队飞行进行了相关研究[11, 12, 13].张元文等[14]采用反馈线性化及鲁棒H方法,研究了空间电磁对接的鲁棒协调控制问题.北京航空航天大学的苏建敏和董云峰[15]基于人工势函数法研究了多颗电磁航天器的编队控制问题;张皓[16]和邵龙飞[17]的研究表明,多颗电磁航天器的编队构型控制问题可以通过序列控制转化为多阶段的两颗电磁航天器相对运动控制.
本文重点研究了两颗电磁航天器的编队构型保持问题,所采用的自适应控制方法可以推广到多颗电磁航天器编队构型控制问题.首先,介绍了电磁航天器编队飞行的基本原理.然后,根据星间电磁控制力计算公式反推控制电流时,考虑两电磁航天器能量消耗的均衡性要求,得到了两星能量消耗均衡的解析解.针对电磁航天器编队构型保持问题,采用基于极坐标的电磁航天器相对运动动力学模型,并考虑工程实际中存在的未知干扰力和电磁模型的参数不确定性,设计了编队构型保持自适应控制律.最后,通过数值仿真验证了控制方法的有效性.
1 电磁航天器编队飞行原理电磁航天器编队飞行是一种新的不消耗燃料的卫星编队形式.编队中各成员卫星称为电磁航天器,其上安装有3个正交的超导线圈.图 1为电磁航天器的概念设计图.当线圈充电时,航天器周围会产生磁场,根据毕奥-萨伐尔定律,可以计算得到航天器周围的磁场分布情况,然后再根据安培定律可以求得磁场中另一航天器所受到的电磁力及电磁力矩.本文研究的电磁航天器编队飞行采用轨道优先的解耦控制策略,即采用星间电磁力控制相对轨道运动,由于电磁力矩所引起的姿态控制问题在这里不做赘述.
图 1 电磁航天器概念设计 Fig. 1 Conceptual design of electromagnetic spacecraft
图选项


为描述电磁航天器相对于编队质心的运动,首先定义旋转轨道坐标系O,假设其原点位于编队系统质心,x轴指向轨道矢径方向,y轴指向轨道面法线方向,z方向由右手法则确定.假设两颗电磁航天器组成的编队系统为刚体,定义与刚体固连的本体坐标系为B,坐标系原点位于系统质心,x轴由航天器1指向航天器2.轨道坐标系Oz轴旋转欧拉角ψ,然后绕新的y轴旋转欧拉角-θ,即可得到本体系B.
在计算星间电磁力过程中,为避免复杂的二次曲面积分运算,目前的研究中大多采用远场近似模型,当星间距离r大于线圈半径R的8倍时,编队中的两颗电磁航天器可以假设为远场中的两个磁偶极子,如图 2所示.
每个磁偶极子的磁矩可以记为μ,其幅值为
式中:n为通电线圈匝数;I为线圈中的电流大小;S为圆形线圈面积.磁偶极子的方向可由安培右手定则确定.
根据电磁场计算原理,可以得到两电磁航天器之间电磁力的计算公式[8, 9]:
式中:μ0为真空磁导率;r为航天器1到航天器2的位置矢量;μ1μ2为两航天器线圈的磁矩.
图 2 远场近似模型示意图 Fig. 2 Diagram of far-field approximate model
图选项


式(2)给出了星间电磁力的表达式,已知电磁线圈中电流的大小和相对位置矢量时,可以计算出电磁航天器相互之间的电磁力.实际上,为了对电磁航天器进行控制,需要求解相应的逆问题,即在已知电磁控制力的情况下,计算出各电磁航天器的磁矩,进而求解出相应的控制电流.一种方法是,假设其中一个磁偶极子的磁矩是确定的,然后通过求解一个非线性方程组,得到另一个磁偶极子的磁矩.但这种情况下无法保证编队中各航天器的能量消耗是均衡的,当某一电磁航天器上的能量消耗殆尽时,就意味着整个航天器编队任务的结束,所以电磁航天器编队飞行需要考虑成员航天器能量消耗的均衡性.
对于两颗电磁航天器编队飞行的情况,能量消耗均衡最理想的情况是两个磁偶极子所消耗的能量完全相同,即μ1=μ2.
假设μ1=μ2,对式(2)进行求解,可以得到系统本体坐标系B下磁偶极子磁矩的解析解:
式中:K=3μ0/(8πr4).
对于两颗电磁航天器的编队飞行,采用式(3)~式(5)对航天器的磁矩进行分配,可以使两航天器消耗的能量完全相同,从而保证编队中成员航天器能量消耗的均衡性,延长航天器编队的运行寿命,这点也是传统推进方式所不具备的优势.
2 电磁编队相对轨道动力学模型本节借鉴绳系卫星系统的动力学方程推导过程,建立两颗电磁航天器编队飞行的非线性相对运动动力学模型.同时,该动力学模型也可以用来描述其他类型的非接触力航天器编队的相对运动.
轨道坐标系O中的两电磁航天器的位置矢量可以表示为
式中:L为两航天器之间的距离;m1m2为两航天器的质量.
系统的动能可以表示为
式中:Ω=$\sqrt{\mu {{M}_{\text{e}}}/r_{_{\text{c}}}{3}}$为轨道角速度,μ为地球引力常数,Me为地球质量,rc为系统质心到地心的距离.
编队系统重力势能的二阶非线性表达式可记为
相应的,编队系统的电磁势能记为Vm.
两电磁航天器编队系统的拉格朗日方程可以写成如下形式[18]:
式中:Q为广义坐标q下的广义力.
将式(8)、式(9)代入式(10)中并写成分量形式,假设电磁航天器编队系统质心所在轨道为圆轨道,可以得到关于相对距离L、轨道面内旋转角ψ和滚转角θ的电磁航天器相对运动非线性动力学方程:
式中:m=m1m2/(m1+m2);QL、QψQθ为广义力,可以分别表示为QL=FL、Qψ=FψLQθ=FθL,其中FL、FψFθ为3个方向上的电磁力.电磁航天器编队飞行过程中,3个方向上的控制力可由航天器之间的电磁作用产生.
式(11)~式(13)进一步可以记为
式中:aL、aψaθ分别为L、ψθ 3个方向上的控制加速度.
式(14)~式(16)可以简记为

实际上,电磁航天器编队飞行过程中除了受到相互之间的电磁作用力,还会受到未知的相对干扰力,所以式(17)可进一步表示为
式中:am=[aLmaψmaθm]T为电磁作用产生的控制加速度;ad=[aLdaψdaθd]T为未知干扰加速度.
另外,如第1节所述,电磁航天器之间电磁力的计算模型是基于远场近似得到的,所以其与真实值存在一定的误差,电磁力的真实值可以通过对远场近似模型的计算值进行修正得到.本文用式(19)表示电磁航天器控制加速度的真实值[8, 9]:
式中:am=[aLmaψmaθm]T为通过远场近似模型计算得到的电磁控制加速度值;γ=[γL γψ γθ]T为电磁模型不确定性修正因子.
因此,考虑未知干扰力和电磁作用远场近似模型的不确定性,两颗电磁航天器编队飞行的相对运动动力学方程可以记为
式中:
θ=[γL γψ γθaLdaψdaθd]T为不确定性参数.
3 编队构型保持自适应控制本节将在相对运动动力学模型的基础上,针对电磁航天器编队构型保持设计自适应控制律.假设电磁航天器编队构型的期望状态为Xd(t),期望速度为$\dot{X}$d(t),θ为不确定参数的估计值.状态误差可以表示为
速度误差为
不确定参数的估计误差为
复合误差可以记为
对式(24)求导可得
式中:Xr(t)=Xd(t)+Λ$\dot{X}$d(t)-Λ$\dot{X}$(t),Λ为增益矩阵.
为设计电磁航天器编队构型保持自适应控制律,取李雅普诺夫函数[19]
式中:Γ为大于零的对角矩阵.
对式(26)求导得
为实现编队系统的李雅普诺夫稳定性,取如下控制律:
同时,取自适应律为
式中:M=KY.
则式(27)可以化为
假设外界未知干扰力和电磁模型不确定性修正因子都是随时间慢变的,则式(30)可以化为
显然,$\dot{V}$为负半定,根据李雅普诺夫稳定性理论可以判定,该编队系统是稳定的.进一步,根据Barbalat引理可以判定,编队构型渐近收敛到期望值.同时,采用控制律式(28)和自适应律式(29)可以估计出未知干扰力和电磁模型不确定性修正因子.
4 数值仿真本节通过数值仿真算例对电磁航天器构型保持自适应控制律进行验证.
电磁航天器编队构型保持仿真参数如下:编队系统质心所在参考轨道为圆轨道,其半长轴为a=7 000 km;假设编队中两电磁航天器的质量相同,即m1=m2=100 kg;其上的电磁作用机构由3个正交的圆形超导线圈构成,线圈半径R=1 m,线圈匝数n=100.
根据空间任务的需要,希望电磁航天器编队系统能够沿地球矢径方向保持悬停构型,期望构型的具体参数如下:
假设初始时刻电磁航天器编队构型相对于期望构型有一定的误差:
考虑电磁航天器编队飞行过程中受到的未知干扰力和电磁作用远场近似模型的不确定性修正因子,对不确定性参数θ=[γL γψ γθaLdaψdaθd]T进行如下假设:
1) 由于编队中两颗电磁航天器之间的距离远远大于超导线圈的半径,采用远场模型即可满足精度要求,可以认为由模型计算得到的电磁力是准确的,所以将电磁作用远场近似模型的不确定性修正因子假设为ixiyiz]=[0;0;0].
2) 假设两颗电磁航天器之间的相对干扰加速度为[aLd;aψd;aθd]=[1×10-5sin(Ωt)m/s2;0;0].
自适应控制的相关参数设置如下:Λ=diag(0.001,0.001,0.001)
Kp=diag(0.05,0.05,0.05)
Γ=diag(1,1,1,0.1,0.1,0.1)
图 3给出了径向误差δL随时间的变化情况,图 4给出了面内旋转角误差δψ和滚转角误差δθ随时间的变化情况,约1.5个参考轨道周期后,径向误差收敛到1×10-4 m,角度误差都收敛到8×10-6 rad.仿真结果表明,在自适应控制律的作用下,编队构型达到了期望值,说明所设计的编队构型保持控制律是有效的.
图 3 误差δL随时间变化曲线 Fig. 3 Histories of error δL changing with time
图选项



图 4 误差δψ和δθ随时间变化曲线 Fig. 4 Histories of error δψ and error δθ changing with time
图选项


图 5显示的是电磁航天器编队构型保持过程中L、ψθ 3个方向上的控制加速度.从图中可以看出,L方向上的控制加速度的量级在10-5 m/s2,而ψθ方向上的控制加速度非常小.
图 5 控制加速度随时间变化曲线 Fig. 5 Histories of control accelerations changing with time
图选项


图 6和图 7分别给出了干扰加速度和电磁模型不确定性修正因子的估计值.从图 6中可以看出,L方向上的干扰加速度估计值呈现出正弦变化的趋势,其大小和变化趋势都与所假设的未知干扰加速度非常一致;而另外两个方向上的干扰加速度估计值几乎为零,这也与之前的假设是吻合的.从图 7中可以看出,远场近似模型不确定性修正因子估计值的量级为10-8的,几乎可以忽略不计,这与仿真中所假设的不确定性修正因子是一致的.
图 6 干扰加速度随时间变化曲线 Fig. 6 Histories of disturbed accelerations changing with time
图选项



图 7 不确定性修正因子随时间变化曲线 Fig. 7 Histories of adjustment factors changing with time
图选项


结合图 5和图 6的仿真结果,可以发现外界干扰加速度对编队构型保持造成了影响,控制加速度随时间变化曲线中所表现出的三角函数变化趋势说明了这点.
仿真结果表明,不确定性参数快速收敛到真实值,说明本文所设计的电磁航天器编队构型保持自适应控制律对未知干扰加速度和电磁作用远场近似模型不确定性修正因子进行了准确估计.
图 8显示的是电磁航天器上3个正交超导线圈中控制电流随时间的变化曲线.从图中可以看出线圈中的控制电流最大值小于100 A,可以采用超导线圈实现.需要指出的是,图中所给出的控制电流结果是采用式(3)~式(5)计算得出的,编队中两电磁航天器上超导线圈中的控制电流的大小是相同的,在编队构型保持过程中其各自所消耗的电能也是完全相同的,这就保证了编队系统中各航天器能量消耗的均衡性,更有利于实现长期的编队构型保持.
图 8 线圈中电流随时间变化曲线 Fig. 8 Histories of currents in coils changing with time
图选项


5 结 论相对于传统的消耗燃料的推进方式,利用星间电磁力进行编队构型保持的电磁航天器编队飞行在未来的空间任务中具有重要的应用价值.本文对电磁航天器编队构型保持控制进行了研究,得到以下结论:
1) 所提出的求解两电磁航天器控制磁矩的解析表达式,是一种新的磁矩分配方式,对研究编队飞行过程中各成员航天器能量消耗的均衡性提供了一条新的解决思路.
2) 针对电磁航天器编队构型保持实际可能面临的未知干扰力和电磁作用远场近似模型的不确定性,可以采用自适应控制方法.通过设计自适应控制律,编队构型能够从初始状态收敛到期望值,表现出良好的控制性能,同时未知干扰力和电磁模型不确定性修正因子的估计值也很快收敛到真实值.
此外,本文研究的电磁航天器编队构型保持自适应控制方法可以为多颗电磁航天器编队的构型保持和重构奠定技术基础.

参考文献
[1] Miller D W,Sedwick R J.Electromagnetic formation flight phase I report[R].Massachusetts:Massachusetts Institute of Technology,2003.
[2] Sedwick R J,Miller D W.Electromagnetic formation flight final report[R].Massachusetts:Massachusetts Institute of Technology,2005.
[3] Inampudi R,Schaub H.Optimal reconfigurations of two-craft coulomb formation in circular orbits[J].Journal of Guidance,Control and Dynamics,2012,35(6):1805-1815.
Click browse the original
[4] Pollock G E,Gangestad J W,Longuski J W.Inclination change in low earth orbit via the geomagnetic Lorentz force[J].Journal of Guidance,Control and Dynamics,2010,33(5):1387-1395.
Click browse the original
[5] Kong E M C,Kwon D W,Schweighar S A,et al.Electromagnetic formation flight for multisatellite arrays[J].Journal of Guidance,Control and Dynamics,2004,41(4):659-666.
Click browse the original
[6] Hashimoto T.Formation flight control using super conducting magnets[D].Massachusetts:Massachusetts Institute of Technology,2002.
[7] Elias L M,Kwon D W,Sedwick R J,et al.Electromagnetic formation flight dynamics including reaction wheel gyroscopic stiffening effects[J].Journal of Guidance,Control and Dynamics,2007,30(2):499-511.
Click browse the original
[8] Ahsun U.Dynamics and control of electromagnetic satellite formations[D].Massachusetts:Massachusetts Institute of Technology,2007.
[9] Ahsun U,Miller D W,Ramirez J L.Control of electromagnetic satellite formations in near-earth orbits[J].Journal of Guidance,Control and Dynamics,2010,33(6):1883-1891.
Click browse the original
[10] Alinger D J.System analysis and design for the resonant inductive near-field generation system(RINGS)[D].Maryland:University of Maryland College Park,2013.
[11] Zeng G Q,Hu M.Finite-time control for electromagnetic satellite formations[J].Acta Astronautica,2012,74(3):120-130.
Click browse the original
[12] 胡敏,曾国强.分离模块集群航天器发展概况[J].装备指挥技术学院学报,2011,22(4):61-66. Hu M,Zeng G Q.Developments of the fractionated spacecraft[J].Journal of the Academy of Equipment Command & Technology,2011,22(4):61-66(in Chinese).
Cited By in Cnki (12) | Click to display the text
[13] Xu Z W,Shi P,Zhao Y S.Optimal control of two-craft electromagnetic formation in circular orbit[C]//Advanced in the Astronautical Sciences Series:24th AAS/AIAA Space Flight Mechanics Meeting.San Diego,CA:Univelt Inc.,2014,152:2547-2561.
[14] 张元文,杨乐平,朱彦伟,等.空间电磁对接的鲁棒协调控制[J].国防科技大学学报,2011,33(3):33-37. Zhang Y W,Yang L P,Zhu Y W,et al.Coordinated robust control of space electromagnetic docking[J].Journal of National University of Defense Technology,2011,33(3):33-37(in Chinese).
Cited By in Cnki (3) | Click to display the text
[15] 苏建敏,董云峰.利用人工势函数法的卫星电磁编队控制[J].北京航空航天大学学报,2012,38(2):213-217. Su J M,Dong Y F.Artificial potential function method for satellite electromagnetic formation control[J].Journal of Beijing University of Aeronautics and Astronautics,2012,38(2):213-217(in Chinese).
Cited By in Cnki (6) | Click to display the text
[16] 张皓.库仑航天器的动力学与控制研究[D].北京:北京航空航天大学,2012. Zhang H.The dynamics and control of coulomb spacecrafts[D].Beijing:Beihang University,2012(in Chinese).
[17] 邵龙飞.电磁航天器在轨协同运动控制研究[D].北京:北京航空航天大学,2014. Shao L F.On-orbit operation cooperative control of electromagnetic spacecraft[D].Beijing:Beihang University,2014(in Chinese).
[18] 赵育善,师鹏.航天器飞行动力学建模理论与方法[M].北京:北京航空航天大学出版社,2012:68-69. Zhao Y S,Shi P.Spacecraft flight dynamics modelling theory and method[M].Beijing:Beihang University Press,2012:68-69(in Chinese).
[19] de Queiroz M S,Kapila V,Yan Q G.Adaptive nonlinear control of multiple spacecraft formation flying[J].Journal of Guidance,Control and Dynamics,2000,23(3):385-390.
Click browse the original


相关话题/控制 干扰 系统 运动 未知

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 利用符号计算方法研究生物系统全时滞稳定性
    时滞微分系统的稳定性研究在理论和应用上都有其重要的意义,特别地,从控制理论的角度看,生物系统全时滞稳定即表明该系统对于时滞具有很好的鲁棒性和可靠性.长期以来,人们一直致力于寻找时滞微分系统全时滞稳定的代数判据,已取得了不少进展.秦元勋在文献[1]中第1次将单滞后多维系统的全时滞稳定判据由超越形式的检 ...
    本站小编 Free考研考试 2021-12-25
  • 多机械臂的分布式自适应迭代学习控制
    随着工业现场任务的复杂化和多样化,单一的机械臂已经满足不了实际工况需求.如机械臂搬运重物,对于这样的任务也许可以设计一个能力非常强的机械臂来完成,但若采用多个机械臂合作完成搬运任务,可大大降低系统的复杂性和成本;并且对于可分解的任务,多机械臂系统可以并行完成不同的子任务,从而提升工作效率[1].由于 ...
    本站小编 Free考研考试 2021-12-25
  • 基于轨迹线性化控制的再入轨迹跟踪制导
    再入制导是指通过在线产生指令引导具有一定升力能力的再入飞行器从当前状态安全到达指定终端状态的过程[1].再入制导的核心是通过有效控制耗散能量,并满足过程物理约束和终端状态约束.飞行器一般为无动力再入,必须一次成功;同时要求制导律能够适应初始再入状态、气动、风场等方面的不确定性及可能的任务改变、终止或 ...
    本站小编 Free考研考试 2021-12-25
  • 基于PD的半导体激光器温度控制系统设计方法
    半导体激光器由于体积小、效率高而在通信、医疗、国防及科研领域有十分广泛的应用,特别是由于其波段覆盖广,可实现从紫外到红外波段的覆盖,可满足原子物理领域研究中对激光器波长的要求,因此已代替了传统的染料激光器与其他类型的激光器,成为原子物理实验中最为常用的抽运与检测激光光源[1,2].由于半导体激光器的 ...
    本站小编 Free考研考试 2021-12-25
  • 基于滚动时域的无人机空战决策专家系统
    作为空战决策最核心的内容,无人战斗机(UCAV)的机动决策问题目前已经随着无人机各项关键技术的快速发展愈来愈受到世界各国的重视.目前,常用空战机动决策方法有:矩阵对策法、微分对策法、专家系统法、决策影响图法等[1,2,3,4].专家系统法是空战决策研究中提出最早、技术最成熟的方法.专家系统是一种知识 ...
    本站小编 Free考研考试 2021-12-25
  • 结构偏差对二维连续地月载荷转移系统动力学影响
    绳系卫星作为一种新型的卫星概念,经过数十年的研究历程,在航天领域扮演着十分重要的角色.绳系卫星具有诸多特点[1,2]:能够实现动量(能量)的传递[3,4,5],能够借助于电动绳的原理为卫星系统提供可再生的能源,能够实现对太空垃圾的捕获等[6,7].动量交换作为绳系的一个重要功能,其基本思想就是通过系 ...
    本站小编 Free考研考试 2021-12-25
  • 基于LADRC的直升机姿态解耦控制及参数整定
    直升机是一个多输入多输出强耦合的非线性系统.直升机控制器的效果依赖于飞行动力学模型的精度,并易受到外部扰动的影响.为了使直升机拥有较好的飞行品质,控制系统须拥有良好的解耦性和抗干扰.直升机的耦合形式有操纵耦合和状态耦合两种,操纵耦合通常通过前馈矩阵进行解耦,状态耦合则通过输出反馈实现解耦.基于“一拍 ...
    本站小编 Free考研考试 2021-12-25
  • 基于Harmony系统工程的IMA应用开发
    随着航空电子技术的发展,在军用和民用领域,越来越多的先进机型采用综合模块化航空电子(IMA)系统体系架构,如F-22、A380等[1].相比传统的联合式架构,IMA系统提供一个统一的硬件平台,飞机的功能由各个应用实现,每个应用宿主在各自的分区当中,相互独立,互不干扰,提高了资源利用率,从而极大地减少 ...
    本站小编 Free考研考试 2021-12-25
  • 基于模糊神经网络的MIMO系统自适应解耦控制
    多输入多输出(MultipleInputMultipleOuput,MIMO)非线性系统的控制问题在实际应用中非常普遍,比如飞行器控制、机器人控制以及复杂过程控制等,其主要难点在于输入与输出不是一一对应的关系,多个输入和多个输出之间存在着相互耦合的影响.传统的分通道控制方法不考虑这种相互耦合作用,强 ...
    本站小编 Free考研考试 2021-12-25
  • 接收模式下加罩天线系统特性的快速电磁仿真
    现代天线系统中,天线罩在保护天线免受外界环境干扰的同时,也会影响到天线本身的电性能,如主瓣展宽、波束指向偏移、副瓣升高等[1].因此,对带罩天线系统电磁特性分析的研究,不仅具有较高的理论价值,更具有重要的现实意义.对于电中小尺寸的天线-天线罩系统,全波数值法可以精确高效地得到仿真结果.但是,工作于微 ...
    本站小编 Free考研考试 2021-12-25